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Physics 2660
Lecture 7: C � Part 6

Today
� More probability distributions: Binomial, Poisson, ... 
            but the world is mostly Normal

� Histograms with weights 
� Default parameters and constant specifiers in functions
� More on Structures 
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Part 1a: The Bernoulli Distribution

Today we'll talk about three new probability 
distributions, in addition to the Gaussian (Normal) 
distribution and the uniform distribution that we've 
already been using.
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The Bernoulli Distribution:
� Only two possible outcomes (true 
or false, success or failure).
� The probability, p, of one 
possible outcome is known.

P(heads) = p

P(tails) = (1-p)

Jacob Bernoulli

The Bernoulli distribution gives the probability of 
observing a true result in a single TRUE/FALSE test 
� it describes a simple flip of a coin.

p is the probability of success on each test.  (the coin 
may be lopsided)

It describes single true/false experiments.

Consider a coin toss:  TRUE = HEADS     FALSE = 
TAILS

What is the probability of getting one HEADs-up if you 
flip the coin 1 time?
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Bernoulli Example: Coin Toss

P(heads) = p 
                = 0.5

P(tails) = (1-p) 
            = 0.5

Outcome 1: Heads Outcome 2: Tails
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Bernoulli Example: Die Roll

Outcome 1: Roll a 6.
Outcome 2: Roll 
something else.

P(6) = p 
        = 1/6
(about 0.17)

P(tails) = (1-p) 
            = 5/6
   (about 0.83)

The outcomes don't both need to have the same 
probability, as we see here.
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Part 1b: The Binomial DistributionPart 1b: The Binomial Distribution

What if we flip a coin many times?



  

 

The binomial distribution gives us a way to calculate 
the probability of getting �x� successes in �n� trials.  
This is a useful thing in the real world.
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Understanding the Binomial Distribution:
� x = number of successes (e.g., how many heads?)
� n = number of trials (e.g., how many tosses?)
� p = probability of success in a single trial.

� P(x;n,p) = Probability of seeing x successes after n trials, given 
probability p of success.

Probability of getting x 
successes and (n-x) 
failures.

Number of possible ways to 
arrange the x successes 
and (n-x) failures.

You can think of the formula as being made up of two 
parts:  The second part just calculates the probability 
of getting �x� successes and �n-x� failures in �n� trials. 
For example, if we were rolling a 6-sided die, the 
probability of getting a 1 twice would be (1/6)*(1/6), 
and the probability of getting another number three 
times would be (5/6)*(5/6)*(5/6).  So, the probability 
of rolling 1,1,2,3,4 would be (1/6)^2 * (5/6)^3.

But there are lots of ways we could rearrange these 
numbers and still have two ones: 1,2,3,4,1;  
2,3,4,1,1;  2,1,3,4,1;... etc.  The first term above 
calculates the number of permutations that would 
produce �x� successes and �n-x� failures.



  

 

So, if you flip one fair coin the probability of getting one 
head is 50%, and the probability of getting zero 
heads is 50%.  The probability is zero for any other 
number of heads, as you'd expect.  (The formula for 
the Binomial distribution takes care of this, because 
any other number ends up producing a factorial of a 
negative integer, which isn't defined.)



  

 

Again, this is just what we'd expect, intuitively.



  

 

Now let's look at this more interesting case.  Here we 
flip the coin 20 times, and look at the probabilities of 
getting various numbers of heads.
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Mean and Variance for the Binomial Distribution:
Given the binomial distribution:

We can calculate the mean value (�) of x:

and the variance (�^2) of x:

Note that, although the Binomial distribution formula is 
complicated, the mean and average are very simple 
expressions.



  

 

  13

The Effect of Varying p:

P(
x;

 2
0,

 p
)

x = Number of heads

20 tosses, vary p from 5% to 50%

p = 5%

p = 30%

p = 50%

Very lopsided 
coin.

Fair coin.

Notice that for small values of p, the distribution gets 
very asymmetrical, and squashed up against the y 
axis.  For p=50%, though, the distribution looks 
almost like the Gaussian (Normal) distributions we're 
used to seeing.
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Part 1c: The Poisson DistributionPart 1c: The Poisson Distribution

Probabilities from the Binomial distribution are difficult 
to calculate when large numbers are involved, 
because of the factorials in the equation.  This was 
much more of a problem before computers were 
availalbe.

As we'll see, there are a couple of useful 
approximations to the Binomial distribution for which 
calculations are much easier.

The first of these is the Poisson distribution.
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The Poisson Limit:
An interesting special case of the binomial distribution is 
the one in which:

� The number of trials, n, approaches infinity,
� The probability of success, p, approaches zero,
� The mean number of successes,  = np� , remains fixed.

As these limits are approached, the binomial distribution can be 
approximated by the following (much simpler) expression:

This is called the Poisson Distribution, and it is valid when p is small, n 
is large and � is some intermediate value.



  

 

There's a rule of thumb that says the Poisson 
distribution is a good approximation of the Binomial 
distribution if n is at least 20 and p is smaller than or 
equal to 0.05, and an excellent approximation if n  �
100 and np  10.�

So, even with a modest number of trials and a not-
particularly microscopic value for p, we're already in 
a place where the Poisson approximation is good 
enough for many purposes.

The values above (n=20,p=0.05) would apply if we 
were rolling a 20-sided die.  The probablity of rolling, 
say, �1� some number of times (�x�) is given by the 
graph. 



  

 

So, if we observed a radioactive source with a Geiger 
counter for five minutes, then repeated this 
experiment several times, we'd find that the number 
of counts we see in each five-minute sample would 
be distributed in a Poisson distribution.
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Networks and Queues:
Consider a network of phones.  There are lots of phones (large n), but it's unlikely that
any particular phone will be in use at a given time (small p):

http://www.engineerguy.com/videos/video-lines.htm

Here's another real-world example where Poisson 
statistics are important.

Note that the video also mentions a distribution called 
�Erlang-B�.  This, and its companion �Erlang-C�,  
deals with the probability of observing a given waiting 
time when customers are waiting in a queue.

There's also a programming language named after 
Erlang:

http://learnyousomeerlang.com/



  

 

We saw earlier that the mean and variance of the 
Binomial distribution have really simple expressions.  
This is even more true of the Poisson distribution.
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Implications for Histograms:
Consider the following:

We fill a histogram with 
a large number of 
entries, n.

The probability, p, that 
any given entry will land 
in a particular bin is 
small.

This implies that we can use Poisson statistics to describe the 
variations in the number of counts in a given histogram bin.  

If the count in a given bin is m, then the best estimate of the 
uncertainty in the bin count is � = sqrt( m ).

This is what we saw in last week's lab:  When we took 
100 histograms, generated identically, and compared 
the values in one particular bin we saw that the 
standard deviation of the values was just the square 
root of the mean.
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Histogram with Error Bars:
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µ = 3.35

µ = 14.6
µ = 25

Poisson Distribution for � >> 0:

As � increases, the distribution approaches a Gaussian (�normal�) shape.

This is true for the Poisson distribution as well.  As the 
mean moves away from zero, the Poisson 
distribution becomes more symmetrical and takes on 
the Gaussian shape.

Note that this is a special case of the Gaussian 
distribution where we require that the variance be 
equal to the mean.  (Remember that for the Poisson 
distribution, �^2 = �. )
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µ = 3.35

µ = 14.6
µ = 25

How Good is this Approximation?

Gaussian 
approximation.

As you can see, even shifting the mean a small way  
away from zero is enough to make the Poisson 
distribution pretty close to a Gaussian distribution.
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The Gaussian Limit of the Binomial Distribution:
As we noticed earlier, the Binomial distribution itself looks like a 
Gaussian when the mean is sufficiently far away from zero.

� = np >> 0

DeMoivre

As we noted earlier, calculations involving the Binomial 
distribution can be really difficult if you don't have a 
computer.   Because of the factorials, the Binomial 
distribution becomes untractable when you try to 
apply it to large populations.  For many years early 
researchers in probability and statistics looked for a 
good approximation to the Binomial distribution that 
was easier to calculate.  Abraham DeMoivre 
eventually identified what we now call the Gaussian 
or Normal distribution.
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Gaussian Distributions in Monte Carlo Results:
Because of the Gaussian limit of the binomial distribution, we see 
Gaussian shapes appear when we look at �coin tossing� experiments like 
our Monte Carlo integration examples:

Statistical errors tend to follow Gaussian distributions 
for sufficiently large samples.  This is an example of 
the Central Limit Theorem � a remarkable result that 
lies at the core of probability theory.
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Binomial Poisson

Gaussian

n � Large, p � Small

n � Large, 
np =  >> 0�

 >> 0�

Relations between Distributions:
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Binomial Poisson

Gaussian

n � Large, p � Small

n � Large, 
np =  >> 0�

 >> 0�

Picking the Right Distribution:
Need full Binomial description 
when there is a good chance 
you see events at both limits:
x=0 and x=n.

Can use Poisson limit when you are 
likely to observe events at x=0, but 
not likely to see events at x>>� 
approaching upper limit.

Can use Normal/Gaussian limit when 
number of trials is large and observed 
data are not likely to land near either 
the upper or the lower limits.
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Part 2: Optional Function ParametersPart 2: Optional Function Parameters

In the U.S., we have these three-hole wall outlets.  But 
we can still use two-prong plugs in them.  The third 
connector is optional.

C++ allows us to do the same sort of thing with 
functions.  We can have optional arguments that 
have default values.
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void h1fill(h1 *hist, double x, double wgt=1.0);

Defining Default Parameter Values:

Consider the following prototype statement from �hist.hpp�, one of the 
header files associated with our �p2660� library:

As we saw in lab last week, we can call �h1fill� with an optional third 
argument (a weighting factor).

This is possible because the function's prototype defines a default 
value (�1.0�) for the last parameter.  If we don't specify a value for 
this parameter when we use the function, the compiler just  
assumes that it has the default value.

This is a feature that's only available in C++.  It won't work in vanilla 
C.
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Rules for Default Parameter Values in C++:

� Default values should be specified in the 
function's prototype.

� Any number of parameters may have defaults.

� All other parameters after a parameter with 
defaults must also have defaults.
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void printstuff(int a=0, int b=0, int c=0); 

int main(){

  printstuff(); // prints 0 0 0

  printstuff(1);     // prints 1 0 0

  printstuff(1,2); // prints 1 2 0

  printstuff(1,2,3); // prints 1 2 3

}

void printstuff (int a, int b, int c){

  printf(“%d %d %d\n”,a,b,c);

}

Default Parameter Example:

Note that we specify the defaults in the prototype, not 
the function definition (and not both).
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Part 3: More on StructuresPart 3: More on Structures

Finally today, a little note about avoiding a potential 
problem when giving functions pointers to structures.
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Unintended Changes:

typedef struct{

double re, im;

} Complex;

// Return the magnitude of the sum of z1 and z2:

double magsum(Complex *z1, Complex *z2) {

z1->re += z2->re;

z1->im += z2->im;

return sqrt( z1->re*z1->re + z1->im*z1->im ); 

}

Consider the following innocuous-looking code:

What happens if we want to use the value of z1 somewhere later in 
our program, after calling �magsum�?  

The author of the magsum function wasn't thinking about this!
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Preventing Unintended Changes with �const�:

typedef struct{

double re, im;

} Complex;

// Return the magnitude of the sum of z1 and z2:

double magsum(const Complex *z1, 

              const Complex *z2) {

z1->re += z2->re;

z1->im += z2->im;

return sqrt( z1->re*z1->re + z1->im*z1->im ); 

}

You can protect yourself from mistakes like this by using �const�:

The compiler will make sure you don't change data you specify as 
constant:
g++ test.cpp
test.cpp : In function `magsum':
test.cpp:9: warning: increment of read-only member `re'
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Next Time:

This week's Lab:This week's Lab:

�  Using the debuggerUsing the debugger
�  New library functionsNew library functions
    

Brooks Ch. 1, Ch. 2 sections 1-2.2

� �Classes� in C++
� Searching and Sorting
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The End

Thanks!


