

 1

Physics 2660
Lecture 8

Today
�A taste of C++, functions in structures -> classes
� Searching & Sorting
� Interpreting experimental uncertainties
� Combining / propagating uncertainties in experiments

 2

Part 0: Forces and MassesPart 0: Forces and Masses

Let's start out today by talking about the gravity
problems you've been working on in the last couple
of homework sets.

 3

mX
F

(0,0,0)

The Problem:
We want to read in the position vectors, initial velocities, and masses of a
bunch of objects. Then, using this data, we want to calculate the
gravitational force on each object, due to the others. (For the first part,
we'll ignore the initial velocities.)

Here's one of our objects. It has mass �m�, and it's
located at position X. The calculated force on it is F.

 4

ma

mb

mc

md

Fb Fc

Fd

F = Fb + Fc + Fd

Adding the Forces:

To find the total force on one mass, we just add the force vectors due
to each of the other forces.

 5

ma

mb

r

(0,0,0)

Xa

Xb

Finding Distance and Direction:

r = Xb - Xa

r = | r |

u = r / r

We'll need to know the distance
and direction to each other object.

This is the vector from a to b:

The magnitude of this vector
gives us the distance:

Once we know these, we can
make a unit vector pointing from
a to b:

u

 7

typedef struct{
 double s_vec[3]; // space(position) vector
 double v_vec[3]; // velocity vector
 double f_vec[3]; // force vector
 double mass;
} body;

const int MAX_BODIES = 100;
body bodies[MAX_BODIES]; // array of bodies

Data Structure:

To solve this problem programmatically, we'll first need a data structure
to store information about each body:

 8

int read_data(char* file, body *bodies){
 int num=0; // number of entries read from file
 int status;
 FILE *file_p = fopen(file,"r");

 while(num<MAX_BODIES) {
 status=fscanf(file_p,"%lf %lf %lf %lf %lf %lf %lf",
 &bodies[num].s_vec[0],
 &bodies[num].s_vec[1],
 &bodies[num].s_vec[2],
 &bodies[num].v_vec[0],
 &bodies[num].v_vec[1],
 &bodies[num].v_vec[2],
 &bodies[num].mass);
 if (status==EOF) break;
 num++;
 }
 return num;
}

Position

Velocity

Mass

Reading Data from a File:

Here's an example of a function that can read data
from a file and fill the data structure on the previous
page. Notice that it takes a file name as an
argument, then just opens the file and reads the
contents. (If we were better programmers, we'd also
take the trouble to close the file when we were done
with it.)

Notice that the function will only read up to
MAX_BODIES bodies, since this is the size of our
array. If there are more bodies than this in the file,
the remaining ones will be ignored.

If the function gets to the end of the file before it
reaches MAX_BODIES, it stops. The function
returns �num�, the number of bodies actually read.

 9

// Find distance between two points:
double distance(double *svec1, double *svec2){
 double dist2=0;
 int i;
 for (i=0; i<3; i++)
 dist2 += (svec1[i]-svec2[i])*
 (svec1[i]-svec2[i]);
 return sqrt(dist2);
}

// Find difference of two vectors:
void vsub(double *v1, double *v2, double *v1m2){
 int i;
 for (i=0; i<3; i++)

 v1m2[i] = v1[i]-v2[i];
}

Some Useful Functions:

(x1-x2)
2 +

(y1-y2)
2 +

(z1-z2)
2

diff = [(x1-x2),
 (y1-y2),
 (z1-z2)]

The �distance� function just calculates the distance
between two points in three-dimensional space. You
can think of this as the magnitude of the vector �r�
pointing from one body to another.

The �vsub� function subtracts one vector from another,
to produce a third vector. You can think of this as
the �r� vector itself.

 10

void forces(body *bodies, int nbodies){
 double dist, force;
 double dirvec[3];
 const double G = 6.67e-11;

 for(int i=0; i<nbodies; i++){
 bodies[i].f_vec[0]=0;
 bodies[i].f_vec[1]=0;
 bodies[i].f_vec[2]=0;
 for(int j=0; j<nbodies; j++){

if (i!=j) {
 dist = distance(bodies[i].s_vec,bodies[j].s_vec);
 vsub(bodies[j].s_vec,bodies[i].s_vec,dirvec);
 dirvec[0] /= dist;
 dirvec[1] /= dist;
 dirvec[2] /= dist;
 force = G*bodies[i].mass*bodies[j].mass/(dist*dist);
 for(int k=0; k<3; k++) {
 bodies[i].f_vec[k] += force*dirvec[k];

}
 }
 }
 }
}

Calculating the Forces:

Here's a function that calculates the total force on each object,
due to all the other objects. Notice the if statement �(i!=j)� that
omits the object itself from the calculation.

The function uses the �distance� and �vsub� functions we saw in
the previous slide.

The vector �dirvec� is the unit vector pointing from one mass to
the other. We get it by dividing the �r� vector by its length.

Finally, note that, although this function has a double loop that
goes through all the objects, we could really get by with only
half as many iterations, since the mutual forces on each pair of
objects are equal and opposite. If we were clever, we could
take advantage of this and write the function so that we just
calculate each pair of forces once.

 11

Trajectories:

m
F

v

m
a

v
F = m a

a = F / m

vold
vnew

�v

F = m a

�V = a �t

Vnew = Vold + V�

That takes care of most of the static stuff. Now to set
things in motion...

First, we'll need to think about the velocities and
accelerations of the objects. Since we know the
forces now, we can calculate the accelerations.

Once we know the accelerations, we can calculate the
change in velocity after a time step of delta t.

 12

void evolve(body *bodies, int nbodies, double delta_t){
 for (int i=0; i<nbodies; i++) {
 for (int j=0; j<3; j++){

 double acceleration_j =
 bodies[i].f_vec[j] / bodies[i].mass;

 bodies[i].s_vec[j] += bodies[i].v_vec[j]*delta_t;

 bodies[i].v_vec[j] += acceleration_j * delta_t;
 }
 }
}

Calculating Trajectories:

aj = Fj/m

x,y,z
xj

new = xj + vj �t

vj
new = vj + aj �t

Here's one simple way to approximate the motion of the objects.
 Here, we assume a constant velocity during each time step:

 13

void evolve(body *bodies, int nbodies, double delta_t){
 for (int i=0; i<nbodies; i++) {
 for (int j=0; j<3; j++){

 double acceleration_j =
 bodies[i].f_vec[j] / bodies[i].mass;

 bodies[i].s_vec[j] +=
 (bodies[i].v_vec[j]*delta_t+0.5*acceleration_j*delta_t*delta_t);

 bodies[i].v_vec[j] += acceleration_j * delta_t;
 }
 }
}

A Better Approximation:

aj = Fj/m

x,y,z
xj

new = xj + vj �t + ½ aj t� 2

vj
new = vj + aj �t

Here's a better approximation. In this version, we only assume
a constant acceleration during each time step:

 14

Orbits:

A good way to check the sanity of your program is to
write out x,y,z values for one of the bodies into a file,
and then plot them with gnuplot. (The output file
should just have three columns of numbers.)

Seen above is the orbit of an object in the x-y plane. If
you look at a plot like this and see something
obviously non-physical (sharp corners, straight lines,
etc.) then there's probably something wrong with
your program.

Once you have a data file like this, you can plot it in
gnuplot by just typing a command like:

plot �file.dat� with lines

 15

Part 1: Introduction to C++ ClassesPart 1: Introduction to C++ Classes

We've dealt a lot with structures now. Structures are a
tried-and-true feature of the C programming
language.

C++ offers an additional construct called a �class�,
which is like a souped-up structure. Let's take a look
at how it's used.

 16

typedef struct{
double re, im;

} Complex;

double magnitude(Complex z) {
return sqrt(z.re*z.re + z.im*z.im);

}

void conjugate(Complex *z) {
z->im = -z->im;

}

A Review of Structures:
In C, we can define structures that pack a lot of related information into
a single variable. We can then create functions that operate on our
newly-defined variable types.

 17

Classes in C++:
class Complex{
public:
 double re,im;
 double magnitude() const {

return sqrt(re*re+im*im);
}

 void conjugate() {
im = -im;
}

};

int main () {
 Complex c;
 c.re = 1.0;
 c.im = 2.0;

 printf ("Magnitude is %lf\n", c.magnitude());
 c.conjugate();
 printf ("Im(c) = %lf\n", c.im);
}

Functions (called
�methods�) can be

included in the
definition of a class.

Variables in this class.

An instance of a class
is called an �object�.

Like structures, classes can contain variables, but they
can also contain dedicated functions, called
�methods� that operate on the class's data.

We define new variables of a particular class just as
we'd define a variable using structs: just type the
name of the class followed by the variable name.

Each instance of the class is called an �object�. The
idea is that objects are sort of �smart variables� that
are able to do things on their own and interact with
each other.

 18

Invoking Methods:
class Complex{
public:
 double re,im;
 double magnitude() const {

return sqrt(re*re+im*im);
}

 void conjugate() {
im = -im;
}

};

int main () {
 Complex c;
 c.re = 1.0;
 c.im = 2.0;

 printf ("Magnitude is %lf\n", c.magnitude());
 c.conjugate();
 printf ("Im(c) = %lf\n", c.im);
}

Class methods are
invoked like this.

The methods of a class are invoked in much the same
way we'd use the elements of a struct.

 19

Variables in Classes:
class Complex{
public:
 double re,im;
 double magnitude() const {

return sqrt(re*re+im*im);
}

 void conjugate() {
im = -im;
}

};

int main () {
 Complex c;
 c.re = 1.0;
 c.im = 2.0;

 printf ("Magnitude is %lf\n", c.magnitude());
 c.conjugate();
 printf ("Im(c) = %lf\n", c.im);
}

Class methods
automatically have
access to variables

within the class.

const here means that the
method will be prevented
from accidentally altering

the data in the class.

The methods in a class don't need to use �.� or �->� to
get to the variables within the class. They just use
the variable name.

 20

Scope of Variables and Methods:
class Complex{
public:
 double re,im;
 double magnitude() const {

return sqrt(re*re+im*im);
}

 void conjugate() {
im = -im;
}

};

int main () {
 Complex c;
 c.re = 1.0;
 c.im = 2.0;

 printf ("Magnitude is %lf\n", c.magnitude());
 c.conjugate();
 printf ("Im(c) = %lf\n", c.im);
}

Methods and variables within a
class can either be �public� or
�private�. Private components
can only be accessed by
methods within the class.
Default is �private�.

Methods and variable that are �public� can be used
outside the class (in �main�, for example). In the
slide above, everything in the class is set to �public�.

What happens if we make some things private?

 21

Private Variables and Constructors:
class Complex{
private:
 double _re,_im;
public:
 Complex(double re=0, double im=0){
 _re = re;
 _im = im;
 }
 double magnitude() const {

return sqrt(_re*_re+_im*_im);
}

 void conjugate() {
_im = -_im;
}

};

int main () {
 Complex c(1.0,2.0);
 printf ("Magnitude is %lf\n", c.magnitude());
}

A �constructor� method
can optionally be used for
defining new instances of
a class. This is a method
with the same name as
the class.

By convention, we often prepend an
underscore on the names of private
variables.

In this example, we've made _re and _im �private�
variables. This means that parts of our program
outside the class can't get to these variables.
They're only available inside the class.

Constructor methods can be arbitrarily complicated.
We can have the constructor do anything we want to
initialize our variables. We might, for example, have
a histogram class with a constructor that
automatically initializes to zero all of the bins of a
new histogram.

 22

Accessing and Setting Private Variables:
class Complex{
private:
 double _re,_im;
public:
 Complex(double re=0, double im=0){
 _re = re;
 _im = im;
 }
 double re() const { return(_re); }
 double im() const { return(_im); }

 void re(double rval) { _re = rval; }
 void im(double ival) { _im = ival; }
};
int main () {
 Complex c(1.0,2.0);
 printf (“Re(c) = %lf\n”, c.re());
 c.re(3.0);
 printf (“Re(c) = %lf\n”, c.re());
}

Accessor and setter methods:

Example of function
overloading in C++.

In the example above, we have a problem if we make
_re and _im private. Now we can no longer set them
directly in �main� or elsewhere.

We need �setter� and �accessor� methods to get and
set these values for us.

But wait. We have two methods called �re� and two
called �im�. What's up with that? In C++, you can
have two (or more) functions with the same name, as
long as they have a different calling syntax. In the
case above, one �re� function takes no arguments
and returns a double. The other �re� function returns
nothing, but takes a double as an argument.

C++ figures out which function to call based on how
you use it in your program. This is called �function
overloading�.

 23

A �print� Method:
class Complex{
...
public:
 double magnitude () {
 return(sqrt(_re*_re+_im*_im));
 }
 void print () {
 printf(“%lf+%lfi, mag=%lf\n”, _re, _im,
 magnitude());
 }
...
};
int main () {
 Complex c(1.0,2.0);
 c.print();
}

1.0+2.0i, mag=2.24

It's often useful to have a �print� method, that knows
how to print out your variables.

 24

int main(){

 h1 hist1(100,0.,100.,
 "Uniform,weighted w/ X");
 hist1.labels("X-value","# of entries");

 h1 hist2(150,0.,1000.,"Normal, weights=1");
 hist2.labels("X-value","# of entries");

 for (int i=0; i<10000; i++) {
 double tmp = randu(0.,100.);
 hist1.fill(tmp,tmp);
 hist2.fill(randn(600.,100.),1.0);
 }

 hist1.errors(true);
 hist1.plot();

}

An Object-Oriented Histogram Library:
The new version of our histogram library supports object-
oriented syntax:

Feel free to use this, or not.

 25

Until now, we've been concentrating on a programming style called
�procedural programming�, in which we pass data from function to
function as we step through the jobs our program needs to do

In C++ one often follows an object-oriented design model, in which
classes are designed to encapsulate both data and the operations that
are used with those data

Object-oriented programming was once the dominant programming
model, but has recently fallen into some disfavor. At Carnegie-Mellon
University, for example, object-oriented programming has now been
entirely eliminated from the introductory CS curriculum.

You won't be required to program in this model, but you should be aware
of the syntax, just in case you see similar usage in a problem solution.

Object-Oriented Programming:

 26

Part 2: Searching

We've been creating a lot of arrays lately. What
happens when we want to search for a particular
element in an array?

 27

We'll discuss two simple approaches to searching for a particular value
within a collection of data:

1) a linear search
In a linear search, we star at the beginning of an array and move

down the line of elements looking for matches.

2) a binary search
If we have an ordered list of data (either ascending or descending),

this method provides a MUCH faster search for a particular value.
Binary searches are sometimes called �bisection�.

Search Methods:

 28

22

34

16

3

90

137

7

73

88

6

25

99

Linear Search:

index = -1;
value = 88;
for (i=0, i < N_MAX, i++) {

if (value == A[i]) {
index = i;
break;

}
}

if (index >=0)
printf (“Found at location %d\n”,

 index);
else printf (“value not found\n”);

The value we're looking for.

Loop through
the array.

A

A linear search just starts at the top of the array and
works its way down until it finds what it's looking for.

 29

Binary Search:
With a pre-sorted list, we can use a faster binary search. Start by picking a
number in the middle of the array, then continue breaking the list in half
each time:

3

6

7

16

22

25

34

73

88

90

99

137

3

6

7

16

22

25

34

73

88

90

99

137

3

6

7

16

22

25

34

73

88

90

99

137

3

6

7

16

22

25

34

73

88

90

99

137

Note that this only took three steps. As we'll see,
binary searches can be very fast, even for large
arrays.

Remember that binary searches only work for sorted
lists, though.

 30

int binarysearch (int value, int* data, int size){
 int low = 0, high = size-1, center;

 while (low <= high){

center = (low + high) / 2;
if (data[center] == value) return center;

if (data[center] < value)
low = center++;

else
high = center--;

 }
 return (-1);
}

A Binary Search Function:

Value to search for.

Array of data to
search through.

Size of array.

Here's one way to write a simple binary search
function. Let's step through how it works.

 31

int binarysearch (int value, int* data, int size){
 int low = 0, high = size-1, center;

 while (low <= high){

center = (low + high) / 2;
if (data[center] == value) return center;

if (data[center] < value)
low = center++;

else
high = center--;

 }
 return (-1);
}

A Binary Search Function:

Pick ~center of current range.

First, pick an index approximately in the middle of the current range:

 32

int binarysearch (int value, int* data, int size){
 int low = 0, high = size-1, center;

 while (low <= high){

center = (low + high) / 2;
if (data[center] == value) return center;

if (data[center] < value)
low = center++;

else
high = center--;

 }
 return (-1);
}

A Binary Search Function:

Too low. Raise lower limit.

Too high. Lower upper limit.

Found it!

Maybe we get lucky, and the number we're looking for will be at the index
we picked. If not, look at whether the number that's there is higher or
lower than the number we're looking for, and adjust the range
accordingly.

 33

int binarysearch (int value, int* data, int size){
 int low = 0, high = size-1, center;

 while (low <= high){

center = (low + high) / 2;
if (data[center] == value) return center;

if (data[center] < value)
low = center++;

else
high = center--;

 }
 return (-1);
}

A Binary Search Function:

Number not found.

Keep doing this until we either find the number or exhaust all of the
possible array elements. If we don't find the number anywhere in the
array, return �-1� to indicate that we've failed.

 34

Speed of a Linear Search:

Let's assume we have an ordered array of N
elements and we want to search for the
location of a number that we know to be in the
array.

How much work does this require?

For a linear search we make no distinction
whether the number is high or low, we always
start looking through the array from the start.

On average it takes us N/2 tries to find the
number. Thus the work required is
proportional to N. In Computer Science
terms, this is what's called an O(N) algorithm.

If we double N, we double the work on
average.

88

34

16

3

90

137

7

73

22

6

25

99

99

34

16

3

90

137

7

73

22

6

25

88

Best-Case: Worst-Case:

 35

Speed of a Binary Search:
In the worst case the work done by the binary search is proportional to
the number of times we can divide the array in half, before only one
element remains.

if N = 128, we can cut the array in half only 7 times!
(128, 64, 32, 16, 8, 4, 2, 1 2^7 = 128)

If we double N, then we need only do 8 divisions instead of 7.
A relatively small increase in work.

The number of iterations required of a binary search algorithm is only
proportional to log

2
(N), where log

2
(N) is the power to which you need to

raise 2 to get N.
In Computer Science terms, this an O(log

2
N) algorithm.

This is very important when N is large. In that case, log
2
(N) << N. For

example, if N = 4 billion, it would only take up to 32 steps to find any
given number with a binary search. It could take up to 4 billion steps
with a linear search.

 36

Part 3: SortingPart 3: Sorting

So, we see that binary searches are fast, but they
require pre-sorted data. How about routines for
sorting?

 37

In order to take advantage of the binary search we need sorted data,
this leads naturally to a discussion of sorting algorithms.

We'll consider two algorithms:

1) The very simple and intuitive Selection Sort

2) The clever Quicksort algorithm

There are many other sorting algorithms, some optimized for
particular data set characteristics.

You may never need to do anything more than choose between a
slow but simple sort and some kind of optimized sort in your
programs. But this is a rich topic to explore if sorting times become
an important limiting factor in your work.

Sorting Algorithms:

 38

17 4 11 9 13 3 5

3 4 11 9 13 17 5

3 4 11 9 13 17 5

3 4 5 9 13 17 11

3 4 5 9 13 17 11

3 4 5 9 11 17 13

3 4 5 9 11 13 17

Selection Sort:

...

Scan forward from position (1)
swap smallest number into (1)

Scan from (2), swap smallest number into (2)

Scan from (3), swap smallest number into (3)

Scan from (N-1), swap smallest number into
(N-1)

.

.

.

All sorted.

 39

const int num=7;
int a[num] = {17, 4, 11, 9, 13, 3, 5};

for (i=0; i<num ; i++) {
for (j=i+1; j<num; j++)

if (a[j] < a[i])
swap (&a[j], &a[i]);

}

...

void swap (int *i, int *j) {
int tmp;
tmp = *i;
*i = *j;
*j = tmp;

}

Implementing a Selection Sort:
As you can see, a selection sort is really easy to write:

For each element starting
at the beginning...

Search through remaining
elements i+1 to num-1

If we find a smaller element,
swap the two

�swap� function

 40

The time to go through a single loop is proportional to N (or �O(N)�).
Here we have a loop within a loop, so the time is proportional to N*N.

Computer scientists would say that this is an O(N2) algorithm, making it
very slow for large values of N.

const int num=7;
int a[num] = {17, 4, 11, 9, 13, 3, 5};

for (i=0; i<num ; i++) {
for (j=i+1; j<num; j++)

if (a[j] < a[i])
swap (&a[j], &a[i]);

}

The Problem with Selection Sorts:
The problem with the selection sort algorithm is its pair of nested loops.

 41

The Quicksort Algorithm:

8 4 11 9 13 3 5 15

8

1

4 3 5 1 11 9 13 15

A better sorting algorithm is the one called �Quicksort�. It works like
this:

1. Start with a value, say
the first one.

2. Split the list into
elements less than the
value and elements
greater than the value.

3. Reapply this procedure to each of the two �satellite� lists.
4. Repeat until all lists have one element left.
After each step, we're scanning lists of half the original size.
This translates into a huge reduction in the work needed to sort the list.
A Quicksort is a O(Nlog

2
N) algorithm.

For N=106, compare: N2 = 1012, Nlog
2
N ~ 2x107 , about 50,000 times

less.

So, how do we write a program to do a quicksort?

 42

QSORT(3) Linux Programmer's Manual QSORT(3)

NAME
 qsort - sorts an array

SYNOPSIS
 #include <stdlib.h>

 void qsort(void *base, size_t nmemb, size_t size,
 int(*compar)(const void *, const void *));

DESCRIPTION
 The qsort() function sorts an array with nmemb elements of size size.
 The base argument points to the start of the array.

 The contents of the array are sorted in ascending order according to a
 comparison function pointed to by compar, which is called with two
 arguments that point to the objects being compared.

 The comparison function must return an integer less than, equal to, or
 �greater than zero if the first argument is considered to be respec
 tively less than, equal to, or greater than the second. If two members
 compare as equal, their order in the sorted array is undefined. ...

man qsort

The �qsort� Function:
The �qsort� function in the standard C library implements a Quicksort:

Fortunately, we don't have to write our own function.
The �qsort� function is in the standard C library.

 43

void qsort(void *base,
 size_t nmemb,
 size_t size,
 int(*compar)(const void *, const void *));

qsort Syntax:

� void *base is a generic memory location. It's like a pointer
without a specific data type. In this case, it points to the beginning of
the array we want to sort.
� size_t nmemb is the number of elements in the array. For now,
assume size_t is just the same as int.
� size_t size contains the size of each element of the array. Qsort
can operate on any array (double, int or some complicated struct), so it
needs to know how big each element of the array is.
� int (*compar)(const void *, const void *)
 This is a function pointer, pointing to a function that can compare two
values to see which is �bigger�. We can write this function any way we
want, to suit our own definition of �bigger�.

Qsort has a slightly complicated calling syntax. We'll
look at some examples of how to use it soon.

 44

Void * Pointers:

int data[50]

int* int_p = data;

void *void_p = (void *) int_p;

int_p = (int *) void_p;

Here's an example showing how to convert between void * pointers
and pointers of other types, using typecasts:

integer pointer
to our array.

void pointer to
the same array.

Here's how to cast a
void pointer as an
integer pointer again.

Since qsort uses void * pointers, we need to know how
to work with them. The examples above show how
to cast other types as void *, and vice versa.

 45

int compare_int(void *a, void *b) {
 int x = *(int *)a;
 int y = *(int *)b;
 if (x > y) return 1;
 if (x < y) return -1;
 return 0;
}

int compare_float(void *a, void *b) {
 float x = *(float *)a;
 float y = *(float *)b;
 if (x > y) return 1;
 if (x < y) return -1;
 return 0;
}

Comparison Functions for Qsort:
Qsort comparison functions return �an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively
less than, equal to, or greater than the second.�

We can write our comparison function any way we
want. For example, we might have an array of
histograms and want to sort them by the number of
counts they contain. We could write a comparison
function to do this.

 46

int data[50];
float fdata[50];

qsort((void *)data, 50, sizeof(int),
compare_int);

qsort((void *)fdata, 50, sizeof(float),
compare_float);

Sorting Arrays with qsort:

Finally, here's an example showing how to use qsort to sort arrays:

Here are some real examples of qsort usage. Even
though the syntax sounds complicated, it's not so
bad when you actually start using it.

 47

Creating a Sort-order List:
If you have an array of big data structures (e.g., histograms), it may
take a lot of time to actually move them around in memory while
sorting them. Usually, we really don't care how the items are
arranged in memory, we just need to know which comes first, which
comes second, etc..

In this case, we might just want to create a list of indices, sorted
appropriately. The array indices are small (just ints), so it doesn't
much time to move them arround in memory.

int order[MAX]
some_big_struct data[MAX]

After sorting the indexes, use data[order[i]] to retrieve
elements in sorted order.

 48

Part 4: Interpreting Experimental UncertaintiesPart 4: Interpreting Experimental Uncertainties

When we do an experiment and report a result in the
form �x +- sigma�, what does that really tell us?

 49

Example: Neutron Decay:

n0 � p+ + e- + �
e

Left to themselves, neutrons are unstable and decay into protons,
electrons and neutrinos. The mean lifetime of a free neutron is
predicted to be about 886 seconds (about 15 minutes).

What if we do an experiment to measure the lifetime of a free
neutron, and we come up with a result of 926 +/- 20 seconds.

Is our result consistent with the theoretical prediction?

Note that the theoretical result differs from our result by 2�.

 50

95%

� ����

5%

Probability of a 2� Deviation:
When we cite a result like �x +/- ��, we're saying that we believe that if our
experiment were repeated many times, the results would be distributed
like the graph below. In particular, we expect that only about 5% of the
results will be more than 2� from the mean.

In our neutron decay
example, our measured value
differed from theory by 2�.

If theory and experiment were
both correct, we'd expect to
see a deviation this large
about 5% of the time. So, it
isn't out of the question that
both theory and our
experiment are correct.

The agreement in this case isn't great, but it doesn't provide any
compelling reason to throw out the theory.

If we want to do this kind of comparison a lot, a graph
like the one above might be useful. In red, it shows
the total area between N*sigma and infinity. In
green, it shows the area between zero and N*sigma.

Graphs like this can be generated using the �erf�
function (the �error function�) which is related to the
integral of the Gaussian function.

 52

Only when:

� The quantity of interest has been correctly measured.
(no important systematic biases).

� Size of error has been correctly calculated.
Incorrect errors are disastrous for determining significance of
experiment. Recall a 2� deviation happens ~5% of the time.

But if we underestimate errors by a factor of two, the same result
implies a 4� deviation. The probability for such a result is only
6E-5. It's very unlikely we'd ever observe this if the theory is correct.
This is a reminder that experimental results are meaningless without
uncertainties.

� The form of the experiment's uncertainties are adequately modeled
by a Gaussian.
The Central Limit Theorem makes this common, but it's not always
true.

When Can We Trust Numerical Probabilities?

 53

8%

� ����
92%

Deviations that are too Small:
What if our neutron result had been 888 +/- 20 seconds , compared to the
prediction of 886 seconds? These only differ by 0.1�. We'd expect this
to happen only about 8% of the time.
When results agree too closely, we need to think about their validity.

� Are we unusually lucky?

� Did we overestimate �?

� Did we look at the
prediction and cheat on the
experiment?

The third possibility is something you should really
think about when looking at published results. Is this
result too good to be true?

 54

A= �A

�
A

B= �B

�
Β

Errors in Linear Combinations of Variables:

Assume that we measure two values, A and B, and are interested in
their sum, C = A+B.

If we know the errors in A and B, what's the error in C?

Let's assume A and B fluctuate randomly and independently (we say
that they're uncorrelated).

 55

Propagation of Errors:
If we have a function of several variables, f(x,y,z...), we can use
propagation of errors to find the error in f, given the errors in x, y, z....

Applying this to C(A,B) = A + B, we get:

We say that the uncertainties add in quadrature, meaning that we add
the squares instead of just adding the numbers directly.

For example, if �
A
= 3 and �

B
 = 4, we'd have �

C
 = 5, since 52 = 32 + 42.

We

 58

Asymmetrical Errors:
From propagation of errors, we'd say that the error in f(x) = tan(x) was:

For x = 88 +/- 1 degrees, that would give us �
f
 = 14.3, and we might

say that our value for f was tan(88) +/- 14.3, or f = 28.6 +/- 14.3.

But:

tan(88) ~ 29
tan(89 = 88+1) ~ 57
tan(87 = 88-1) ~ 19

So f(x) = 29 + 29
� 10

 is more appropriate in this case!

 59

Monte Carlo Estimation of Errors:

x = 88 ± 1
Generate a random
distribution for each
element, x, in our function

Then plot the distribution
f(x), where x is drawn from
the random sampling.

It is always possible to combine errors via a Monte Carlo approach.

This can be very useful for complex error propagations.

 60

tan(x), where x is distributed according to 88 ± 1

mean

Error bar represents
minimal 68%
confidence region

The Monte Carlo technique allows us to determine the actual
uncertainty distribution on our dependent quantity. This technique is not
limited to Gaussian uncertainties, but can be applied to any
distribution.

Monte Carlo Estimation of Errors:

 61

Next Time:

This week's Lab:This week's Lab:

� Using the qsort functionUsing the qsort function
� Monte Carlo error propagationMonte Carlo error propagation

Brooks Ch. 1, Ch. 2 sections 1-2.2

� Fitting
� Chi-squared

 62

The End

Thanks!

