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Physics 2660
Lecture 9

Today
� Agreement of data with theory (or other data)

� Fitting a model to your data 



  

 

Today we'll talk about a couple of related topics: how to 
objectively evaluate the quality of a theory, given a 
set of data it claims to describe, and how to adjust 
the parameters of a theory to make the theory fit the 
data as well as it can.

We'll start with measuring how good a given theory is.
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v
time = t

A Gravity Experiment:

Let's say we're doing an experiment that 
measures the velocity, v, of a falling object at 
some time, t.

We collect some data (values of v at various 
times) and then try to come up with a general 
theory (a �model�) that is consistent with our 
observed data.

This is the process of �inductive reasoning�, 
whereby we look at specific data and try to 
develop generalizations from them.

This is a big part of how science progresses!
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Experimental Results:

Here's the data we gathered.  It shows velocity values 
for various values of time.  After looking at it, we 
might wonder if a simple theory could explain why 
the velocities have the values we observed.



  

 

Here's our theory.  We think it's plausible that the data 
could be explained by a simple linear relationship 
between velocity and time.

But how well does our theory fit the data?



  

 

 

What of somebody else has a different theory, like the 
one on the bottom.  We might look at it and think it 
doesn't fit the data very well, but how can we 
quantify that?

Is there some numerical way to compare these two 
theories to the data, so we can say which one is 
more likely?



  

 

 

Pearson invented Chi-squared around 1900.  He was a  �science 
evangelist� who passionately believed in the power of 
objectivity and the scientific method (taking this to extremes in 
some cases, such as embracing eugenics).  His book �The 
Grammar of Science� was a big influence on the young 
Einstein, and inspired some of his ideas about relativity.

There are several different formulations for chi-squared.  For this 
lecture I've chosen the one that I think is most intuitive.  No 
matter how chi-squared is calculated, it will always be a 
measure of the overall deviation of your data points from some 
model, as we'll see a little later.

I'll also stick to a consistent set of variables here, but you'll find 
that every book (or web site) has its own conventions, so don't 
be surprised if you see a different set of variable names 
elsewhere.



  

 

As you can see, if all of our observed values are close 
to the predicted values, the calculated chi-squared 
will be small.  If our observed values are far away 
from the predicted values, chi-squared will be large.



  

 



  

 

 

Notice that, while the Gaussian distribution covers 
values both postive and negative, the value of chi-
squared will always be positive.



  

 

 

This shows the probability of seeing a chi-squared 
value in excess of some given number, for 1 degree 
of freedom (one data point).  For example, there's a 
32% chance of seeing a chi-squared greater than 1, 
and a 5% chance of seeing a chi-squared greater 
than 4.

What good does this do?  Couldn't we get the same 
information by just looking at the integral of the 
Gaussian (Normal) distribution as we've done 
before?  Why bother looking at this new chi-squared 
number?

The reason is that chi-squared can be calculated for 
more than just one data point.



  

 

 

This is like the previous plot, but this time it shows us 
the probability of seeing a chi-squared value in 
excess of some given number for 5 degrees of 
freedom (five data points).

It tells us, for example, that if we have five data points 
there's a 96% chance we'll see a chi-squared value 
greater than 1, and a 55% chance we'll see a value 
greater than 4.  There's a smaller and smaller 
chance of seeing larger and larger chi-squared 
values, and an extended chart like this would let us 
quantify those probabilities.

As you can see by looking at the way chi-squared is 
calculated, you'd expect to see larger values of chi-
squared for more degrees of freedom (data points).
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Chi-squared with k Degrees of Freedom:

We can extend this to any 
number of degrees of freedom 
(i.e., number of data points).

The top graph shows the chi-
squared distribution for k=1, 2, 
3, 5 and 10 data points.

The bottom graph shows the 
integral probability of observing 
a chi-squared value in excess of 
some given number, N.

Notice that, after the first couple of values of k, the 
curves in the top graph develop a peak, which 
moves to the right as k increases.  This peak is at the 
most probable value of chi-squared for that value of 
k.

In the bottom graph, the curves also tend to move 
toward the right as k increases.  As with the top 
graph, this is due to the fact that chi-squared tends to 
get bigger as we increas the number of data points 
(degrees of freedom).
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Many Degrees of Freedom:

k=50

k=50

50% �2 > k

Like many things, the �2 
distribution approaches a 
Gaussian (Normal) shape for 
large values of k.

At large values of k, the 
probability of seeing a �2 value 
in excess of k approaches 50%.

As the number of data points (k) gets bigger, we see 
that chi-squared tends to be bigger than k about half 
the time, and smaller than k about half the time.  For 
large values of k, the most probable value of chi-
squared is equal to k.



  

 

When we report a value for reduced chi-squared, we 
still need to state the value of k, too, since the 
shapes of the chi-squared distributions change 
depending on k.
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Probabilities for Reduced Chi-squared Values:

As a rough rule of thumb, a reduced 
chi-squared value of less than one 
means good agreement between 
theory and data.
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Probability Contours: A graph like this (from the Particle 
Data Group's �Review of Particle 
Properties�) can also be useful for 
understanding chi-squared values. 
The contours show the likelihood 
of observing reduced chi-squared 
values > �2/k for a given number of 
degrees of freedom (k).

�2/k

k

We'll see how to use this in the next slide.
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Using Probability Contours:

�2/k

k

5% probability 
of �2/k > 1.4.

1% probability 
of �2/k > 1.6.

For example, say we have 40 data 
points (k) and we calculate a reduced 
�2 value of 1.4 relative to our model.
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What Questions Can We Answer with �2 ?
� Is my theory correct? 

� Based on my data, what is 
the probability that my theory 
is correct?

� What is the probability that 
my theory produced the 
physics we observe?

� Given a particular theory, 
what is the probability that 
data this different or more 
different could have 
occurred?

� Are the data inconsistent 
with the model?

a

a

r
r

r

More data might show flaws 
in your theory.  One small 
data set can't prove that 
your theory is correct.

There are infinitely many 
possible theories.  And 
what does �correct� mean?  
Maybe more than one 
theory is �correct�, in that it 
makes accurate 
predictions.

These are the kinds of 
statements that can be 
supported by  chi-squared 
values.
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Increasing experimental precision  
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Truth

Theories that are inconsistent with data

Theories that could reasonably* 
be true

Theories that are inconsistent with data

Not so good knowledge Significantly better knowledge

* in a statistical sense

Space of plausible predictions
shrinking

Decreasing probability: 
theories looking less like 
observations

The March of Science:
Science progresses by starting with a set of alternative theories, making 
tests to eliminate some of them, then formulating a new set of refined 
theories and testing them.
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Part 2: Finding the Best Fit:

What if we have a theory that's more general.  Say, for 
example, we think that our data can be explained by 
a linear relationship between v and t, but we don't 
know the slope and y-intercept of that line (two 
adjustable parameters of our theory).

How can we determine the best set of parameters (the 
ones that make our theory most likely to explain the 
data)?



  

 

For example, say that we think our velocity data can be 
explained by the relationship above, with some (as 
yet unknown) values for the adjustable parameters a 
and b.

How can we find the best values of a and b?



  

 

The above assumes that the velocity values vary in a 
Gaussian distribution.  This isn't always the case, but 
it's often good enough.

The equation at the bottom just describes the shape of 
the Gaussian curve.  Pi is the probability of observing 
a value vi that deviates by �vi from the predicted 
value. The Gaussian (or Normal) curve is just a 
probability distribution.
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Probability of a Particular Set of Data:

p1 = 50%

One Coin

Two Coins

Three Coins

p1 = 50% p2 = 50%

Probability of two heads:
P = p1 * p2 = 25%

p1 = 50% p2 = 50% p3 = 50%

Probability of 
three heads:
P = p1 * p2 * p3

   = 12.5%

Probability of one head:
P = p1 = 50%

So we can compute the probability of one point 
deviating by a given amount from the predicted 
value.  Now what's the probability of seeing the 
whole set of data that we observed, with each data 
point's deviation from the prediction?

As in the example above, it's just the product of the 
individual probabilities.



  

 



  

 

The product �P� is called a likelihood function.  We 
could construct a likelihood function for any set of 
data, no matter whether the data points vary in a 
Gaussian way or some other way.  We would just 
need to insert the appropriate probability expression 
into the product.



  

 

You can think of the possible values of chi-squared as 
the surface above.  We get a different value of chi-
squared for each choice of values for our adjustable 
parameters, a and b.

Minimizing chi-squared means finding the values of a 
and b that produce the smallest chi-squared value.



  

 

We'll look at the case where all sigmas aren't equal in 
a minute.
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Solution for Uniform Sigma:
We can solve the preceding equations for a and b:

Where, for convenience, we've defined the quantity � as:

(Notice that � doesn't appear anywhere in these equations, because 
we've assumed that all the �i  values are the same.)

We can plug numbers into these equations and get the values of a and 
b that maximize the probability of getting our observed data.

These look like long, complicated expressions to do by 
hand, but you can see that they'd be pretty easy to 
do with a computer program.  We just loop over all of 
the data points, adding things up.



  

 

  30

Where, this time, we've defined the quantity � as:

Solution for Non-uniform Sigma:
If we don't assume that all the �i values are the same, we can still work 
through the algebra and come up with a (slightly more complicated) 
solution for the best values of a and b:

It would be tedious to work through these calculations by hand, but it's 
easy to write a computer program to do them for us.

Again, these calculations could easily be done in a 
program by just looping over the data points.
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Fitting Arbitrary Functions:
We've been talking about fitting 
a linear function, vmodel(t) = a + b 
t, to a set of data.  What if we 
want to fit a more complex 
function?

In some cases, we could follow 
a similar procedure and come 
up with an analytical solution 
giving the best-fit values for the 
parameters in our model. �a

�b

For complicated functions, we can just try different parameter values (a 
and b, in our example), calculating �2 for each one until we find the 
minimum.  We can do this by brute force, stepping through a grid of 
values, or we can use root-finding algorithms like Newton's method to 
help us find the minimum quickly.

We can do this for any model, with any number of parameters.



  

 

This data is from an experiment in which pions were 
stopped in a detector, where they decayed into 
muons and neutrinos.  For each pion, we got a signal 
out of the detector like the one in the large graph.  
The first part of the signal shows the pion's energy.  
Then, when the pion decays, we get another bump of 
energy.

For each of these signals, a program needed to find 
the best-fit values of t�, E� and E�.  We were 
interested in determining the muon energy.

The program processed many millions of events in this 
way, finding the muon energy for each.



  

 

Gnuplot really isn't great at this kind of thing, but it's 
useful for some simple tasks.



  

 



  

 

If the number of adjustable parameters is greater than 
or equal to the number of data points, then chi-
squared is undefined.
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Number of data points = 25
Number of fitting parameters = 3
�2/k  = 0.512888
      k =  22

�2/k

k

90% probability 
of �2/k > 0.51.

Checking Goodness of Fit:

So, we see that there's a 90% probability that data 
points would have a greater chi-squared value 
relative to this model.  That sounds a little fishy.  Why 
are the points so close to the model?  Did somebody 
cheat?  Were the values of sigma over-estimated?  
Did gnuplot do something wrong?
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Next Time:

 

This week's Lab:This week's Lab:

�  Fitting with gnuplotFitting with gnuplot
�  Looking at chi-squaredLooking at chi-squared
    

Brooks Ch. 1, Ch. 2 sections 1-2.2

� More on Fitting
� Bitwise operators and binary files
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The End

Thanks!


