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Physics 2660
Lecture 10

Today
� Comments on chi-squared fits

� Bitwise operators and binary files

� Generating arbitrary distributions of pseudo-random 
numbers for functions that can be inverted and binned data 
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Part 1: Comparing Models with Data

As scientists, we're also �in search of the unknown�.  
We're looking for the physical laws of the universe.  
We can't see what's far out in front of us, though, so 
we have to slowly feel our way along, one 
experiment at a time.

The tools that tell us if there's something solid in front 
of us, or just air, are statistical measures like chi-
squared.  Today we'll start out by looking at other 
tools, and some of the limitations of chi-squared.



  

 

First, a note about the importance of fitting models to 
data.

Fitting is widely used in every field of science and 
engineering, including the physical sciences, biology 
and the social sciences.  It's one of the most 
important computational techniques for you to learn.  
As soon as you start collecting data of any kind, 
you'll want to fit some theoretical model to it, and 
you'll want to know how well that model fits.

That's why we're spending a substantial amount of 
time talking about it.
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The Art of Curve Fitting:
There are many things that may make it difficult or impossible to get a 
model to fit your data well.  Some of them are:

� Using an incorrect model to represent data.

� Making a poor choice of starting parameters.
  Perhaps they are too far from correct values? Also, some programs 
have trouble with starting parameters at 0.0.

� Sometimes parameters land on unphysical values during the �2 
minimization process:  1/0,  log(-1), 10^300, sqrt(negative #), ...

� Sometimes the fitting program has difficulty settling into stable values for 
the parameters (convergence):

- Maybe you're fitting too many parameters at once, while far from the 
minimum �2.

- Maybe you've chosen a poor set of model parameters: high 
correlations, large differences in scale among parameters (leading to 
rounding errors), ...



  

 



  

 

  6

The Pull Distribution:
The distribution of the fit residuals is called the �pull distribution�.  
It helps us gauge the validity of our model.

HIstogram of fit residuals

Mean  = 0.045 +/- 0.069
Sigma =  0.94  +/- 0.07

Properties of the pull distribution:

� Mean is 0 if the model's shape 
matches the data well.

� Width (�) is 1 if the data points are 
normally distributed around the 
model's predictions, consistent with 
their uncertainties (�i).

In this example: no bias, good errors 
within statistical precision of study.

This implies we're using an 
appropriate model for this data.

The term �pull distribution� is used in Physics, but I'm 
not sure how widely used this term is in other fields.  
Some people just call it the �histogram of the fit 
residuals�.
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Looking for Bias:

Data Set 1 Data Set 2

Consider the following two data distributions:
They've both resulted in the same fit, with the same �2 :

If large groups of points cluster above or below the best fit, this may 
indicate a problem with your choice of model.

The �2 statistic just adds up the squares of the deviations.  It won't 
notice clusters of points like this.

What is the probability of n adjacent points fluctuating above or 
below the nominal value at random?
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Model

p = 50% p = 50% p = 50%

If the model is well-matched to the data, the probability of getting three 
heads in a row (or, equivalenty, of three consecutive data points above 
the predicted values) is:

P(3)  = 0.5 * 0.5 * 0.5 = 0.125

The probability of n points in a row above or below the line is:

P(n) = 2-n

Probability of Clusters Above/Below the Mean:
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Clusters of Points:

Data Set 1 Data Set 2

In data set 2,  a bias of low results on one end and high results on the 
other end may indicate that we should use a line with a slope.  

A good indication for this is if we add a slope and see a significant 
reduction in �2 .

Possibly better fit?



  

 

Sometimes we assume that our data has been 
generated according to a particular probability 
distribution (a Gaussian distribution, for example).  
We can check whether this is likely to be true by 
looking at the distribution's Cumulative Distribution 
Function.



  

 

This particular example shows the CDF of a Gaussian 
distribution centered at zero.  Notice that the value of 
the CDF is 0.5 when x=0.  This just tells us that 
there's a 50% chance of observing an x value less 
than zero.
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PDF and CDF for a Uniform Distribution:

We can compute the CDF for other 
probability distributions, too.

At the left is the PDF for a uniform 
distribution, for a < x < b.

PDF

CDF

And here is the associated 
CDF.  Notice that there's zero 
probability of x < a, and a 
probability of 1 for x < b.

The pages on Wikipedia for the various probability 
distrubutions are great.  Each one shows graphs of 
the distribution's PDF and CDF, along with their 
functional forms.



  

 

The ECDF is computed from �unbinned� data (i.e.,  you 
don't histogram the data and look at the bins, you 
look at the raw, unhistogrammed numbers).

To construct an ECDF just sort the data numbers, xi, in 
order of increasing value.  Then, if the number of 
values is N, plot xi on the x-axis and i/N on the y-axis.



  

 

  14

The Kolmogorov-Smirnov (KS) Test:

As with �2, we can directly relate DN to a probability that the model 
produced the observed data.  For example, with 35 data points, the 
probability of producing the observed data is:

DN=
max deviation

The KS test consists of plotting the 
fitting model's CDF and the 
empirical CDF, then finding the 
maximum vertical deviation 
between the two curves.  

This maximum deviation, DN, is 
called the Kolmogorov-Smirnov 
statistic.

20% if DN = 0.180
10% if DN = 0.210
5% if DN = 0.230
1% if DN = 0.270

The Kolmogorov-Smirnov (KS) test provides 
us with a mathematical way of testing to see 
if a set of data is likely to have been 
generated by a given probability distribution.
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Table of KS Values:

Here's a table of such probabilities for various values 
of DN and N.



  

 

The next section deals with manipulating individual bits 
within data.  This is a topic we haven't talked about 
yet, and we'll spend some time on it in the next 
couple of lectures, a lab, and a homework 
assignment.
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1 1 0 1 0 0 1 0

Bits and Bytes:

1 Byte

sizeof(int) returns 4 4 bytes used to store an integer

sizeof(double) returns 8 8 bytes used to store a double

sizeof(char) returns 1 1 byte used to store a char

For g++ on Galileo:

8 bits:

Until now, we've only dealt with data in 8-bit chunks called �bytes�.  All of 
the variable types we've used have sizes that are integer multiples of 8 
bits.

But sometimes we want to flip individual bits.  Let's look at how that 
can be done.



  

 

  18

Brought
lunch

Got my
car keysFed cats

Why Flip Bits?
Why would we want to manipulate individual bits?  
One reason is that we sometimes have data that's in the form of many 
�yes/no� answers.  Each of these answers can be stored in a single bit, 
as a one or zero:    

1 0 1 1 0 1 1 0

Instead of using, say, an int variable to hold each answer, we can 
actually pack eight answers into a single byte.
This saves memory (a limited resource) while our program is running, 
and disk space when we write our data into a file.

Locked 
the door

Took
shower

Brushed
teeth

Bought
gas

Dropped son
off at

school

We often think of a set of bits like this as a checklist, 
where we can �set� a bit, by making it a 1, or �unset� 
it by making it a 0.
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& a&b Bitwise and
| a|b Bitwise or
<< a<<b Left shift
>> a>>b Right shift
~ ~a Bitwise inverse

Bitwise Operators:
C provides several operators for manipulating individual bits:

Don't confuse the & and | operators with the && and || 
operators we've used before.

Let's see what these new operators do. 
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1 1 0 1 0 0 1 0

0 1 1 0 0 1 1 0

0 1 0 0 0 0 1 0

Bitwise And:

a =

b =

c = a&b =

The �&� operator performs a �bitwise and� on its two arguments.  The 
bits of the returned value are computed by �and�ing together the 
corresponding bits of the two arguments.  If both bits are �1�, then the 
resulting bit is �1�, otherwise, it's �0�.

& & & & & & & &
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1 1 0 1 0 0 1 0

0 1 1 0 0 1 1 0

1 1 1 1 0 1 1 0

Bitwise Or:

a =

b =

The �|� operator performs a �bitwise or� on its two arguments.  That is, 
the bits of the returned value are computed by �or�ing together the 
corresponding bits of the two arguments.  If either bit is �1�, then the 
resulting bit is �1�, otherwise it's �0�.

| | | | | | | |

c = a|b =
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0 1 0 0 1 0 0 0a<<2=

1 1 0 1 0 0 1 0

1 0 1 0 0 1 0 0

Left Shift:

a =

a<<1=

the �<<� operator shifts all of the bits to the left by a specified number of 
slots and returns the result.  Bits shifted past the end of the byte are 
lost, and empty slots on the right-hand side are padded with zeros.

Lost

0 added 
at end

0 0 0 0 0 0 0 0a<<8=

This seems like an odd thing to want to do, but we'll 
see what it's good for soon.
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0 0 1 1 0 1 0 0a>>2=

1 1 0 1 0 0 1 0

0 1 1 0 1 0 0 1

Right Shift:

a =

a>>1=

the �>>� operator shifts all of the bits to the right by a specified number 
of slots and returns the result.  Bits shifted past the end of the byte are 
lost, and empty slots on the left-hand side are padded with zeros.

Lost0 added 
at end

0 0 0 0 0 0 0 0a>>8=
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1 1 0 1 0 0 1 0

0 0 1 0 1 1 0 1

Bitwise Inverse:

a =

b = ~a =

the �~� operator inverts all of the bits of its argument and returns the 
result.  Everywhere a �1� appears in the argument, it's replaced with a 
�0� in the result, and vice versa.

Don't confuse this with the logical �!� operator.
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Using Bitwise Shift with Constants:

0 0 0 0 0 0 0 11 =

0 0 0 0 0 0 1 01<<1=

0 0 0 0 0 1 0 01<<2=

0 0 0 0 1 0 0 01<<3=

=2

=4

=8

Bitwise operators can also take constants as their arguments.  
Consider the following:

Also note that 1<<0 is just equal to 1.

Notice that this gives us an easy way to make powers 
of two.  Instead of, for example, writing:

   pow(2,4)

for 2^4, we could just write:

   1<<4

And, as you might imagine, the latter is much faster.
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Testing and Setting Bits:
Now that we have this set of bitwise operators, we can use them to test 
or change individual bits in data.  Consider the following examples:

0 0 1 1 0 1 0 1a =
0 0 0 0 0 0 0 11 =
0 0 0 0 0 0 0 1a&1 = = 1

0 0 1 1 0 1 0 1a =
0 0 0 0 0 0 1 01<<1 =
0 0 0 0 0 0 0 0a&1<<1 = = 0

See what's happening here? Most of the bits in �1<<n� 
are zero (there's only one non-zero bit).  When a bit 
from �a� gets anded with one of these zeros, the 
result will always be zero, since �anything & 0� is 
zero.

This means that all but one of the bits in the result will 
always be zero.  The only bit in question is the bit 
that gets anded with �1�.  If this bit of �a� is zero, then 
the result has zero.  Otherwise, the result has a one.
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Checking a Bit:

0 0 1 1 0 1 0 1a =
0 0 0 1 0 0 0 01<<4 =
0 0 0 1 0 0 0 0a&1<<4 = = 16

The operation a&1<<n will return zero if bit number n isn't �set� 
(i.e., isn't a 1).  Otherwise, it will return some non-zero number.  

This gives us a true/false answer to the question, �Is bit number n set?�

(a & 1) = 1 test bit 0, 20

(a & 1<<1) = 0 test bit 1, 21

(a & 1<<2) = 4 test bit 2, 22

if ( a&1<<3 ) {
// Do this if bit 3 is set.

}

Code example:

You can think of �1<<4� as a �mask� that only lets one 
bit through.  (Bit number 4, in this case.)  The �1� in 
the bit pattern of �1<<4� is like a hole in the mask, 
allowing us to see through to the value of the 
corresponding bit in �a�, underneath.
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Setting a Bit:

// Set bit number 3 of a:
a = a|1<<3; 

0 0 1 1 0 1 0 1a =
0 0 0 0 1 0 0 01<<3 =
0 0 1 1 1 1 0 1c = a|1<<3 =

Similarly, we can use the bitwise �or� to turn bits on.  See the following:

The operation a|1<<n will return the value of a, but 
with bit number n set to �1�. 

Code example:
// Set bit number 3 of a:
a |= 1<<3; 

Or, equivalently:

In this example, all but one of the bits in �1<<3� is zero. 
 Since �anything | 0�  is just �anything�, most of the 
bits in the result will have the same values they have 
in �a�.

The one exception is the bit of �a� that's above the �1� 
in �1<<3�.  Since �anything | 1� is always 1, this bit of 
the result will always be 1.
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Clearing a Bit:

0 0 1 1 0 1 0 1a =
1 1 1 0 1 1 1 1~(1<<4) =
0 0 1 0 1 1 0 1c = a&~(1<<4) =

Similarly, we can use the bitwise inverse �~� along with �&�  to turn bits 
off.  See the following:

The operation a&~(1<<n) will return the value of a, 
but with bit number n set to �0�. 

// Clear bit number 3 of a:
a = a&~(1<<3); 

Code example:
// Clear bit number 3 of a:
a &= ~(1<<3); 

Or, equivalently:

Most of the bits in ~(1<<4) are ones.  There's only one 
zero bit.  Since �anything & 1� is just �anything�, most 
of the bits in the result will have the same values 
they have in �a�.

The one exception is the bit of �a� above the �0�.  Since 
�anything & 0� is always zero, this bit will always be 
zero.
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Example Program:
int main () {
  unsigned int a = 42;

  for (int n=0;n<8;n++) {

    printf ("Bit %d (2^%d = %3d): ",n,n,1<<n);

    if ( a&1<<n )
      printf ("1\n");
    else
      printf ("0\n");
  }
}

Bit 0 (2^0 =   1): 0
Bit 1 (2^1 =   2): 1
Bit 2 (2^2 =   4): 0
Bit 3 (2^3 =   8): 1
Bit 4 (2^4 =  16): 0
Bit 5 (2^5 =  32): 1
Bit 6 (2^6 =  64): 0
Bit 7 (2^7 = 128): 0

This program prints the 
individual bits of a number 
(�42�, in this case).

Power of 2.

Test whether bit is set.

Note how we use 1<<n to write out the powers of two.
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Hexadecimal Representation:
Binary numbers are long, and it's easy to mis-type a 1 or 0.  Because 
of this, we often represent binary numbers in �hexadecimal� (base 16) 
form.   Hex notation works better than our normal �decimal� (base 10) 
system for this because each hex digit is equivalent to exactly 4 bits 
(half a byte).
In hex notation, there are 16 digits instead of the 10 we usually use, or 
the 2 (0 and 1) that are used in binary.  Here's how you count in hex:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
10,11,12,13,14,15Decimal equivalents

Decimal Binary   Hex
  1     00000001 01
 10     00001010 0A
 42     00101010 2A
100     01100100 64
128     10000000 80
255     11111111 FF

Here are some examples showing 
decimal, binary and hex equivalents 
for a few numbers.
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DECIMAL HEX     BINARY
 0  0  0000
 1  1  0001
 2  2  0010
 3  3  0011
 4  4  0100
 5  5  0101
 6  6  0110
 7  7  0111
 8  8  1000
 9  9  1001
10  A  1010
11  B  1011
12  C  1100
13  D  1101
14  E  1110
15  F  1111
16 10 10000
             ...

Decimal, Hex and Binary Table:
Some more examples.  Note again that one hex digit is equivalent to 
four binary digits (half a byte).

All bits zero.

All bits one.

0 through F covers all the 
possible combinations of 
four bits.
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unsigned int h_int = 0x10;  

printf(“%d\n”, h_int);

printf(“%x\n”,h_int);

h_int = 110;

printf(“%x\n”,h_int);
printf(“%X\n”,h_int);

printf(“0x%x\n”,h_int);

Defining and Printing Hex Numbers:

Prints �16� to the screen.

Equivalent to 
decimal �16�.

Prints �10� to the screen.

Prints �6e� to the screen.
Prints �6E� to the screen.

Prints �0x6e� to the screen.

Unsigned integer constants can be defined using hexadecimal notation by adding a �0x� 
prefix.
  
The �%x� or �%X� format specifier is used to print numbers in hex format (without a leading 
�0x�, though).

The history of the �0x� notation goes like this:  a long 
time ago, people often used �octal� (base 8) notation 
with computers.  In C, you can write octal numbers 
by just prefixing a zero in front of the number, like 
�012�.  The leading zero indicates that this number is 
to be interpreted in something other than base 10.

To accomodate hexadecimal numbers, C added an �x� 
after the zero.  (For �heXadecimal�.) The C compiler 
interprets �0x12� something like this:

�Here comes a non-decimal number.  Oh, and by the 
way, it's hexadecimal.  And the digits are 1,2.�
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Data Storage:

sizeof(unsigned char) 1 byte  8 bits

sizeof(unsigned short) 2 bytes 16 bits

sizeof(unsigned int) 4 bytes 32 bits

sizeof(unsigned long) 8 bytes 64 bits

Typical values:

When storing bit-wise data, we usually use one of the �unsigned� 
variable types.  

Why?  With these types, the representation of a number in memory is 
simple: the bits are just a binary representation of the number.  

Other data types encode sign (+/-), exponent information and other 
things in some of the bits, making it hard to predict how your data 
values will change when you change a particular bit.

Since the �unsigned� variable types have such a 
simple, direct representation in memory, we can 
quickly do multiplication or division by powers of 2 on 
them by using the bitwise shift operators:

   unsigned int i = 42;
   unsigned int j;

   j = i<<1;  // Multiply i by 2.
   j = i<<2;  // Multiply i by 4.

   j = i>>1;  // Divide i by 2.
   j = i>>2;  // Divide i by 4.



  

 

So, what kinds of things might we use these operators 
for?  Here's an example of one kind of application 
where bitwise operations might be useful.
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Turn
Left

Turn
Right

Step
Backward

1 0 1 1 0 1 1 0
Step

Forward
Look
Left

Look
Right

Left
arm up

Right
arm up

A Command Word:

All possible combinations of commands can be encoded into a 
single 8-bit command word.  Individual bits in this word control each 
of the robot's functions:

Let's assume that the bits in this chunk of data are tied directly to the 
wires in the control line between the computer and robot.  (We could do 
this, for example, by using a parallel printer cable.)  Then, by setting 
the bits in this word, we can control the robot's actions.

If we could flip the bits on and off, like light switches, 
we could control the robot's behavior.
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We can define individual motion commands, using the left shift operator:

unsigned char FWD_STEP = 1<< 0;  // 1 i.e. 00000001
unsigned char BAK_STEP = 1<< 1;  // 2 i.e. 00000010
unsigned char RGT_TURN = 1<< 2;  // 4 i.e. 00000100
unsigned char LFT_TURN = 1<< 3;  // 8 i.e. 00001000
unsigned char RGT_ARM_UP = 1<< 4;  // 16 i.e. 00010000
unsigned char LFT_ARM_UP = 1<< 5;  // 32 i.e. 00100000
unsigned char LFT_LOOK = 1<< 6;  // 64 i.e. 01000000
unsigned char RGT_LOOK = 1<< 7;  //128 i.e. 10000000

Then compound commands can easily be constructed using bitwise 
operators.  For example:

unsigned char FWD_LEFT = FWD_STEP | LFT_TURN; // 00001001
unsigned char BAK_RIGHT = BAK_STEP | RGT_TURN; // 00000110

Setting Command Bits:

Note that, in reality, we would need to define the precedence of these 
actions, since they don't commute.  (E.g., a forward step followed by 
a left turn isn't the same as a left turn followed by a forward step.)

We'll do more with bitwise operations in this week's 
lab.
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Part 3: Arbitrary Random Number DistributionsPart 3: Arbitrary Random Number Distributions

Here's an arbitrary random picture of a bullfrog from 
the pond down the street.

We've talked a lot about a couple of probability 
distributions: the Gaussian (Normal) distribution and 
the uniform distribution.  We've seen how it's 
possible to generate random numbers according to 
each of these.

But what if we want to generate random numbers in 
some other distribution?  Is there some general way 
to generate random numbers in a given, arbitrary 
distribution?



  

 

If you remember the Barnsley Fern problem we did a 
few weeks ago, you may recall that it required us to 
pick one of four functions (f1, f2, f3, or f4) at random, 
with a different probability for picking each function.

We could represent that as a Probability Density 
Function, like the graph above.  The height of the 
blue line just represents the probability of picking 
each function.



  

 

We could integrate this PDF and come up with a CDF, 
like the one shown in red.
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F1 F2 F3 F4

Probability Ranges:

F4
F3

F2

F1

f1 (frequency 1%) 
f2 (frequency 85%) 
f3 (frequency 7%) 
f4 (frequency 7%) 

Do you recall how we picked which function to use?  We 
chose a uniformly-distributed random number, U, between 0 
and 1, and then said:

if U between 0.00 and 0.01
pick f1

if U between 0.01 and 0.86
pick f2

if U between 0.86 and 0.93
pick f3

if U between 0.93 and 1.000
pick f4

When we did this, we were just integrating the PDF in our 
heads, and creating the CDF. 
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F1 F2 F3 F4

Picking a Function at Random:

U = randu(0,1);

U

The uniformly-distributed random number we picked 
just corresponds to the vertical axis on the graph.  
Following the blue dashed line, it told us which 
function to pick.

It turns out that you can use the same procedure to 
generate random numbers in any distribution you 
want.  All you need to know is the distribution's CDF.



  

 

For example, here's the PDF (dark blue) and CDF 
(red) for a Gaussian (Normal) distribution.  By picking 
a uniformly-distributed random number between 0 
and 1 on the y-axis, we could get a number N from 
the x-axis.  The values of N picked in this way would 
be distributed in a Gaussian way.  If we 
histogrammed these numbers, we'd see the familiar 
Gaussian bell curve.  



  

 

The devil is in the details, though.  We'd like to be able 
to generate U, then stick U into some formula that 
gives us N.  The CDF, though, gives us a formula for 
getting U from N (the exact opposite of what we 
want).

Can we invert the CDF to get a function that does what 
we want?

The actual form of the CDF for a Gaussian is shown in 
the formula at the bottom.  Can we solve this 
equation for N as a function of U?



  

 

Yes, we can!  The formula for the �inverse CDF� of a unit Normal 
distribution is shown at the top.  Using this, we could just 
generate uniformly-distributed U values on the x axis, and plug 
those values into the function to get the corresponding 
normally-distributed N values.

There's a practical problem with this, though.  In the regions that 
are circled at either end of the graph, the function is zooming 
up (or down) very fast.  This means that a small change in U in 
this region will cause a large change in N.  Note that these 
regions are only two or three standard deviations away from 
N=0.

Once we're beyond a few sigma away from N=0, we'll find that 
small computational errors will multiply rapidly, and our results 
for N will become meaningless.

This is why we don't typically use this method to generate 
normally-distributed numbers.  Instead, we use tricks like the 
Box-Muller method that our �randn� function uses.



  

 

Some distributions work better, though.  Here's an 
example of one that does.
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Generated distribution of 10K random numbers

1
/λ

ex
p(

-t/
λ)

t

Notice: not perfectly smooth, 
random fluctuations

� = 1

Generated Exponential Histogram:

  for (int i=0; i<10000; i++) {
    double u = randu(0,0.999);
    double e = -log(1-u);
    hfill(&h_exp, e, 1.0);
  }

Inverse CDF for 
exponential 
distribution.

And here's an example, showing how you can use the 
inverse CDF of the exponential distribution to 
actually generate numbers distributed this way.



  

 

Of course we are often interested in distributions for 
which the CDF isn't known, or can't be inverted.

There are a couple of methods we could use to 
generate numbers distributed in any way at all.  First, 
we could approximate the inverse of the CDF and its 
inverse by using a fixed number of samples.  We've 
done similar things for the purpose of integration 
(estimating the area underneath a curve).  Let's see 
how that works.



  

 

First, slice up the x axis, and find the height of each 
slice.



  

 

As we're making slices from left to right,  store the sum of all the 
slices so far into an array element. When we're done, the array 
will contain our Cumulative Distribution Function (or an 
approximation of it).

(Of course, we'll need to normalize it to a maximum value of 1.  
We can do this by dividing all of the aray elements by the last, 
largest element.)

We can use this CDF to generate random numbers distributed 
like the original PDF.  Just generate a uniformly-distributed 
random number, U, then loop through our array elements until 
we find one with a value greater than U.  The N value 
corresponding to this array element is the one we want. 

By using a smaller step size, we can increase the accuracy.
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A Monte Carlo Method:

It turns out that there's another, easier but slower way  
to generate random numbers in any distribution you 
want. It's essentially another Monte Carlo method, 
similar to the Monte Carlo integration techniques we 
looked at earlier.

Say, for example, we want to generate random 
numbers according to some funky probability 
distribution like the red line in the graph above. All we 
need to do is generate some random points. For 
each point, we check to see if it's underneath the red 
curve. If it is, then we return this point's x value as 
our random number. If it's not, we try again.
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As we generate random points, it's more likely for a point to fall under 
the curve at x values where the curve is high (there's more room 
underneath), so more of our random numbers will come from these 
places. 

At x values where the curve is low, points will be less likely to fall 
underneath the curve, so we'll get fewer random numbers from there. 

Monte Carlo Explanation:

This technique is slow, but it will 
always work, even for the oddest 
probability distributions.

How does it work?
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Part 4: Solving Differential Equations Numerically

Last week, in the homework problem involving a 
projectile with air resistance, we solved a differential 
equation numerically, using a technique called 
Euler's method.  Let's look at another way of solving 
these equations.  



  

 

 



  

 

Consider the problem above, involving velocity 
and time.  We aren't explicitly given the 
relationship between velocity and time, but 
we're told that dv/dt is some function that we 
can evaluate, and we're told an initial 
condition.  We want to find v at a later time 
value.



  

 

As you can see, the estimate in this case isn't very 
close to the true value at all.  Maybe if we divided the 
x distance up into a hundred steps  (instead of one) 
we'd get a better value.  But that would involve a lot 
of computations, and take a lot of time.



  

 

There's a whole family of Runge-Kutta methods, but 
generally when people say �the Runge-Kutta 
method� they mean the 4th order one.  It gives good 
results, and higher-order versions are significantly 
more difficult to calculate.

As we'll see in the pages that follow, the Runge-Kutta 
method gives results that are much more accurate 
than we'd get using a similar number of 
computations with the Euler method.



  

 

Note that we find the slope by just evaluating our 
function, f(x,y) at this point.



  

 



  

 

We're now using slopes obtained from four different 
points: one point at each end of the trajectory (the 
original position and point 5), and two points in the 
middle (points 2 and 4).

Using these slopes, we've found four estimates of the 
final position: points 1, 3, 5 and 6.



  

 

The final weighted average is a pretty good 
approximation to the true value.  Note that it only 
required a few calculations to get it.    Compare this 
to the possibly hundreds of steps that would be 
reqired to get a simlar accuracy from the Euler 
method, and you'll see the appeal of the RK4 
method.
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Next Time:

 

This week's Lab:This week's Lab:

�  Using bitwise operationsUsing bitwise operations
�  More on fittingMore on fitting
    

Brooks Ch. 1, Ch. 2 sections 1-2.2

� More on bitwise operations
� Dynamic memory allocation
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The End

Thanks!


