

 1

Physics 2660
Lecture 11

Today
� More on bitwise operations

� Reading/writing binary files

� Dynamic memory allocation

� A few more C++ techniques

 2

Part 1: More on Bits and Bytes:Part 1: More on Bits and Bytes:

Today we'll start out by continuing our discussion about
C's bitwise operators, and then we'll move on to
talking about reading and writing binary files.

 3

1 1 0 1 0 0 1 0

0 1 1 0 0 1 1 0

1 0 1 1 0 1 0 0

The Exclusive Or (XOR) Operator:

a =

b =

The �^� operator performs a �exclusive or� on its two arguments. This is
like a reglar OR, with one exception. If one bit is �1�, then the resulting
bit is �1�. If both bits are zero, or both bits are one, the result is �0�.

^

c = a^b =

^ ^ ^ ^ ^ ^ ^

 4

Constructing an Exclusive OR:

Not all compilers have an XOR operator. You can always do an
Exclusive OR using other operators, though, since:

a ^ b = (a|b) & ~(a&b)

Note that the right-hand side can just be read as �a or b, and not a
and b�, which is just another way of stating the definition of XOR.

In other words, an XOR is just like an OR, except for bits that are
equal to 1 in both a and b.

 5

Cryptography with XOR:
The XOR operator is often used as part of cryptographic systems.

If you have some plain text, and you XOR it with a secret key, the
result is encrypted data that can be decrypted by anyone else who
knows the key. This makes use of the following property of XOR:

crypt = plain ^ passwordIf

plain = crypt ^ passwordthen

The weakness of this scheme is that the following is also true:

password = crypt ^ plain

If the password is randomly-generated and the same length as
the plain text, this form of encryption is very strong. The only
way to crack is is by brute force: just trying different passwords
until you find the one that works.

Because of the weakness noted at the bottom, the same
password shouldn't be used more than once, though. In the
days of the cold war, Soviet spies came to the US armed with
a pad full of passwords. Their associates back in the USSR
had identical pads. Whenever a spy needed to send back
some information, he'd use one of the passwords to encrypt it,
then throw away that password. When his compatriot received
the message, he'd decrypt it using the first passsword on his
pad, and then discard that password. This type of encryption
is called a �one-time pad�.

 6

& a&b Bitwise and
| a|b Bitwise or
^ a^b Exclusive or
&= a &= b Short for a = a&b
|= a |= b Short for a = a|b
^= a ^= b Short for a = a^b

<< a<<b Left shift
>> a>>b Right shift
>>= a >>= b Short for a = a>>b
<<= a <<= b Short for a = a<<b

~ ~a Bitwise inverse

Review of Bitwise Operators:

 7

Review of Testing and Setting Bits:

Test: a & 1<<n Test bit n of a
Set: a |= 1<<n Set bit n of a

Clear: a &= ~(1<<n) Clear bit n of a

 8

The fputc Function:

int main () {
 FILE *file = fopen ("8bits.txt","wb");

 for (int i= 0 ; i <= 255 ; i++) {
 unsigned char c = i;
 fputc (c, file);
 }
 fclose (file);

 return 0;
}

int fputc (int c, FILE *fp);

We can use the �fputc� function to write raw, unformatted binary data
into a file, one byte at a time:

It's good practice to use �rb� or �wb�
when opening a file for bitwise reading
or writing. Some computers
differentiate between binary files and
other files.

The example above just writes all of the possible
combinations of 8 bits into the file �8bits.txt�.

 9

Why Not fprintf?

00000000

00000000

00000000

00101010

int a = 42

00000000

00000000

00000000

00101010

00110100

00110010

= �4� (ASCII)

= �2� (ASCII)

output.dat

output.dat

Same as
variable in
program.

fpr
int

f(o
ut,

�%
d�,

a);

fputc(c,out);

It may be confusing that we use the �char� variable
type within our program to store non-character data
that we write out with fputc, but we use fprintf to write
out variables of types like �int� as characters.

It may help if you don't think of �char� as storing a
character. We don't use it for that purpose in the
things we're talking about today. we just use it as 8
bits of storage that we can put any kind of data into.

 10

4,294,967,295

11111111

11111111

11111111

11111111

'4'

'2'

'9'

'4'

'9'

'6'

'7'

'2'

'9'

'5'

Comparison of ASCII and Binary Storage:

The largest number that can be stored in 32
bits (an unsigned int, for example):

1 Byte
Stored as Binary:

Stored as ASCII:

As we'll see later, it can often take a lot more space to
store information as ASCII text than as binary data.

 11

The char Variable Type:

Dec Hex Char
0 00 Null
...

64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
...

0 1 0 0 0 0 0 1char a =

4 1

= 'A' = 65 = 0x41

ASCII Dec Hex

�char� type variables are stored in 8 bits
(one byte) of memory. These bits can
either be interpreted as an ASCII
character from the table at left, or as a
number.

Because each char is exactly one byte,
it's a convenient variable type to use
when we're manipulating data one byte at
a time.

 12

Unsigned Versus Signed Variables:

� Signed variable types can store either positive or negative numbers.
� Unsigned types can store only positive numbers.

In principle, signed variables could just reserve one bit (say, the left-
most one) to indicate whether the number is positive or negative. This
�sign bit� method would work fine, and early computers did it this way.

A problem arises when we start doing arithmetic with sign bit notation,
though:

Consider the case of adding two numbers with sign bits together. We
must first check to see if either of the numbers is negative, and if it is,
we need to subtract its value rather than adding it.

1 1 0 1 0 0 1 0

 13

0 0 0 0 0 0 0 1char a =

1 1 1 1 1 1 1 1char b =

= 1

= -1

Two's Complement Notation:
To simplify arithmetic operations, modern computers use a different
representation for negative numbers, called �Two's Complement�.
Here's how the numbers 1 and -1 look on Galileo:

0 0 0 0 0 0 0 0a + b = = 0

If we use two's complement notation, the computer doesn't need to
do anything special when it adds a negative number. Just adding the
numbers normally, without worrying about sign, produces the right
result:

The number -1 has all of the bits set. If you think of these eight bits
as the digits of a car's odometer, you can see what happens when
we add 1 to the number. All of the digits roll over, and the number
becomes all zeros.

If we used a �sign bit�, and represented -1 as
�10000001�, then when we added 1 to -1 we'd get
�10000010�, or -2 in this notation! With sign-bit
notation, we'd always need to check whether a
number was positive or negative before adding it.

To form the two's complement of an 8-bit negative
number, you can do this:

* Subtract the number from 28.
* Add one to the number.

For integers of other sizes (32 bits, for example), start
out by subtracting the number from 2 to some other
power (32, for example).

 14

void write_out(unsigned char *c, int nbytes, FILE* file){
 for (int i=0; i<nbytes; i++){
 fputc (*c, file);
 c++;
 }
}

int main () {
 double a[]={12,13,15,123e23};
 FILE *out=fopen("out.dat","wb");

 write_out((unsigned char *)a, sizeof(a),out);

 fclose(out);
 return 0;
}

Writing Other Data Types as Binary Data:
The �write_out� function below uses fputc to write any kind of data into a
file. The data doesn't need to be in 8-bit chunks, and it doesn't need to
be integers. Consider the following example:

An array of 4 �doubles�. (A
double occupies 8 bytes.)

Cast the array's starting
address as a char * pointer.

The total size of the
array, in bytes.

We tell write_out to just treat this chunk of memory as a bunch of bytes,
without worrying about what they represent.

 15

a[1]

double
double

a[0]
double
double

c[0]

...

void write_out(
unsigned char *c,
int nbytes,
FILE* file){

 for (int i=0; i<nbytes; i++){
 fputc (*c, file);
 c++;
 }
}

Breaking Data into Byte-Sized Chunks:

Continuing the example from the previous slide,
the �write_out� function just works its way through
the array of doubles, one byte at a time,
interpreting each byte as an �unsigned char� and
writing it out to a file.

c[1]
c[2]...

Cast as
(char *)

Cast as
(double *)

Increment by size of
one �char� (i.e., 1 byte).

The space where the array lives is just a hunk of bits.
We can divide it any way we want. The data will only
make sense if we interpret it as a bunch of �double�s,
but if we're just interested in copying bits from one
place to another, it doesn't matter whether each
chunk of bits is a sensible number or not.

 16

The �od� Command:

0000000 00 00 00 00 00 00 28 40
0000008 00 00 00 00 00 00 2a 40
0000016 00 00 00 00 00 00 2e 40
0000024 09 7e 12 ac 40 59 24 45

od -Ad -w8 -tx1 out.dat

Starting
Addresses

a[1]

000

008
double
double

a[0]

double
double

1 byte

...

Contents of
each byte

From the command line, you can look at
the contents of a file byte by byte using
the �od� command:

(Each pair of hex characters is one byte.)

 17

The fgetc Function:

void read_in(unsigned char *c, int nbytes, FILE* file){
 for (int i=0; i<nbytes; i++){
 *c = fgetc (file);
 c++;
 }
}

int main () {
 double a[4];
 FILE *in=fopen("out.dat","rb");

 read_in((unsigned char *)a, sizeof(a),in);

 for (int i=0;i<4;i++) {
 printf("%g\n",a[i]);
 }

 fclose(in);
 return 0;
}

You can use the fgetc function to read data from a file,
one byte at a time:

Compare fgetc to fscanf,
which reads formatted data

from a file.

Notice that we're reading the
data in one byte at a time, but
then interpreting it as an array

of �double�s.

 18

The fwrite Function:
C provides us with several convenient functions that do what our
�write_out� and �read_in� functions did in the preceding examples.
For instance, here's the �fwrite� function:

size_t fwrite(const void *ptr,
 size_t size,
 size_t nmemb,
 FILE *outfile);

Pointer to the beginning
of the data we want to

write out:

Size of the chunks of data, in
bytes. If we're writing an array,
this might be the size of each

array element.

Number of chunks to write out.Output file pointer, from fopen.

In the preceding examples we created functions called
�write_out� and �read_in� to loop through the bytes of
our data one at a time. These functions used fputc
and fgetc to write or read each byte. C provides us
with standard functions that can do all of this work for
us, without having to write our own functions.

�size_t� is just an integer here. Different operating
systems use different types of integers (int, long,
long long) to represent the size of a chunk of data.
�size_t� is just an alias meaning, �a variable
appropriate for holding the size of a chunk of storage
on this computer�.

fwrite returns the number of bytes successfully written.

 19

An fwrite Example:

int main () {
 double a[]={12,13,15,123e23};
 FILE *out=fopen("out.dat","wb");

 fwrite((void *)a, sizeof(a),1,out);

// Alternatively:
//fwrite((void *)a, sizeof(double),4,out);

 fclose(out);
 return 0;
}

We can replace our �write_out� function with a call to �fwrite�.
Notice that fwrite doesn't care how you break your data into chunks. In
this example, we could either write out one chunk that's the size of the
whole array, or four chunks each the size of one array element.

Size of chunks. Number of chunks.

 20

The fread Function:

size_t fread(void *ptr,
 size_t size,
 size_t nmemb,
 FILE *infile);

Pointer to the beginning
of the data we want to

read in:

Size of the chunks of data, in
bytes. If we're writing an array,
this might be the size of each

array element.

Number of chunks to read in.Input file pointer, from fopen.

Similarly, the fread function can be used to read in a bunch of data
from a file:

 21

int main () {
 double a[4];
 FILE *in=fopen("out.dat","rb");

 fread((void *)a, sizeof(a),1,in);

// Alternatively:
// fread((void *)a, sizeof(double),4,in);

 for (int i=0;i<4;i++) {
 printf("%g\n",a[i]);
 }

 fclose(in);
 return 0;
}

An fread Example:

Size of chunks. Number of chunks.

Array big enough to hold the
data we're going to read.

Need to make sure this
matches the number of
elements in the array.

 22

File I/O Modes in fopen:

r Open file for reading. File must exist.

r+ Open file for reading and writing. File must exist.

w Open file for writing. File is created if necessary.

w+ Open file for writing and reading. File is created if
necessary.

a Open file for appending. File is created if necessary.

a+ Open file for appending and reading. File is created if
necessary.

When we open a file with fopen, we can specify any of the following
�read/write modes�. We can add a �b� to any of them to explicitly say
we're going to be doing bitwise I/O.

You can use any of these as the second argument to
�fopen�.

 23

Writing and Reading from the Same File:

int main(){
 h1 hist1, hist2;

 // initialize and fill histograms here...

 FILE *bfp;
 bfp=fopen("hist.out","wb+");

 fwrite((void *)&hist1,sizeof(h1),1,bfp);
 fwrite((void *)&hist2,sizeof(h1),1,bfp);

 rewind(bfp);

 fread((void *)&hist2,sizeof(h1),1,bfp);
 fread((void *)&hist1,sizeof(h1),1,bfp);

 fclose(bfp);
}

Create two old-style 50-bin histograms.

Open for reading and writing binary data.Open for reading and writing binary data.

Write.

Read,
swapping
hist2 and

hist1.

Rewind file
pointer.

Why old-style histograms? Because they use a fixed-
size array to hold their data. The new-style
histograms just have a pointer to a variable-sized
array of bins stored elsewhere. We'll look at this kind
of thing in the second part of today's lecture.

Each of the old-style histograms takes up 444 bytes of
memory or disk space.

 24

The rewind Function:

hist2

000

444

hist1h1h1

h1h1

888

w
rite hist1

w
rite hist2

re
w

in
d

read
read

hist.out

As we read and write data, C remembers our current position in the file.
If we want to go back to the beginning of the file and start again, we can
use the �rewind� function.

Every time we do an fread or fwrite, we start at
whatever the current position is in the file.

 25

The fseek Function:

We can move to an arbitrary position within the file by using the
�fseek� function:

int fseek(FILE *file, long offset, int whence);

How far to move... ...from where.

SEEK_SET Offset relative to beginning of file.
SEEK_CUR Offset relative to the current position.
SEEK_END Offset relative to the end of the file.

Valid values for �whence� (defined in stdio.h):

(in bytes)

 26

fseek(file_p, 0, SEEK_END);

fseek Examples:

fseek(file_p, -1*sizeof(float), SEEK_END);

fseek(file_p, 0, SEEK_SET);

fseek(file_p, 10*sizeof(double), SEEK_CUR);

Place file pointer at the end of the file:

Back up sizeof(float) bytes from the end of the file:

Go to the beginning of the file:

Go forward 10*sizeof(double) bytes from the current location:

A few examples of fseek usage:

 27

The ftell Function:

You can use the �ftell� function to find out where you are within
the file:

FILE *fp = fopen(“file.dat”, “rb”);

fseek (fp, 0, SEEK_END);
size = ftell(fp);

printf (“Size of file.dat (in bytes) is: %ld\n”,
 size);

Set position to end of file.

Where are we?

ftell reports the current position as a number of bytes from the
beginning of the file.

It can be used, as above, to find out how big a file is.

 28

int feof(FILE *file);

The feof Function:

while (1) {
 char c = (char) fgetc(infile);
 if (feof(infile)) break;
 fputc(c,outfile);
 }

When reading in data from a file, you can use the feof function to tell
you when you get to the end of the file:

If we've hit the end of
the file, quit reading.

Here's a usage example:

 29

 typedef struct {
 double re;
 double im;
 } Complex;

 Complex c[10], z;

 c[2].re = 3.14;
 c[2].im = 1.41;

 FILE *file=fopen("out.dat","wb+");
 fwrite((void *)c, sizeof(Complex), 10, file);

 rewind(file);

 fseek(file, 2*sizeof(Complex), SEEK_CUR);
 fread((void*)&z, sizeof(Complex), 1, file);

 printf ("Third number: re=%lf, im=%lf\n",
 z.re, z.im);

This example does the following:
� writes out an array of 10 structs,
� goes back to the beginning of the file,
� skips over the first two structs,
� reads the third one back in.

Reading and Writing Structs:
Just as with simple variables, you can read and write arbitrarily
complicated structs:

 30

FILE *binfile=fopen("binary.dat","wb");
fwrite((void *)c, sizeof(Complex), NMEMB, binfile);
fclose(binfile);

FILE *file=fopen("ascii.dat","w");
for (int i=0;i<NMEMB;i++) {
 fprintf(file,"%56.53lf %56.53lf\n",
 c[i].re,c[i].im);
}
fclose(file);

Comparison of Binary and ASCII I/O:

File size = 1.6 kB

File size = 11.4 kB

It's convenient to be able to read or write a whole array of data with a
single C statement: Binary File:

ASCII File:
To preserve the full precision of our numbers, we need to write out
many characters if we write a text file:

The file sizes are for files containing 100 complex
numbers, using the Complex struct we used earlier.

Until now, all of the memory used by our variables has
been defined at the time we compiled our program.
What if we want to change the size of an array while
our program is running, or create a new array on the
fly?

 32

Local
Variables in

main()

Code

Local
Variables in

func1()
Local

Variables in
main()

Code

Local
Variables in

main()

Code

Th
e

St
ac

k
Start program Call func1 Return from func1

The Stack:

When a program starts running, the code describing all of your functions
gets loaded into a dedicated section of memory called a stack. As
functions are called, their local variables get pushed on top of the
stack. When a function completes, this memory is freed up for other
use.

Each running program has its own stack. The stack has a limited size
(typically a few megabytes). To see the stack size of your current
terminal process on galileo, type:

limit stacksize

It's possible to use up all of the availabe memory in the stack. Imagine
a recursive function that invokes itself over and over again. Each time
it's invoked, a new set of local variables is pushed onto the top of the
stack. If the recursion goes too far before reaching its termination
condition, the program may die with a �Stack Overflow� error.

Note that global and static variables are stored elsewhere, in their own
memory space.

 33

The Heap:
The program has another section of memory available to it, called the
�heap�. Programs can dynamically allocate memory in the heap.
The memory there won't be reclaimed until the program explicitly
�frees� the memory.

The heap is usually much larger than the stack. It includes much of
the otherwise-unused memory available on the computer.

 34

The malloc Function:

void *malloc(size_t size);

A program can request a chunk of memory in the heap by using the
�malloc� (�memory allocate�) function:

The size, in bytes, of the
requested chunk of memory.

If enough memory is available, malloc returns a void * pointer
pointing to the beginning of the newly-allocated chunk of memory.

If malloc fails, it returns the special value NULL.

 35

The calloc Function:

void *calloc(size_t nmemb, size_t size);

The calloc function is similar to malloc, but it's more convenient when
requesting space to store an array:

The size, in bytes, of
each array element.

The number of array
elements.

Unlike malloc, the calloc function automatically initializes the space
by setting it all to zero.

 36

The free Function:

void free(void *ptr);

Once you're done with the allocated memory, you should use the �free�
function to free it up again. This will make it available for other uses.

When your program exits, all of its allocated memory will automatically
be freed.

Pointer to a previously-
allocated chunk of memory.

One of the most common C programming problems is a �memory leak�.
This happens when your program keeps allocating more and more
memory, without ever freeing it. Over time, the program's memory usage
grows until no more memory is available (possibly causing problems for
other programs), and your program crashes.

 37

The realloc Function:

void *realloc(void *ptr, size_t size);

After you've allocated a chunk of memory, you may decide that it needs
to be bigger. You can grow or shrink the size of an allocated chunk by
using the �realloc� (�re-allocate�) function.

New size.Location of
old chunk.

Returns location
of new chunk.

Note that realloc doesn't actually resize the chunk you're
currently using. Instead, it copies your data into a new location
with a different size, and returns the address of the new
location.

You can also use realloc to reduce the size of an
allocated chunk of memory. If you give realloc a size
of 0, it's equivalent to calling �free�.

 38

Allocation Failure:

int num = 100;
long *lptr = (long *) malloc(num * sizeof(long));

if (lptr == NULL) {
printf(“Can't allocate memory\n”);
return(1);

}

The computer won't always have enough memory available to satisfy
your allocation request. Here's an example showing how you can deal
with that possibility:

 39

A Dynamic Memory Example:
int main (int argc, char *argv[]) {
 int howmany = atoi(argv[1]);
 int *ptr;

 ptr = (int *)calloc(howmany, sizeof(int));
 if (ptr == NULL) {
 printf ("Could not allocate memory.\n");
 return(1);
 }

 for (int i=0; i<howmany; i++)
 ptr[i] = rand();

 for (int i=0; i<howmany; i++)
 printf ("%d\n", ptr[i]);

 free(ptr);
}

Request space for an array of the given size.

Free the memory when
we're done.

Sh
ou

ld
 a

lw
ay

s
be

 p
ai

re
d.

Use the array
as usual.

 40

Another Example:
Consider the case of an experiment with many
particle detectors that react to a shower of
particles given off by events that sometimes
occur in the center of the apparatus.

In this experiment, we only
want to know which detectors
fired during each event.

Each event will cause a
different number of detectors to
fire. Generally, only a small
fraction of the detectors will fire
for each event.

If we have millions of events, it would
be very inefficient to store a �yes/no�
array for each event, with one element
for each detector.

This is a pretty general problem. How do you store
and retreive chunks of data that have different sizes?
Until now, we've always read chunks of data that
have a fixed size. For example, we might read 100
pairs of x,y values from a file, where each line of the
file just holds two floating-point numbers.

What if we wanted to read the names of each student
in each Physics class? Each class has a different
number of students.

There are many ways to solve this problem, but the
following shows a common way of doing it when
we're reading and writing binary data.

 41

Reading Data of Variable Size:
typedef struct{
 int ndet;
 int *detector;
} Event;

FILE *file=fopen("data.dat","rb");

Event e;

while (1) {
 fread((void *)&e.ndet, sizeof(int), 1, file);
 if (feof(file)) break;

 e.detector = (int *) malloc(e.ndet*sizeof(int));
 fread((void *)e.detector, sizeof(int), e.ndet, file);

 // Do stuff with the data...

 free(e.detector);
}

Struct to hold
an event.

Number of detectors that fired.

List of detectors that fired.

Start by reading the number
of detectors that fired.

Get space for array of detectors.

Read in array.

Free array.

So, we start out by reading in the number of detectors,
then we allocate enough memory to store this list,
then read in the list of detector numbers. We keep
repeating this until we get to the end of the file.

 42

Part 3: Overloading Functions in C++Part 3: Overloading Functions in C++

This is something we mentioned earlier, when talking
about C++ classes. Let's take another look at it.

 43

void swap(int *a, int *b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

void swap(float *a, float *b) {
 float tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(){
 int i=1,j=2;
 float x=3.14,y=2.71;

 swap(&i,&j);
 swap(&x,&y);
}

Duplicate Function Names:
In C++, you can define
multiple functions with the
same name, as long as
each function has a unique
calling syntax.

In this example, one version
of �swap� takes two integers
as its argments, and the
other �swap� function takes
two floats.

When your program says �swap�,
the compiler determines which
one you mean by looking at the
types of the variables you give it.

Note that the compiler doesn't look at the type of
variable returned, when deciding between the two
functions. It only looks at the argument types.

 44

int max(int *a, int *b) {
 if (*a > *b)

return *a;
 else

return *b;
}

float max(float *a, float *b) {
 if (*a > *b)

 return *a;
 else

return *b;
}

Return Types of Overloaded Functions:

int main(){
 int i=1,j=2;
 float x=3.14,y=2.71;

 printf(“%i\n”,max(&i,&j));
 printf(“%f\n”,max(&x,&y));
}

Not that the functions
don't need to return the
same type of data.

In this case, one version
returns �int� and the other
returns �float�.

Overloading is often convenient and can increase
readability, but only if overloaded versions perform
the same tasks!

 45

Generic Functions:

void clearmem(void *start, int nbytes) {
for (int i=0; i<nbytes; i++)
 *(start+i)=0;

}

int main(){
double d_ary[100];
short s_ary[100];

clearmem((void *)d_ary, 100 * sizeof(double));
clearmem((void *)s_ary, 100 * sizeof(short));

}

Inefficient function to
clear memory byte-
by-byte.

The same function can clear an
array of doubles, ints or any
other type.

Sometimes, rather than function overloading, it's better to write a single
generic function that can deal with data of many different types. This can
be done using void * pointers to memory locations, as we've seen
before. One advantage of this approach is that it can be used in either C
or C++.

 46

Next Time:

This week's Lab:This week's Lab:

� Pipes and digital soundPipes and digital sound

Brooks Ch. 1, Ch. 2 sections 1-2.2

� Data structures

 47

17 18 19 20 21 22 23

24 25 26 27 28 29 30

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Sun Mon Tue Wed Thu Fri Sat

Extra credit Last homework Final project

Here'e our schedule for the next few weeks. Note that
there will be two more lab sessions, on the 21st and
28th, and we'll have two more lectures, on the 26th
and the 3rd .

I'll be posting the final project assignment this Friday.

If you're doing the extra credit assignment, please e-
mail it to me by 5pm on the 26th .

 48

The End

Thanks!

