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Physics 2660
Lecture 12

Today
� Data Structures
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Part 1: Linked ListsPart 1: Linked Lists

Data structures are ways of organizing your data in 
memory.
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int x[5];

Reminder About Arrays:

The elements of an 
array are stored in 
contiguous memory 
locations.

Allows random access 
to elements via [index].
for (i=0;i<N;i++) {
  printf(“%d”,x[i]);
}

Arrays are common data structures that we've used  
quite a lot in this course. 

When you give the program an array index, the 
program multipies the index times the size of each 
element to find the address where a particular 
element lives.  (This is possible because all of the 
array elements are contiguous.)  Then the program 
jumps directly to that address and retreives the data.
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A �linked list� provides an alternate way to store a collection of data.
Each element in a list needs to keep the location of at least one other 
member (or NULL, if it's at the end of the list).

Linked Lists:

data
...
next

data
...
next

data
...
next

NULL

typedef struct node_struct {
  double data;
  ...
  node_struct *next;
} Node;

Node 1 Node 2 Node 3

The nodes don't need to be contiguous.

Linked lists are another kind of data structure.
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data
...
next

data
...
next

data
...
next

...Node 1 Node 2 Node 3

Each node of the list has two elements:
� The data being stored in the list (which can be any collection of 
variables or structures) and  
� A pointer to the next node in the list 

A linked list is a flexible dynamic data structure. Items can easily 
be added to it or deleted from it at any time, and at any place in 
the list.

Properties of Linked Lists:

Using dynamic memory allocation, we can create space for each new 
node as we need it.

�Dynamic memory allocation� refers to the tools like 
malloc, calloc and realloc that we talked about last 
time.  They let your program allocate new space in 
memory whenever it's needed. 
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Traversing a List:
typedef struct node_struct {
  char name[20];
  node_struct *next;
} Node;

int main() {
  Node Alice = {"Alice Liddell"};
  Node Bix   = {"Bix Beiderbecke"};
  Node Bob   = {"Bob Barker"};
  Node Cindy = {"Cindy Lou Who"};

  Alice.next = &Bix;
  Bix.next   = &Bob;
  Bob.next   = &Cindy;
  Cindy.next = NULL;

  Node *n = &Alice;
  while(1) {
    printf ("%s\n",n->name);
    if (n->next == NULL) break;
    n = n->next;
  };
}

We can traverse a linked list by 
just following the links until we 

reach a NULL.

Each node points to the 
next node in the list.

Structure describing each 
node in the list.

Here's a simple program that uses a linked list.  The 
nodes of the list all have the structure at the top.  The 
nodes of a linked list can store any data we want to 
put there.  In this case, we're just storing one thing, a 
person's name.  

We create four nodes, and initialize them by storing a 
name string (some data) in each.

Then we set the nodes' �next� pointers so that Alice 
points to Bix, which points to Bob, which points to 
Cindy.  Cindy's �next� pointer is NULL, indicating that 
this node is the end of the list.

Then we just start out with Alice and follow the links 
through the list, printing out the names. 
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Adding a Node to the Tail of the List:

next nextnext

Alice BobBix

next next nextnext

Alice Bob CindyBix

NULL

next

Cindy

NULL
new

address

To add a node to the end of the list, we just need to 
change the value of the �next� pointer in the last 
node.  We make it point to the added node, and 
make sure the added note's �next� pointer is NULL.
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next next next

next

next next nextnext

Adding a Node in the Middle:

Alice Bob Cindy

Bix

Alice Bob CindyBixnew
address

To add a node to the middle of 
the list, we just need to change 
two pointers.

1 2

To add an element in the middle of an array, we'd need 
to move all the later elements down by one slot.  
With a large array, this could be a lot of work.

But with a singly-linked list like this one,  we only need 
to change two pointers.  The original pointer from 
Alice to Bob is changed so that it now points to Bix.  
Then the pointer from Bix is changed so that it points 
to Bob.
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Deleting a Node:

next next nextnext

Alice Bob CindyBix

next nextnext

Alice Bob NULLBix

next nextnext

Alice CindyBix

Delete Cindy:

Or delete Bob:

Point to 
NULL

Point to 
Cindy

Deleting a node just requires changing one pointer.



  

 

In the preceding examples, Alice has been the 
�head� node.  This is the node we start at 
when we begin traversing the list.

When using an array, we refer to it by its 
name.  When we're using a linked list, the list 
doesn't have a name of its own.  Instead, we 
just store the address of the list's head node 
in a pointer.  This is the �list handle�.
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Finding the Tail of the List:

next next next

Alice Bob Cindy

next

Dante

Start at 
the head. Follow the links to 

find the end. Add the new 
node.

1

2
3

Adding a new node at the tail of the list is straightforward, but it may be 
slow, since we have to follow the links from the head to find where the 
tail is.  This might take a long time if there are many nodes in the list.
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A List Handle Structure:

typedef struct {
Node *head;
Node *tail;

} ListHandle;

To make it easier to add nodes at either end of the list, we can use a 
list handle that's a structure composed of pointers to both the head and 
the tail of the list.

List Handle Structure:

next next next

Alice Bob Cindy

next

Dante

Old
New

Again, the list handle is just the equivalent of an array 
name.  The list handle identifies the list, and holds 
the information we need to have in order to use the 
list.



  

 

When talking about linked lists, we use the terms 
�push� and �pop� to mean �add an item to the list� 
and �remove an item from the list�, respectively.
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A Function for Appending Nodes:

push_tail(ListHandle *theHandle, Node *newNode){
 newNode->next = NULL;
 theHandle->tail->next = newNode;
 theHandle->tail = newNode;
}

Point tail to newNode.

theHandle->tail;

Point newNode to NULL 

Update list handle.

next next next

Alice Bob Cindy

next

Dante

Old
New

1

2

3

1
2
3
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Part 2: What is it Good For?

The answer isn't �absolutely nothing�.  In fact, linked 
lists are quite useful.  They're building blocks that 
can be used to construct many helpful data 
structures.



  

 

  16

Queues:

Data in Data out

Often, we want some data to stand in line and wait its turn to be 
processed.  Consider a stream of audio data sent to a computer's sound 
card, or a stream of network traffic travelling through a router.
Until the data can be processed, it waits in a �queue� (also called a 
�buffer�).  New data comes in at one side of the queue, and the oldest 
data comes out on the other.

A queue is called a �First In, First Out� (�FIFO�) structure. A queue is like 
a pipeline.  Data is pushed into one end, and eventually pops out the 
other.
Newest

Oldest

You can see that it would be easy to use a linked list as a queue.

Push Pop



  

 

 

A stack is just analogous to a PEZ dispenser.
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Circular Buffers:

Push new item  to expand loop

What if the tail of our linked list points back to the head?  Then we have 
a �circular buffer�.
Consider all of the programs running on a multi-user computer.  For a 
short time, the computer will work on one program, and then it will move 
to the next program and work on it for a little while, and so forth until it 
works its way back to the first program and starts the cycle over again.

Push a new item into the 
list, and expand the circle.

Last node in the list points back to the first.

A circular buffer is also useful for holding the last �n� 
things that happened.  For example, we might want 
to keep a running list of the last n results from our 
program.  We might use this as part of a running 
average calculation.
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Doubly-Linked Lists:

typedef struct node_struct {
  double data;
  ...
  node_struct *next;
  node_struct *previous;
} Node;

data
...

next
previous

NULLdata
...

next
previous

data
...

next
previous

NULL

One problem with the lists we've seen so far is that we can only traverse 
them in one direction.  We can remove this limitation by storing two 
pointers in each node, pointing to the next and previous nodes. 

The �previous� pointer of the head node points to 
NULL.
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Lists versus Arrays:

Whether single or doubly linked, a list is limited to sequential 
access only.  An element can only be found by navigating 
from its neighbor.

The flexibility of adding data to the list must be weighed 
against the lack of simple random access to any element.

The answer should be clear based on the use of the data, 
i.e. will we be doing some sort of sequential processing?  Or 
will we be randomly retrieving records from storage?
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Part 3: TreesPart 3: Trees

With a doubly-linked list, we use nodes that have two 
pointers.  What if we took these same building blocks 
and connected them in a different way?  We could 
build trees out of them, for example.
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Item rightleft

Item rightleft

Item rightleftItem rightleft

Item rightleft

Item rightleft

root node

A Binary Tree:
We can create a doubly linked list out of nodes with two links, but we 
could alternatively use those nodes to make a tree structure.

Like a list, a tree has a head node.  For trees, this is called the �root� 
node.  If each node of the tree has two links it's called a �binary tree�.
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Item rightleft

Item rightleft

Item rightleftItem rightleft

Item rightleft

Item rightleft

root node

Anatomy of a Binary Tree:

Left child node Right child node

Leaf nodes (no children)
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Item rightleft

Item rightleft

Item rightleftItem rightleft

Item rightleft

Item rightleft

right sub-tree

left sub-tree

root node

Sub-Trees:
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Complete tree Perfect tree

� Filled to level h, or h-1,
� All nodes as far left as possible.

Height of tree
(0)

(1)

(2)

All levels filled.

More Tree definitions:

Number of possible positions:
                    n  =  20 + 21 + 22 + ... 2h = 2(h+1)-1

Minimum height:
                    h = floor( log2(n) ) 



  

 

  26

Binary Search Trees:

As we mentioned earlier, linked lists can only be searched sequentially. 
 This isn't true for trees, though.

Binary trees are often used for storing data that must be searched 
quickly.

An ordered binary tree is defined as one for which:
1. values of all the nodes in left sub-tree are less than that of the root, 
2. values of all the nodes in right sub-tree are greater than 
    that of the root, 
3. the left and right sub-trees are themselves ordered binary trees. 

This should sound familiar from our earlier discussion of the Quicksort 
sorting algorithm.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

struct node{             
int n;
struct node *left;
struct node *right;

};

Start by putting the first item, 35, at the root of the tree.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

67

struct node{             
int n;
struct node *left;
struct node *right;

};

The next item, 67, is greater than 35, so it goes on the 
right-hand link.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

struct node{             
int n;
struct node *left;
struct node *right;

};

The next number, 12, is less than 35, so it goes on the 
left-hand link.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

5

struct node{             
int n;
struct node *left;
struct node *right;

};

The number 5 is less than 35 and less than 12, so it 
goes on the left-hand link of the 12 node.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

5 32

struct node{             
int n;
struct node *left;
struct node *right;

};

32 is less than 35, but greater than 12.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

5 32 77

struct node{             
int n;
struct node *left;
struct node *right;

};

77 is greater than 35 and greater than 67.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

5 32 77

0

struct node{             
int n;
struct node *left;
struct node *right;

};

0 is less than 35, 12 and 5.
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35

Consider a random list of 8 integers: 35, 67, 12, 5, 32, 77,  0,  2

Use the first number as the root of the tree, then place each 
successive number in the tree, to the left or right of its parent 
depending on whether it's less than or greater than the parent.

Building an Ordered Binary Tree:

6712

5 32 77

0

2

Notice the path to any node from the
root is less than the number of 

entries thus reducing search time.

struct node{             
int n;
struct node *left;
struct node *right;

};

4 hops

And finally, 2 is less than 35,12, and 5, but greater than 
0.

If we had to search for �2� in the original list of integers, 
we'd need to go through all eight numbers before we 
found what we were looking for.  The time required to 
search for a number in a linked list increases in 
proportion to the number of items.

Searching from the root of the ordered binary tree, 
though, we can find �2� in only four steps.  The time 
required to find an item in a binary tree grows in 
proportion to the log of the number of items. 

If you need to search through many items, a binary 
tree can be searched much faster than a linked list.
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Filling Ordered Trees with Pre-sorted Data:

Now consider a sorted list  of 8 integers:
0,   2,  5, 12, 32, 35, 67, 77

0

2

5

12

32

35

67

77

Putting pre-sorted data into an ordered tree 
results in a highly unbalanced tree!  In fact, this 
tree has been reduced to just a linked list.

Searching for an item in this tree 
would take O(n) steps, just as if 
we'd put it into any other linked list.

On the other hand, filling an 
ordered tree with random, 
unsorted data results in search 
times of O(log n)

If we have a bunch of data that we know is already 
sorted, we might want to randomize the order of the 
items before we put them into our binary tree.
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Part 4: Hash TablesPart 4: Hash Tables

Hash tables are another useful data structure.
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age[bryan] = 50;

person[bryan].phone = “555-1212”;
person[bryan].address = “1 Main Street”;

Indexing Data by Names:
Wouldn't it be great if C let you do things like this?:

Or like this?:

To some extent, you can do things like this using �enum�, but then all 
of the possible names have to be compiled into your program.

What if we wanted, for example, to write a program that lets us add 
names and addresses to a phone book, and lets us look up information 
by the person's name?

Note that the program statements above (sadly) won't 
really work in C.  Some languages do support this 
kind of thing, though.
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Hash Functions:
One way to do this is through a �hash function�.  A hash function is 
something that takes a character string (often called a �key�) and 
converts it into a number (called a �hash�).  We could then use the 
number as an array index.

With a suitable hash function, we might be able to write statements 
like this:

age[hash(bryan)] = 50;

int a = age[hash(bryan)];
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unsigned int stupidhash (char *key, unsigned int imax) {
  int sum = 0;
  for (unsigned int i=0;i<strlen(key);i++){
    sum += (int)key[i];
  }
  unsigned int hash = sum%imax;
  return(hash);
}

int main (int argc, char* argv[]) {
  const int nelements = 100;
  unsigned int hash = stupidhash(argv[1],nelements);
  printf ("hash = %d\n",hash);
}

A Simple Hash Function:
Here's a simple hash function that converts any character string into a 
number between 0 and some specified maximum:

Add up the letters as though 
they were numbers.

Use % to set the range.

$ stupidhash bryan
hash = 40

Program stupidhash.cpp:

Set max = 100.
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Hash Collisions:

Alice 78
Bob 75
Cindy 3
Dante 92
Babbage 60
Wainwright 60

Name: Hash:

Hash Collision

If we try out our hash function on a few names, we'll soon see a problem:

Since our hash function maps all possible strings into a small range of 
numbers, sooner or later we'll find multiple strings that have the same 
hash.

This is called a �hash collision�, and it doesn't mean that our hash 
function is useless.  It just makes things a little more complicated.
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Hash Distribution:
If we run a large number of words (500 k) through our �stupidhash� 
program, we'll see something like this:

As we might expect, there are about 5,000 words with each of our 100 
hash values.  In other words, there are about 5,000 hash collisions for 
each hash value.

Note that hash functions 
don't necessarily 
generate a uniform 
distribution of numbers.  

This can be caused by 
non-uniformities in the 
input, or by intrinsic 
biases in the particular 
hash function.

(The non-uniformities in this case are probably mostly 
due to the distribution of letters in the dictionary 
words I fed to the stupidhash function.)



  

 

 

The same hash function could be used, for example, 
with two-letter abbreviations for states in the U.S., or 
with any other 2-letter identifier.
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Minimal Perfect Hash Functions:
A minimal perfect hash function is one that maps n keys to n consecutive 
integers (usually 0 through n-1).  Often it requires the help of an extra 
array, called a lookup table:

unsigned int dayhash (char *key) {
  unsigned int lookup[100];
  lookup[35] = 0;
  lookup[93] = 1;
  lookup[36] = 2;
  lookup[43] = 3;
  lookup[8]  = 4;
  lookup[54] = 5;
  lookup[15] = 6;

  unsigned int hash = 0;
  for (unsigned int i=0;i<2;i++){
    hash += (int)key[i]<<(8*i);
  }
  unsigned int minhash = lookup[hash%100];
  return(minhash);
}

This function is a minimal perfect hash only for the particular set of 
strings �Su�, �Mo�, �Tu�, �We�, �Th�, �Fr�, �Sa�.

In the last slide, the final two digits 
of each day's hash were unique.  
This lookup table maps those digits 
to the numbers 0-7.

Look up the last two 
digits and return the 
value.

The 100-element lookup table is still larger than the list 
of values, but it's much smaller than the 65,536-
element array we'd need if we used the preceding 
hash function.

But look how complicated this function is, and how 
fragile and limited it is.  We've gone to a lot of trouble 
to get a hash function that only works for seven 
specific inputs.

Sometimes this amount of trouble is justified.  For 
example, if we were writing a parser for a compiler or 
an interpreter, and needed to associated a known, 
fixed list of keywords (�if�, �else�, �int�, �double�) with 
values in an array.



  

 

The number of words per bin is just a Poisson 
distribution.   We could look at a distribution like this 
and conclude that, for our purposes, the probability 
of getting more than a certain number of collisions 
was so low that we could ignore it, or deal with it in 
some time-expensive way that would only be 
occasionally invoked.
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Dealing with Collisions:

The bottom line is that in many real-world situations we'll just have to 
accept hash collisions and deal with them.

We could do this by replacing a simple array like:

int age[hash]

with a more complicated structure.  For example, we could have a 2-
dimensional array:

int age[hash][j]

where the second index was used to hold data for each of the 
multiple keys that could produce this hash value.
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Finding the Right Match:

age[60][0] = 37;
age[60][1] = 42;

Alice 78 12
Bob 75 83
Cindy 3 4
Dante 92 138
Babbage 60 37
Wainwright 60 42

Name: Hash: Age:

Going back to our original table of stupidhash values, let's say we want 
to use these to store the ages of a bunch of people.

We could use our 2-d array to 
store the ages for both of our 
colliding names:

But how do we know which is which?  Maybe we need to store 
more information.
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An Array of Structs:

const unsigned int hash_max = 100;
const unsigned int hash_maxcoll = 10;

typedef struct hashnode_struct {
  int data;
  char word[80];
  int collisions;
} HashNode;

HashNode hash_array[hash_max][hash_maxcoll];

Why don't we replace our array of �int�s with an array of �struct�s.  
Each struct will hold the data we're interested in, as wall as some 
other information that will help us resolve hash collisions.

Maximum hash value.

Max. collisions 
we'll allow.

The data we're storing (e.g., age).

The word that made this hash.

Number of collisions for this hash.



  

 

  48

void store_value ( char *key, int data ) {

  unsigned int hash = stupidhash(key);

  unsigned int ncoll = 
hash_array[hash][0].collisions;

  if ( ncoll < hash_maxcoll-1 ) {

    hash_array[hash][ncoll].data = data;
    strcpy( hash_array[hash][ncoll].word, key );
    hash_array[hash][0].collisions++;

  } else {
    printf ("Too many collisions for key %s.\n",

  key);
    exit(EXIT_FAILURE);
  }
}

Get current number of 
collisions for this key.

Die if we exceed the max. 
allowed collisions for a key.

Store data.

Store word.

Increment 
collisions.

Storing a Value:

Note that, in this code, we just store the number of 
collisions in the [0] element of each row.

Also note that �collisions� is probably a bad choice of 
name for this variable, since it's really counting the 
number of words that had that particular hash value.  
So, if �collisions� = 1, that means that one word is 
stored in that row.
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Retreiving a Value:

int get_value ( char *key ) {

  unsigned int hash = stupidhash(key);
  int ncoll = hash_array[hash][0].collisions;

  if ( ncoll == 1 ) {
    return( hash_array[hash][0].data );
  } else {
    for (int i=0;i<ncoll;i++) {
      if ( !strcmp(key,hash_array[hash][i].word ) ) {
        return( hash_array[hash][i].data );
      }
    }
  }

  return(-1);  // Value not found.
}

If there's just one 
thing, return it.

Otherwise, find the right one by 
looking at the stored words.

The set_value code in the preceding slide chooses to 
just abort the program if we exceed the maximum 
number of allowed collisions.

We could do other things:
� Expand the 2-d array, using �realloc�.  This is time-

expensive, but it would only need to be done 
infrequently.

� Warn the user about the problem,  and throw away 
that particular word.  This is a reasonable response 
in some situations.

� Use a second, alternative hash function to generate a 
new hash value.  Then, when searching for an entry 
later we'd need to be sure to check both hash 
values.



  

 

With appropriate choices for the hash array size and 
maximum allowable number of collisions, we could 
use these functions in real programs.
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Removing Collision Limits:

hash_maxcoll

ha
sh

_m
ax

ha
sh

_m
ax

List 
Handles

Linked 
Lists

2-d Array

The scheme we've described will work fine in some situations, but what if we're likely to exceed 
the maximum number of allowed collisions, or what if we want to minimize the amount of 
memory we use?

In those cases, it's better to replace the 2-d array with an array of linked-list handles.  The lists 
are only as long as they need to be, and they can grow whenever we need to add a new entry.

In reality, programs that implement hash tables use 
schemes like the one on the right.  This doesn't take 
up any more memory than necessary, and the 
number of collisions can grow without bound.
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Next Time:

 

This week's Lab:This week's Lab:

�  Linked ListsLinked Lists
    

Brooks Ch. 1, Ch. 2 sections 1-2.2

� ????????????????????????
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The End

Thanks!


