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Physics 2660
Lecture 13

Today 
� Convolution
� Fourier Analysis
� Cryptography
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Part 1: Convolution

Today we'll skim lightly over a few topics we haven't 
been able to cover yet in the course.  Maybe they'll 
give you ideas for future projects, or at least give you 
a better understanding of some of the things 
computers do.



  

 

Convolution integrals are very common in science and 
engineering.  You'll find them all over the place.

Let's look at a couple of examples that illustrate what it 
means to convolve two functions together.



  

 

Here's a simple program that computes (f*g)(t) for a 
range of values of t.  The function f(t) is a square 
pulse (its value is zero everywhere except in a small 
range, where it has a value of one).  The function g(t) 
is a gaussian with a standard deviation of 1.

The inner loop (shown by the bracket) computes the 
value of the convolution integral for each t value.



  

 

As you can see, the resulting function, (f*g)(t), is like 
the square pulse, but with rounded edges.  It has 
some of the characteristics of each of the two 
functions that went into it.



  

 

Let's extend this example from 1 dimension into 2 
dimensions.  The figure on the right shows a 2-
dimensionl gaussian function.

Let's look at what happens when we convolve some 
sharp 2-dimensional data with this function.
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Gaussian Blur:

Starting with the original image at the upper left, we 
convolve the image with gaussian functions of 
various widths.  This is what image-editing programs 
call a �gaussian blur�.

As the standard deviation of the gaussian gets bigger, 
we blur the data across a wider area.



  

 

Here's another interesting choice for g(t).  This is the 
2nd derivative of a gaussian.  If we convolve our 
square pulse with this function, we get the result 
shown in the bottom figure.

Notice that the (f*g)(t) is zero at locations far away 
from the square pulse, and it's zero in the middle, 
where the pulse is flat.  The (f*g)(t) function only has 
big non-zero values in the regions where f(t) is 
changing rapidly.



  

 

Again, here's the 2-dimensional version of the same 
function.  Let's see what happens if we convolve 
some image data with this function.
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Edge Detection:Edge Detection:

As we saw with the square pulse, the resulting 
convolution has a value near zero wherever the 
image isn't changing very rapidly, but has large 
values wherever the image makes an abrupt change.

This allows us to detect the edges of things in the 
image.  This sort of thing is interesting artistically, but 
it's also useful in science and engineering.  Imagine, 
for example, that you were looking at a microscope 
slide showing some cells.  An edge-detection 
process like this could be used to find the outlines of 
the cells in the image.  This would be useful 
information for a program that counted the cells or 
calculated their area.
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Part 2: Fourier Analysis

This is an enormous topic, so we're only going to skip 
very lightly across its waves.

Fourier analysis is something else that turns up all over 
science and engineering.  One application of it is in 
decomposing signals into their component 
frequencies.  That's what we'll look at here.
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Series Expansion of a Function:

We know that many functions can be approximated by summing a 
series of terms.  For example, we often use the Taylor series:

As we add terms, the sum gets closer and closer to the true value 
of f(x).



  

 

This series breaks the function up into components of 
various frequencies.  The coefficients an and bn are 
the relative intensities of the different frequencies.
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The Fourier Transform:
To make this time/frequency correspondence even clearer, we can 
define the �Fourier Transform�, H(f), of a function h(t):

We can express the original function in terms of its Fourier Transform 
like this:

(Note that this is just one specific type of Fourier transform.  We can do similar things with 
other functions besides sines and cosines.)

where H(f) is, in general, a complex number.  (The original function 
h(t) may be complex, too.)

h(t) and H(f) are just two different ways of looking at 
the same thing.  We say that h(t) represents the 
function in the �time domain� and H(f) represents the 
same function in the �frequency domain�.

That's all very interesting, but what is it good for?  Let's 
look at a specific example.



  

 

Here, I've generated ten different random sine waves.  
Each wave has a different frequency, amplitude and 
phase, given by f, a and o, respectively.
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Sum of Random Sine Waves:

In this graph I've just added up the ten sine waves.  
The result looks like a mess.  If we were presented 
with this data, could we ever hope to find out what 
the original ten sine waves were?
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Frequency (Hz)

f[0] = 45.753609
f[1] = 44.857197
f[2] = 24.186832
f[3] = 10.825883
f[4] = 13.425451
f[5] =  1.870975
f[6] = 31.020195
f[7] = 26.742060
f[8] = 40.282986
f[9] = 43.107183

Extracting the Component Frequencies:

Yes!  By taking the Fourier Transform of the data.

The graph above shows the square of the Fourier Transform 
of the data in the preceding graph.  As you can see, the 
component frequencies are clearly visible as peaks here.

What else can we do with this?  Remember that we can also 
do the inverse transform, to get h(t) from H(f).  So, if we 
decide we want to eliminate a certain range of frequencies 
from our data we can just set that range of the graph to 
zero, and then do the inverse transform.  

Imagine, for example, that we have some audio data with an 
annoying 60 Hz hum in it.  We could take the Fourier 
Transform of the data, cut out the peak at 60 Hz, and 
transform back to a new, clean version of our data.



  

 

This is like the audio data we experimented with in lab. 
 In that case, we had an audio signal that was 
sampled at 44,100 times per second.  (That is, � = 
1/44,100th of a second.)



  

 

The Nyquist critical frequency (fc) is the highest frequency that our 
sampling system can measure.  It corresponds to sampling the red 
wave at its peak and it trough.  Higher frequencies (say, those that 
squiggle a million times during �t) are mysteries to us.

If the data we're sampling happens to be limited to frequencies below 
the Nyquist frequency, then the DFT is an exact representation of the 
original signal.  (That is, the signal could be exactly reconstructed, 
given the DFT.)

If any frequencies are above the Nyquist frequency, sampling causes 
those frequencies get �aliased� to lower frequencies below the Nyquist 
frequency.

Consider, for example, the blue curve, above.  It has peaks and troughs 
in the same samples as the red curve.  There's no way we can 
distinguish between these two curves using a �t of this size.
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A Real Signal:
What if we try to apply this to some real data?  The figure below shows the sound intensity 
values during a section of Tiny Tim's �Tiptoe Through the Tulips�:

Let's look at a real-world example (assuming that Tiny 
Tim belonged to the real world).
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The FFTW Library:
Instead of writing our own code for doing DFT's we can use the 
excellent and widely-available FFTW (for the �Fastest Fourier 
Transform in the West�) library.

To use FFTW in your programs, you'll need to 

� include the <fftw3.h> header file, and 
� link your programs with �-lfftw3�.

http://www.fftw.org/

We could write a program to calculate the Fourier 
Transform of this audio data, but fortunately, 
somebody else has already done the hard work for 
us.
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# include <fftw3.h>

...
 double *in;
 fftw_complex *out;
 fftw_plan plan_forward;

...
// Allocate space for some real (no imaginary parts) input data:
 in = (double *)fftw_malloc (sizeof ( double ) * nwords);
...
// Read in data...

// With N real input data points, the number of Fourier coefficients
// will be N/2 + 1.
// Allocate space for output data: 
 nc = ( nwords / 2 ) + 1;
 out = (fftw_complex *)fftw_malloc (sizeof ( fftw_complex ) * nc);
...

 plan_forward = fftw_plan_dft_r2c_1d (nwords, in, out, FFTW_ESTIMATE);
 fftw_execute ( plan_forward );   // Execute the plan.

Writing an FFTW Program:
The fftw3.h header file defines 
several new data types, such 
as fftw_complex and fftw_plan.

The fftw library includes its own 
special version of malloc.

Before doing the transform, you first create a �plan�.  In this step, 
FFTW looks at the data and decides how best to transform it.

FFTW is moderately complicated to use, but it's well 
documented at the project's web site.  The function 
�fftw_plan_dft_r2c_1d� can be read as �Discrete 
Fourier Transform, Real input to Complex output, 1-
dimensional data�.

The format of the output returned by functions like 
�fftw_plan_dft_r2c_1d� will differ from one function to 
another, but it will always be an array of values.

  



  

 

Notice that the spectrum trails off at values above 
about 22,000 Hz.  This is because our sample rate 
(44,100 samples per second) gives us a Nyquist 
frequency of 22,050 Hz.

This partially explains why the CD audio standard uses 
44,100 samples per second.  The range of human 
hearing is about 20 Hz to 20,000 Hz, so the people 
setting the standard wanted the Nyquist frequency to 
be above 20,000 Hz.
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Part 3: Some Encryption Principles

The following is useful for understanding how 
passwords are stored, and how things like ssh work, 
but it applies to a lot of other things, too:  secure web 
connections, personal certificates, and e-mail 
encryption are some examples.
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Cryptographic Hashes:

�hounddog� �68e04426deb4c6792120cf80db215f81�

(also called �message digests�)

F(x)
Hash Function

Plain Text Hash

A cryptographic hash function, F(x), has the following properties:

� It's deterministic.  For any particular input, F(x) will always produce 
the same output (called a �hash� or a �message digest�).

� The output of F(x) is always the same length.

� The output is almost always unique.  Different inputs are very 
unlikely to produce the same output, even if they differ only slightly.

� F(x) is relatively easy to compute.

� The inverse function is extremely difficult to compute.  It's very hard 
( ideally, impossible) to determine what plain text produced a given 
hash.  This is called �trapdoor encryption�.

So why is this relevant to what we're talking about?  
We'll see in a minute.
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How Passwords are Stored:

elvis:68e04426deb4c6792120cf80db215f81:502:503:elvis:/home/elvis:/bin/tcsh

Enter New Password: hounddog

F(x)Hash Function:

The plain text password is never stored.  Only the cryptographic 
hash is stored.  Because hash functions are almost impossible to 
invert, nobody but �elvis� can know what his password is.  So how 
can the system verify that a user knows his or her own password?

/etc/passwd file:

When a new account is created, or when a password is changed, 
here's what happens:

I'm simplifying things a little here.  We'll explore some 
of the complications soon.



  

 

This means that the operating system doesn't need to 
know the password in order the verify that the user 
knows the password.  Clever!
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Dictionary Attacks:
Word Hash

aardvark 88571e5d5e13a4a60f82cea7802f6255
abnegation f8ec9b74a9b9aa1131abbfc0b8dca989
acrimony a246c59fdccea42bc48202156a5f72de
adumbration e6b65039a16dc9ffd4cca73e7f1b973f

a3d4b48aebd5c6b9aaf57583601f1857
aerie 70f1f8799ad6af309af5434cb065bd59
affinity 1474047fb00b2d8d95646f7436837ed0

c6bf04438cd39591695454ea4c755acb
e177eedf9e5b91c39d0ec9940c9870b9
2991a6ba1f1420168809c49ed39dba8b
2705a83a5a0659cce34583972637eda5

AKKA 004ab7976e8b4799a9c56589838d97a6
algae 4360ef4885ef72b644fb783634a7f958

7c425ea7f2e8113f6ca1e6e5c3a554a9
antidisestablishmentarianism 2a3ec66488847e798c29e6b500a1bcc6
anxiety d3af37c0435a233662c1e99dbff0664d
apple 1f3870be274f6c49b3e31a0c6728957f
aurora 99c8ef576f385bc322564d5694df6fc2

advil

agnatha
aherne
aida
ajax

anthocyanin

Even though it's computationally expensive to compute the inverse of F(x), it's easy to 
generate hashes for thousands of words and store the results in a file.  Once we've 
created this dictionary of hashes, we can just look up a given hash on the right, and 
match it with the plain text on the left.  Since users are inclined to use common words as 
passwords, this is a security problem.
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Adding Salt:
One way to reduce the effectiveness of dictionary attacks is to add some 
random �salt� to the plain text before creating the hash.  This is always done 
now.

elvis:mXd2d7dec6604780a82fcd116a229ea224:502:503:elvis:/home/elvis:/bin/tcsh

Enter New Password: hounddog

F(x)Hash Function:

mXhounddog

The operating system generates
two random characters: mX

Salt gets recorded here.  When testing passwords in the future, add
this salt, then create a hash and compare it with what's store here.

Hash of �mXhounddog�

The random two characters of salt 
means that any given password 
may result in thousands of 
different hashes.  In order to use a 
dictionary attack, the attacker 
would need to compute and store 
thousands of hashes for each 
word in the dictionary, instead of 
just one hash per word.
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Password Hash Algorithms:
DES:
Based on National Bureau of Standards' Data Encryption 
Standard (DES).  

MD5:
RSA's �Message Digest 5� algorithm.

SHA-256:
NSA �Secure Hash Algorithm�.

mX1EcouR8fX7w�hounddog� = 

$1$SG.2TL0i$vQuZcYnvA7kgMwg3gEB2RA�hounddog� = 

$5$SG.2TL0i$NScvuF0OzU/lkdIModlq8Sn59mU�hounddog� = 

Format Salt Delimiter Hash

These are the formats you'll really see in /etc/password or /etc/shadow.

The SHA-256 and SHA-512 hash options are being 
developed now, but you should see them soon in 
Linux distributions.  The person behind this effort is 
Ulrich Drepper.  Here's his documentation about the 
SHA password hash standards he's developing:

http://people.redhat.com/drepper/SHA-crypt.txt
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Example: Storing a Password:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>

int main (int argc, char *argv[]) {
  char *hash;
  char salt[2];
  char saltchars[] = 
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789./";

  if (argc<3){
    printf ("Usage: %s <user> <password>\n",argv[0]);
    return(1);
  }

  srand(time((time_t)NULL));
  salt[0] = saltchars[rand()%64];
  salt[1] = saltchars[rand()%64];

  hash = crypt( argv[2], salt );

  FILE *pwfile = fopen("mypwfile.dat","a");
  fprintf (pwfile,"%s %s\n",argv[1],hash);
}

Pick 2 random salt 
characters from the list.

Use �crypt� to make a hash.

Write name and 
password hash 

into file.

The �crypt� function 
can be used to create 

a salted DES hash 
from a password.

This example program allows the user to enter a 
username and a password on the command line, and 
then it stores the username and a hash of the 
password in a file.
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Example: Checking a Password:
int main (int argc, char *argv[]) {
  char *hash;
  char user[80],pw[80];

  if (argc<3){
    printf ("Usage: %s <user> <password>\n",argv[0]);
    return(1);
  }

  FILE *pwfile = fopen("mypwfile.dat","r");
  while (!feof(pwfile)) {
    fscanf(pwfile,"%s %s",user,pw);
    if ( !strcmp(argv[1],user) ) {
      hash = crypt( argv[2], pw );
      if ( !strcmp(hash,pw) ) {
        printf ("Password accepted!\n");
        return(0);
      } else {
        printf ("Wrong password!\n");
        return(1);
      }
    }
  }
}

Look for this 
user in the 

password file.

Hash the supplied 
password, using the salt 
from the 1st 2 chars of 

the stored hash.

Does this hash match 
the stored hash?

This program takes a user name and a password on 
the command line, and then checks the supplied 
password to see if it is correct.



  

 

Symmetric encryption has been used since ancient 
times.  It's something every schoolchild comes up 
with on his or her own, making up secret codes to 
share messages with friends.

As we'll see, it has some problems.

(Alice and Bob are common in cryptography examples. 
 There's a T-shirt for crypto geeks that says �I know 
Alice and Bob's shared secret.�)
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Some Problems with Private-Key Encryption:

� Key distribution is hard, and possibly insecure.
   What if Alice is in Portugal and Bob is in Hong Kong?  How do they 
initially get the secret key to each other?  What if they need to change 
it later?

� Anyone who steals the key can masquerade as Alice or Bob.
  This system has no way of verifying the identity of the sender.  If a 
third party obtains the key, he can send messages that appear to come 
from Alice or Bob.

� �A secret shared by two is compromised.  A secret shared by 
three is no secret.�
   Can Alice really trust Bob to keep the key a secret?  Can Bob trust 
Alice?  And what if we have a whole organization full of people who all 
need to know the secret key?

Even if we ignore most of these problems, we still have 
to face up to the problem of key distribution.  This 
started out with �How do we get keys to our secret 
agents scattered around the world?�.  By the 1990s it 
had changed to �How do we get keys to all of the 
people on the internet who want to buy things from 
our e-commerce site?�

 



  

 

In 1974, Malcolm Williamson, working for British 
Intelligence, came up with a solution to the key 
distribution problem.  It remained secret for a couple 
of years, though, until it was rediscovered and 
published by two researchers, Whitfield Diffie and 
Martin Hellman.  In their seminal 1976 paper �New 
Directions in Cryptography� Diffie and Hellman 
described public-key cryptography and set the 
cryptographic world on its ear.

Now, each individual could have a unique pair of keys, 
generated locally.  There was no longer any need to 
distribute keys.
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Advantages of Public-Key Encryption:

� No need to distribute secret shared keys.
   Each person has his or her own public/private key pair, generated 
locally.  Private keys always stay in the hands of their owner, and never 
need to be transmitted.

� The sender's identity can be verified.
  Since each sender has a unique public/private key pair, we can verify 
his/her identity.

� Security risks are limited to a single user.
   Alice is responsible for the security of her keys, and Bob is 
responsible for the security of his keys.  The theft of one person's key 
doesn't compromise the security of the other keys.



  

 



  

 

This is roughly the way digital certificates are created.
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Encryption and Legal Problems:
Ssh adoption was delayed for many years by legal problems in the 
United States.  These problems fell into two categories:
� Patent Restrictions:
  The earliest versions of ssh relied on the patented RSA public-key 
encryption algorithm.  The patent-owner provided a free RSA 
�reference version� (RSAref), but only allowed it to be used for non-
commercial applications.  OpenSSH worked around this by substituting 
the freely-available DSA algorithm.  The RSA patent expired in 2000, 
so this is no longer an issue.
� Export Restrictions:
  U.S. export restrictions on cryptography were very strict at the time 
ssh was first written.  They've relaxed considerably since then, and 
primarily apply to a list of seven �terrorist countries�.  The law is still 
very confusing, though.  Fortunately, OpenSSH is based in Canada, 
and the U.S. has no import restrictions on cryptography.  To avoid 
possible legal problems, the OpenSSH project does not accept help 
from software developers in the U.S.

Additionally, In some other countries (e.g., France, Russia, and Pakistan) it 
may be illegal to use encryption at all.

From U.S. export law's point of view, the seven 
�terrorist countries� are Cuba, Iran, Iraq, Libya, North 
Korea, Sudan and Syria.

As an example of the dizzying confusion of U.S. law, a 
1997 ruling permitted financial-specific cryptographic 
applications to be exported only if they could, by 
design, only be used to encrypt financial data. For 
much more information on U.S. cryptography export 
law, see:

http://rechten.uvt.nl/koops/cryptolaw/cls2.htm#us
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Conclusion:Conclusion:



  

 

I hope you feel that you have an enormous repertoire 
of computing skills now.  

Thanks for all of your hard work this semester!
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The End

Thanks!


