
1. Zero to Loops

1.1. What’s a Program?
Computers today do a lot of complicated things, from weather predic-

tion to playing music, movies and games.

You might be surprised to learn that computers have been around since

ancient times. One early computer was the “Antikythera Mechanism”,

found in a 2,000-year-old Greek shipwreck. This complicated machine

could be used to predict the future positions of astronomical bodies

and the phases of the moon.

The Antikythera Mechanism.
Source: Wikimedia Commons

The Antikythera Mechanism did many things, but unlike modern

computers it wasn’t possible to add new capabilities after the machine

was made. All of its capabilities were determined when it was built. If

someone needed to do something that it wasn’t built to do, they’d need

to buy or build a new device with different capabilities.

In the early 1800s, the English scientist and engineer Charles Babbage

proposed a new kind of computer that he called an “Analytical Engine”.

This would be a general-purpose computer. Its behavior was controlled

by punched cards (rectangular cards with a pattern of holes in them).

By creating an appropriate set of cards, the Analytical Engine could

be made to do any calculation. (Similar punched cards had previously

been used to control the patterns woven into fabric by looms.) The

mathematician Ada Lovelace, working with Babbage, created the first

sets of cards for this versatile early computer.

Ada Lovelace, the first computer
programmer.
Source: Wikimedia Commons

Most modern computers are designed to be versatile: a given computer

can be used to do many different things. We add new abilities to the

computer by installing “programs” into the computer.

We distinguish between the computer’s “hardware”, which is fixed

https://commons.wikimedia.org/wiki/File:NAMA_Machine_d'Anticythère_1.jpg
https://en.wikipedia.org/wiki/File:Ada_Lovelace.jpg


22 practical computing for science and engineering

and unchangeable, and its “software”, which can be easily changed.

Computer programs are part of the computer’s software. Examples

of computer programs you’re probably familiar with include Firefox,

Safari, Excel, Word, PowerPoint, PhotoShop, and many others.

1.2. Creating Programs
How can we create a program that tells a computer what we want it to

do? An Intel 80486 CPU. In general,
different brands and models of CPU
understand different sets of instructions,
but most processors used today share a
common set of core instructions that
they all understand.
Source: Wikimedia Commons

If the computer were a chef, we could tell it how to make our favorite

dish by writing down a recipe. There’s a problem, though: the chef in

this case (the computer) doesn’t speak English.

Figure 1.1: A program is just a recipe,
but it needs to be translated into a
language the computer can understand.
Source: Wikimedia Commons 1, 2

The computer’s brain is a “Central Processing Unit” (CPU), often just

called a “processor”. It only understands instructions that are expressed

in a language of binary numbers.

A binary number is a number written in base 2. All of the digits of

such a number are either zeros or ones, like this: 10110010. You can

think of a binary number as a line of switches that can be turned on or

off. (See Figure 1.2.)

Figure 1.2: Bits as switches.

You can think of each bit in a binary
number as as switch. (In fact, program-
mers often talk about flipping bits on or
off.) We group bits together in groups
of eight because eight is a power of two
(23), making it convenient for binary
(base-2) arithmetic, just as 10, 100 or
1000 are convenient in base-10. The very
popular early Intel CPUs used data in
8-bit chunks, and this became a de facto
standard.

Each digit of a binary number is called a “bit”.1 We say that a bit is

1 Some people claim that “bit” is a
shortened form of “binary digit”, but
I’m skeptical.

either “on” or “off” (1 or 0). We usually group bits together in sets of

eight. A set of eight bits is called a “byte”.

Although it’s possible to create a computer program by writing long

streams of bits by hand, it’s really tedious and prone to error. Even a

moderately-sized program is millions of bytes long.

What we need is some kind of translator who can read a recipe in a

language that’s easy for us to write, and then translate it into the binary

language that the computer understands.

https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg
https://commons.wikimedia.org/wiki/File:Cheese_Soup_Recipe.jpg
https://commons.wikimedia.org/wiki/File:William_Orpen_Le_Chef_de_l'Hôtel_Chatham,_Paris.jpg


chapter 1. zero to loops 23

Figure 1.3: Source: Wikimedia Commons 1, 2, 3

The kind of translator we’ll be using in this book is called a compiler. It

takes a readable description of what we want the computer to do (our

“recipe”) and translates it into binary instructions.

We can’t quite write our program’s “recipe” in a human language like

English, but there are many programming languages that have been

developed to be readable by humans but still express our wishes in

a clear, simple way that can easily be translated into the computer’s

native binary language.

One of the most widely used programming languages is called simply

“C”. That’s the language we’ll be using in this book.2 The vast majority 2 There are hundreds of different
computer languages. Each has its own
strengths and weaknesses, and no
language is best for all tasks. When
choosing a language for a particular
project, programmers think about
whether the language’s strengths are a
good match for that project.

of the software you’ve used is written in C, or its cousin C++. You’d be

hard-pressed to name a piece of software on your computer, phone or

tablet that wasn’t written in C or one of its close relatives.

Think of the C language as a very terse version of English, with some

special characters to help make your meaning clear. You might compare

it to text messages or e-mails.

Program 1.1 is a simple program written in the C language:

Program 1.1: hello.cpp

#include <stdio.h>

int main () {

printf ( "Hello World!\n" );

}

https://commons.wikimedia.org/wiki/File:Linus_Torvalds_talking.jpeg
https://commons.wikimedia.org/wiki/File:A_woman_working_on_a_call_centre.jpg
https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg


24 practical computing for science and engineering

This program just prints out the text “Hello World!”. Don’t worry about

understanding it right now. We’ll explain how it works soon.3 3 On Wikipedia you’ll find a long list
of “Hello World” programs written
in many different languages. Some of
them are truly bizarre.At this point there are three obvious questions:

• Where do we type these instructions?

• How do we get a compiler to translate them into binary instructions

that the computer can use?

• How do we get the computer to run the program we’ve created?

Before we can answer these questions, there’s one more thing we need

to talk about: files!

1.3. Files
Before the compiler can translate your recipe, it needs to be written

down. Instead of using pencil and paper, you’ll be writing your recipe

into a file that lives on the computer’s hard disk. A file is just a

named bunch of data. You can think of it as an index card with some

information scribbled on it, and a title (the file’s name) written at the

top.

Here’s how to create a program: First, we use a piece of software

called an editor (this is our “pencil”) to create a file that contains some

directions written in the C language (our “recipe”)4. Then we use a 4 This description is often called the
program’s “source code”piece of software called a C Compiler. The compiler reads the file we’ve

created and makes a binary version of our instructions in a new file5. 5 The binary file is often called an
“executable” or just a “binary”The new file is our program, and we can run it just like any other

program on the computer.

This binary file is a new piece of software that we’ve created. If we

were a software company like Microsoft, we could sell this binary file

to our customers, and they could put it onto their computers and use it.

C Compiler

#include <stdio.h>

int main () {

  printf ( "Hello World!\n" );

}

hello.cpp

01101010001110

01001001001011

11110010110111

0100101001011

hello

You write this.... ...and the compiler translates it into this.

Figure 1.4: The C compiler reads our
source code file and makes a binary file
that the computer can understand.
Source: Wikimedia Commons

https://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
https://commons.wikimedia.org/wiki/File:Notecard.jpg


chapter 1. zero to loops 25

1.4. Your First Program
Let’s look at the details of each of the steps in creating a program. In

the following exercise we’ll be creating the example program called

hello.cpp (Program 1.1) that we saw earlier.

Most of our work will be done from the command line, so the first thing

you’ll need to do is open an appropriate command window. A command

window is a box like the one shown in Figure 1.5. If you don’t know

how to open one, see Appendix B for instructions tailored to the kind

of computer you’re using (Windows, Mac, or Linux). You can tell your

computer what to do by typing commands into this window.

Figure 1.5: A command window. The
appearance will vary, depending on
what kind of computer you’re using.

Writing a Program

To write our program, we’ll use a piece of software called a text editor.

It lets you type in some text, and save the text into a file. The text editor

we’ll be using is called nano.6 6 You’ll find instructions in Appendix
B for installing nano and the other
software you’ll need for the exercises in
this book.nano runs inside the command window. To create a file with nano, or

modify an existing file, just type “nano” followed by the file name.

Start it up now by typing “nano hello.cpp”. Figure 1.6 shows what

nano looks like while you’re using it.

In nano, you can just type the text of your program. At the bottom of

the window, you’ll see that nano gives you some hints about how to do

things. For example, you’ll see that ˆX means “Exit”. Here, ˆX means

“hold down the Ctrl key while pressing the X key”.



26 practical computing for science and engineering

Exercise 1: Creating a “Hello World” Pro-

gram

Start up nano and type the program “hello.cpp” that you saw

earlier (Program 1.1, above). When you’ve finished typing,

it should look like figure 1.6.

You should be careful to type the program exactly as it’s

written here. In particular, always remember that the C pro-

gramming language cares about whether letters are upper-

or lower-case. In C, the word “This” isn’t the same as “this”

or “THIS”.

Once you’ve finished typing your program, save it by press-

ing ˆX (hold down the CTRL key, and press the X key).

You’ll be asked to confirm that you want to save your work

into a file (type “y” for yes), and asked what you want to call

the file. In response to this, type hello.cpp and then press

enter. This creates a file called “hello.cpp”, puts the things

you’ve typed into it, and closes nano.

You can see the new file you’ve created by typing the com-

mand “ls” (which is short for “list”). This will show a list

of your files. You should see a file named “hello.cpp”.

For best results when writing your own
programs, stick to all lower-case unless
there’s a good reason to do otherwise.

Press Ctrl-X to exit, 
and optionally save 
your program.

Press Ctrl-X to exit, 
and optionally save 
your program.

Your program.Your program.

Figure 1.6: The editor called “nano”.



chapter 1. zero to loops 27

Compiling Your Program

Now we need to translate your program into binary instructions that

the computer can understand.7 We use a compiler to do this. The 7 We call this “compiling the program”.

compiler we will use in this book is named g++. (This is pronounced

“g plus plus”.)

Exercise 2: Compiling “hello.cpp”

Use g++ to compile your program by typing the following

in your command window:

g++ -Wall -o hello hello.cpp

This tells g++ to read the file hello.cpp and create a binary

version of the program in a new file, named hello. Here’s

what the parts of the command mean:

“-Wall” means “Warn me if you see anything wrong with

my program”

“-o hello” means “Write the output into a file named

hello”

If you see any error messages, check to make sure you’ve

typed the program correctly. In particular, look for missing

semicolons and brackets, or places where you might have

used parentheses instead of brackets. To look at your pro-

gram again and fix any errors, just type “nano hello.cpp”

again. When you’re finished making changes, use ˆX as you

did before to save your changes and exit from nano. Then

try compiling your program again, as described above. Does

it work now?

As you saw in the previous exercise, you can use the ls

command to see a list of your files. If you do this now, you’ll

see that you’ve created a new file named hello.



28 practical computing for science and engineering

Running your program

You’ve created the file hello.cpp, containing a “recipe” for making

your program, and you’ve used g++ to translate this into binary instruc-

tions the computer can understand, and write these instructions into

the file hello. Now you’re ready to run your program!

Exercise 3: Run it!

Tell the computer to run your program by typing the follow-

ing command:

./hello

You should see the words “Hello World!”. Congratulations!

You’re a programmer.

Figure 1.7: Congratulations!
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Women_holding_parts_of_the_first_four_Army_computers.jpg


chapter 1. zero to loops 29

1.5. The Anatomy of a Program
What do the different parts of your simple C program do?

Figure 1.8: The anatomy of our “Hello
World” program.

All but one line of this program is a framework that we’ll use for

most of the programs we write in this book. As you learn more you’ll

understand what each part of this framework does, but for now please

just accept it as it is.

The one line of the program that is of immediate interest is the one that

reads:

printf( "Hello World!\n" );

This is a single statement in the C language, and it tells the computer to

write the text “Hello World!”. The “\n” at the end tells the computer

to go to the next line after it’s written this text.8 8 “\n” means “insert a newline”. As we
go along, you’ll see other similar things
beginning with “\” and controlling how
the computer writes text.What would happen if we left out the “\n”? It would be easier to see

the effect of the “\n” if our program had two printf statements, like

this:

printf ( "Hello World!\n" );

printf ( "...and Dog!\n" );

A program like this, when compiled and run, would print out:

Hello World!

...and Dog!

But if we left off the “\n” in the first printf statement the program



30 practical computing for science and engineering

would print:

Hello World!...and Dog!

See the difference?

printf itself is called a function. Just as functions in algebra may have

arguments, so can C functions. In this case, we’re giving the printf

function one argument: the text to be printed. We’ll see many more C

functions as we go along.

Finally, at the end of our printf statement we see a semicolon. Why is

it there? Because the C language allows us to write our statements on

multiple lines if we want to. We could, for example, have written our

printf statement like this:

printf (

"Hello World!\n"

);

The semicolon at the end tells the C compiler that we’re done with

this statement now, and ready to go on to the next one. Think of the

semicolon as being like the period at the end of a sentence.9 9 Some other computer languages
actually do use a period to indicate the
end of a statement. (Cobol is one of
these.) C doesn’t use a period because it
has another use for that, which we’ll see
later, in Chapter 12.

But what about. . . ?

Could we write something like this?

printf(

"Hello

World!\n"

);

No, it turns out that this won’t work. A broken chunk of quoted

text like this will confuse the C compiler and cause it to refuse to

compile our program.

If we really wanted to break the quoted text across two lines, we’d

need to insert a “\” after “Hello”, like this:

printf(

"Hello\

World!\n"

);

The “\” means “continued on next line”. Note that there can’t be



chapter 1. zero to loops 31

any spaces after the “\”, either.

This kind of thing is bad form, though, and shouldn’t be done in a

real program unless there’s a compelling reason to do so. It just

makes our program harder to read, and that’s usually a bad thing.

In fact, if we really wanted to make the program difficult to read,

we could use the “\” to break up other things:

prin\

tf(

"Hello\

World!\n"

};

Now that’s hard to read! Don’t write programs this way. It’s icky!

1.6. Doing Math
Let’s try working with numbers now. Imagine I have $25.00 in my

wallet and $238.00 in the bank. How much money do I have in total?

Let’s ask the computer to do the math for us, like this:

printf ( "Total funds: %lf\n", 25.0+238.0 );

Notice that now we’re giving printf two arguments. The first argu-

ment is some quoted text, as before. But now we’ve added a second

argument (separated from the first by a comma) that looks like an

arithmetic expression. To understand what all of this does, we’ll first

need to know a little more about how printf works.

The first argument given to printf will always be a chunk of quoted

text. Sometimes this will be the only argument. In our “Hello World!”

example, the only argument we gave to printf was the text that we

wanted it to print.

In general, though, you can think of the text in this first argument as a

fill-in form we give printf. (See Figure 1.9.) It can contain placehold-

ers that mark spots where we want printf to figure something out,

and fill in the blanks for us.

In the printf example above, the three characters %lf (percent, l as

in “Lucy”, f as in “Fred”) together form a placeholder, marking a spot

where the computer is supposed to insert a number. More specifically,



32 practical computing for science and engineering

Total funds: 

A number, 
possibly 

containing 
decimals.

Hmmm...

Figure 1.9: The text we give printf is like
a fill-in form.

%lf means “save a spot here for a number that may contain decimal

places”10. We’ll encounter several other placeholders like this later, 10 We’ll discuss what the letters lf
stand for a little later.each of them for a different kind of number (or some other kind of

thing we’d like to print out).

In our example, the second argument tells printf what we want to

insert into the spot reserved by the placeholder. In this case, we give

it the mathematical expression 25+238. The printf function will do

the math for us, fill in the blank, and print out the result.

Let’s look at a slightly less trivial problem (see Figure 1.10). Imagine we

have a linear function, y = 2x + 3, and we want to know what the value

of y will be when x = 4.3. How could we write a simple C program to

tell us the answer?

Here’s one way to do it (notice that the symbol for multiplication in C

is an asterisk):

#include <stdio.h>

int main () {

printf ( "The answer is %lf\n", 2.0 * 4.3 + 3.0 );

}

If you wrote this program, compiled it, and ran it, it would print out

“The answer is 11.6”, which is the correct value of y.11 11 Actually, you’ll see that the program
prints out something like “The answer

is 11.600000”. We’ll see how to
control how many decimal places are
printed later.



chapter 1. zero to loops 33

y = 2x + 3

x = 4.3

y = ?

0

5

10

15

20

25

0 2 4 6 8 10

Figure 1.10: A line representing the
equation y(x) = 2x + 3.

printf evaluates the mathematical expression 2.0 * 4.3 + 3.0 to

get the value 11.6, and then inserts this number in place of %lf.

Placeholders like %lf are called format specifiers. They tell the computer

where to insert something and how it should be formatted. We can use

more than one format specifier to insert multiple numbers into the text.

For example:

#include <stdio.h>

int main () {

printf ( "At x=%lf the value of y is %lf\n",

4.3,

2.0 * 4.3 + 3.0 );

}

Note that I’ve broken the line up
because it’s long. This is OK, as long
as I don’t insert a line break in the
middle of a word or a chunk of quoted
text without using a “\” continuation
character.

This program would print “At x=4.3 the value of y is 11.6”.

The first %lf gets replaced with the first number, and the second %lf

gets replaced with the second number. (See Figure 1.11.)

1.7. Variables
When you look at the expression “2.0 * 4.3 + 3.0” do you remem-

ber what the numbers represent? Which is the line’s slope? Which

is the y-intercept? Which is the value of x? If we came back to this



34 practical computing for science and engineering

At x=4.3 the value of y is 11.6

A number, 
possibly 

containing 
decimals.

A number, 
possibly 

containing 
decimals.

Figure 1.11: The printf text can
contain more than one placeholder.

program later, we might not have any idea which number was which.

Let’s get organized!

Here’s another version of the program:

#include <stdio.h>

int main () {

double x;

double y;

double slope = 2.0;

double yint = 3.0;

x = 4.3;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

}

Definitions

of Variables

Now our mathematical expression is “slope * x + yint”, which

should be much easier to understand.

We’ve defined four variables in this program: x, y, slope, and yint.



chapter 1. zero to loops 35

A variable is a named box into which we can put a value.12 Variables 12 Variables are stored in the computer’s
memory, which is a temporary storage
area that’s erased whenever you restart
the computer. This is unlike files,
which are permanently stored on the
computer’s hard drive.

in C are similar to variables in algebra, except that there are different

kinds of C variables for holding different kinds of data.

The four lines beginning with the word double define the four vari-

ables we’re going to use. “Defining” the variable means telling the

computer what kind of values you’ll assign to the variable. (In C, you

must define variables before you can use them.) While you’re defining

the variable, you can optionally also give the variable an initial value.

You can see that we’ve done this with the slope and yint variables.

The word double means that these variables will hold “double-precision

floating-point numbers”. Don’t worry too much about what that means

right now. It’s enough to know that these variables will hold numbers

with decimal points in them. Programmers call numbers that contain

decimal places “floating-point numbers.” 13 13 In this book we’ll only use three or
four types of variables, although there
are a lot more than that available.

Once you’ve defined a variable, you can use it in your program. For

example, you can assign a value to it using an equals sign, as in “x

= 4.3”. This statement means “set the value of x equal to 4.3”. The

statement “y = slope * x + yint” does the math on the right-

hand side of the equation and then sets the variable y equal to the

result. Later on, we’ll learn how to ask the user
for numbers, so we’ll be able to ask the
user to enter a value for x, instead of
having the value written explicitly into
the program.

We can use our new variables wherever we previously used numbers.

Going back to the “%lf” format specifier in our printf statements, I’ll

now tell you that “%lf” means “insert a ’double’ number here”. The

letters “lf” stand for “long float”, which is another way of saying

“double-precision floating-point number”.

Finally, notice that we’ve defined our variables near the top of our

program. Variables must be defined before you can use them, and

some C compilers require that you define all variables before you do

anything else in the program. Going back to our recipe analogy, you

might think of these variable definitions as the list of ingredients. After

we’ve listed the ingredients, then we can get down to the business of

describing how to combine them into a tasty dish.

Figure 1.12: “La Tailleuse de Soupe”,
François Barraud (1933).
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:François_Barraud_-_La_Tailleuse_de_Soupe.jpg


36 practical computing for science and engineering

1.8. A Note About Algebra
Let’s pause for a minute and look at the way math is done in C pro-

grams. In the example above, we wrote “y = slope * x + yint”.

This looks an awful lot like equations we’ve seen in algebra.

Figure 1.13: A blackboard used by
Albert Einstein.
Source: Wikimedia Commons

One obvious difference is that we tend to use longer variable names in C

programs than in algebra. When we’re doing algebra, we usually write

equations by hand, either on paper or on a blackboard, and we save

time and effort by using single-letter symbols for variables whenever

possible.

When typing a computer program, it doesn’t take much effort to use

longer, more descriptive names for our variables. This can help prevent

us from getting confused as we’re writing the program, and it makes

it easier for other people (or our future selves) to look at the program

and understand it.

A second, less obvious difference involves the actual meaning of an

expression like “y = slope * x + yint”. In algebra, this expres-

sion would mean something like “I promise you that the value of y is

equal to slope * x + yint.” On the other hand, in a C program,

this expression means “I command you to make y equal to slope * x

+ yint.”

The difference becomes apparent when you encounter an statement

like “x = x + 1” in a C program. This statement would make no

sense in algebra. There’s no value of x for which x = x + 1. But in

C, it makes perfect sense: We’re commanding the computer to give the

variable x the new value x + 1. If x is equal to 3 before this statement,

it should be equal to 4 after the statement.

3
x

3+1 = 4

4
x

Figure 1.14: How the computer
interprets the statement “x = x + 1”.
Remember that a variable in a C
program is just a named storage
location in the computer’s memory. In
this example, there’s a variable named x

that initially contains the value “3”.

If we could look inside a computer’s brain as it acts on the statement

“x = x + 1” we’d see that it first calculates x + 1, saving the result

in a temporary location, then copies the result into the variable x.

In later chapters you’ll find that it’s very important to remember that

the equal sign in statements like this means make the left-hand side

equal to the right-hand side.

In algebra the statements “y = 2x + 3” and “2x + 3 = y” are equivalent,

but not in C. Remember that a C program is like a recipe: it’s a set

of instructions that should be followed in a particular order. “Pour

milk into a bowl” isn’t the same as “pour bowl into a milk”! The latter

doesn’t make any sense, just as the statement “2x + 3 = y” wouldn’t

make sense in a C program.

https://commons.wikimedia.org/wiki/File:Einstein_blackboard.jpg


chapter 1. zero to loops 37

1.9. Using Loops
We could use the program above to tell us the value of y at one par-

ticular value of x, but what if we want to look at how y varies as we

change x? It would be nice if our program could print out, say, ten

different x values and the corresponding y values.

We could, of course, do something like this:

x = 1.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

x = 2.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

x = 3.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

et cetera, but it would be really tedious to type all of this. It would also

be hard to change it later if we wanted a different set of x values, or if

we wanted to use a different function for y.

Fortunately, if there’s one thing computers are good at, it’s doing the

same thing over and over. That’s why computers were invented. The

C programming language lets us tell the computer to repeat a task a

given number of times, optionally making small changes each time.

One way to do this in C is by using a “for” statement. Take a look at

Program 1.2, named loop.cpp.

Program 1.2: loop.cpp

#include <stdio.h>

int main () {

int i;

for ( i=0; i<10; i++ ) {

printf ( "%d\n", i );

}

}



38 practical computing for science and engineering

First notice that we’ve defined a variable named “i”. Instead of being

a double, like the variables we’ve used before, this new variable is an

int. That’s short for “integer”, which in the C language means the

variable can hold numbers without decimal places.14 Integers are the 14 You’ll usually use double or int
for numbers in your programs. Use
double for any numbers that might
have a decimal point, and int for
integers.

numbers we use to count discrete things, like apples or cars. They’re the

counting numbers, like 1, 2, 3,... including zero and negative numbers

like -1. We’re going to use the new variable to count how many times

we’ve repeated a part of our program.

Programmers call a repeated part of a program a “loop”. The computer

starts at the “top” of the loop, does a list of tasks that are included

in the loop, then goes back to the top of the loop and (optionally)

starts again.15 In principle, the computer could keep going around and 15 See the lyrics to “Helter Skelter” by
the Beatles.around the loop forever, but we’ll usually want to tell it to stop after it’s

gone around some number of times, or after some other requirement is

met.

You can create a loop in your program by using a “for” statement.

Figure 1.15 shows the anatomy of a for statement:

for (i = 0 ; i < 10 ; i++) {

  printf(“%d\n”, i);

}

Initialize Are we done? Increment

%d is a placeholder for int variables.

%lf is for double variables.

do this 
again...

Figure 1.15: The anatomy of a “for”
loop. The first line marks the top of the
loop. The bottom line marks the end of
the loop. Everything in between is done
repeatedly, some number of times.

In the first line, inside the parentheses after the word “for”, we tell the

computer three things that control how it will travel through this loop

(see Figure 1.16). These are:

1. How to set things up before we start looping.

2. When to stop looping.

3. What changes to make each time we come to the bottom of the loop.



chapter 1. zero to loops 39

In Program 1.2, when we say “(i=0; i<10; i++)” we mean:

1. Before you start looping, set i equal to zero.

2. Keep going around the loop as long as i is less than ten.

3. Whenever you get to the bottom of the loop, add 1 to the value of i.

Set i equal to zero

Make i greater by 1

Is i greater than ten?

printf(“%d\n”,i);

Initialize:

Test:

Increment:

Done!

No

Yes

G
o
 a

ro
u

n
d
 a

g
a

in

Figure 1.16: This diagram shows how a
“for” loop works. Notice that if we gave
i a value like 100 in the beginning, the
program would never do the printf.
Instead, it would just skip the loop
entirely. This is important, because later
on we’ll encounter another kind of loop
that will always be acted on at least once.

The mysterious-looking statement “i++” means “set i equal to i +

1”. In C, “++” is the increment operator. (There’s also a decrement operator,

“−−”, that decreases a variable’s value.) The expression “i++” is just a

handy shortcut here. It’s exactly equivalent to saying “i = i + 1”.

In the example program, we just print out the value of i each time

we go around the loop. Notice that, instead of “%lf” in the printf

statement, we use “%d”. The “d” stands for “decimal integer”, and it’s

what printf uses as a placeholder for an integer value. int variables go

with “%d”, and double variables go with “%lf”. These are the only

kinds of numerical values we’ll use for most of the exercises in this

book.



40 practical computing for science and engineering

Exercise 4: Using Loops

As you did before with hello.cpp, create Program 1.2 by

typing it into nano. When you’re done typing, press ˆX to

exit nano. When asked what to call the new program, say

“loop.cpp”. Then compile your new program by typing:

g++ -Wall -o loop loop.cpp

If you see any errors, use nano to correct them, and try

compiling again. When you’ve successfully compiled the

program, run it by typing “./loop”. What do you see? The

program should print out a list of numbers, from zero to

nine.

But what about. . . ?

One more thing you should notice about Program 1.2: Look at

the way we’ve indented the lines. This isn’t necessary, but it’s a

good idea to keep your code neat and readable. Indenting the lines

inside a loop can help you see where the loop begins and ends.

When you write more complicated programs, you’ll find that this

often makes it easier to catch mistakes.

Pay attention to the way all of the examples in this book are

formatted. Even if you don’t use the same “programming style”,

you’ll find it very useful to have a consistent style of some kind

when writing your programs.



chapter 1. zero to loops 41

1.10. Calculations Inside a Loop
Now let’s apply our knowledge of loops to the problem of finding the

value of y for several values of x. Program 1.3 shows one way to do it.

Program 1.3: line.cpp

#include <stdio.h>

int main () {

double x;

double y;

double slope = 2.0;

double yint = 3.0;

int i;

x = 0.0;

for ( i=0; i<10; i++ ) {

y = slope * x + yint;

printf ( "%lf %lf\n", x, y );

x = x + 1.0;

}

}

Before we start this program’s “for” loop, we set the value of x to be

zero. Then, each time we go around the loop we calculate the value

of y, using “slope”, “yint” and “x”, and we add 1.0 to the value of

x. The next time around, we use the new x value to calculate a new y

value. After we’ve done this ten times, we stop.

Exercise 5: Doing Math Inside a Loop

As you’ve done before with the programs hello.cpp and

loop.cpp, create the new program line.cpp using nano

and compile it by typing “g++ -Wall -o line line.cpp”.

(If you see any errors, use nano to correct them, and try com-

piling again.) Run the program by typing “./line”. Do

you see what you expect? The program should print out a

list of X and Y values.



42 practical computing for science and engineering

But what about. . . ?

Notice that we change the value of x by saying “x = x + 1.0”.

Could we have used C’s increment operator to do ths same thing,

by just saying “x++” on this line? In principle, yes, that would

work fine, but many programmers prefer not to use “++” with

numbers that have decimal places (“floating-point” numbers, as

programmers call them). As we’ll see later, we sometimes need to

keep in mind the limits of the computer’s abilities. A computer

can’t store all of the infinitely-many decimal places that a real

number actually has. Instead, the computer needs to truncate the

number to some manageable length. For example, instead of

3.14159265358979323846264338327950288419716939

9375105820974944592307816406286208998628034825

3421170679821480865132823066470938446095505822

3172535940812848111745028410270193852110555964

4622948954930381964428810975665933446128475648

2337867831652712019091... et cetera

the computer might approximate the number as 3.14159265358979.

Because of this limitation on the precision of real numbers, small

errors are introduced into the calculations done by the computer.

A result that should be (by our knowledge of arithmetic) equal

to 1.0000000..... will turn out to be (as seen by the computer)

1.0000000000001 or 0.999999999999. This kind of thing makes com-

puter programmers cautious when incrementing, decrementing or

(especially) comparing floating-point numbers. Avoiding the use

of “++” with floating-point numbers helps us keep in mind that

they aren’t the same as counting numbers, where the computer

always has a well-defined, exact, “next number” to go to.



chapter 1. zero to loops 43

1.11. Graphing Our Results
Program 1.3 should print out a list of X and Y values, but how do we

know they’re the right ones? How do we know that our program is

doing the right thing? The formula for calculating the Y values was y

= slope * x + yint, which is the equation of a straight line. One

way to check our program’s output would be to see if the X,Y values it

generates fall on a straight line.

Exercise 6: Making Graphs

To do this, we can use a third command-line utility (in

addition to nano and g++, which we’ve already used) and

a particular command-line trick. The command-line trick is

this: Instead of just typing “./line” to run your program,

type:

./line > line.dat

You won’t see anything printed on your screen. Instead, the

things that the program would otherwise have printed will

be saved in a new file named line.dat.

The new command-line utility we’ll use is gnuplot, which

will let us make graphs of data. To start it, just type “gnuplot”.

You’ll see something like this:

G N U P L O T

Version 4.2 patchlevel 6

gnuplot>

The “gnuplot>” at the bottom means that gnuplot is waiting

for us to give it a command. Now type:

plot "line.dat"

This should show you a nice straight line of points, more or

less like the picture in Figure 1.17.

If we’d like to draw a line through the points, we could type:

plot "line.dat" with linespoints

(“with linespoints” means draw a symbol at each point,

and draw a line connecting them.)

When we’re done with gnuplot, we can leave it by typing

“quit”.



44 practical computing for science and engineering

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  1  2  3  4  5  6  7  8  9

"line.dat"
Figure 1.17: The result of typing plot

"line.dat" in gnuplot.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  1  2  3  4  5  6  7  8  9

"line.dat"
Figure 1.18: The result of typing plot

"line.dat" with linespoints in
gnuplot.



chapter 1. zero to loops 45

1.12. More About Variables
To understand how your programs use variables, you need to know a

little about the computer’s memory.

In computer terminology, memory is a temporary storage area that

programs can use. It’s a kind of scratch pad on which the program

can scribble some information that it will need while it’s working. The

computer’s memory consists of may bits that be turned on or off. (Think

of a long, long line of thousands of light switches.)

When you use a variable in a program, the computer reserves some of

those bits for storing whatever value you want to assign to that variable

(for example, the number “11.6”). How many bits are reserved, and

how they’re used, depends on the type of variable.

Figure 1.19: How a computer might
store three variables in memory.

Figure 1.19 shows how the storage space for variables might be arranged

if you wrote a program with a double variable named “velocity”,

and two int variables named “i”, and “number”. (Remember that a

byte is just a group of eight bits.) Different types of variables are given

different amounts of space. Bad things can happen if you try to put the

wrong type of data into a variable.

For example, what would happen if you tried to stick a double value

into the variable named “i”, above? If you succeeded, the data would

spill over into the adjoining variable (“number”) and corrupt it.

The C compiler tries to prevent this sort of thing two ways:

• It warns you when try to stick the wrong type of data into a variable,

and

• It tries, when reasonable, to re-cast your data into a format that’s

appropriate for the variable into which you’re putting it.

This re-casting can sometimes cause unexpected effects. For example, if

you try to set an integer variable equal to “3.1415”, the computer might

just automatically drop the decimal part and set the variable equal to

“3”. We’ll look at this in more detail later.



46 practical computing for science and engineering

1.13. Fibonacci Numbers

5×5

8×8

13×13

21×21

A spiral made from squares whose
sides are Fibonacci numbers.
Source: Wikimedia Commons

Let’s use our new-found loopy powers to do a little more math. The

Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13, ..., where each

term in the sequence is the sum of the preceding two terms. This

sequence pops up in all sorts of unlikely places in mathematics. It’s

named for the 13th Century mathematician Leonardo of Pisa (later

nicknamed “Fibonacci”), who used the sequence in describing the

month-by-month growth of a population of rabbits.

We might write a program to print the first few numbers of the sequence

like this:

Program 1.4: fib.cpp

#include <stdio.h>

int main () {

int a = 0;

int b = 1;

int c;

int i;

printf( "%d\n", a );

printf( "%d\n", b );

for ( i=0; i<10; i++ ) {

c = a + b;

printf( "%d\n", c );

a = b;

b = c;

}

}

These variables will hold three succes-

sive terms of the sequence at a time.

We’ll start with the numbers 0 and 1.

Print the first

two numbers.

The next number is the sum

of the preceding two numbers.

b and c become the new first

and second numbers, then we

just keep repeating this process.

The program progresses by keeping track of three numbers at a time,

in the variables named a, b, and c. It starts with 0 and 1 in a and b,

respectively, then calculates the next number, c, by adding them. After

printing the value of c the program “shifts” the numbers by one space,

giving a the value of b, and b the value of c. Then it goes around the

loop again, and comes up with a new value for c, the next number in

our sequence.

If you compile program 1.4 and run it, it should print the first ten

https://commons.wikimedia.org/wiki/File:FibonacciSpiral.svg


chapter 1. zero to loops 47

Fibonacci numbers, like this:

0

1

1

2

3

5

8

13

21

34

55

89

A statue of Leonardo of Pisa, also
known as “Fibonacci”.
Source: Wikimedia Commons

Great! Since that went so well, what would happen if we tried to print

more terms in this sequence? We could modify the “for” statement to

make it do 100 terms instead of ten:

for ( i=0; i<100; i++ ) {

If we compiled this new version of the program and ran it, we’d see

that things start off fine, but about halfway through something goes

wrong:

...

165580141

267914296

433494437

701408733

1134903170

1836311903

-1323752223

512559680

-811192543

-298632863

...

What’s going on here? If you refer back to Figure 1.19 in the preceding

section, you might find a clue. Computers can’t store infinitely big

numbers. Each kind of variable has only a limited amount of space in

the computer’s memory. If the value keeps getting bigger and bigger,

eventually it will be too big for the computer to store in that variable,

and strange things will happen. But don’t despair! The “int” and

“double” variables we’ll be using for most of our programs will be

plenty big enough to hold the numbers we need, and later in the

book, in Chapter 13, we’ll see some techniques for storing humongous

numbers.

https://commons.wikimedia.org/wiki/File:Statua_di_leonardo_fibonacci,_matematico.JPG


48 practical computing for science and engineering

Practice Problems

Here’s a picture of a “computer”. That
was Katherine Johnson’s title when she
worked for NASA. She was one of
many mathematicians who did, by
hand, the tedious calculations required
to successfully navigate spacecraft into
orbit and back to earth. She worked on
the Apollo 11 mission to the moon, and
her calculations helped bring the
aborted Apollo 13 mission safely back
to earth. Even after electronic
computers came into use, human
computers like Katherine Johnson were
asked to check the results that came out
of their electronic counterparts.
Source: Wikimedia Commons

1. Write a program like Program 1.1 (hello.cpp), but instead of

“Hello World!” make your program print your name. Call the

program myname.cpp.

2. Write a program like Program 1.1 (hello.cpp), but instead of

writing “Hello World!” make your program print the following

address:

Mr. Sherlock Holmes

Consulting Detective

221b Baker St.

London NW1 6XE

The address should appear exactly as it’s written above. Remember

that you can use “\n” to move to the beginning of a new line. Call

your program sherlock.cpp.

The Sherlock Holmes Museum at 221b
Baker Street.
Source: Wikimedia Commons

3. Write a program that has a double variable named age. Give

the variable a value equal to your current age, in years. Have the

program write out the text “When I am twice my current age I will

be ... years old”, where “...” is replaced by twice your current age,

as calculated by the computer. Call the program myage.cpp.

Hint: Remember that printf uses %lf as a placeholder for double

values, as shown in Section 1.6.

4. Repeat the previous problem, but this time have the program write

out the text “When I was half my current age I was ... years old”,

where “...” is replaced by half your current age, as calculated by the

computer. Call the program halfage.cpp. (Note that the symbol

for division in C is “/”.)

Hint: Remember that printf uses %lf as a placeholder for double

values, as shown in Section 1.6.

5. Using Program 1.2 (loop.cpp) as a model, write a program that

prints out the words “I’m a programmer!” ten times. Call the new

program cheers.cpp. (Check to make sure your program prints

the text the correct number of times.)

6. Using Program 1.2 (loop.cpp) as a starting point, write a program

called countdown.cpp. Change just the printf line to make the

new program print the following:

10...9...8...7...6...5...4...3...2...1...

Hint 1: Remember that you can use an arithmetic expression in a

printf statement, as shown in Section 1.6.

Hint 2: Remember that you can add or remove \n in a printf

https://commons.wikimedia.org/wiki/File:Katherine-johnson.jpg
https://commons.wikimedia.org/wiki/File:Sign_at_Sherlock_Holmes_Museum_in_Baker_St_221b.jpg


chapter 1. zero to loops 49

statement to control whether it goes to the next line after printing

some text, as shown in Section 1.5.

7. What if we wanted Program 1.2 (loop.cpp) to start at 100 and count

to 1000 by hundreds (100,200,300,... up to 1000)? How could we do

that without changing the “for” line in this program? Write a new

program with these changes, and call it loop2.cpp.

8. Using Program 1.2 (loop.cpp) as a model, write a program that

prints out a list of all the numbers from zero to 999 and the cube of

each of these numbers. The format of the output should be lines like

this:

0 0

1 1

2 8

3 27

4 64

...

where the second number in each line is the cube of the first number.

Hint: One way to cube a number in C is simply to multiply it by

itself twice, like this: 2*2*2. Call your program cubes.cpp.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0  100  200  300  400  500  600  700  800  900 1000

"cubes.dat"

Figure 1.20: The output of your cubes
program plotted by gnuplot.

You can use gnuplot to check the program’s results. First, send the

program’s output into a file, like this:

./cubes > cubes.dat

Then start gnuplot and give it the command:

plot "cubes.dat" with lines

The result should look like Figure 1.20.

9. Using Program 1.3 (line.cpp) as an example, write a program

named curve.cpp that prints values of x between -50 and 50 (in

increments of 1), along with the value of y = 200 + x2/3 for each x

value. (Note that the symbol for division in C is “/”.)

Note that you won’t need the variables slope and yint from Pro-

gram 1.3. You’ll also need a slightly different for statement, since

this loop will cover 100 values instead of only 10. You might find it

useful to know that one way to square a number in C is simply to

multiply it by itself, like “x*x”.

The program should print the x and y values in two columns, like

this:

-50.000000 1033.333333

-49.000000 1000.333333

-48.000000 968.000000



50 practical computing for science and engineering

-47.000000 936.333333

-46.000000 905.333333

...

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

-50 -40 -30 -20 -10  0  10  20  30  40  50

"parabola.dat"

Figure 1.21: The output of your curve
program plotted by gnuplot.

You can use gnuplot to check the program’s results. First, send the

program’s output into a file, like this:

./curve > curve.dat

Then start gnuplot and give it the command:

plot "curve.dat" with lines

The result should look like Figure 1.21.

10. Make a new program named pell.cpp. Start by copying Program

1.4 on Page 46. Then modify the program so that it:

(a) Starts with a = 2 and b = 6, and

(b) Instead of adding the preceding two numbers, as Program 1.4

does, add the first number to twice the second number.

When you compile and run your program it should print a sequence

of numbers like 2, 6, 14, 34, 82, .... These are the “companion Pell

numbers16”. They’re related to the Fibonacci numbers, and can be 16 See this Wikipedia article.

used to find approximate values of the square root of 2.

https://en.wikipedia.org/wiki/Pell_number

