
3. Writing Flexible Programs

3.1. Introduction

In some situations, recompiling the
program to change its settings isn’t an
option.
Source: Wikimedia Commons, Wikimedia Commons

The programs we’ve written so far have have all been designed to do one

predetermined thing. If you wanted to change the behavior of one of

these programs, you’d need to edit it and re-compile it. If you had to do

this often, it would be rather inconvenient, and if you were a software

vendor you almost certainly wouldn’t ask your customers to edit and

re-compile your program every time they needed to change a setting.

(A vendor might not even want to give customers the source code for

the program. Having the source code would allow the customers, or

other vendors, to write their own programs, eliminating demand for

your product!)

In this chapter, we’ll see how you can write flexible programs that

behave differently depending on input from the user.

3.2. Reading Input from the User
C provides a function called scanf that can read information typed

by the person running your program. The scanf function causes your

program to pause until the user has entered some information. After

the information has been supplied, it’s put into variables for later use,

as illustrated in Figure 3.1.

Take a look at Program 3.1. This is a pretty useless program, but it

illustrates how scanf works. When the program is run, it asks the

user to enter a number1, and then just tells the user what number was 1 Remember that printf uses %d for
int variables and %lf for double
variables. You’ll see that scanf does
the same.

entered.

As you can see, the scanf function looks a lot like printf. The biggest

difference is the ampersand (“&”) in front of the variable i. For now,

https://commons.wikimedia.org/wiki/File:Cat_scan.jpg
https://commons.wikimedia.org/wiki/File:Defense.gov_News_Photo_110426-N-0569K-005_-_Seaman_Nathalie_G._Sanchez_operates_an_advanced_combat_direction_system_console_in_the_commanding_officer_s_tactical_plot_room_aboard_the_aircraft.jpg

78 practical computing for science and engineering

Figure 3.1: The scanf function acts like
a scribe. It takes the information you
give it and puts that information into
variables in your program. We can only
speculate about its internal
commentary...
Source:Die Gartenlaube (1875), Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Die_Gartenlaube_(1875)_b_213.jpg

chapter 3. writing flexible programs 79

Program 3.1: reader.cpp

#include <stdio.h>

int main () {

int i;

printf("Enter an integer: ");

scanf("%d",&i);

printf("The number you entered was %d\n", i);

}

you don’t need to understand why this ampersand is there, but you

need to use it whenever scanf reads a number. We’ll come back to it

later and explain why.

Refer to Chapter 1 if you don’t re-
member how to create and compile a
program.

Exercise 14: Using Scanf

Using nano and g++, create and compile Program 3.1. Be

extra careful not to leave out the ampersand! Try running the

program several times, giving it integers as input. Note that

you’ll need to press “Enter” after you’ve typed the number.

Does the program work as expected?

What happens if you enter spaces or tabs before or after the

number? Does it make any difference?

Try giving the program a number with a decimal, like “1.5”.

What happens? What if you type extra text after the number,

like “5 and other things”?

What happens if you type a letter as the first character?

You can think of scanf as the opposite of printf. The printf

function writes things, and the scanf function reads things. The “f”

in both cases stands for “formatted”, and both functions take a “format

string” as their first argument. We’ve learned that the format string

tells printf how to write its output. In the case of scanf, the format

string tells the function what it should expect its input to look like.

scanf scans the text you type, looking
for numbers (or other things) in a given
format.
Source:Die Gartenlaube (1875), OpenClipart.org

scanf reads whatever the user types, then sorts it out and puts it into

one or more variables. The format string we give scanf tells it what

kind of input to expect, and how to sort it into the variables we specify.

In Program 3.1 we’re only reading data into one variable. If we wanted

https://openclipart.org/detail/208615/rampaging-robot

80 practical computing for science and engineering

to read the values of more variables, we could either add more scanf

statements to the program, or we could use a format string like the one

shown at the top of Figure 3.1, with more than one placeholder in it:

scanf ("%d %lf", &age, &shoesize);

The number of placeholders in the format string must match the number

of variables we give scanf.

When you give Program 3.1 a number like “1.5”, you should see that

it gets truncated to “1”. This is because we told scanf to look for an

integer by giving it the format string “%d”. scanf stops looking as

soon as it encounters something that doesn’t look like part of an integer.

If you enter “5 and other things”, you’ll see that the program thinks

you typed “5”.

3.3. scanf and Extra Spaces
As you saw in the exercise above, scanf ignores any leading or trail-

ing spaces around placeholders. This is nice, because it makes your

program forgive any extra spaces that the user might type.

For example, consider Program 3.2, which is just a modified version

of Program 3.1. The new program asks the user to enter two integers.

The format specification given to scanf is "%d %d", meaning “look

for one integer followed by some space and then another integer”.

(Remember that %d is a placeholder for an integer.) After the user

enters the two numbers, they’re put into the variables i and j. Finally,

the program just prints the values stored in these variables to confirm

that the program really got the numbers we tried to give it.

Program 3.2: reader.cpp, with 2 variables

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter two integers: ");

scanf("%d %d",&i, &j);

printf("The numbers you entered were %d and %d\n", i, j);

}

chapter 3. writing flexible programs 81

Exercise 15: Space Patrol

Create, compile and run Program 3.2, then try some experi-

ments with it. The first time you run it, obediently give it

two integers separated by a space. Then run it again, putting

several spaces between the numbers. What happens if you

press the “enter” or “return” key between the numbers in-

stead of putting spaces? What about pressing “enter” or

“return” multiple times?

You should find that the program behaves the same no

matter which of these ways you choose to enter the numbers.

As far as scanf is concerned, spaces, tabs, and returns

are all the same thing, and it doesn’t matter how many of

them you enter. Programmers call these invisible characters

“white space”.

Roberta Leigh, producer of the 1960s
British TV series Space Patrol. The show
used puppets as its characters. The
intrepid Captain Larry Dart sits to the
left of Leigh.

3.4. Un-initialized Variables
When you enter a letter instead of a number, Program 3.1 behaves

unexpectedly. Instead of a letter, the program might tell you that it saw

some big number. It might even show you a different number if you

do the same thing again. What’s going on here? The problem is that

scanf is looking for a number to put into the variable i, but it never

sees one, so it doesn’t change the value of i.

What value does i have if the program has never given it a value?

Remember that each variable’s value is stored in a chunk of the com-

puter’s memory2. When a program finishes, the computer can re-use 2 See Section 1.12 in Chapter 1.

that chunk of memory for another program. When a new program

starts, the chunks of memory for all of its variables just contain whatever

data was left over by the last program that used that space.

That’s why Program 3.1 prints something unexpected if we enter a

letter instead of a number. scanf never sets the value of i so the

variable just has some leftover junk in it, which gets printed out by

our printf statement. If we wanted to make things a little neater, we

could change one line of the program so that it sets the value of i at

the beginning of the program. Instead of

int i;

we could say

82 practical computing for science and engineering

int i=0;

Then, if the user enters something that’s not a number, the program

would always say that the number was zero. One lesson to learn from

this is that you shouldn’t assume that a variable has any value until

you give it one. This will come up a lot later, so keep it in mind.

Later on (in Chapter 8) we’ll talk about reading text. Until then, we’ll

only be using scanf to read numbers.

But what about. . . ?

What if we put text like “Hello World!” into the format string for

scanf? Or what if we put a \n at the end of the format string?

First, if our program said scanf("my age is %d",&i); then

we’d need to type something like “my age is 54”, because the

program would be looking for the text “my age is” followed by a

number. Note that we wouldn’t be allowed to have any extra spaces

in front, either, since scanf only ignores extra spaces around

placeholders like %d.

In the second case, scanf doesn’t distinguish between space, tab,

or newline characters. These are all “white space”. When scanf

sees white space in a format specifier, it waits for the user to type in

any number of these characters, followed by at least one non-white-

space character. If we said scanf("%d\n",&i); the program

wouldn’t continue until we’d entered a number, followed by one

or more white space characters, followed by something that isn’t a

white space character.

chapter 3. writing flexible programs 83

3.5. Decisions, Decisions!
We’ve seen that computers are good at loops, but they’re also good

at making comparisons and decisions, and doing those things very

rapidly.

Until now we’ve dealt with programs that follow a single predetermined

path from start to finish. Now we’ll look at ways to control the flow

of our programs, making them do different things under different

circumstances.

In C, you can use an “if” statement to make decisions. “if” statements

check to see if some condition is true, then decide whether to take

some action. Program 3.3 shows a straightforward example. The

printf statement inside the curly brackets is only acted upon when

the condition in the “if”’s parentheses is true. It’s easy to read this as

a sentence: “If i+j is greater than 10, print some stuff.”

Figure 3.2: “if” statements are like
valves that control the flow of your
program.

Notice that Program 3.3 uses two
scanf statements to read two numbers
from the user.

Exercise 16: “if” Statements

Use nano to create Program 3.3, then compile it with g++

and try running the program a few times. Does it behave as

expected?

84 practical computing for science and engineering

Program 3.3: checksum.cpp (Version 1)

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter an integer number: ");

scanf("%d",&i);

printf("Enter another integer number: ");

scanf("%d",&j);

if (i+j > 10) {

printf("The sum is greater than 10\n");

}

}

The most general form for an “if” statement looks like this:

if (CONDITION) {

lIST OF THINGS TO DO

}

The “condition” is some test that will determine whether or not the

following list of things should be done. We can check to see if two

things are equal, or if one is greater than the other, or any of several

other conditions. We can also combine several tests, and require (for

example) that they all be true. Maybe we want to check to see if

something isn’t true. We can do that, too.

The “list of things to do” can include any C statements we want to use.

This list is just a section of our program that will only be acted upon

when “if” statement’s condition is met.

chapter 3. writing flexible programs 85

Here’s another example of an “if” statement:

if (i > 10) {

printf ("i is greater than 10.\n");

printf ("The value of i is %d\n", i);

}

You can also nest “if” statements, as in this example:

if (a < 5) {

printf ("a is less than 5.\n");

if (b > 100) {

printf ("and b is greater than 100.\n");

}

}

In the nested example, the printf statement inside the second “if”

would only be acted upon if both b > 100 and a < 5 are true state-

ments.

3.6. True or False?
The computer looks to see whether the statement in parentheses after

“if” is true. Is a really less than five? Is b really greater than 100?

The C language provides several comparison operators that can be

used in “if” statements. We’ve already seen the “<” operator in the

loops we’ve written in earlier chapters, where it appears in expressions

like for (i=0;i<10;i++). In Program 3.3 above, we see the “>”

operator.

Sometimes we want to combine multiple comparisons, like “this and

that” or “this or that”. Maybe we even want to require “this but not

that”. For these purposes, C provides a set of logical operators. The

“and” operator (“&&”) can be used to say things like

if ((a<6) && (b>3)) {

printf ("Do stuff.\n");

}

meaning “If a is less than 6 and b is greater than 3, do stuff”.3 The

3 Note how we use parentheses here
to enclose each simple expression, and
then put the whole expression inside
the “if” statement’s “(CONDITION)”
parentheses.

“or” operator (“||”) can be used in expressions like “(c<5)||(d<5)”,

meaning “either c is less than 5 or d is less than 5”. An exclamation

point in front of an expression means “not”. For example, “!(a>10)”

means “a is not greater than 10”. Figure 3.3 shows C’s comparison and

logical operators.

86 practical computing for science and engineering

Comparison and Logical Operators:

== Equality a==b

!= Inequality a!=b

< Less than a Greater than a>b

<= Less or equal a<=b

>= Greater or equal a>=b

! Logical NOT. Invert
a test or true/false
value

!a

&& Logical AND (a==b) && (c==d)

|| Logical OR (a<=b) || (c>b)

Example:
Figure 3.3: These operators are
particularly useful in “if” statements.
They compare values, or do logical
operations like “and” or “or”. Pay
particular to ==, as described in the next
section.

3.7. Testing Equality
Note in particular the “==” operator in Figure 3.3. This is the source of

a lot of confusion. This operator compares two values to see if they’re

equal. This is often confused with “=”, which assigns a value to a

variable.

You can use the == operator in an “if” statement to compare two

values. For example:

if (i == 5) {

printf ("Do stuff.\n");

}

would mean “If i is equal to 5, do stuff”.

Figure 3.4: Use == to test equality, and
= to force equality.
Source: Wikimedia Commons 1, 2

In C, if I say “a==2” I’m saying “compare the value in ’a’ with the

value ’2’ and tell me if they’re the same.” On the other hand, if I say

“a=2” I’m telling the program to stick the value “2” into the variable

“a”. The most important thing to remember is that the “==” operator

doesn’t change the values of the variables, but the “=” operator does.

This confusion results in many bugs.

https://commons.wikimedia.org/wiki/File:2011-09-10_Pensive_man.jpg
https://commons.wikimedia.org/wiki/File:Angry_woman.jpg

chapter 3. writing flexible programs 87

But what about. . . ?

What would happen if you mistakenly used “i = 5” instead of

“i == 5” in an “if” statement?

To answer that, we first need to think about how the computer in-

terprets these conditions. As it turns out, the the computer actually

converts everything inside an “if” statement’s “(CONDITION)”

to a number. If the number is zero, the condition is false. If it’s not

zero, it’s true. This means that an expression like

if (1) {

printf ("Do Stuff.\n");

}

would cause “Do Stuff” to always be printed, since the number 1

is (and always will be) different from zero.

Sometimes programmers take advantage of this. We can have an

“if” statement look at the value of a variable, and only act if the

variable has a non-zero value. The expression if (width)

would only be acted upon if the variable “width” had a non-zero

value, and if (!width) would only be acted upon if “width”

was equal to zero.

Now back to the question at hand: What if we accidentally wrote

if (i=5) instead of if (i==5)? Remember that “i=5”

means “assign the value 5 to the variable i”. Would doing this

inside the “(CONDITION)” of an “if” statement give a true or a

false result? Perhaps surprisingly, it depends on what value we

assign to i. If we say if (i=0) the result will always be false.

If we use any other value (non-zero), the result will always be true.

That’s because, in C, the numerical “value” of “i = 5” is just the

value of i. So, the expression i = 0 will always be false, but i =

(anything else) will be true.

If you find that your program is acting as though an “if” condition

is always true or always false, even though you think it shouldn’t

be, check to make sure you haven’t used = where you should have

used ==. Even though g++ won’t complain if you use = in an “if”

condition, you should never use it there.

88 practical computing for science and engineering

Program 3.4: checksum.cpp (Version 2)

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter an integer number: ");

scanf("%d",&i);

printf("Enter another integer number: ");

scanf("%d",&j);

if (i+j > 10) {

printf("The sum is greater than 10\n");

} else {

printf("The sum is NOT greater than 10\n");

}

}

3.8. Choosing Between Several Alternatives

“Good banana, bad banana...” (Women
sorting bananas in Belize)
Source: Wikimedia Commons

Take a look at Program 3.4, which is just a slightly modified version of

Program 3.3. As you can see, you can optionally add an “else” clause

to an “if” statement. If the condition in parentheses is false, the actions

in the “else” clause will be done.

Exercise 17: ...Or Else!

Modify your checksum.cpp program so that it looks like

Program 3.4. Compile it, then run it several times. Make

sure you give it some pairs of numbers that add up to more

than ten, and some that have a sum smaller than ten. Does

your program behave as expected?

You can add as many other options as you want, using “else if”

clauses:

if (i+j > 100) {

printf("The sum of these numbers (%d) is greater than 100\n", i+j);

} else if (i+j > 50) {

printf("The sum of these numbers (%d) is greater than 50\n", i+j);

} else if (i+j > 25) {

printf("The sum of these numbers (%d) is greater than 25\n", i+j);

} else {

printf("The sum of these numbers (%d) is less than 25\n", i+j);

}

https://commons.wikimedia.org/wiki/File:Banana_sorting.jpg

chapter 3. writing flexible programs 89

Each “else if” has some alternative condition that may be satisfied.

If nothing else is true, the statements in the final, “else”, clause are

acted upon. 4 4 Notice that even these complicated
“if” statements can still be read as
sentences: “If this is true, do something.
Otherwise, if that is true do a different
thing, ...”.

Only the first true condition will be acted upon. Even if other later

conditions are true too, they’ll be ignored. If you have a final “else”

statement in the list, that will only be acted upon if none of the “if”

or “else if” conditions are met. You don’t need to have an “else”

section. Without it, the “if” statement will just do nothing when none

of the conditions are true.

if (i+j > 100) {

 printf("Greater than 100\n");

} else if (i+j > 50) {

 printf("Greater than 50\n");

} else if (i+j > 25) {

 printf("Greater than 25\n");

} else {

 printf("Less than or equal to 25\n");

}

Figure 3.5: An “if” statement creates a
set of alternative paths that the computer
can follow when walking through your
program.

When the computer runs one of your programs, you might imagine

the computer starting at the top of the program and walking through

it, line by line, until it gets to the bottom. Up until now, the programs

we’ve written have only had one possible path. The “if” statement

gives the computer multiple alternative paths it can follow.

Exercise 18: More Choices

Once again modify your checksum.cpp program. This

time, add “else if” sections to your “if” statement so

that the program tells you whether the sum is greater than

100, greater than 50, greater than 25, or less than 25, as

shown in the examples above. Run the program several

times, giving it different pairs of numbers so that you test

each possible path through the “if” statement.

90 practical computing for science and engineering

3.9. “if/else if” versus multiple “if” state-

ments
It’s important to realize that an “if” statement always says “Here are

some options. Do the first one that matches.” The “if”, “else if”,

and “else” lines in Figure 3.5 are all part of one unified statement

that defines the options and tells the computer how to choose between

them.

You might be tempted to use several independent “if” statements

instead of one big “if/else if” statement, but you should remember

that these are different.

You can see this difference in the examples shown in Figures 3.6 and 3.7.

The first example shows a single “if/else if” statement that chooses

between two options. The second example shows two independent

“if” statements.

if (i > 100) {

 printf("Greater than 100\n");

} else if (i > 50) {

 printf("Greater than 50\n");

}

i = 200

✔✔
Figure 3.6: If i=200, this statement will
print “Greater than 100” and nothing
else. Only the first matching option is
acted upon in an “if/else if”
statement.

if (i > 100) {

 printf("Greater than 100\n");

}

if (i > 50) {

 printf("Greater than 50\n");

}

i = 200

✔✔

✔✔
Figure 3.7: Alternatively, this pair of “if”
statements will print “Greater than 100”
followed by “Greater than 50”, since
both are true and the two “if”
statements are independent.

Keep this in mind when you’re writing programs that need to choose

one option out of several possibilities.

chapter 3. writing flexible programs 91

But what about. . . ?

If you look at other people’s C programs you might see “if”

statements like this:

if (i == 5)

printf ("i is equal to 5\n");

Notice that there are no curly brackets here. This is different from

the “if” statements we looked at above.

The C language allows you to omit the curly brackets if there’s only

one line in the list of statements controlled by an “if” statement.

This can make your program shorter, but I don’t recommend that

you do this, because it can lead to confusion later.

Consider what would happen if you used a line like the one above,

and later modified the program by adding another line, like this:

if (i == 5)

printf ("i is equal to 5\n");

printf ("Do some other stuff\n");

You might mistakenly think that the new line is also part of the “if”

statement, but it’s not. The new printf statement will always be

executed, no matter what the value of i is.

This is exactly what led to a scary security bug (called the “Goto

Fail” bug) on Apple computers in 2014.

d'oh!

Figure 3.8: Sticking to a well-chosen
programming style can help prevent
errors in your programs.
Source: Wikimedia Commons

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://commons.wikimedia.org/wiki/File:Paris_Tuileries_Garden_Facepalm_statue.jpg

92 practical computing for science and engineering

3.10. Using “and” and “or”
Sometimes we want to check more than one thing in an “if” statement.

For example, imagine that you are enrolled in a class that has both a

written and an oral exam. To pass the course, you need to get a passing

grade on both exams. If the teacher wrote a program to tell her which

students passed, it might include an “if” statement like this:

if (written >= 70 && oral >= 55) {

printf ("Student passed! :-)\n");

} else {

printf ("Student failed. :-(\n");

}

The && in the “if" statement means “and”. This statement says that

the student passes the class if they get a score greater than or equal to

70 on their written exam and they get a score greater than or equal to

55 on the oral exam.

Alternatively, we could re-write the statement like this:

if (written < 70 || oral < 55) {

printf ("Student failed. :-(\n");

} else {

printf ("Student passed! :-)\n");

}

Here we’re using ||, which means “or”. The statement now says that

if the student got a written score less than 70 or an oral score less than

55, they failed.

Augustus de Morgan, one of the
founders of modern mathematical logic.
Source: Wikimedia Commons

There’s an important principle in the mathematics of logic that’s called

de Morgan’s theorem. It says you can always rewrite a logical condition

by replacing “and” with “or” and flipping everything to its opposite.

That’s what we’ve done in going from the first example above to the

second. If you go on in programming, or into a field like digital circuit

design, you’ll find de Morgan’s theorem very useful. Sometimes it can

make tangled logical expressions a lot simpler.

You might be wondering about the order of operations in these “if”

statements. There are a lot of things going in in an expression like

“written >= 70 && oral >= 55”. In what order does the program

do these things? Do we need to add parentheses?

https://commons.wikimedia.org/wiki/File:De_Morgan_Augustus.jpg

chapter 3. writing flexible programs 93

Expressions like this are evaluated in a well-defined order that’s an

extension of the “PEMDAS” rule you probably learned in school5. 5 PEMDAS says to do things in this
order: Parentheses, Exponentiation,
Multiplication, Division, Addition,
Subtraction.

Consider this expression:

if (2*x+5 < 10 && y*6-3 > 4) {

The PEMDAS rules would tell us to multiply 2*x first and then add

5. Similarly, we’d multiply y*6 and then subtract 3. In C, comparison

operators like < and > come after PEMDAS, so the next thing we’d do

is check to see if 2*x+5 is less than 5, and then check to see if y*6-3

is greater than 4. Finally, we’d deal with the logical operators like &&

and ||, so we’d check to see if 2*x+5 < 10 and y*6-3 > 4.

To help you remember this, you might just tack a “CL” on the end

of PEMDAS, for “Comparison” and “Logic”, to make PEMDASCL

(rhymes with “rascal”!)6.

6 You can find the full order of opera-
tions (called “operator precedence”) for
C here:
https://en.cppreference.com/w/c/language/operator_precedence

Figure 3.9: Future Tokyo University
students excited at having passed their
entrance exams.
Source: Wikimedia Commons

https://en.cppreference.com/w/c/language/operator_precedence
https://commons.wikimedia.org/wiki/File:Tokyo_University_Entrance_Exam_Results_4.JPG

94 practical computing for science and engineering

3.11. Writing a Math Quiz Program
Now let’s do something more practical. Take a look at Program 3.5.

Albert Anker, Mädchen mit Schiefertafel
Source: Wikimedia Commons

Program 3.5: mathquiz.cpp (Version 1)

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

int i;

int j;

int sum;

srand(time(NULL));

i = (int)(100.0 * rand()/(1.0 + RAND_MAX));

j = (int)(100.0 * rand()/(1.0 + RAND_MAX));

printf("What is %d + %d ?: ", i, j);

scanf("%d",&sum);

if (i+j == sum) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %d. Go back to school.\n",

i+j);

}

}

Program 3.5 is a simple math quiz program. It generates two random

integers between zero and 100, and asks the user to add them and enter

the sum. The program then checks to see if the user got it right.

Exercise 19: Making a Math Quiz

Create Program 3.5. Be careful of all the parentheses, and

make sure you have all of the necessary semicolons. Run

the program several times. Are you a math wizard?

Notice how we’ve written the statements with rand in them. We want

our random numbers to be an integers7, so this is a little different 7 You’ll see why later in this chapter,
when we talk about comparing floating-
point numbers.

from what we did in Chapter 2, where we wanted to generate random

distances that could contain decimals. In Program 3.5 we convert our

random numbers into integers by enclosing them in (int)(...)8 8 Programmers call this kind of thing
“casting”. In this case, we’re “casting
our number as an int”. Think of it
as casting an actor in a different role.
Here, we’re taking a number that would
otherwise be a double and casting it as
an int.

https://commons.wikimedia.org/wiki/File:Albert_Anker_M%C3%A4dchen_mit_Schiefertafel.jpg

chapter 3. writing flexible programs 95

The program uses the scanf function to read input from the user.

Then, in the program’s “if” statement we use the == operator to see if

the number entered by the user (sum) equals the actual sum of the two

random integers (i+j). If the user gets it wrong, the program prints

out the real sum.

3.12. A Longer Math Practice Program
What if we wanted our program to keep asking us questions? We could

just add a loop to it.

In Program 3.6 we take the integer addition program we made before,

and wrap it with a loop. The loop keeps the program asking questions

until we’ve answered ten of them.9

9 If the user gets tired before answering
all of the questions, Ctrl-C can be used
to stop the program.

The only differences between Programs 3.5 and 3.6 are the new variable

nproblems, to count the number of questions asked, and the “for”

loop.

Hong Kong children demonstrating
their math skills.
Source: Wikimedia Commons

Program 3.6: loopquiz.cpp

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

int i;

int j;

int sum;

int nproblems;

srand(time(NULL));

for (nproblems = 0; nproblems < 10; nproblems++) {

i = (int)(100.0 * rand()/(1.0 + RAND_MAX));

j = (int)(100.0 * rand()/(1.0 + RAND_MAX));

printf("What is %d + %d ?: ",i,j);

scanf("%d",&sum);

if (i+j == sum) {

printf("Right!\n");

} else {

printf("Nope. The sum is %d. Go back to school.\n", i+j);

}

}

}

Think about how you might modify Program 3.6 to make it even better.

Could you make the program keep score, and print out the score at the

end? Could you use an “if” statement and random numbers to make

the program choose addition or subtraction at random?

https://commons.wikimedia.org/wiki/File:CFSC.JPG

96 practical computing for science and engineering

Exercise 20: A Better Quiz

So far, we’ve used the commands nano, gnuplot, g++, and ls

(for showing a list of files). Let’s use another command now.

The cp command makes a copy of a file. Use it to make a

copy of your mathquiz.cpp file by typing the following:

cp mathquiz.cpp loopquiz.cpp

The command above will make a new file called loopquiz.cpp

that’s a copy of your mathquiz.cpp file.

Now use nano to modify loopquiz.cpp so that it contains

the changes shown in Program 3.6. Compile the program

with g++ and run it. Does it behave as it should?

Figure 3.10: Albert Anker, Die Dorfschule
von 1848

Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Anker_Die_Dorfschule_von_1848_1896.jpg

chapter 3. writing flexible programs 97

3.13. Comparing Floating-Point Numbers
In our math quiz programs we’ve used integer numbers. What if we

had used floating-point numbers instead? Consider Program 3.7, which

is just like Program 3.5, except that we’ve changed all of the integers

into floating-point numbers.10 10 We changed int to double and
%d to %lf, and we omitted the
(int)(...) when generating our
random numbers.If you tried using this program, you might be surprised by what it does.

Here’s what it might look like:

What is 30.345296 + 60.080443 ?: 90.425739

Nope. The sum of these numbers is 90.425739. Go back to school.

But we got the sum right, didn’t we? The program even tells us so!

Why doesn’t it work as expected?

Program 3.7: Why doesn’t this work?

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

double i;

double j;

double sum;

srand(time(NULL));

i = 100.0 * rand()/(1.0 + RAND_MAX);

j = 100.0 * rand()/(1.0 + RAND_MAX);

printf("What is %lf + %lf ?: ", i, j);

scanf("%lf",&sum);

if (i+j == sum) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %lf. Go back to school.\n",

i+j);

}

}

The reason has to do with the difference between floating-point num-

bers (which can have decimal places going on forever – think of π, for

example) and integers, which always have a finite number of digits.

98 practical computing for science and engineering

When printf prints a floating-point number, it rounds the number off

after a few decimal places. When you use the %lf format to print out

a number, your program shows the first six decimal places, but inside

the program the number is actually much more precise.

If we tell printf to show us more decimal places, we’ll see what went

wrong above. We can do so by modifying the %lf placeholder in our

printf statement.

Instead of %lf, we can write an expression like %x.ylf, where x is a

number that tells the program how much space to reserve for printing

out the number, and y is a number that says how many digits to the

right of the decimal point should be printed. We can leave off either x

or y and printf will try to figure out what’s the best thing to do on

its own.

For example:

If we had replaced %lf with %.10lf in the last printf statement of

Program 3.7 (to print ten decimal places instead of the normal six) we

would have seen:

What is 30.345296 + 60.080443 ?: 90.425739

Nope. The sum of these numbers is 90.4257384084. Go back to school.

As you can see, the number the computer was thinking of really didn’t

match the number we typed.

3.14. The Right Way to Do It
The right way to compare floating-point numbers is to ask whether they

differ by more than some small amount, which we’ll call “epsilon”.

In Program 3.8, we define epsilon to be something acceptably small

for our purposes, and then we use the “fabs” function11 to get the 11 We’ll learn more about C’s math
functions in Chapter 4.

chapter 3. writing flexible programs 99

absolute value of the difference between the actual sum and our guess.

If this difference is less than epsilon, we say we’re close enough.

To use the fabs function, you’ll need to add math.h at the top of your

program.12 12 Note that we could have done the
same thing without fabs by checking
to see if the difference was somewhere
between -epsilon and epsilon.Program 3.8: The Right Way

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

double i;

double j;

double sum;

double epsilon = .000001;

srand(time(NULL));

i = 100.0 * rand()/(1.0 + RAND_MAX);

j = 100.0 * rand()/(1.0 + RAND_MAX);

printf("What is %lf + %lf ?: ", i, j);

scanf("%lf",&sum);

if (fabs(i+j - sum) < epsilon) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %lf. Go back to school.\n",

i+j);

}

}

This is the right way to compare floating-point numbers.

3.15. Conclusion
This chapter has covered a couple of tools you can use to allow users to

control your program. The scanf function lets your program get input

from the user, and “if” statements let you program make decisions.

Combine these new tools with the elements of C you’ve learned in

earlier chapters (loops, random numbers, et cetera, and you can already

create some pretty sophisticated programs.

100 practical computing for science and engineering

Practice Problems

Source: Wikimedia Commons

1. Using Program 3.1 as an example, write a program that asks you

for a circle’s radius and then tells you the area of the circle. Use

3.14 as the value of π, and remember that the area of a circle is

πr2. Make sure the program tells the user that this is the area (don’t

just print a number without anything else). Call your program

circlearea.cpp. Hint: You’ll want to be able to enter numbers

like “1.5” as the radius, so you’ll need to use a double variable, not

an int.

2. If you throw a ball straight up into the air with an initial velocity v it

will reach a height of

v2

2g

where g = 9.8 m/s2, the acceleration of gravity near the earth’s

surface. Write a program named playball.cpp that asks the user

to enter the ball’s initial velocity (in meters per second), and tells you

how high the ball would go (in meters). Make sure your program

tells the user what units to use when entering the velocity, and what

units are used when reporting the height. (Hint: A ball thrown with

a velocity of 10.5 m/s should reach a height of about 5.6 meters. Use

this to check your program.)

3. Modify the looping version of the math quiz program (Program 3.6)

so that it asks the user how many math problems he/she wants to

answer. Use scanf to put this number into an integer variable, and

use that variable in the program’s “for” statement to control how

many times the program loops. Call the new program nloop.cpp.

4. Write a program named airflow.cpp that asks you for the length,

width, and height of a rectangular room, in feet. Inside the program,

calculate the volume of air in the room. Assume we’d like to replace

all of the air in the room ten times per hour. That would mean

we need to remove 1/6 of the room’s air every minute. Fans are

typically rated in terms of the number of cubic feet per minute that

they can move. Have your program tell us how many cubic feet per

minute we need to move in order to replace the room’s air ten times

per hour.
Source: Wikimedia Commons

5. Write a program named checkage.cpp that asks the user for

his/her birth year (like “1998”) and the current year (like “2017”).

Use an “if” statement to tell the user if he/she is under 21 years

old, or not. (Ignore the birth month, and assume that everyone was

born on January 1. Include people who are exactly 21 in the “not

under 21” group.)

https://commons.wikimedia.org/wiki/File:Bord_met_op_het_plat_een_vaas_met_bloemen_en_een_vogel_in_blauw.jpeg
https://commons.wikimedia.org/wiki/File:Kawasaki-Electric_Fan.jpg

chapter 3. writing flexible programs 101

6. Write a phone menu program. Start by printing the following menu

and asking the user to enter one of the numbers:

1 For sales

2 For billing

3 For support

4 For a live human being

William Howard Taft, 27th President of
the United States.
Source: Wikimedia Commons

Use scanf to read the number entered by the user. Make an

“if” statement like the one on Page 88, using “else if”, and

have it print out an informative message for each of the possible

choices. (For example, “You have reached the sales department.”)

Use an else statement to give the user an informative message if

she/he enters a number that’s not on the menu. Call your program

phonemenu.cpp.

7. Modify the looping version of the math quiz program (Program 3.6)

so that it keeps score, and tells the user how well he/she did at the

end. (That is, print out a message like “You got 8 out of 10 answers

right!”) Call your new program mathscore.cpp.

8. Modify Program 3.6 so that it randomly picks addition or subtraction

for each problem.

Hints:

• Look back at Program 2.3 in Chapter 2 to see how to generate a

random number between zero and one.

• Check to see whether this random number is greater than 0.5. If

it is, choose addition. If it’s not, choose subtraction.

A 2x4 driven through a palm tree in
Puerto Rico by a 1928 hurricane.
Source: Wikimedia Commons

9. Hurricanes can hurl objects with tremendous force. Homeowners

sometimes nail sheets of plywood over windows in preparation for

a major storm. Studies done at Clemson University13 have looked

13 See https://www.fema.gov/previous-
missile-impact-tests-wood-sheathing

at the effect of 2x4 pieces of lumber fired with various velocities at

plywood sheets. They found that the thickness of plywood required

to stop such a projectile was proportional to the projectile’s momen-

tum. In mathematical terms, they found that the thickness required

to stop the projectile was t = 0.00032×m×v, where t is measured in

meters, m is the mass of the projectile in kg, and v is the projectile’s

velocity in m/s.

Write a program named 2x4.cpp that asks the user to enter a

velocity in meters per second. Have the program calculate t from

the equation above, using 9.45 kg for the mass of the projectile

(that’s approximately the mass of a ten-foot pressure-treated pine

2x4). Have the program tell the user what thickness, in meters, of

plywood they’ll need to protect their home from such a projectile

https://commons.wikimedia.org/wiki/File:Wm_H_Taft_smiling_1908.jpg
https://commons.wikimedia.org/wiki/File:Hurricane_winds_drive_a_10-foot_2X4_through_a_palm_tree.jpg
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing

102 practical computing for science and engineering

flying at this velocity. Also tell them what this thickness is in inches,

by mutiplying the thickness in meters times 39.37. Test your program

by telling it the velocity is 28 m/s (which is about 100 kilometers per

hour). It should tell you that the required thickness of plywood is

about 3 inches.

Are you tall enough? (Illustration by
John Tenniel for Lewis Carroll’s Alice in
Wonderland.
Source: Wikimedia Commons

10. Write a program named ridecheck.cpp that checks to see if the

user is eligible to ride a roller coaster. The program should ask the

user for her height, in feet, and age, in years. Assume that the height

might have a decimal place (like 4.9) but assume that the age will

be an integer (like 21). If the user’s age is greater than 11 and her

height is greater than 4.5 feet, the program should say that she’s

allowed to ride. Otherwise, the program should say “Sorry, you’re

not allowed to ride.”. Don’t use more than one “if” statement in

your program.

11. You’re a physicist working at CERN, and your experiment uses the

apparatus shown below. In the middle there’s a cylindrical target, at

which you’ll be shooting a beam of particles. Some of the particles

entering the target will decay while inside, and emit other particles.

Each emitted particle will shoot out of the cylinder and go through

one of four rectangular detectors arranged around the target. The

detectors are named D1, D2, D3, and D4, and each one measures the

energy of particles passing through it. You want to check periodically

to see whether any of the four detectors saw a particle.

D1

D2

D3

D4

Write a program called 4signal.cpp that asks the user to enter

four energy values (numbers that might contain decimal points), one

for each of the four detectors. Use a single “if” statement to see if

any of the values was greater than 100. If so, the program should

print “Saw a particle.” Otherwise it should print “No particles this

time.”

https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_05.png

