4. Math and More Loops

4.1. Introduction

In 1965, Gordon Moore observed that the density of components in
integrated circuits (such as computer CPUs) was doubling every year
or two'. This observation came to be known as “Moore’s Law” and it
continued to be valid for several decades, although recently the rate
has slowed?. Similar “Moore’s Laws” have been observed for other
computer components, such as disk drives, memory, and displays.

As we saw in Chapter 2, modern computers can do thousands of cal-
culations in the blink of an eye. In the final version of our “gutter”
program (Program 2.7) we used nested “for” loops to simulate the be-
havior of ten thousand stones during ten rainstorms, and our program

ran in less time than it took you to read this sentence.

Computers are very good at doing things over and over again very
rapidly. Previously we’ve used “for” loops for this. In this chapter,
we’ll look at several other kinds of loops available in the C programming
language. We'll start out by using a “for” loop to test how fast your
computer is. Along the way, we'll find out about C’s math functions
and use them to give your computer something substantial to chew on.

4.2. Math Functions in C

C provides a rich set of math functions and some predefined math
constants such as the value of 7. Table 4.2 shows some of the most
commonly-used functions.
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Figure 4.1: An illustration of “Moore’s
Law” for CPUs. Note that the vertical
axis is logarithmic.

Source: Wikimedia Commons

*Moore, G. E. Electronics 38, 114-117
(1965).

> Nature 530, 144-147 (11 February
2016).

|

The first “PC”: The IBM PC 5150,
introduced in 1981.

Source: Wikimedia Commons

A modern supercomputer: NASA’s
Pleiades Cluster.

Source: Wikimedia Commons
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sgrt (x) Square Root

fabs (x) Absolute Value

cos, sin, tan,.. Trig Functions

acos, asin, atan,.. Inverse Trig

Functions

exp(xX)

eX

log(x) Natural Logarithm

pow(X,Y)

y

X

As we learned in Chapter 1, functions in C are a lot like the functions
you've used in math class. We give the function some number of
arguments, and the function gives us back a value. In C the expression
y = cos (x); means “make the variable y equal to the cosine of the
value in the variable x”. We'll learn a lot more about how C functions
work in Chapter 9. For now, it’s important to know that most of C’s
math functions require double values for their arguments, and these
functions also give back a double value.

To use these functions in your programs, you’ll need to add another
“#include” statement at the top of your program, like this:

#include <math.h>

But what about...?

What do these #include statements do, anyway? The answer is
that they insert chunks of text from other files into your program.

Somewhere on your computer there’s a file called math.h that
contains information about how math functions like sqrt are

Figure 4.2: Some of C’s commonly-used
math functions.
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supposed to be used. The information in this file allows g++
to check that you're using sqrt correctly: Are you giving the
function the right number of arguments? Are you putting the
value returned by sqrt into the right kind of variable?

For example, sqrt takes one double number as an argument,
and it returns a double number. Take a look at Figure 4.3. It
shows a couple of incorrect ways to use the sgrt function.

In the first case, the programmer puts the output of sqrt into
an integer variable. Since sqrt returns a double number, this
means that the decimal part of the number will be chopped off.
The g++ compiler will warn you about this, but it will go ahead
and compile the program.

In the second case, the programmer has made a worse mistake.
The sgrt function takes only one argument, but it’s been given
two. The g++ compiler doesn’t know what the programmer wants
it to do, so it emits an error message and refuses to compile the
program.

g++ will give a warning.
double qg; -—q_____________J

g++ will give an error, and
refuse to do this.

int i;

1 = sqrt(10.);
qg = sqrt(10.,2.);

Figure 4.3: Wrong ways to use the sqrt
The math.h file also defines values for some common constants. function.

For example, if you need the value of 7t in your program, you can
just write M_PI, and for the base of natural logarithms (¢), you can
write M_E.

4.3. How Fast is Your Computer?

Let’s use one of these math functions to test how fast your computer is.
Take a look at Program 4.1. This program uses the sqrt function, and
sums up the square roots of a billion numbers!

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Stopwatch2.jpg
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The program uses C’s “exponential notation”, which makes it easier
to write large numbers. Instead of writing 1000000000 we can write
le+9, meaning “1x10°”. Here are some more examples:

2.5e+3 = 2,500
6.02e+23 = 6.02 x 10% (~ Avogadro’s number)
5e-11 = 5x1071

Notice that 10° is just 1e+3 (“one times ten to the third power”), not
10e+3. Here the e means “times ten to the ...”.

Program 4.1 begins by recording the current time3 in the variable
tstart. After summing up all of the numbers, the program looks at
the new time, and prints out how long, in seconds, the program ran.

Notice that the sgrt function, like all of the math functions we’ll be
using, takes double arguments and returns a double value. Because
the variable 1 is an integer, we need to “cast” it as a double by saying
(double) in front of it. If we didn’t do this g++ would complain.

Why do we set sum equal to zero before we start the program’s loop?
Won't it just be zero automatically? No, not necessarily. You shouldn’t
assume that a variable has any particular value before you explicitly
give it one. Remember that variables are temporary boxes in the
computer’s memory. After the program is done with them, the same
chunk of memory can be re-used by other programs. In some cases,
if you don’t explicitly give a variable a value, it will contain whatever
random data happens to be at that memory location, leftover from the
last program that used it.#

Program 4.1: timer.cpp (Version 1)

#include <stdio.h>
#include <time.h>
#include <math.h>
int main () {

int 1i;

int tstart;

int delay;

double sum = 0.0;

tstart = time (NULL);

for ( i=0; 1i<le+9; 1i++ ) {
sum = sum + sqrt( (double)i );

}

delay time (NULL) - tstart;
printf ("Sum is %1f\n", sum );
printf ("Total time %d sec.\n", delay );

3in terms of the number of seconds
since January 1, 1970. You might
remember the time function from
Chapter 2, where we used it to pick a
“seed” for our pseudo-random number
generator.

4 Some compilers will automatically set
all variables to zero at the beginning of
a program, but it’s best not to assume
this.
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This is important for a variable like sum in Program 4.1. Notice the
line in bold. Each time around the loop, this sets the new value of sum
equal to the old value plus V/i. If we didn’t explicitly set sum = 0.0
before we began adding things up, then the “old value” of sum would
be undefined (and possibly some bizarre, unexpected number) the first
time we went through the loop.

Exercise 21: How Fast is Your Computer?

Create, compile and run Program 4.1. On a typical computer,
it should take no more than a minute or two to run. If you
find that it takes longer, press Ctrl-C to stop it, and try
reducing the number of loops by a factor of ten. How many
square roots per second can your computer do?

4.4. Progress Reports

While your timer program was running, you may have worried that it
wasn’t actually doing anything. It’s often useful to make your program
print out reports periodically, so you can see its progress. Let’s modify
Program 4.1 and make it do this. We'll use a new mathematical operator
to help us.

The “modulo” (or “modulus”) operator, “%”, does one peculiar but
useful thing: it tells us the remainder left over after we do division. For
example, “10 % 5” would be equal to zero, since the remainder after
dividing ten by five is zero. Here are some other examples:

10%7 gives 3
1001 £ 10 gives 1
25%7 gives 4

Program 4.2 uses the modulo operator to print out the elapsed time,
and the number of square roots that have been summed so far, every
million times around the loop. It does this by looking at 1 $ 1000000
(we can read this as “i modulo one million”). When this quantity is
zero, it means that 1 is a multiple of 1,000,000.

Exercise 22: Speed Test with Progress
Report
Create, compile, and run Program 4.2. Does it behave as

expected? Is it more entertaining to see evidence that the
program is doing something?

Another kind of progress: A Russian
Progress cargo spacecraft departing from
the International Space Station. The
computers that control the ISS aren’t
particularly new or fast. They're
tried-and-true technology chosen for its
reliability. The “Vehicle Management
Computers”, for example, are many
redundant computers each powered by
an Intel 3865X CPU running at 32 MHz.
This is 100 times slower than the CPUs
in most modern laptop and desktop
computers.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:ISS_Progress_cargo_spacecraft.jpg

110 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

Program 4.2: timer.cpp (Version 2)

#include <stdio.h>
#include <time.h>
#include <math.h>
int main () {

int 1i;

int tstart;

int delay;

double sum = 0.0;

tstart = time (NULL) ;

for ( i=0; i<le+9; i++ ) {
sum = sum + sgrt( (double)i );
if ( 1%1000000 == 0 ) {
delay = time (NULL) - tstart;
printf ("Time after %d terms: %d sec.\n", i, delay );

}
}
delay = time (NULL) - tstart;
printf ("Sum is %1f\n", sum );

printf ("Total time %d sec.\n", delay );

But what about...?

What does “modulo” mean anyway? Where does that word come
from?

Take a look at the two clocks in Figure 4.4. Can you tell how much
time has passed? Not necessarily, because clocks count to twelve,
and then they start over again. This is what mathematicians call
“modular arithmetic”. In the case of the clocks, we could say that
they have a “modulus” of twelve.

For example, if we start at midnight and wait 28 hours, the little
hand on the clock will be pointing to 28 % 12 (“28 modulo 12”),
which is 4.

In modular arithmetic, two numbers that have the same remainder
when divided by the modulus are said to be “congruent”. A Figure 4.4: Have two hours passed, or
mathematician would say that 2 AM and 2 PM are congruent in 14 hours? Or even a 26 hours? We can't

the clock’s modular arithmetic. tell. soure: Openciprtorg


https://openclipart.org/detail/217065/3-oclock
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4.5. Trigonometric Functions

The advantages you young people have! Take a look at Figure 4.5.

Back in the days before pocket calculators, if your ancestors needed
to find the sine or cosine of an angle they looked up the values in
“trig tables” like this one. Think about the hours of work that went
into constructing these tables. The numbers had to be computed by
hand, using tedious mathematical techniques to find the value of each
function at given angles. One of the first tasks given to early computers
like ENIAC (1945-1947, Figure 4.6) was the creation of mathematical
tables, particularly those needed for aiming artillery shells.

Modern computers make this much easier for us. Let’s write a program
that uses C’s math functions to generate a table of values for cos(6)
and sin (@) for various values of 6. Before we start, it might be good to
remind ourselves what sine and cosine are. Take a look at Figure 4.7. If
you imagine a point travelling along the circumference of a circle with
a radius of 1, then cos(0) and sin(0) are just the x and y coordinates of
the point when it’s at the angle 6. Let’s start out with 6 = 0 and move
around the circle in 100 steps, until we get back to where we started.

Ay

sin @

cos 8

Remember that there are two different systems for measuring angles:

degrees and radians. When you go all the way around a circle, you've
turned by 360°. This is equivalent to 27t radians. C’s trigonometric
functions all use radians, so our program will need to divide 277 radians
into 100 steps, and calculate the sine and cosine for each.

That’s what we do in Program 4.3. Notice that we’re careful to set

e
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Figure 4.5: Math tables were once
widely used to find values for
trigonometric functions, logarithms,
and other functions. source: Wikinedia Commons

For a good overview of the techniques
used in constructing such tables, see
this Wikipedia article

Figure 4.6: Betty Jennings and Frances
Bilas operating ENIAC.

Source: Wikimedia Commons

Figure 4.7: The definition of sine and
cosine.

Source: Wikimedia Commons
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Program 4.3: trig.cpp

#include <stdio.h>
#include <math.h>
int main () {
double theta = 0.0;
double step = 2.0 » M_PI / 100.0;

int 1i;

for ( i=0; 1i<100; i++ ) {

printf ( "$1f $1f %1f\n", theta, cos(theta), sin(theta) );

theta += step;

theta equal to zero at the beginning, just as we did with sum in
Program 4.1. Each time around the loop, we add a little bit to theta
until we’ve worked our way completely around the circle. The size of
each step is 271/100, since the whole circle is 27t radians and we want
to divide it up into 100 steps.

Also notice that we use the symbol M_P1I that’s conveniently provided
for us by math.h.

Exercise 23: Making a Trig Table

Create, compile, and run Program 4.3. It should make three
columns of text, containing values for 6, cos(6) and sin(6).
Now run it again, like this, to write the table into a file:

./trig > trig.dat
It's hard to see whether your program is doing the right
thing by just looking at the numbers. Let’s try graphing

them. Start up gnuplot by typing its name, and then give it
this command:

plot "trig.dat"
You should see something that looks like the top graph in
Figure 4.8. Now try giving gnuplot this command:

plot "trig.dat" using 1:3
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Figure 4.8: Plots of 6 versus cos (@), 6
versus sin(0), and cos(0) versus sin(6).
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You should see something like the middle graph in Figure
4.8. Next try this gnuplot command:

plot "trig.dat" using 1:2, "trig.dat" using 1:3

The result should be the first two graphs laid on top of each
other. Finally, try this:

plot "trig.dat" using 2:3

You should see something like the bottom graph in Figure
4.8.

What did gnuplot do? The first command told gnuplot to plot the
contents of the file trig.dat, but how did it know which columns to
use? The file contains three columns of data: 6, cos(6), and sin(6). As it
turns out, gnuplot assumes that the first two columns in a file represent
the x and y coordinates of a set of points to be plotted. If the file only
contains one column, gnuplot uses the line number as x, and the value
on each line as y.

If your file contains more than two columns, you can tell gnuplot which
ones to use as x and y with the “using” qualifier. If you say “using
1:3”, that means “column 1 is x and column 3 is y”. We can ask gnuplot
to superimpose multiple graphs by giving it a comma-separated list of
things to plot, as we did in the next-to-last “plot” command in the
exercise above.

As you can see from the bottom graph in Figure 4.8, our values for
cos(0) and sin(0) really do correspond to the x and y values of a point
at various angles, as they should. (The circle looks flattened because
the vertical and horizontal scales are different. By default, gnuplot fits
its graphs into a rectangular window that’s wider than it is tall. You
can fix this by telling gnuplot “set size square”.)

4.6. Using “while” Loops

Until now we’ve used just one of the kinds of loops that the C pro-
gramming language provides. The “for” loop that we’ve been using is
what programmers call a “counted” loop, because we tell the computer
how many times to go around the loop. Another kind of loop is called
a “conditional” loop. We can create one of these using C’s “while”
statement, which looks like this:

Hipparchus of Nicea (180-125 BCE) is
credited with creating the first
trigonometric tables. He’s the bearded
gentleman shown holding the blue
celestial sphere in this detail from The
School of Athens, by Raffaello Sanzio
(1509). Source: Wikimedia Commons

n

Before computers and calculators
became widely available, the slide rule
was widely used for calculations
involving logarithms or trigonometric
functions.

Source: Wikimedia Commons
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while (CONDITION) {
BLOCK OF STATEMENTS

The statements inside the loop will be acted upon again and again, as
long as the “CONDITION” is true. You might notice that this looks a
lot like an “i£” statement, where a block of statements is only executed
if some condition is met. With “i£”, the block of statements is only
acted upon once, but with while they’re done over and over, for as
long as the condition continues to be met. Here’s an example:

int 1 = 0;

while ( 1 < 10 ) {
printf ( "%d\n", 1 );
i++;

The code in this example would print out the integers from zero to nine.
This is the same kind of thing we’ve done with “for” loops, but done
in a different way. Consider the following example, though:

int 1 = 0;
while ( 1 < 1000000 ) {
i = rand();
printf ( "&d\n", 1 );

The second example will continue printing random numbers until it
finds one that’s greater than 1,000,000, and then it will stop. We don’t
know in advance how many times the computer will go around the
loop. The number of loops just depends on the condition we set in the
while statement. That's why this kind of loop is called a “conditional”
loop.

4.7. Writing a Game

Program 4.4 also uses a while loop. In this case, we're playing a game
like Blackjack. Blackjack (also know as Twenty-One) is a card game
where each player is dealt cards, one card at a time. Each card has a

How many loops are in this roller
coaster?

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Vekomaboomerang.jpg
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numerical value from one to thirteen. The object of the game is to get
the sum of all your cards as close to twenty-one as possible, without
going over. Each time Program 4.4 goes through its while loop, it
picks a random number from one to thirteen, then adds this number to
the sum so far. It keeps doing this for as long as the sum is less than
twenty-one.

Program 4.4: addem.cpp (Version 1)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int sum = 0;

int card;

Do you see how this makes

srand(time (NULL) ) ; a number between 1 and 13?
while ( sum < 21 ) {
card = (int) ( 1 4+ 13.0xrand()/ (1.0 + RAND_MAX) );

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum );

Exercise 24: Add "Em Up!

Create, compile and run Program 4.4. Does it work as
expected? Run it several times to see if you can hit exactly
twenty-one.

We could improve on Program 4.4 by telling it to congratulate us when
we win. To do this we might modify the while loop to make it look
like this:

while ( sum < 21 ) {
card = (int) ( 1 + 13.0*rand()/ (1,0 + RAND_MAX) );
sum += card;
printf ("Got %d. Sum is now %d\n", card, sum );
if ( sum == 21 ) {
printf ("You WIN!\n");

Traditional playing cards have either
numbers or faces on them. The values
of the numbers are self-explanatory. For
the faces, we count Jack, Queen and
King as 11, 12 and 13, respectively.

Source: Wikimedia Commons

The card-player, by Aba Novak.

Source: Wikimedia Commons
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4.8. Stopping or Short-Circuiting Loops
The problem with our game so far is that there’s no skill involved in
playing it. It’s purely random whether you win or lose.

In the real game of Blackjack, after each card is dealt the player is asked
whether he/she wants another. If the player is very close to twenty-one
already, he or she may choose not to get any more cards, hoping that all
of the other players will either go over twenty-one, or not get as close.
(Whichever player gets closest to twenty-one, without going over, wins.)
Let’s modify our program to allow for this. Take a look at Program 4.5.

Program 4.5: addem.cpp (Version 2)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
int sum = 0;
int card;
int ans;

srand (time (NULL) ) ;
while ( sum < 21 ) {

card = (int) ( 1 + 13.0xrand()/ (1.0 + RAND_MAX) );

sum += card;
printf ("Got %d. Sum is now %d\n", card, sum );

The Card Players by Catherine Ann
Dorset. (Note that one of the players
seems to be a Great Auk, which sadly
became extinct in the mid nineteenth
Century.)

Source: Wikimedia Commons

if ( sum == 21 ) {
printf ("You WIN!\n");
} else 1if ( sum > 21 ) {
printf ("You lose!\n");
} else {
printf ("Enter 1 to continue or 0 to quit while you're ahead: ");
scanf ("%d", &ans);
if ( ans != 1) {
printf ("Your final score was %d\n",sum);
break;

}

As you can see, we've added an “i£” statement to deal with the various
possible outcomes. If the sum is exactly twenty-one, we tell the player
he or she has won. If it's over twenty-one, we identify the player as
a loser. If the sum is under twenty-one, we give the player a choice:
continue or quit? If the player chooses to continue, we go around the
loop again.


https://commons.wikimedia.org/wiki/File:The_Card_Players.jpg
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But what if the player chooses to quit? How can we make the loop stop
right now, without waiting for the sum to get greater than twenty-one?
To do this, we use the C language’s “break” statement. A break
statement causes the loop it’s in to stop immediately.

Exercise 25: Playing a Card Game

Create, compile and run Program 4.5. Try running it several
times, making sure you sometimes tell it to continue, and
sometimes tell it to quit. Does it behave as expected?

Figure 4.9 shows another program that uses the break statement. The
program in the figure does a countdown, from ten toward zero, but
before it reaches zero the countdown is stopped by using break.

#include <stdio.h>
int main ()
{
int n;
for (n=10; n>0; n--) {
printf(“%d, ", n);

if (n==3) {
printf ("\nCountdown aborted!\n");
break;

}

}

printf (“Done!\n");

Output:
10, 9, 8, 7, 6, 5, 4, 3,
Countdown aborted!

Done!

}

C’s break statements are often useful when your program is searching
for something. Imagine you're looking through a big stack of books,
trying to find one with a particular title. You start from the top and
look at the books one at a time until you find the one you want. Then
you stop. You don’t keep looking through the rest of the stack.

You can use break to do something similar in a C program. When we
find the thing we’re looking for, we can immediately stop looping and
go on with the rest of the program.

Figure 4.9: Using break to stop a loop.



118 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

But what about...?

What if you use break inside two or more nested loops, like this?:

for ( i=0; i<nrocks; i++ ) {
for ( j=0; j<nstorms; Jj++ ) {
break;

This is similar to the nested loops in Program 2.7, which tracked
each of many rocks as they were washed down a gutter by some
number of rainstorms.

The break statement only halts the innermost loop containing it.
In the example above, the break would stop the nstorms loop,
and the computer would go back to the top of the nrocks loop. If
there were more rocks left to do, it would continue with the next
rock, and start the nstorms loop again for the new rock.

Compare that with the following example:

for ( 1i=0; i<nrocks; 1i++ ) {
for ( j=0; j<nstorms; Jj++ ) {

break;

In the second example, the break statement would stop the outer,
nrocks, loop, and the computer would continue without doing
anything else with either of these loops.

What if you wanted to skip the rest of this trip around a loop, but not
stop looping? You can do that, too, using C’s “continue” statement.
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Consider the following example:

for ( i=0; i<10; i++ ) {
printf ("Loop number %d\n", 1i);
if (1 >= 5 ) {
continue;

}

printf ("This number is below 5.\n");

If we ran a program containing this code, it would print:

Loop number 0
This number is below 5.
Loop number 1
This number is below 5.
Loop number 2
This number is below 5.
Loop number 3
This number is below 5.
Loop number 4
This number is below 5.
Loop number 5
Loop number
Loop number
Loop number

O 0 J O

Loop number

When the continue statement is acted upon, the computer skips
everything else in this trip around the loop and goes directly back to
the top, to start the next trip. Just like break, continue only affects
the innermost loop containing it.

Figure 4.10 shows another countdown example. This time, for some
reason, Mission Control has decided to omit some numbers from the
countdown. (Maybe they’re superstitious?)

As with the other countdown example, we can imagine an analogy
between this and searching for something in the real world. Imagine
that you have a stack of books, some of which are paperback and
some of which are hardback. You're looking for a particular title, and
you remember that it’s a hardback book. You’ll go through the stack
quickly, discarding the paperbacks without even looking at them, and
proceeding down the stack.
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We can use a continue statement to do this kind of thing in a loop.

The continue causes the current trip around the loop to stop, and the

computer goes immediately back up to the top of the loop and starts
the next trip.

#include <stdio.h>
int main ()
{

int n;
for (n=10; n>0; n--) {/)
if (n==5 || n==6) {
continue;

}
printf(“%d, ”, n);

14

} Note missing
}prlntf("GO!\n“); - numbers
Output:
10, 9, 8, 7, 4, 3, 2, 1, GO!

Figure 4.10: Using “continue” to
short-circuit a loop.
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4.9. Writing a Two-Player Game
Let’s use use our new knowledge of while loops to write another
game. This time, we’ll write a two-player game in which the user plays

against the computer. It will be a version of an ancient game called
IINimII.

In this version of Nim, twelve coins are placed on a table, as in Figure
4.11. The players take turns picking up 1, 2, or 3 coins at a time (the
player is free to choose how many coins to take). The player who picks
up the last coin wins.

Program 4.6 plays this game. It starts out with 12 coins on the table by
setting the variable coins equal to 12. After telling the user the rules

(using some printf statements) the program begins a while loop.

Each time around the loop one of the players (user or computer) takes
some number of coins, and this number is subtracted from coins. The
while loop keeps going as long as the value of coins is greater than

zZero.

If you try playing this game, you'll find that the computer always wins!

By employing a simple strategy, the computer can always win the game.

Can you understand how it works?>

Notice that the program uses a cont inue statement to keep users from
cheating. If the user picks a number other than 1, 2, or 3, the program
sends the user back to the top of the loop to try again.
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There are more complicated versions of
Nim. Often it’s played by laying out a
pyramid of objects (such as the
matchsticks shown here), and only
allowing players to remove objects from
a single row during each turn.

Source: Wikimedia Commons

Figure 4.11: Are you ready for a game of
“12-coin Nim”?

Source: Wikimedia Commons (1, 2, 3)

5 There’s an excellent Wikipedia ar-
ticle about the game of Nim and the
mathematics behind it. You'll also be
amused by Matt Parker’s explanation
of the game on his YouTube channel,
“Standup Maths”. Take a look if you
can’t figure out how the computer’s
strategy works.


https://commons.wikimedia.org/wiki/File:NimGame.svg
https://commons.wikimedia.org/wiki/File:Denier_à_l'effigie_de_Didia_Clara.jpg
https://commons.wikimedia.org/wiki/File:Denier_frappé_par_les_Lingons.jpg
https://commons.wikimedia.org/wiki/File:Didrachme_de_l'ile_de_Paros_à_l'effigie_de_Déméter.jpg
https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=9KABcmczPdg
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Also notice how the program switches between “Player 0” and “Player
1”. After each player’s turn, the variable nextplayer is set to a value
that indicates who the next player should be.

Program 4.6: nim.cpp

#include <stdio.h>
int main () {
int coins = 12;
int take;
int nextplayer = 0; // Player O=user, l=computer
int currentplayer;

printf ("There are %d coins.\n", coins);
printf ("You may take 1, 2, or 3 of them.\n");

(
(

printf ("Whoever gets the last coin wins.\n");
(

printf ("You are player 0, the computer is player 1.\n");
Keep looping until
while ( coins > 0 ) {« all coins are gone

currentplayer = nextplayer;

printf ("-——————- Player %d's Turn ———————-— \n", currentplayer);
if ( currentplayer == ) o
( printf ("How many coins will you take?: ");
scanf ("%d", &take);
if ( take > 3 || take < 1 ) {
Player o P printf ("You must take 1, 2, or 3. Try again\n");
continue;
} The computer’s
nextplayer = 1; winning strategy
} else {
take = 4 - take;]
Player 1 printf ("I will take %d of them.\n", take );

nextplayer = 0;

coins = coins - take;
printf ("There are now %d coins left.\n", coins );

printf ("Player %d Wins!\n", currentplayer);
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4.10. One More Kind of Loop

Programmers say that for loops and while loops are both “pre-test
loops”. Take a look at the partial program below, containing a for loop
and a while loop:

int nloops = 0;

int 1i;

for ( i=0; i<nloops; i++ ) {
printf ( "$d\n", 1 );

}

while ( nloops > 0 ) {
printf ( "%d\n", 1 );

Neither of these loops will print out anything, because their conditions
are never satisfied. In the first loop, nloops is zero, and i will never
be less than zero, and the second loop does nothing for a similar reason.
The statements in these loops will never be acted upon, not even once.

The C language offers a third kind of loop that’s a “post-test loop”.
This is the “do” loop (also known as the “do-while” loop). Consider
this example:

do {
printf ( "$d\n", 1 );
} while (1 < 0 );

If we ran the example above, it would always print out something, no
matter what the value of i is. The statements inside a do-while loop
will always be acted upon at least once. After each trip through the
loop, the do-while statement’s condition is examined to see whether
it’s satisfied, determining whether to go around the loop again. A
do-while loop is sort of an upside-down while loop.

The important difference is that statements inside a do-while loop
will always be acted upon at least once, but there’s no guarantee that
statements inside a while loop will ever be acted upon. do-while
loops can be useful in cases where initial values are undetermined
before the loop starts.
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The general form of a do—while loop is this:

do {
BLOCK OF STATEMENTS
} while (CONDITION) ;

4.11. Estimating the Value of 7

Take a look at Program 4.7. This program estimates the value of 7
by using an approximation discovered in the 14th-Century by Indian
mathematician Madhava of Sangamagrama. He found that 7t was given
by the sum of the terms of an infinite series:

1 1 1
R VR(1- st s rE )

Notice that the size of term number 7 inside the parentheses is:

1
(1+2n) - 3"

and that the sign of the terms bounces back and forth between positive
and negative. The terms get smaller and smaller as the series goes on.

Program 4.7 starts calculating the terms in this series and adding them
up. It keeps going until it comes to a term that’s smaller than 10~ (we
chose this value arbitrarily, deciding that we could ignore corrections
smaller than that). The program uses a do-while loop to do the
work. Notice that we use C’s pow function to get the value of 3" when
calculating each term, and the fabs function to find the absolute value
of the term.® The alternating signs of the terms is taken care of by the
multiplier variable, which alternates between 1 and —1 (can you
see why?).

After each trip through the loop, the computer checks the absolute value
(since the terms alternate between positive and negative) of the current
term to see if it’s less than our cutoff value of 10~ !1. A do-while loop

Amn ple Source: Wikimedia Commons

¢ See Figure 4.2.


https://commons.wikimedia.org/wiki/File:Pi_pie2.jpg
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is more convenient than a while loop in this case, since we don’t know
what the value of the first term will be until we’ve gone through the
loop once.

At the end of the program, we print out our estimate of 7t and compare
it to the “actual” value as given by M_PI. Notice that we have to
multiply our sum by /12 to get 7t (see Madhava’s series, above). The
program’s output looks like this:

Pi = 3.141592653595635 after 21 terms.
Actual = 3.141592653589793
0
— 107 = Figure 4.12: The difference betwen our
o 1 0‘2 | estimate of 7t and the actual value, as we
& 4 | add more terms to the sum. Note that
g 10 u the vertical scale is logarithmic.
© 406 -
3! 10 u .
S 10°® m
= 1 0-1 0 -
a |
-12 iy
10

0 5 10 15 20
Term Number

Program 4.7: findpi.cpp

#include <stdio.h>
#include <math.h>
int main () {
double sum = 0.0;
double term;
double multiplier = 1.0;
double small = 1.0e-11;

int nterms = 0;

do {
term = multiplier / (( 1.0 + 2.0*nterms ) % pow(3.0,nterms));
sum += term;
nterms++;
multiplier = —multiplier;
} while ( fabs(term) >= small );

.151f after %d terms.\n", sumxsqrt(12.0), nterms );
.151f\n", M_PI);

printf ("Pi

%
%

printf ("Actual =
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4.12. Conclusion

C provides a rich set of math functions and a versatile toolkit of loop
structures. Together, these allow us to write computer programs that
accomplish in seconds tasks that once took many hours of human labor.

To summarize some of the things we’ve talked about in this chapter:

¢ To use C’s math functions, you need to add #include <math.h>
to the top of your program.

* The math functions take arguments of type double, and return
double values.

* Several constants are defined in math.h, including M_PI and M_E.

* “for” loops are good for situations where you know in advance
how many times you want to go around the loop.

* while loops are good when you want to keep going until some
condition is met.

* do-while loops are good when you want to do a test after going
through the loop the first time.
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Practice Problems

1. Create a modified version of Program 4.1 (the first version of the
timer.cpp program) that tells you how many square roots per sec-
ond your computer can do. Call the new program speedtest . cpp.

2. Write a program named clocktime.cpp that uses only addition
and just one modulo operator (see the example in Program 4.2) to
calculate what number the hour hand of a clock would be pointing
to after a given number of hours have passed. The program should
ask the user for the current hour, and then ask how many hours in
the future. For example, if the user says that the hour is currently 3,
and wants to know what the hour will be after 15 hours have passed,
the program should say “6”. Hint: It's OK if your program prints
zero when the answer should really be 12.

3. Write a new program called square. cpp. The new program should
be like Program 4.3, except that:

(a) instead of 6, sin(6) and cos(6), the new program should print out

two columns: 6 and /0

(b) instead of going from zero to 27, do it for 100 steps between zero
and ten.

4. Like trig tables, tables of logarithms were also very important to
scientists and engineers before calculators and computers were avail-

able”. One of the first tasks assigned to early computers was the 7 This Numberphile video
generation of these tables. Write a program named log.cpp that by Roger Browley shows
. . . how log tables were used:
uses a while loop to generate a list of numbers from 1 to 10, in https:/ /www.youtube.com/watch?v=VRzH4xBoGdM.

steps of 0.01, along with the natural logarithm of each number, as
given by C’s 1og function (see Figure 4.2). Make the program write
two columns, separated by a space: The first column should be the
number, and the second column should be its log.

Hints: Define two double variables, x and deltax. Set deltax =
0.01 and initially set x = 1. Then use a while loop to print x and
log (x). Then, before going around the loop again, add deltax to
x. Make the loop stop when x is no longer less than ten.

5. Imagine that a very generous bank offers you a nominal annual
interest rate of 100% on your investments. If you deposit $1,000 at
the beginning of the year and the bank adds 100% at the end of the
year, you'd end up with $2,000! Sweet!

But what if, instead of adding all the interest at the end of the year,
the bank gave you 50% interest after six months and another 50% Portrait of Jacob Bernoulli (1654-1705).

Source: Wikimedia Commons


https://www.youtube.com/watch?v=VRzH4xB0GdM
https://commons.wikimedia.org/wiki/File:Jakob_Bernoulli.jpg
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after another six months? (A banker would say that the interest
was “compounded” two times per year.) In the middle of the year
you’d have $1,500. Adding another 50% to that at the end of the year
would give you a total of $2,250. Even better! And if the bank paid
us 25% four times per year we’d end up with $2,441, an even larger
amount. Compounding the interest more often apparently gives us
more money at the end of the year.

In the 17" Century, Jacob Bernoulli realized that you can find out
how much money you’ll have at the end of the year by multiplying
your original investment by:

1 n
(14’5)

where 71 is the number of times per year that the interest is com-
pounded. He discovered that there’s a limit to how much money
you can make, even if you let n go to infinity. In this limit, the
expression above approaches a value of about 2.718. Today we know
this number as Euler’s Constant, ¢, the base of natural logarithmss.
So, the most we’d have at the end of the year would be about $2,718,
no matter how often the interest is compounded.

Write a program named interest.cpp that uses the pow function
(see Figure 4.2) to evaluate the mathematical expression above. For
each value of n from 1 to 100 print n and the expression’s value.
(The program’s output should be two columns of numbers.) Check
your program by making sure that the value approaches about 2.718

as n increases.

2.8
27
2.6 "’
25

24
23
22
21 H

1.9

n

Figure 4.13: This is what a graph of
your interest.cpp program’s output
should look like. Notice that the value
rises rapidly at first, then levels of to a
value approaching e.

8¢ is perhaps the second most
important mathematical constant,
after 7r. If we think of 7t as the “circle
constant”, we might think of e as

the “growth constant”. It appears

in equations describing growth

and decay in every area of science.
For more information, see this
Numberphile video by James Grime:

https:/ /www.youtube.com/watch?v=AuA2EAgAegE

You can also graph your results by typing . /interest > interest.dat

and then using gnuplot to graph the data. To do this, start gnuplot
and type plot "interest.dat" with linespoints. The re-
sult should look something like Figure 4.13.

. Write a program (call it baselpi.cpp) that uses a “do-while”
loop to sum up the terms of the series:

101 11
STEtatETet

Notice that the terms keep getting smaller and smaller. Keep adding
terms until you come to a term that’s less than 10° (include this


https://www.youtube.com/watch?v=AuA2EAgAegE
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term in your sum). Print out the sum and the number of terms,
clearly identifying which is which. Your program should also use
this sum to print an estimate of the value of 7r. How can it do this?
Read on!

This is a famous problem in the history of mathematics, known as
the “Basel Problem?”. Leonhard Euler was the first to solve this
problem, finding that the sum of this series approaches the value
7% /6. This provides a way to check your program: Multiply the
sum by 6 and take the square root. You should get a number that is
approximately equal to 7.

Hint: When C divides one integer by another, it assumes that you
want the answer to be an integer, too. So, if you type 1/1i, where 1
is an integer, C will chop off any decimal places in the answer. If
you want to preserve those decimal places, type 1.0/ 1 instead. This
gives C a hint that you want to save things after the decimal place.

. Many people think that everything in mathematics is boring, and
that there aren’t any mathematical discoveries remaining to be made.
Nothing could be farther from the truth. Just as there are still plenty
of unanswered questions in physics (for example: What is dark
matter?) there are also lots of unanswered questions in math. One
unsolved mathematical mystery is called the Collatz conjecture®,
named after German mathematician Lothar Collatz. Let’s write
a program that illustrates the property of numbers that Collatz
observed.

Make a program named collatz.cpp that asks the user to enter a
starting number that’s an integer greater than 1. After the number
has been entered, the program should have a “while” loop that
does the following:

¢ If the number is even, divide it by 2.

¢ If the number is odd, multiply by 3 and add 1.

The loop should keep doing this for as long as the result is not
equal to 1. Each time around the loop, print the current result. For
example, if the user enters the number 5, the program should print:

6

= N s 0o

Hint: You can find out whether a number is even by using the

Portrait of Leonhard Euler (1707-1783).
Source: Wikimedia Commons

9 See Wikipedia for much more informa-
tion.

 See

https:/ /www.youtube.com/watch?v=5mFpVDpKX7o
and

https:/ /en.wikipedia.org/wiki/Collatz_conjecture.

Lothar Collatz (1910-1990)

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg
https://en.wikipedia.org/wiki/Basel_problem
https://www.youtube.com/watch?v=5mFpVDpKX70
https://en.wikipedia.org/wiki/Collatz_conjecture
https://commons.wikimedia.org/wiki/File:Lothar_Collatz.jpg

130 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

modulo operator (%). For example, if 1%2 is zero, then i is even.

You should find that any number you enter will generate a sequence
that ends in 1. Collatz speculated that this was always true for all
starting numbers, but nobody has ever been able to prove it. The
Collatz conjecture has been tested by computers for all numbers up
through 10%° and found to be true for each of them, but there might
be some huge number out there somewhere that doesn’t obey this
rule. Nobody knows.

008 000-60-060-000000000
-0-80-000-8

8. Imagine that your algebra teacher has asked you to simplify the

expression 12x 4 438. You suspect that there’s some common factor

of 12 and 438 that you could pull out, but how can you find it?

Fortunately, the ancient Greek mathematician Euclid provided us

with a simple recipe for finding the greatest common factor of two
numbers®®. Let’s call the two numbers 11 and n,. Euclid’s method
works like this:

1) Divide n; by ny and find the remainder.
2) Now make n; equal to 17, and make 1, equal to the remainder.

3) keep repeating steps 1 and 2 until you get to a remainder of zero.
At this point, the value of 177 will be the greatest common factor

of the original numbers.

Write a program named gcf . cpp that uses a “do-while” loop to

find the greatest common factor of two numbers by using Euclid’s

method. The program should start by asking the user for two

integers. When you run the program, it should look something like
this:

Enter first number: 12

Enter second number: 438
GCF is ©

Hint 1: Remember that the % operator gives you the remainder after
division.
Hint 2: If the remainder is rem, your loop should continue for as

long as rem != 0.

This graph shows the path taken by

each of the integers up to 1,000 as they
9. Write a program named findtwo.cpp that uses a do-while loop work their way through the Collatz
process on their way to 1. As you can
see, the paths form a pretty shape, like
coral.

to sum up the terms of the series:

Source: Wikimedia Commons

" This is also sometimes called the
“greatest common divisor” or “greatest
common denominator”.


https://commons.wikimedia.org/wiki/File:Collatz_orbits_of_the_all_integers_up_to_1000.svg
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Notice that the denominators of the terms start with 1, and each de-
nominator is two times as large as the preceding one. Your program
should keep adding terms until it comes to one that’s smaller than
1077 (include this term in your sum).

The program should print the sum and the number of terms it added
up. If we could add up an infinite number of such terms the sum
would be exactly 2. Since each term in the series is substantially
smaller than the preceding term, your program should show a sum
that’s approximately 2.

As we saw in Chapter 3 it’s possible to tell C how many decimal
places we want to show when printing a number. Inside your
program’s do-while loop, put a statement like this that prints the
value of each term and the current sum after adding that term:

printf ("%$.201f %.201f\n", term, sum);

The “.20” between % and 1f tells the program to print twenty digits
after the decimal point. By watching how the terms change, we can
see them get smaller and smaller, and we can see the sum get closer
and closer to 2.

Hint: To prevent your program from chopping off numbers after
the decimal point, use double variables to hold the values of the
denominators, the terms in the series, and the sum.

12 [

0.8

0.6
IPEER N

'S

0.2 \-\|

0 2 4 6 8
Term Number

Figure 4.14: In the findtwo.cpp
program, as we add more terms, each
term becomes smaller and their sum
converges toward 2.




