
6. Using Arrays

6.1. Introduction
Scientists often make groups of similar measurements under different

conditions. We might measure the temperature of a metal bar at several

different points along its length for example, or measure the velocity of

a dropped ball at several times during its fall. A modern high-energy

physics experiment might record the amount of energy deposited in

each of hundreds of detectors every time an interesting event is seen.

Galileo used his pulse to measure how
long it took a ball to reach several
marked locations while rolling down a
ramp. This experiment established that
the distance traveled is proportional to
the square of the elapsed time, no
matter how much the ball weighs.
Source: Wikimedia Commons

Programs that analyze data need to store such measurements in vari-

ables. We could define one variable for each measurement, giving them

names like t1, t2, t3 and so forth, but that would be awkward if there

were hundreds of measurements. For example, imagine adding them

all up: we’d need to write an expression like t1 + t2 + t3 + . . . ,

and we’d need to remember to change it if we added or removed any

measurements the next time we used the program.

This detector assembly consists of 240

cesium iodide crystals. Each of them
measures the energy of particles that
pass through the crystal.
Source: PiBeta Collaboration

C provides us with an easier way of storing a group of related values.

An “array” is a numbered list of boxes in the computer’s memory.

The array as a whole has a single name, and individual boxes can be

referred to by number. In this chapter we’ll see how to create and use

arrays.

6.2. A Coal Train
Imagine that you’re in charge of a rail system carrying coal. Each train

has some number of coal cars, and each car can carry some amount of

coal up to a maximum capacity. You’d like to keep track of how much

coal is in each car, but you’re also interested in the total amount of coal

that the train is hauling. How might you store all of those numbers in

a program?

A coal train in eastern Wyoming.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Galileo_by_leoni.jpg
http://pibeta.phys.virginia.edu/
https://commons.wikimedia.org/wiki/File:Coal_train_in_eastern_Wyoming,_2006.jpg

164 practical computing for science and engineering

Program 6.1 uses an array to store the weight of coal in each car. The

array is defined by the statement:

double carweight[100];

This statement defines an array of one hundred elements1, each capable
1 Each “element” of an array is just a
storage box for holding something.

of storing a floating-point number. The elements are numbered from

zero to 99.

We can refer to a particular element of the array by giving its number.

For example, if we wanted to print out the value in element number

27 of the array, we could write printf("%lf",carweight[27]);.

It’s very important to remember that the last element in the array is

carweight[99], not carweight[100]. When we define the array,

we say how many elements are in it, but the elements are numbered

starting with zero, so the last element will always have a number that’s

one less than the total number of elements.2

2 Programmers often refer to an ele-
ment’s number as its “index”. Array
indices are like the subscripts we use
in mathematics when we write an ex-
pression like Xi . The index must be an
integer, since it just counts the number
of elements.

Figure 6.1: The first element of an array
is number zero.
Source: Openclipart.org

The first loop in Program 6.1 puts a random weight of coal into each of

the cars. The weights vary between 50 and 100 tons. In a real-world

program, these weights probably wouldn’t be random. They might

be read out of a file, or they might be read from some kind of device

that measures each car’s weight as it goes by. This is just an example,

though, so we’ll use random numbers.3 Notice that we can set the 3 Since we don’t use the srand function
to change the random number genera-
tor’s seed, the program will always give
us the same set of “random” numbers.
(See Chapter 2.)

value of one of the array’s elements by referring to it by number.

The program’s second loop just prints out the weight of each car in a

nice, readable format. Notice that the value of i in both loops runs from

zero to 99, since the loop starts at zero and continues for as long as i is

less than 100 (i<100).

Program 6.1 also tells us the total amount of coal the train is carrying.

The variable sum starts with a value of zero, then has the weight of

https://openclipart.org/detail/202273/coal-wagon

chapter 6. using arrays 165

each car added to it. At the end of the program, the total weight of all

cars is printed.

Program 6.1: coal.cpp

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

double sum = 0.0;

int i;

for (i=0; i<100; i++) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

for (i=0; i<100; i++) {

printf ("Car %d carries %lf tons\n", i, carweight[i]);

sum += carweight[i];

}

printf("The total weight of coal is %lf tons.\n", sum);

}

Exercise 32: “I think I can...”

Create, compile and run Program 6.1. Notice that the car

numbers (the array indices) start at zero and end at 99.

Think about how you’d need to change the program to

accommodate 200 cars instead of 100. What would be the

index of the last car then?

6.3. How Arrays Are Stored
In our programs, a variable is just a temporary storage location in the

computer’s memory that has a name attached to it. The size of this

storage location depends on the type of data we want to put into it. Just

as a violin case is different from a trombone case, the box of memory

reserved for an int variable will be different from the box reserved for

a double variable.

166 practical computing for science and engineering

The great jazz violinist Stephane
Grappelli.
Source: Wikimedia Commons

“Trombone Shorty” (aka Troy Andrews)
began playing the trombone before the
age of six, when he was so small he had
to use his feet to reach the low notes.
Source: Wikimedia Commons

Figure 6.2 shows how a group of variables might be placed in the

computer’s memory. Note that int and double variables require

different-sized storage boxes. The data inside these boxes is also or-

ganized differently. Because of this, even though int data would fit

into the space reserved for a double, the data would appear garbled

when your program tried to read it, because the program would try to

interpret these bits as a floating-point number. You might be able to

squeeze a violin into a trombone case, but imagine trying to play the

violin by blowing into it like a trombone!

Figure 6.2: How a group of variables
might be arranged in the computer’s
memory. The actual size of double or
int variables may differ depending on
the type of computer, operating system,
or C compiler. The values shown here
are typical, though.Figure 6.2 also shows how an array is stored. In the figure, a five-

element int array named marbles is defined. Imagine that it records

the number of marbles in each of five bags. As you can see, this array

takes up the same amount of storage space as five regular int variables.

It’s important to remember that each element of an array takes up just

as much memory as a separate variable of that type. So, if we define a

large array with thousands of elements, we may run into the limits of

the computer’s memory.

https://commons.wikimedia.org/wiki/File:Django%26Grappelli_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Jazzfest_2010_Troy_'Trombone_Shorty'_Andrews_playing_with_Glen_David_Andrews,_Julius_McKee_and_Amanda_Shaw.jpg

chapter 6. using arrays 167

The elements of an array are always stored one after another in the

computer’s memory. You could think of them as a stack of shoe boxes.

In fact, when you ask the computer to find, say, marbles[3] it finds

the memory address of the first element of marbles and then just

skips forward by a distance equal to three times the size of a single int

variable. If you have a small array, you might
find it useful to set the initial values of
the elements when you define the array.
For the marbles array, for example,
we could define and initialize the
array by saying int marbles[5]

= {3,42,21,7,10}; The list of
numbers in curly brackets will be put
into elements zero through five of the
array.

All of the elements of an array must have the same type, but this can be

int, double, or any other type that C provides. In our train example,

we defined an array of double elements called carweight. In Figure

6.2 we define an array of int elements called marbles.

But what about. . . ?

Is there a way to find out how much storage space is needed for a type of variable? Yes! You can use the

sizeof function to find the size of a type, or of a particular variable.

Take a look at this example:

#include <stdio.h>

int main () {

int i;

double x;

printf ("Size of int is %d bytes.\n", (int)sizeof(int));

printf ("Size of double is %d bytes.\n", (int)sizeof(double));

printf ("Size of i is %d bytes.\n", (int)sizeof(i));

printf ("Size of x is %d bytes.\n", (int)sizeof(x));

}

If you ran this program, the output would look something like this:

Size of int is 4 bytes.

Size of double is 8 bytes.

Size of i is 4 bytes.

Size of x is 8 bytes.

The sizes may be different on your computer, but you can always use sizeof to find them if you need

them. (Note that we force the value of sizeof to be an int by putting “(int)” in front of it. This is

necessary on some computers because the value returned by sizeof isn’t strictly an int.)

168 practical computing for science and engineering

6.4. Selecting Array Elements
Let’s get back to work on our coal-hauling business. As our train is

travelling across the country, we might want to look up the weight of a

particular car. Maybe we have a customer in Schenectady who wants at

least 85 tons of coal. Will the last car in the train be full enough, or do

we need to pick another one?

Program 6.2 adds another section to our earlier program. Now, after

the program has listed the weights of all the cars and told us the total

weight, it begins waiting for us to enter a car number, and will tell us

how much coal is in that particular car.

Program 6.2: coal.cpp, Version 2

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

double sum = 0.0;

int i;

int carno;

for (i=0; i<100; i++) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

for (i=0; i<100; i++) {

printf ("Car %d carries %lf tons\n", i, carweight[i]);

sum += carweight[i];

}

printf ("The total weight of coal is %lf tons.\n", sum);

while (1) {

printf ("Enter car number (-1 to quit): ");

scanf ("%d", &carno);

if (carno < 0) {

break;

}

printf ("Car number %d carries %lf tons.\n", carno, carweight[carno]);

}

}

chapter 6. using arrays 169

Exercise 33: Runaway Train!

Create, compile and run Program 6.2. Try entering some

numbers between zero and ninety-nine. Enter −1 to stop.

Do the results look reasonable?

Now try entering 1000 and 1000000. These values are

clearly beyond the end of the train. What does the program

do?

Look out! Arrays give us a lot of new
abilities, but they also introduce a
whole trainload of potential pitfalls to
beware of.
Source: Wikimedia Commons

6.5. Checking Array Index Values
Many programs can run simultaneously on a modern computer. To

keep programs from interfering with each other, the computer assigns a

separate chunk of memory to each program. A program is only allowed

to use the memory that belongs to it.

When your coal train program starts running, the computer reserves

enough memory space to hold all of the variables you’ve defined,

including the 100 elements of the carweight array.4 However, as 4 The memory reserved in this way is
called “the stack”, because it’s like a
stack of storage boxes, as illustrated in
Figure 6.2.

demonstrated in the exercise above, the computer doesn’t check your

array indices to make sure they stay within the bounds of the array. This

can cause problems if you’re not careful when writing your program.

Take a look again at Figure 6.2. If we asked the program to print out

the value of marbles[14] the computer would happily skip forward

14 × 4 bytes from the beggining of the marbles array, and try to read

whatever was at that memory location.

If that part of memory is in the chunk belonging to our program, then

the program will be able to successfully read whatever unpredictable

value happens to be stored there (see Figure 6.3a). If this part of the

computer’s memory doesn’t belong to our program, then the program

will crash (see Figure 6.3b). Usually, a crash like this generates an error

message that says “Segmentation fault”. This means that the program

has tried to do something in a segment of the computer’s memory that

doesn’t belong to it.

If Jesse James were alive today he might
have robbed computers instead of
trains. Don’t give Bad Guys a break!
Check to make sure your array indices
don’t stray outside your arrays.
Source: Wikimedia Commons

This might be an even worse problem if we tried to change the value

of marbles[14]. In that case, if the program didn’t crash, we’d be

unexpectedly modifying the value of some completely different variable

in our program.

https://commons.wikimedia.org/wiki/File:Train_wreck_at_Montparnasse_1895.jpg
https://commons.wikimedia.org/wiki/File:Jesse_james_portrait.jpg

170 practical computing for science and engineering

(a) Reading beyond the end of an array, but still

staying within the memory allocated to this program.

This will succeed, but the number you get will likely

be nonsense.

(b) Attempting to read outside the memory allocated

for this program. This will fail and cause the program

to crash.

Figure 6.3: Reading past the end of an
array will give unexpected results.

chapter 6. using arrays 171

It’s up to the programmer to prevent these problems. In Program 6.2

for example, we could add an “if” statement to check to see if the

number entered is between zero and ninety-nine, and tell the user to

pick another number if it’s not.

Reading or writing past the end of an array is one of the most common

programming mistakes. It has led to many bugs in many programs,

including some serious security bugs. Imagine what could happen if

a banking program accidentally allowed users to change the value of

any variable by entering, say, a very large account number! Bad Guys

routinely look for bugs like this, and try to exploit them.

Let’s move away from the hot, dirty coal industry for a little while now,

and visit the cool, clean world of mathematics.

6.6. The Sieve of Eratosthenes
Prime numbers have fascinated mathematicians since ancient times.

You’ll recall that a prime number is a whole number that can only be

divided evenly by itself and one. The first five prime numbers are 2, 3,

5, 7 and 11. (the number 1 isn’t considered to be a prime.) Numbers

that aren’t prime are called composite numbers.

Euclid, who lived around 300 BCE, is
best known as the father of geometry.
Source: Wikimedia Commons

Eratosthenes, born around 276 BCE, is
perhaps best remembered for his
remarkably accurate determination of
the radius of the earth. (No, the ancient
Greeks didn’t think the earth was flat!)
Source: Wikimedia Commons

Early on, the Greek mathematician Euclid proved that there are in-

finitely many prime numbers. There doesn’t, however, seem to be any

simple rule for predicting them all. You just have to find them by

searching.

Another Greek mathematician, Eratosthenes, described a straightfor-

ward procedure for searching for prime numbers. Today we call his

technique “the Sieve of Eratosthenes”. It finds primes by a process of

elimination. First, write down all numbers in a range, and then mark

out the ones that aren’t prime. Anything left over (the “holes” in the

sieve) is prime. But how to you know which numbers to eliminate?

Here’s how it works: Write down all of the numbers from one to N,

where N is the highest number you want to test. Then mark out all

the multiples of 2 (4, 6, 8, . . .). We know that none of these numbers

can possibly be prime, since they can be divided evenly by 2. After

that, mark out all of the multiples of 3 for the same reason, and so on.

When you’ve gone through all of the numbers, anything that hasn’t

been marked out isn’t a multiple of anything but 1 and itself, so it’s a

prime number. Figure 6.4 shows what it might look like after you’d

https://commons.wikimedia.org/wiki/File:Euclid._Line_engraving._Wellcome_V0001797.jpg
https://commons.wikimedia.org/wiki/File:Eratosthene.01.png

172 practical computing for science and engineering

done this for the numbers 1 to 100.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 6.4: White squares show the
prime numbers between 1 and 100. Gray
squares are numbers that have been
marked out by the sieve process.

Program 6.3 uses Eratosthenes’ technique to find all of the prime

numbers smaller than 100,000. In terms of the description above,

the program sets N equal to 100,000. It begins by defining an N + 1

element array named isprime that will hold the “prime status” of

each number. If the number i is prime, then isprime[i] will be equal

to 1. Otherwise, this value will be zero.

Why does the array need N + 1 elements? Remember that the last

element of a 100-element array is number 99, not 100, since the first

element is number zero. If we want the last element of isprime to be

number N, then the array needs to have N + 1 elements.

Notice that, instead of writing “int isprime[100001];” we’ve de-

fined a variable, N, that says how many elements are in our array. The

size of an array can’t be changed once it’s defined, though, so it’s a

good idea to mark a variable used this way as a “constant”. By putting

the word const in front of a variable definition, you tell the compiler

that the value of this variable will never change.5 If you try to change 5 “constant variable?” Isn’t that an
oxymoron?the variable’s value somewhere later in the program, the compiler will

give you an error message and refuse to compile the program.

Program 6.3 assumes that all of the numbers are prime unless proven

otherwise. The first “for” loop initializes all of the elements of

isprime to a value of 1.

The next “for” loop begins with 2, and goes through all of the multiples

of 2 that are smaller than N. For each of these multiples, the program

chapter 6. using arrays 173

sets the corresponding element of isprime to a value of zero, thus

flagging this number as a non-prime. The program then works its way

through multiples of other numbers, up to N.

The study of integers is an important
part of the branch of mathematics called
“number theory”. Mathematician
Leopold Kronecker famously said “God
made the integers, all else is the work of
man.”
Source: Wikimedia Commons

When it’s done, anything that still has an isprime value of 1 is really

a prime. The program prints out these numbers, and a count of how

many primes were found.

You can probably think of some shortcuts we could have taken to

make our program run faster. For one thing, if you’ve worked partway

through the list and come to, say, 31, you know without going any

farther that 31 is prime, since only smaller numbers could possibly be

its factors. For another thing, it turns out that you only need to look for

multiples of prime numbers. All the multiples of 4, for example, will

already have been marked out, since they’re also multiples of 2, and all

multiples of 6 are also multiples of 2 and 3, which have already been

marked out. Finally, we only need to test multiples of numbers smaller

than
√

N. Any larger, non-prime numbers smaller than N must be a

multiple of one of these.

To keep the program simple, Program 6.3 doesn’t use these shortcuts. It

trades speed for simplicity. This is a choice you’ll often have to make as

a programmer. Is a simple program fast enough? If I make the program

more complicated in order to gain some speed, will I be more likely to

do something wrong?

Exercise 34: Prime Time

Create, compile and run Program 6.3. How many primes

does it find? Think about what problems you might run into

if you tried to use this program to find even larger prime

numbers.

N Number of Primes

10 4

100 25

1,000 168

10,000 1,229

100,000 9,592

1,000,000 78,498

10,000,000 664,579

100,000,000 5,761,455

1,000,000,000 50,847,534

10,000,000,000 455,052,511

100,000,000,000 4,118,054,813

1,000,000,000,000 37,607,912,018

10,000,000,000,000 346,065,536,839

Figure 6.5: The number of primes less
than N, for various values of N.
Source: https://primes.utm.edu/howmany.html

https://en.wikipedia.org/wiki/File:Leopold_Kronecker_1865.jpg
https://primes.utm.edu/howmany.html

174 practical computing for science and engineering

Program 6.3: sieve.cpp

#include <stdio.h>

int main () {

const int N = 1e+5;

int isprime[N+1]; // Why N+1? Number of elements, INCLUDING ZERO!

int i;

int multiple;

int nprimes = 0;

// Start by assuming everything is prime:

for (i=0; i<=N; i++) {

isprime[i] = 1;

}

// Mark the non-primes:

for (i=2; i<=N; i++) { // Don't want to include multiples of 1!

multiple = i+i; // First multiple of i

while (multiple <= N) {

isprime[multiple] = 0;

multiple += i;

}

}

// Print out what's left:

for (i=2; i<=N; i++) { // Why 2? Zero and 1 aren't prime by definition.

if (isprime[i] == 1) {

printf ("%d\n", i);

nprimes++;

}

}

printf ("Total number of primes below %d is %d\n", N, nprimes);

}

chapter 6. using arrays 175

6.7. Reading Array Elements

Figure 6.6: The airplane image on this
1918 “Inverted Jenny” stamp was
accidentally printed upside-down. Only
100 such stamps are known to have
been printed, making them very
valuable to collectors. In 2007 one of
these stamps was sold for almost
$1,000,000.
Source: Wikimedia Commons

Because C doesn’t prevent us from going past the end of an array (see

Section 6.5 above) we need to be careful when we read data from a

user or from a file and put it into an array. Take a look at Program 6.4,

for example. This program defines a 5-element array named marbles,

and asks the user to enter numbers into it, one element at a time. The

numbers are then printed out in reverse order.

Notice that the program uses “for” loops that systematically go

through the array’s indices, from zero to 4. (Remember that the last

element of a 5-element array is numbered 4, since the first element’s

number is zero.) Also notice that we put the array element into the

scanf statement in just the same way that we’d put a non-array vari-

able. In particular, we still need to put an ampersand in front of it.

After reading the numbers, the program prints them out in reverse

order. It does this by starting with the last array element and working

backwards through the array. We could have done this by saying

“for (i=4; i>=0; i--)”, but we’ve chosen to do it a different

way. The program uses the same kind of “for” loop that it used when

reading the numbers, but instead of printing marbles[i] it prints

marbles[4-i]. Since i starts at zero and goes to 4, the value of 4-i

starts at 4 and goes to zero.

If you run Program 6.4 it might look
like this:

./reverse

Enter a number: 2

Enter a number: 7

Enter a number: 5

Enter a number: 1

Enter a number: 9

Numbers in reverse order:

9

1

5

7

2

Program 6.4: reverse.cpp

#include <stdio.h>

int main () {

int marbles[5];

int i;

for (i=0; i<5; i++) {

printf ("Enter a number: ");

scanf ("%d", &marbles[i]);

}

printf ("Numbers in reverse order:\n");

for (i=0; i<5; i++) {

printf ("%d\n", marbles[4-i]);

}

}
Array indices give us a way to uniquely
identify each element of an array, but
they can also provide information about
relationships between elements. For
example, they tell us the order of the
cars in our coal train, or the order of the
numbers we entered in Program 6.4.

Exercise 35: Doing Flips

Create, compile and run Program 6.4. Does it work as

expected?

https://commons.wikimedia.org/wiki/File:US_Airmail_inverted_Jenny_24c_1918_issue.jpg

176 practical computing for science and engineering

6.8. Sorting the Elements of an Array
We sometimes want to sort the elements of an array based on the values

they contain. In our coal train example, for instance, we might want

to put the heaviest cars at the back of the train, and the lightest at the

front.

One of the simplest (but, unfortunately, slowest) ways to sort things is

called a “bubble sort”. Let’s write a program that uses a bubble sort to

arrange the cars of our train from lightest to heaviest.

A bubble sort works by comparing the values in two neighboring

elements of an array. If the two values are in the proper order already

(light car in front of heavy car, in our train example), they’re left alone.

Otherwise the two values are swapped to put them into the right order.

We go through each pair of elements in the array, from first to last,

swapping values when necessary. Then we do this again and again,

until no more values need to be swapped. At that point, the array has

been completely sorted. Figure 6.7 shows what the first pass might do

to the values in our marbles array.

Figure 6.7: A bubble sort works its way
through this array from bottom to top,
comparing neighboring numbers and
swapping them where necessary. When
we get to the top of the array, we see that
the largest number has “bubbled up”.
We could then start back at the bottom
and repeat this procedure until all of the
numbers had been sorted.

To write a program that does this, we’ll first need to think about how

to swap the values of two elements of an array. We can’t just copy, say,

marbles[1] into marbles[2]. If we did, we’d have two copies of the

value in marbles[1], and would have lost the value of marbles[2]

completely! To swap values in a program, we’ll generally need to have

a temporary storage place to put one of the values while we’re moving

things around. This is illustrated in Figure 6.8.

Once we know how to swap the values in two elements, we’re ready to

write our bubble sort program. Program 6.5 is the result. The middle

of the program is two nested loops.

chapter 6. using arrays 177

22

5

[i+1]

[i]

...
... temp

25

5

[i+1]

[i]

...
... temp

25

2

[i+1]

[i]

...
... temp

Step
1

Step
2

Step
3

Figure 6.8: Swapping two values usually
requires a temporary storage location.
This illustration shows to swap the
values in two adjacent elements of the
marbles array. We use a variable called
temp as a place to park one of the values
while we’re moving things around.

The inner loop is a “for” loop. This loop goes through each pair of

array elements, starting with elements zero and one, then going to one

and two, two and three, and so forth. The last pair will be 98 and 99,

since the last element is number 99. The loop’s counter variable, i,

identifies the first member of each pair. The second member is i+1.

The loop stops when i is equal to 98 and i+1 is equal to 99 (the last

element of the array).

“A little later, remembering man’s earthly
origin, ’dust thou art and to dust thou shalt
return,’ they liked to fancy themselves
bubbles of earth. When alone in the fields,
with no one to see them, they would hop,
skip and jump, touching the ground as
lightly as possible and crying ’We are
bubbles of earth! Bubbles of earth! Bubbles
of earth!”’ —Flora Thompson, in Lark
Rise (1939)
Source: ©Basher Eyre and licensed for reuse under this Creative

Commons license

The variable temp is a temporary storage location for use while swap-

ping values, as shown in Figure 6.8. The variable nswapped keeps

track of how many pairs needed to be swapped. before we begin each

pass through the elements, nswapped is reset to zero.

The outer “do-while” loop repeats the inner loop until there are

no more pairs that need swapping, indicated by a value of zero for

nswapped.

A bubble sort is a simple sorting algorithm. An “algorithm” is just a

recipe for doing something. Bubble sorts are easy to write, but there

are much faster sorting algorithms. We’ll look at one of these called

“qsort” in a later chapter.

http://www.geograph.org.uk/reuse.php?id=3843447
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

178 practical computing for science and engineering

Program 6.5: bubble.cpp

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

int i;

double temp;

int nswapped;

for (i=0; i<100; i++) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

do {

nswapped = 0;

for (i=0; i<99; i++) { // Note: omit last element!

if (carweight[i] > carweight[i+1]) {

temp = carweight[i];

carweight[i] = carweight[i+1];

carweight[i+1] = temp;

nswapped++;

}

}

} while (nswapped > 0);

for (i=0; i<100; i++) {

printf ("Car %d carries %lf tons.\n", i, carweight[i]);

}

}

chapter 6. using arrays 179

But what about. . . ?

Where does the word “algorithm” come from anyway? Surpris-

ingly, it has nothing to do with Al Gore. Instead, it’s a variation on

the name of Muhammed ibn Musa al-Kwarizmi. al-Kwarizmi was

an 8th-Century Persian mathematician who adopted a revolution-

ary new Indian method for writing numbers: the decimal number

system we still use today. Before decimal numbers, arithmetic was

a tedious process only known to specialists. Decimal numbers

suddenly made arithmetic accessible to the masses.

al-Kwarizmi’s writings, translated into Latin, brought the new

number system to Europe, along with other insights into mathe-

matics. The word “algebra” comes from the Arabic word al-jabr,

meaning “make whole”, used in the title of one of al-Kwarizmi’s

books: al-Kitab al-mukhtasar fi hisab al-jabr wal-muqabala (The Com-

pendious Book on Calculation by Completion and Balancing).

al-Kwarizmi’s mathematical writings were so influential that his

name, transmogrified into “algorithm”, became a shorthand for

calculation in general. A page from one of al-Kwarizmi’s
books.
Source: Wikimedia Commons

6.9. Fun with Metronomes
A metronome is a device that clicks in a regular rhythm. Music students

sometimes use them while practicing. These devices have a straight,

weighted arm that swings back and forth. Imagine that you have

several metronomes sitting at various widely-separated places in a

room. The metronomes are all ticking at the same rate, but the arm of

each metronome has been set in motion at a different time. It might

look like the top half of Figure 6.9. At any given time, the arms of the

metronomes are in different places. We say that the metronomes are

"out of phase", and they would stay that way for as long as we could

tolerate their maddening ticking!

Now imagine we take the metronomes and put them side-by-side on a

wobbly table6. Again, we start their arms moving at different times, so
6 This example was inspired by
Matt Parker’s video on this topic:
https://www.youtube.com/watch?v=J4PO7NbdKXgthey’re out of phase. But now we’d find that, over time, the metronomes

begin to synchronize, until they are eventually "in phase" with each

other, with all the arms at the same position at any given time, like the

bottom half of Figure 6.9.

https://commons.wikimedia.org/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg
https://www.youtube.com/watch?v=J4PO7NbdKXg

180 practical computing for science and engineering

Starting
Positions
(all different)

Later
Positions

(all the same)

0 1 2

0 1 2

Figure 6.9: Even though the metronomes’
arms might start out in different places,
they can influence each other over time.

What’s happening here is that the wobbly table lets the metronomes

jiggle each other a little bit. We say that they’re now "coupled", whereas

they were "uncoupled" when they were spread out around the room.

Over time, the coupling between the metronomes tends to bring them

into phase with one another.

In the 1970s Yoshiki Kuramoto developed a simple mathematical

model7 that describes how the metronomes’ motion evolves from out-
7

http://go.owu.edu/ physics/StudentRe-
search/2005/BryanDaniels/kuramoto_paper.pdf

of-phase to in-phase. Let’s write a program that uses Kuramoto’s model

to simulate the behavior of a set of metronomes on a wobbly table.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
o
s
it
io

n

Time

Figure 6.10: The motion of a single
metronome arm.

We’re going to need to keep track of each metronome’s arm as it

oscillates back and forth. Figure 6.10 shows the motion of a single

metronome. The vertical axis shows the position of its arm, where 1

means all the way to the right, and -1 means all the way to the left. As

time passes, the arm oscillates between these two extremes in a sine

wave.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
o
s
it
io

n

Time

Figure 6.11: The motion of four
"uncoupled" metronome arms.

Figure 6.11 shows the motion of four uncoupled metronomes. They

move in sine waves with the same frequency, but they’re shifted relative

to each other because the arms were started at different times.

When dealing with oscillating things, it’s natural to measure time in

terms of multiples of the oscillating period. We could say that the

mentronome has gone through one cycle, two cycles, three cycles... The

vertical axis (arm position) on our graph is the sine of an angle, and

the horizontal axis (time) is an angle telling us how far "around" the

http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf

chapter 6. using arrays 181

cycle we’ve gone so far. (Note that it’s perfecly OK to go around twice,

or three times, or as many times as we want.) One complete cycle is

equivalent to an angle of 2π radians.

The time to go through one complete cycle is the metronome’s period.

After some amount of time, t, the "angle" the metronome has traveled

through in its cycle is θ = 2πt/period. Note that this is different from

the physical angle the metronome’s arm makes. θ here is an abstract

thing that just tells us what stage we’re at in the metronome’s cycle. If

different metronomes are started at different times, that’s just equivalent

to shifting θ by some amount that we’ll call each metronome’s "phase

angle". When the metronomes jiggle each other, they gradually change

each other’s phase angles until all they’re all the same.
-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
o
s
it
io

n

Time

Figure 6.12: The motion of four
metronomes that are "coupled" because
they’re sitting together on a wobbly
table.

For coupled metronomes, the Kuromoto model tells us that each

metronome is jiggled by each other metronome by an anount that’s

proportional to the difference in their phase angles. Mathematically, we

could say that the change in phase angle of metronome i is:

correctioni =
constant

N
×

N−1

∑
j=0

(phasej − phasei)

where N is the number of metronomes and j is a label for each

metronome, starting with zero. Over time, after many such small

corrections, this would cause the phases of the metronomes to converge,

as in Figure 6.12.

Program 6.6 tracks the motion of four metronomes that can jiggle

each other. It initially gives the metronomes different phase angles

spread evenly between zero and π/2 radians (1/4 of the way through a

cycle). Then the program starts a loop that goes through four complete

metronome cycles in 100 steps. During each step, the program loops

through all the metronomes, and for each metronome it calculates the

correction due to all the other metronomes. It then does a second loop

and applies those corrections by modifying each metronome’s phase

angle. During each step, the program prints out the current value of

θ and the position of each metronome arm (given by sin(theta +

phase[i]).

At the top of the program we define two arrays, phase and correction,

that will hold the current phase angle of each metronome and the cor-

rection to be applied to that phase angle before beginning the next

step. We can’t just change the numbers in phase because we still need

those values until we’re finished calculating the correction to each of

the metronomes. That’s why we store the corrections in a separate

182 practical computing for science and engineering

array until we’re ready to apply them.

When you run the program it will print five columns of numbers: θ,

which represents time, and the position of each of the four metronome

arms. If you want to simulate more metronomes, just change the value

of nmetronomes in the program.

Program 6.6: metronome.cpp

#include <stdio.h>

#include <math.h>

int main () {

const int nmetronome = 4;

double nsteps = 100;

double phase[nmetronome];
double correction[nmetronome];
double coupling_strength = 0.03;

double thetamax = 8.0*M_PI;

double diff,diffsum;

double theta,thetastep;

int istep;

int i,j;

diff = 0.5*M_PI/nmetronome;

for (i=0; i<nmetronome; i++) {

phase[i] = diff*i;

}

thetastep = thetamax/nsteps;

theta = 0;

for (istep=0; istep<nsteps; istep++) {

printf("%lf ", theta);

for (i=0; i<nmetronome; i++) {

printf("%lf ", sin(theta + phase[i]));

diffsum = 0;

for (j=0; j<nmetronome; j++) {

diffsum += phase[j] - phase[i];
}

correction[i] = coupling_strength*diffsum/nmetronome;

}

printf ("\n");

for (i=0; i<nmetronome; i++) {

phase[i] = phase[i] + correction[i];
}

theta += thetastep;

}

}

Set initial values.

Loop
through

time

Print θ.
Loop through

all metronomes.

Add up the
phase differences.

Apply corrections.

Print arm position.

chapter 6. using arrays 183

6.10. Multi-Dimensional Arrays
Each array we’ve seen so far can be visualized as a long, one-dimensional

chain of elements, one after another. Arrays don’t have to be one-

dimensional, though. For example, the program below shows an array

called matrix with two indices. We could think of this as representing

a two-dimensional (20 × 30, in this case) matrix of values.

The Karl G. Jansky Very Large Array
(VLA) is an array of radio telescopes
near Socorro, New Mexico. The
antennas can turn to follow celestial
targets as the Earth rotates. Their
motion is usually so slow as to be
almost imperceptible, but they
periodically need to “unwind” to avoid
tangling cables. Astronomers describe
the eerie scene when, in the middle of
the night, a plain full of antennas
suddenly begins twisting in unison, as
though they’ve come to life.
Source: Wikimedia Commons

int main(){

int matrix[20][30];

int i,j;

for (i=0; i<20; i++) {

for (j=0; j<30; j++) {

matrix[i][j] = i * j;

}

}

}

The Chess Game (1555), by Sofonisba
Anguissola
Source: Wikimedia Commons

There’s a legend, of uncertain origin,
that goes something like this: The
inventor of chess presented the new
game to his ruler, who was so pleased
that he offered the inventor any prize
he wanted. The apparently modest
inventor asked only for some grains
of wheat (or rice, in some versions).
One grain was to be placed on the first
square of the chessboard, two on the
second, four on the third, and so forth,
doubling the number of grains each
time, until the last square was reached.
“Certainly!” said the ruler, but he found
that he couldn’t honor his offer. To
reach the last square would require over
263 grains of wheat, more than all of the
wheat in the world!

A two-dimensional array might store the barometric pressure at loca-

tions on a map grid, or the number of grains of wheat on each square

of a chess board.

Figure 6.13: An 8 × 8 two-dimensional
array, with the indices i and j.

https://commons.wikimedia.org/wiki/File:VLA_4893505508.jpg
https://commons.wikimedia.org/wiki/File:The_Chess_Game_-_Sofonisba_Anguissola.jpg

184 practical computing for science and engineering

Arrays in C can have as many indices as you like. A three-dimensional

array might hold data about a grid of points in space, or a four-

dimensional array might be useful for problems in General Relativity,

where space and time are combined into a four-dimensional continuum.

Each index of a multi-dimensional array starts with zero, just like arrays

with a single index. In the example above, the first index of matrix

goes from zero to 19, and the second index goes from zero to 29.

6.11. Working with 2-dimensional Arrays
You’re an artillery sergeant in the Union Army during the American

Civil War. The rebel forces are trying to float a barge full of coal down

the Missisippi river to supply fuel for their new ironclad warship. Your

job is to make sure that barge doesn’t reach its destination. You set up

camp on the side of the river and wait for the barge to come through.

But wait! Suddenly a thick fog descends, blocking your view of the

river! You’ll have to fire blind, and listen for the sound of crackling

wood to tell you whether you’ve hit the barge.

Quickly you sketch out a diagram of the river to help you keep track of

hits and misses (see Figure 6.14).

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

Figure 6.14: A coal barge floats down the
Mississippi. The front of the barge is at
[5][1], and the vessel occupies the
four elements to the right of that
position. An artillery shell has hit the
barge at position [6][1], but another
shell at [2][3] has missed.

Hmmm. This sounds like it would make an exciting game! Fortunately,

you learned C programming in Boot Camp, so after completing your

mission you can return home and write Program 6.7.

These are the rules of the game: A coal barge occupies a line of four

consecutive elements in a 2-dimensional array (the map). The barge is

chapter 6. using arrays 185

oriented horizontally, along the flow of the river, and placed at some

random location on the map. The barge must be completely on the

map, it can’t hang off the edge.

In 1863 Union forces built this dummy
ironclad out of an old coal barge, and
used it to frighten Confederates. The
smokestacks were made of pork barrels
and contained smudge pots to make
smoke.
Source: Wikimedia Commons

In order to win the game, the player must hit each of the four array

elements that contain the barge. The player fires an artillery shell by

giving the two indices, [i][j], of an array element. The program tells

the player whether the shell hits the barge.

The program uses a 2-dimensional array named grid to store a map

of the river and the barge’s position. Most of this array contains zeros,

but the four elements occupied by the barge are initially marked with

ones. When a player hits one of the barge elements its value is changed

to -1. The variable nhits keeps track of the total number of hits. The

program keeps running as long as nhits is less than four.

https://commons.wikimedia.org/wiki/File:Admiral_Porter's_Second_Dummy_Frightening_the_Rebels.jpg

186 practical computing for science and engineering

Program 6.7: coalbarge.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int grid[10][5];

int nhits = 0;

int i, j, iprow, jprow;

for (i=0; i<10; i++) {

for (j=0; j<5; j++) {

grid[i][j] = 0;

}

}

srand(time(NULL));

iprow = (int)(7.0*rand()/(1.0 + RAND_MAX));

jprow = (int)(5.0*rand()/(1.0 + RAND_MAX));

for (i=0; i<4; i++) {

grid[iprow+i][jprow] = 1;

}

do {

printf ("Enter x coordinate: ");

scanf("%d", &i);

printf ("Enter y coordinate: ");

scanf("%d", &j);

if (i >= 10 || i < 0 || j >= 5 || j < 0) {

printf ("Bad coordinates. Try again.\n");

continue;

}

if (grid[i][j] == 1) {

printf ("Hit!\n");

grid[i][j] = -1;

nhits++;

} else if (grid[i][j] == -1) {

printf ("Already hit! Try again.\n");

} else {

printf ("Miss! Try again.\n");

}

} while (nhits < 4);

printf ("You sunk my coal barge!\n");

}

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

The front (“prow”) of the barge must

be in the shaded section to prevent the

back end from hanging off the map.

chapter 6. using arrays 187

6.12. Solving a Heat Problem
Let’s use a two-dimensional matrix to help us solve a problem. Imagine

that you have a square metal plate. One edge of the plate is connected

to something very hot, like the engine of a locomotive. The other three

edges are connected to a cooling system that keeps them cold. But

what are the temperatures of the other parts of the plate?

A steam locomotive.
Source: Wikimedia Commons

Figure 6.15: A metal plate, hot on one
edge and cold on the others.

We might assume that points near each other on the plate would have

similar temperatures. Points near the hot edge would tend to be hotter

than points near the cold edges. In fact, it wouldn’t be surprising if

the temperature at any given point were close to the average of the

temperatures at the points around it.

Let’s write a program that tries to estimate the temperature at various

points on the plate. Assume that the very hot edge of the plate has a

temperature of 500 celsius, and that the cold sides are kept at a chilly

zero celsius by our highly efficient cooling system.

We’ll start by dividing the plate into a 100 × 100 grid of points.

https://commons.wikimedia.org/wiki/File:Locomotive_engineering_-_a_practical_journal_of_railway_motive_power_and_rolling_stock_(1900)_(14573293108).jpg

188 practical computing for science and engineering

Hmmm. . . Sounds like a 2-dimensional array might be useful here. We

could define the array like this:

double temp[100][100];

The array named temp will hold the temperature values of the points

on our grid. We already know the temperatures of some of these points.

The points along the hot edge of our plate have a temperature of 500

celsius, and those along the cold edges are at 0. These are the “boundary

conditions” of our problem. We need to determine the temperatures of

the other, interior, points though.

Pierre-Simon, marquis de Laplace made
important contributions to many areas
of mathematics.
Source: Wikimedia Commons

We’ll start by just setting these interior temperatures arbitrarily to zero.

This probably isn’t a good guess for their temperature, especially for

those points near the hot edge, but we can improve our estimate by

using the approximation we mentioned above: We’re going to assume

that the temperature at any point is approximately the average of the

temperatures of the neighboring points.

It turns out that this type of problem is a common one in physics and

engineering. To arrive at the solution mathematically, we’d need to solve

what’s called “Laplace’s Equation” for this system.8 Fortunately, there’s 8 In the language of math, Laplace’s
equation is expressed as ∇2φ = 0.an easy way to find an approximate solution to Laplace’s equation with

a computer program. The technique is called “relaxation”. You’ll see

why soon.

After setting the temperatures, let’s go through all of the interior points,

changing each point’s temperature to the average of its neighbors’

temperatures. After doing this, we might expect that the temperatures

are a now a little more realistic. How far off was our original estimate?

We might look at how much difference there is between our original

guess and the new estimate. What’s the biggest difference?

If we did this averaging process again, we’d get an even better ap-

proximation for the temperatures, and we’d see that the maximum

temperature change is smaller than it was the first time. If we keep

averaging, again and again, the temperature values will eventually

settle into stable values that don’t change much each time we average.

At some point, we decide that this approximation is good enough, and

stop averaging.

A soap film stretching between two
hoops.
Source: Wikimedia Commons

Our approximation started out very far from the true temperatures.

https://commons.wikimedia.org/wiki/File:Laplace,_Pierre-Simon,_marquis_de.jpg
https://commons.wikimedia.org/wiki/File:Bulle_caténoïde.png

chapter 6. using arrays 189

You could think of this original approximation as being a rubber sheet

that’s stretched out into some unnatural shape. Each time we do the

averaging process, the sheet “relaxes” a little, until it falls into whatever

natural shape fits the boundary conditions we’ve imposed. That’s why

this technique is called “relaxation”. It can be used for temperature

problems like this, but also for a real rubber sheet, or for a soap film

on a wire frame. All of these are instances of a system controlled by

Laplace’s equation.

Program 6.8 follows the strategy we’ve described above and uses it to

find approximate temperatures for interior points on our metal plate.

First, it sets temperatures to some initial values, then repeatedly loops

through all of the interior points, averaging temperatures. Every time

it changes a temperature, it looks to at the size of the change and

keeps track of the biggest change. When the changes get small enough

(smaller than smalldiff), the program prints the final temperatures.

Notice that Program 6.8 uses some magic to make sure each element of

the temp and told arrays contains a value of zero when the program

starts. That’s what the special value {{0}} means when defining a

2-dimensional array.

[i][j-1]

[i-1][j] [i][j] [i+1][j]

[i][j+1]

Figure 6.16: Program 6.8 sets the new
value of temp[i][j] equal to the
average temperature of the four array
elements surrounding it. As we saw in
Section 6.7, the array indices can be
used to tell us something about the
relationships between array elements.
In this case, the indices give us
information about which elements are
near each other.

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

Figure 6.17: Temperatures at various
points on the metal plate, as estimated
by Program 6.8.

We can put the program’s output into a file by writing ./relax >

relax.dat, then we can graph the results with gnuplot. Figure 6.17

shows the result of the following gnuplot command:

splot "relax.dat" with pm3d

190 practical computing for science and engineering

The command splot9does a “surface plot”. The qualifier “with 9 Note that it’s splot, not plot.

pm3d” tells gnuplot to use a style of plotting called “palette-mapped

3-d”. This color-codes values based on their height. The color scale

shows which color corresponds to which value.

To enable gnuplot to read the data file, Program 6.8 wrote it in a particu-

lar format. If you look inside the data file (relax.dat) you’ll see that

it contains a single column of numbers. If you scroll down in the file

a little, you’ll see that there’s an empty line after every 100 numbers.

The numbers represent the temperature values along a row of our grid

points on the metal plate. Each extra blank line indicates the beginning

of the next row.

 0

 100

 200

 300

 400

 500

T
e
m

p
e
ra

tu
re

, C
e
ls

iu
s

Figure 6.18: Another view of the
temperature distribution, as seen from
above the plate.

By choosing different “boundary conditions” (the unchanging tempera-

tures at the plate’s edges) we can simulate other interesting situations.

For example, Figure 6.19 shows the temperature distribution on the

plate when there are two hot spots at the top and one hot spot at the

bottom.

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

T
e

m
p

e
ra

tu
re

, C
e

ls
iu

s

Figure 6.19: These graphs show the
temperature distribution when there are
two hot spots at the top of the plate and
one hot spot at the bottom.

chapter 6. using arrays 191

Program 6.8: relax.cpp

#include <stdio.h>

#include <math.h>

int main () {

int i,j;

double diff, maxdiff, smalldiff=1.0e-3;

double temp[100][100] = {{0}}; // Current temps.

double told[100][100] = {{0}}; // Previous temps.

// Set elements along hot edge to 500 celsius:

for (i=0;i<100;i++){

temp[i][0] = 500.0;

}

// Keep averaging until maxdiff is small:

do {

for (i=0;i<100;i++){

for (j=0;j<100;j++){

told[i][j] = temp[i][j];

}

}

maxdiff = 0;

// These two nested loops go through all of the

// interior points:

for (i=1;i<99;i++){

for (j=1;j<99;j++){

temp[i][j] = 0.25 * (told[i-1][j] + told[i+1][j] +

told[i][j-1] + told[i][j+1]);

diff = fabs(temp[i][j]-told[i][j]);

if (diff > maxdiff) {

maxdiff = diff;

}

}

}

} while (maxdiff > smalldiff);

// Write out results:

for (i=0;i<100;i++){

for (j=0;j<100;j++){

printf("%lf\n", temp[i][j]);

}

printf ("\n");

}

}

[0][0] [1][0] [2][0] [3][0] ...

[0][1] [1][1] [2][1] [3][1] ...

[0][2] [1][2] [2][2] [3][2] ...

[0][3] [1][3] [2][3] [3][3] ...

...

Keep this
edge hot:

Keep the other
edges cool:

Estimate the temperature
of the interior points.

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

Initial values

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

Getting better...

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

Final values

See Figure 6.16 on Page 189Relax...

192 practical computing for science and engineering

But what about. . . ?

Let’s look more closely at the trick we used in Program 6.8 when

defining the temp and told arrays. If a statement like:

double temp[100][100] = {{0}};

gives each of the array’s elements a value of zero, could we do this:

double temp[100][100] = {{100}};

to set all of the elements to 100?

Unfortunately, no, but the real result might suprise you. If you

printed the values stored in an array defined like this, you’d find

that element [0][0] had the value 100, as expected, but all of the

other elements would be set to zero.

Let’s back up a little and see how these curly brackets work when

we use them in an array definition. As we noted back on Page 167,

we can initialize the elements of an array by explicitly giving a list

of values in curly brackets, like this:

int marbles[5] = {7,9,3,15,8};

But what if the list contains fewer values than the number of array

elements, like this?:

int marbles[5] = {7,9};

In that case, the first two elements would be set to 7 and 9, and

the rest would be set to zero. Whenever there are too few values,

the computer assumes that we want to set the rest of the values to

zero.

As we’ve noted before (see Chapter 4), variables are just named

sections of the computer’s memory, and we can’t assume that they

contain any particular value before we explicitly give the variable

a value. If we want all of an array’s elements to be zero, we need

to set them to zero. We could do this by saying:

int marbles[5] = {0,0,0,0,0};

or, as we’ve just seen, we could say:

int marbles[5] = {0};

chapter 6. using arrays 193

causing the computer to set the first element to zero, and setting

all of the other elements to zero by default, since we didn’t say

what we wanted them to be.

Some compilers will even let us say “int marbles[5] = {}”,

but that doesn’t work with all of them, so it’s best to always give

at least one value.

So what about the double brackets we used in Program 6.8? That’s

because these are 2-dimensional arrays. With a 2-d array, we can

initialize values like this:

double x[20][20] = {{7,9},{4,3}};

setting the first two elements of the first row to 7 and 9, and the

first two elements of the second row to 4 and 3. All of the other

elements would be set to zero. And, if we said:

double x[20][20] = {{0}};

all of the array’s elements would be set to zero. This is the trick

we used in Program 6.8.

Figure 6.20: A collection of marbles
within the permanent collection of The
Children’s Museum of Indianapolis.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:The_Childrens_Museum_of_Indianapolis_-_Marbles.jpg

194 practical computing for science and engineering

6.13. Conclusion
Arrays are useful whenever your program needs to store several related

values. Array indices uniquely identify each array element, and they

may also say something about relationships between array elements.

(They can indicate the spatial or time ordering of measurements, for

example.)

Some important things to remember about arrays are:

• The elements of an array can be of any type (but all elements of a

given array must be of the same type).

• When defining an array, the number in square brackets says how

many elements are in the array.

• It’s important to remember that an N-element array’s indices start

with zero, and end at N-1.

• Arrays take up memory. It’s easy to write “double x[1000]”, but

remember that this takes as much memory as a thousand single

variables. Keep this in mind when defining large arrays.

• Array elements can be referred to by their indices.

• The index must be an integer.

• The index uniquely identifies a single array element.

• Arrays can optionally be initialized when they’re defined.

chapter 6. using arrays 195

Practice Problems

John Coltrane. Because “Coal Train”.
Source: Wikimedia Commons

1. On page 171 it was suggested that adding an “if” statement to

Program 6.2 could make it safer. Add an “if/else” statement to

Program 6.2 (without changing anything else!) to check whether the

number is too big or too small. If it is, ignore the number and give

the user a helpful message. Call your program coal.cpp.

2. Create, compile and run Program 6.8. Use the “ls” command to

make sure that the program created the file relax.dat.

Use the gnuplot command described above to plot the data using

gnuplot’s “pm3d” plotting style. If your version of gnuplot allows it,

grab the figure with your mouse and rotate it around. Does it look

like what you’d expect?

3. Imagine you have a very short coal train, containing only five cars.

Each of the cars is to be sent to one of your customers. Each customer

is identified by an integer “Valued Customer ID Number” (VCID)

like “37654”.

(a) Using nano, create a data file named orders.dat that contains

five rows of numbers, one row for each car in your train. Each

row of the file will have two numbers: the weight of coal in that

car (which might be a number with decimal places), and the ID of

the customer it belongs to (which will always be an integer). The

file might look like this:

63.4 5487

52.1 30978

77.8 8765

89.0 435

95.3 789

(b) Now write a program named orders.cpp that will read orders.dat.

All of the weights should go into a 5-element array of doubles

named carweight and all of the customer IDs should go into

a 5-element array of ints named vcid, so that carweight[0]

and vcid[0] are the weight and customer ID for the first car,

and so forth. After the program reads the data, have it ask the

user for a car number (a number between zero and four) and print

out the weight and customer ID for that car. Make sure you check

the car number to see if it’s in the range zero to four, and tell the

user if it’s not. Also make sure the program tells the user which

number is which.

Hints: See Program 6.4 for something similar, and look at Chapter

5 for advice about reading things from files.

https://commons.wikimedia.org/wiki/File:John_Coltrane_1963.jpg

196 practical computing for science and engineering

Problem 3 uses two “parallel arrays”, carweight and vcid, to store

two pieces of information about each car. If we wanted to add more

information (maybe the car’s age, so we know when to replace it?)

we could add more arrays. We’ll see a different way to do this sort

of thing later, in Chapter 12.

4. In mathematics, a matrix is an array of numbers. Matrices are impor-

tant in many fields of science, engineering and mathematics.

8 4 1

5 7 5

1 0 3
Figure 6.21: The trace of a matrix is
defined as the sum of its diagonal
elements. In the example above, the
trace is equal to 8 + 7 + 3.

Using nano, create a file named matrix.dat that contains a 3×3

matrix like this:

8 4 1

5 7 5

1 0 3

Write a program named matrix.cpp that reads data from matrix.dat

and puts the numbers into 2-dimensional array, double m[3][3].

To do this, use nested pair of for loops that repeatedly uses fscanf

to read the array’s elements, one at a time. The fscanf statement

might look like this:

fscanf(input, "%lf", &m[col][row]);

where col and row are the column and row numbers.

Make the program do the following:

(a) First, print out the elements of the matrix, so you can make sure

they match the data in matrix.dat.

(b) Second, compute and print out the trace of the matrix. The trace is

defined as the sum of the matrix’s diagonal elements. (See Figure

6.21.) (Hint: The diagonal elements are the ones where the row

and column numbers are the same, like m[0][0] and m[1][1].)

(c) Third, compute and print out the determinant of the matrix. The

determinant for a 3×3 matrix is:

det =

m[0][0]*(m[1][1]*m[2][2] - m[1][2]*m[2][1]) +

m[0][1]*(m[1][2]*m[2][0] - m[1][0]*m[2][2]) +

m[0][2]*(m[1][0]*m[2][1] - m[1][1]*m[2][0]);

You’ll obviously need to be careful when typing this into your

program, but looking at the way the numbers in the statement

line up vertically can help you avoid mistakes.

We can think of each row of the matrix
as the coordinates of a point in
three-dimensional space. In the picture
above, we call these points r1, r2, and
r3. The determinant of the matrix is just
the volume of the parallelepiped
defined by these three points (the
shaded volume above).
Source: Wikimedia Commons

If you make your matrix.dat file look like the example above, you

should find that the matrix has a trace of 18 and a determinant of

121. Use these values to check your work.

https://en.wikipedia.org/wiki/File:Determinant_parallelepiped.svg

chapter 6. using arrays 197

5. Write a program named fibarray.cpp that fills an array with the

first 20 terms of the Fibonacci sequence. The first two numbers in

the Fibonacci sequence are 1, 1, and each subsequent number is the

sum of the preceding two numbers. Your program should have a

20-element int array named term. The program should start out by

setting term[0]=1 and term[1]=1. Then the program should have

a “for” loop that finds the value of each of the remaining 18 terms.

Inside the loop you’ll want to have a statement like term[i+2] =

term[i]+term[i+1]. After this loop is done, add another loop

that prints out all the elements of term. The program’s output

should look like this:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

6. In the Fibonacci sequence each term is the sum of the two preceding

terms. There’s also a “Tribonacci sequence”, in which each term is

the sum of the three preceding terms. It starts out with the numbers

0, 0, 1. Referring to the instructions in Problem 5, write a program

named tribarray.cpp, but with the Tribonacci numbers instead

of the Fibonacci numbers. The program’s output should look like:

0 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513

