7. Statistics

7.1. Introduction

In the 17th century, English authors John Graunt and William Petty
began writing about a new science called “Political Arithmetic”, which
tried to understand social, economic, and public health problems
through the collection and analysis of numerical data. In the 18th
century, authors such as Germany’s Gottfried Achenwall began writing
about another new field of study called “Statistik” which aimed at dis-
covering the general principles by which a state could be successfully
run.

Statistik soon began using the techniques of Political Arithmetic. The
success of a state might depend on the amount of wheat or milk it
produces, or the number of skilled craftsman. A spreading plague
might be detected by systematically collecting data about deaths. These
studies were the beginning of what we call “statistics” today.

The modern science of statistics attempts to see inaccessible underlying
truths by sampling the superficial things that are visible to us. By
surveying a limited number of households, we arrive at an estimate
of the total number of families living in poverty. By observing a few
thousand particle decays, we estimate the probability that such decays
will happen. In the language of Antoine de St. Exupery’s Little Prince,
statistics tries to see the elephant that lies hidden inside the boa (see

Figure 7.3).

The available data is often incomplete, and shows us only a blurry
outline of what’s underneath, so statistics also tries to measure the
uncertainty in its estimates. These measures of uncertainty help us
judge how much we should trust our statistical conclusions.

Figure 7.1: Der Sommer, by Abel
Grimmer (565-1630).

Source: Wikimedia Commons
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Figure 7.2: John Graunt’s Observations
on the Bills of Mortality (1662) studied
mortality data in an effort to
understand the spread of Bubonic
Plague.

Source: Wikimedia Commons

Figure 7.3: A boa who’s swallowed an
elephant, from Antoine de St.
Exupery’s The Little Prince.


https://commons.wikimedia.org/wiki/File:Abel_Grimmer_002.jpg
https://commons.wikimedia.org/wiki/File:Graunt_Observations.jpg
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7.2. Summarizing Data with Histograms

It can be hard to see the patterns in a bunch of raw numbers, but
a graph often makes the data snap into focus. In this section, we’ll
look at a new kind of graph called a “histogram”. The histogram was
introduced in 1891 by Karl Pearson, one of the founders of modern
statistics. It summarizes an arbitrarily large amount of data by reducing
it to a smaller, fixed, number of data points that represent how often
certain values appear in the original data.

Let’s look at an example. Particle physicists often use “scintillation
detectors” to measure the energy of subatomic particles. A “scintillator”
is a material such as Thallium-doped Sodium Iodide which produces a
flash of light when an energetic particle passes through it. By measuring
this flash of light, we can find out how much energy is deposited as a

particle passes through. More light means more energy.
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The output of such a detector is just a bunch of numbers, each of which
corresponds to the energy deposited by a detected particle.® These
energies are measured in “electron Volts” (eV), and a million electron
volts is called an MeV. The data we collect might look like Figure 7.6.

It's hard to see patterns in a stream of numbers like this, but let’s
imagine that we’ve looked at the data and noticed that all of the
numbers lie between o and 20 MeV. It would be interesting to know how
the numbers are distributed in this range. Are they spread uniformly?
Do they bunch up in some places?

If we were rather bad at programming but good with tools, we might
construct a set of bins like those in Figure 7.7 to satisfy our curiosity.
Each bin represents a 4 Mev-wide range of energies. Whenever we see
a particle with an energy in that range, we could drop a marble into
the corresponding bin. After going through all of the data we could
look at our bins and easily see which energies were the most common,
because they’d contain the most marbles.

Figure 7.4: British mathematician Karl
Pearson (1857-1936).

Source: Wikimedia Commons

Figure 7.5: A scintillation detector
produces a flash of light whenever an
energetic particle passes through it. The
amount of light is proportional to the
energy that the particle deposits in the
detector. The flash of light is converted
into an electrical signal by a
“photomultiplier tube”, and the electrical
signal is measured and recorded.

* The size of the electrical signals com-
ing out of the detector is proportional
to the energy. For our example, we’ll
just assume that we can read the energy
values directly.

15.130490
16.942571
16.627112
10.780935
14.569799
15.192141

6.489004
12.386759
17.793823

4.181682
19.381618

Figure 7.6: Some data from our detector,
representing energies measured in MeV.
It’s hard to make sense of a stream of
numbers.


https://commons.wikimedia.org/wiki/File:Portrait_of_Karl_Pearson.jpg
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The pattern of high and low marble stacks that we’ve produced is
called a histogram. It tells us how frequently a measurement falls
within a given range. For this reason, histograms are sometimes called
“frequency plots”.

If we wanted to save our histogram (maybe we want to re-use the
lumber for another project?) we could just write down the number of
marbles in each bin. But if a histogram is just equivalent to a list of
numbers, that means we could use an array in a C program to store it.

Program 7.1 reads energies from a file and produces a histogram,
represented by an array of bin counts. The program reads a list of
numbers from the file energy.dat. The numbers represent energies
from a scintillation counter, ranging between approximately o and 50
MeV. For each number, the program adds a virtual marble to one of 50
bins. The bins are the elements of the array named bin.

To find out which bin to put the marble into, the program divides
each energy value by the bin width, and rounds the result down to the
nearest integer. The result is the bin number. For example, take a look
at Figure 7.7 again. In this figure, an energy of 9 MeV would go into
bin number 2, since the bin width is 4 MeV, and 9/4 = 2.25.
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Figure 7.7: Binning the detector data
produces a histogram.
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Figure 7.8: A histogram can also
represent a spectrum. The most intense
places on this fluorescent light spectrum
are just those where photons are most
frequent. In the graph, we’ve marked
only the top of each of 700 “columns of
marbles”.

Spectrum taken by Finian Wright, using a DIY spectrometer.


https://www.youtube.com/watch?v=IA5BTD-aelo
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In Program 7.1, for simplicity, we’ve made the bin width 1 MeV, so
we can just look at the bin number to see the approximate energy it
represents.

Program 7.1: hist.cpp

#include <stdio.h>

int main () {
int i, binno, overunderflow = 0;
double energy, binwidth = 1.0;
int bin[50];
FILE *input;

for ( i=0; 1<50; 1i++ ) {

bin[i] = 0; // Reset all bins to zero.

input = fopen( "energy.dat", "r" );
while ( fscanf( input, "%1f", &energy ) != EOF ) {
binno = energy/binwidth; // Find which bin.

// Is it too small or too big?

Read lines
from file.

if ( binno < 0 || binno >= 50 ) {
overunderflow++;

continue; // Skip this value and jump to the next.

bin[binnol++; // Add a marble to this bin.
}

fclose (input) ;

\

for ( i=0; 1<50; i++ ) {
printf ("%d %d\n", i, bin[i]);
}

printf ("# Saw %d over/underflows\n", overunderflow);

At the end of the program, it prints out each bin number and the
number of virtual marbles that bin contains.

As we saw in Chapter 6, it's important to check our array indices to
make sure we're not going past the end of the array. What if the file
energy.dat contains some unexpected energies that would fall into
bins beyond the last element of our bin array? What if a negative



number somehow found its way into the file? We’d want to know
about these things, but we wouldn’t want our program to crash.

Underflow

To record these unexpected values, Program 7.1 has a variable called
overunderflow that counts the number of overflows (energies that
are too low) and overflows (energies that are too high). The program
checks the energy with an “if” statement like this:

if |

binno < 0 || binno >= 50 )

2

The condition in the “if” statement checks to see if either of two
conditions are true by using the “or” operator, | |. (We say >= 50

because the highest bin number is 49.)

If an overflow or underflow is found, the program increments the value
of overunderflow and then immediately skips to the next energy
value in energy.dat. It accomplishes this by using a “continue”
statement. In Chapter 4 we saw that it was possible to stop a loop by
using a break statement. The continue statement is similar, except
that instead of stopping the loop, it causes the program to skip the rest

of the current trip through the loop and immediately start the next trip.

When the program finishes, it prints out the number of overflows and
underflows that were seen. Notice that it prints a hash symbol (#) in
front of the message about over/underflows. This is so the message
won’t confuse gnuplot if we want to plot the results. Gnuplot ignores
any lines that begin with #.
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Figure 7.9: In Program 7.1,
overunderflow counts the number of
overflows and underflows.

Figure 7.10: Legend has it that the
Greek philosopher Archimedes proved
the value of noticing overflows. He'd
been given the task of measuring the
density of a crown to determine
whether it was made of pure gold. This
required measuring the crown’s volume,
but he couldn’t figure out how to do
that. Getting into his bath one day, he
noticed that his body displaced an
equal volume of water, and it was easy
to measure the volume of water. He
jumped from the tub, shouted “Eureka!”,
meaning “I've found it!” and ran naked
through the streets of Syracuse.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Archimede_bain.jpg
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. . . 35.130490
Exercise 36: Making a Histogram 36.942571
36.627112

For this exercise you'll need a copy of the data file energy . dat. 40.780935
. q . S . 34.569799

You can find instructions for obtaining it in Appendix C.2 on 35 192141
page 542. Take a look inside this file using nano. You should 36.489004
32.386759

see a single column of numbers, representing simulated
energy measurements of 100,000 particles.

Figure 7.11: Some of the data in the file
Try graphing this file by starting gnuplot and typing: energy.dat.

plot "energy.dat"

The result should look something like Figure 7.12. *

Exit from gnuplot and then create, compile and run Program
7.1. The program’s output should be two columns of num-
bers (a bin number and the number of “virtual marbles” in

that bin), followed by a message about overflows and under-

flows. By looking at the columns of numbers, you should

20
0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

already be able to see a pattern emerging. Particle Number

Figure 7.12: The data in energy.dat,

Now run the program again, redirecting its output into a plotted with gnuplot.
file, like this:
16000
./hist > hist.dat 14000
312000
. (910000
Start gnuplot and plot the data by using the command: @ 8000
.© 6000
plot "hist.dat"™ with impulses = 4000
0 2000
. . 0 1 '}
“with impulses” causes gnuplot to draw a vertical line for 0 10 20 30 40 50
each point. The result should look something like Figure Energy Bin
7.13. Where do most of the energy values lie? Figure 7.13: The output of Program 7.1,

plotted with gnuplot.

Even though the data file we're analyzing (energy.dat) contains
100,000 lines, the output of Program 7.1 is just two 50-line columns. We
could give Program 7.1 a million times more data to analyze, and the
program’s output would still be only fifty lines, although the numbers
on those lines would be larger. This is one reason histograms are useful:
they can summarize large data sets very efficiently. In the exercise
above, the program turns 100,000 numbers into a 50-number summary.



7.3. Resolution and Range of Histograms

We could improve Program 7.1 by making a few changes that allow us
to adjust the resolution of the histogram (the width of its bins) and its
range (the lowest and highest energy values it can display). Let’s also
make the program more general, so it’s clear we can use it for other
kinds of data besides energy values.

Controlling the Resolution of a Histogram:

In Program 7.1 we set the bin width to 1 MeV for convenience, so we
could see the energy values by just looking at the bin number. Bin
number 35 corresponded to 35 MeV. What if we wanted a finer- or
coarser-grained histogram, though? We might want a bin width of 0.5
MeV or 2 MeV, for example. In that case, we might want the program
to print the energy value of each bin instead of the bin number.

But do we want to print the energy at the left side of the bin, the right
side, or the middle? These are all different. Let’s just print all of them,
and then we can decide which value we want to use when we graph
the data.

We can make this happen by modifying just a few lines of our program.
Instead of saying this:

printf ("%d %d\n", i, bin[i]);

we can say this:

elow = binwidthx*i;

emid = binwidthx* (0.5+1i);

ehi = binwidthx (i+l);

printf ("$1f $1f $1f $d\n", elow, emid, ehi, bin[i]);

The first three lines calculate the energy value at the left, center, and
right of the bin (to get the center, we add 0.5 to the bin number). Then,
instead of printing the bin number, we print all three energy values.
This will mean that our output has four columns: the three energy
values and the number of “marbles” in the corresponding histogram
bin.
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Figure 7.14: Finer-grained resolution
sometimes shows us features of our
data that are invisible at lower
resolutions. (Photo of Werner
Heisenberg.)

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg_crop.jpg
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Controlling the Range of a Histogram:

Program 7.1 also assumes that the energy range we’re interested in
starts at zero. Sometimes this won’t be the case. Maybe we want to
focus on the range between 30 and 40 MeV, for example. Or, if we're
measuring something other than energy, we might even have negative
values. Maybe we’re measuring distance, and we want to look at values
between -10 meters and 10 meters, where zero is the origin of our
coordinate system.

To accommodate that we’ll need to make a few more changes to our
program. First, let’s define the lower bound of our energy range with a
new variable:

double emin = 20.0; //MeV.

Here we’ve set it to 20 MeV, but we could set it to whatever we want.

Now we’ll need to use this value when we calculate the bin number
(binno) and when we calculate the energy of each bin at the end of the
program. Our new calculation of binno would look like this:

binno = (energy-emin)/binwidth;

Instead of just energy, we're using energy-emin to determine which
bin we should use. When energy is equal to emin, the bin number is
zero. At the end of the program, when calculating the left, center, and
right energy values of the bin we can say:

emin + binwidth~*i;
emin + binwidth=* (0.5+1);
ehi = emin + binwidth* (i+1);

elow

emid

We've added emin because the lowest bins correspond to that energy.

Calculating binwidth Instead of Specifying It:

It’s often convenient to specify the limits of a histogram’s range and
the number of bins, and then let the program calculate the value of
binwidth. We might, for example, want 100 bins covering the range
from 20 MeV to 45 MeV. That would tell us that each bin has a width of
(45 —20)/100 = 0.25 MeV.

We'll need to rearrange a few things to make that happen. Let’s start
by adding a new variable to specify the upper end of our range:

double emax = 45.0; //MeV.

-
-
b .

v

Figure 7.15: Two images with the same
resolution (both are 348 x348), but the
bottom image zooms in on a small
region near the center of the upper
image. If we have a fixed number of
histogram bins, we should try not to
waste them on regions where there’s no
interesting data. (Image of a “gnat ogre’
— a robber fly of the genus Holcocephala —
taken by the author.)

’



Now let’s define a variable that specifies the number of bins, to make it
easy to adjust this value later:

const int nbins = 50;
int bin[nbins];

As we mentioned in Chapter 6, the word const tells the C compiler
that this value should never change. (See Page 172.) Next, we need to
add a line to calculate the value of binwidth:

binwidth = (emax—emin)/nbins;

Finally, we need to replace 50 with nbins wherever the program has
previously assumed there were 50 bins.

Putting It All Together:

Okay, now let’s see what the finished program looks like after we’ve
made all of these changes. Notice that Program 7.2 uses x, xmin
and xmax in place of energy, emin and emax, since we can use this
program for any kind of data. There are also some new printf
statements at the bottom of the program that remind the user about the
program’s settings.
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Figure 7.16: Output of Program 7.2,
plotted with the gnuplot comand
plot "hist.dat" using 2:4
with impulses.
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Program 7.2: hist.cpp, Improved

#include <stdio.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 20.0;
double xmax = 45.0;
const int nbins = 100;
int bin[nbins];
FILE *input;

binwidth = (xmax—-xmin)/nbins;
for ( i1i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to =zero.

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%$1f", &x ) != EOF ) {
binno = (x—-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.
}
bin[binno]l++; // Increment the appropriate bin.

}
fclose (input) ;

for ( 1=0; i<nbins; i++ ) {

xlow = xmin + binwidthx*i;

xmid = xmin + binwidthx (0.5+i);

xhi = xmin + binwidth* (i+l1);

printf ("$1f %1f $1f %d\n", xlow, xmid, xhi, bin[il]);
}
printf

("# Xmin %$1f\n", xmin);
printf ("# Xmax $1f\n", xmax);
printf ("# Binwidth = %1f\n", binwidth);
("#
("#

Nbins = %d\n", nbins);

Saw %d over/underflows\n", overunderflow);

printf
printf




7.4. Two-Dimensional Histograms

Imagine that you're a school principal whose students have just finished
taking reading and math tests. You could make a histogram of all the
reading scores or all the math scores, but you'd like to see how reading
scores and math scores are related to each other. Do students with high
math scores also have high reading scores, or do students excel in only
one area? What can we do? Let’s stroll down the hall and talk to the
Shop teacher. He’s a clever guy. Maybe he’ll have a suggestion.

You begin by telling him about the wooden bin you constructed for
sorting marbles in the preceding section. He thinks about the problem
for a moment, then says, “Well, all you need to do is make a crate that
lets you sort marbles out in two directions: one direction for reading
scores and the other for math. Give me a few minutes and I'll make one
for you.” Sure enough, after a few minutes of sawing and hammering,
he’s produced a crate like the one shown in Figure 7.17.

“Great!” you say. “Each marble represents a student. I just need to drop
the marble into the bin that corresponds to that student’s reading and
math scores. In the end, the number of marbles in a bin will tell me
how many students had that particular combination of reading and
math scores.”

0-25 26-50 51-75 76-100
Reading Score

Our crate full of marbles can be thought of as a two-dimensional his-
togram?. As with the one-dimensional version we saw in the preceding
section, we can save our histogram by just writing down the number of
marbles in each bin. In Program 7.1 we used a one-dimensional array
(bin[50]) to hold the values in our one-dimensional energy histogram.
For a two-dimensional histogram, we’ll need a two-dimensional array.
We might store the number of marbles in each bin of Figure 7.17 in a
3 X4 array of integers, defined like this: int bin[3][4];
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Figure 7.17: Binning marbles in two
directions produces a two-dimensional
histogram. In this example, math scores
range from zero to 9o and reading scores
range from zero to 100. We’ve divided
the math scores into bins with a width of
30, and the reading scores into bins with
a width of 25.

> Two-dimensional histograms are some-
times called “bivariate” histograms,
because they show data from two vari-
ables (reading score and math score in
this example).
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Take a look again at Program 7.1 (hist.cpp). If we wanted to modify
this program so that it makes a two-dimensional histogram, we’d need
to change bin into a 2-d array, and we’d need to modify the way we
fill this array.

For example, assume we have a data file that has two numbers on each
line: a math score and a reading score. Instead of the single bin number
(binno) that we calculate in Program 7.1, we now need to calculate
two bin numbers, one for math and one for reading. We might do that
like this:

mbin = math/mbinwidth;

rbin = reading/rbinwidth;
if ( rbin < 0 || rbin >= nrbins ||
mbin < 0 || mbin >= nmbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

bin[mbin] [rbin]++; // Increment the appropriate bin.

where reading and math are the reading and math scores, mbin and
rbin are the calculated bin numbers for math and reading, mbinwidth
and rbinwidth are the widths of the math and reading bins, and
nmbins and nrbins are the number of math and reading bins.

Figure 7.18 shows two ways of representing a 2-dimensional histogram
of reading and math scores. Here the reading and math scores both

range between zero and 100, and we’ve split each range into ten bins.

In the top picture, we use a vertical bar to represent the height of each
bin’s stack of marbles. In the bottom picture we look down on the top

of these stacks, and we’ve color-coded each stack to indicate its height.

Two-dimensional histograms are useful when we want to see how
two measured quantities interact with each other. In Figure 7.18, we
can easily see that students with high math scores also tend to have
high reading scores. This wouldn’t be obvious if we just looked at the
numbers, or graphed math or reading scores by themselves.

Number of Students

3 &

o
IS

Number of Students

0
0 10 20 30 40 50 60 70 80 90 100
Math

Figure 7.18: Two ways we might
represent the data in a two-dimensional
histogram.



7.5. Finding the Mean

Looking at the one-dimensional histogram in Figure 7.13 we can see
that the energies tend to cluster around approximately 35 MeV, but they
trail off to the left and right in a bell-shaped curve. If all of the particles
actually had the same energy, and all of their energy was deposited in
the detector, we might expect all of the numbers in energy.dat to be
exactly the same. In practice, though, our measurements will always
have some random variation no matter how careful we are. This is
partly because of imperfections in our instruments, but there may also
be physical limits to the precision of our measurements

[ <— Truth(?) |

Distribution of all
3 possible
measurements.

Reality

A

Parent Population

Data we observe. —

Sample Population

If we made an infinite number of measurements, we might see that
they’re spread out like the middle graph in Figure 7.19. In reality, we
make a finite number of measurements that are just a small sample of
all of the possible measurements, like the right-hand graph. If we only
take a few measurements, it’s not too unlikely that all of them may
happen to lie on the left or right side of the true value. As we make
more measurements, our data will begin to look more and more like
the middle graph.3

Once we’ve taken enough measurements to approximate the middle
graph, what’s our best guess for the true value in the left-hand graph?
Some of our measurements are higher than the true value and some
are lower, but we expect that the true value lies somewhere between
the extremes, at some “average” value.
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Figure 7.19: We are always at two
removes from the “underlying truths”
that we're trying to measure.
Statisticians call the right-hand graph the

“sample population”, and the middle

graph the “parent population”, from
which the sample is drawn at random.

3 In statistics, this is called “The Law of
Large Numbers”.
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In everyday speech, we use the word “average” to mean “typical”. The
“average guy” is a typical person. How do we measure this, though?
How can we objectively decide what’s “typical”?

In science, we often use a quantity called the “arithmetic mean” (often
just called the “mean”) to represent what’s “average” or “typical”.
You've probably used this before. The mean of a set of values is the
sum of all the values, divided by the number of values. Mathematically,
we could write it like this:

(7.1)

>
[
Z|=
L=
25

where N is the number of values, X; are the values themselves, and X
is the mean.

If we slice a cake into several pieces, the mean size of a piece is the sum
of the size of all the pieces (which is just the total size of the cake),
divided by the number of pieces. The mean is the size that each piece

would have if the cake were sliced up into perfectly equal parts.

We often assume that the mean value of our measurements is the best
guess at the true, underlying value that we're trying to measure. If
we make enough measurements, we expect that the mean value will
approximate the mean value of all possible measurements, and we
expect that the mean of all possible measurements will approximate
the true, underlying value, which may never be directly accessible to
us.

Program 7.3 reads the energy values from energy.dat and finds their
arithmetic mean. In the program, the variable named sum is intially
set equal to zero. Each time a new number is read, it’s added to sum.
After reading all of the numbers, the program calculates the mean by
dividing the sum by the number of energy values.

Figure 7.20: The Tempting Cake, by
Albert Rosenboom

Source: Wikimedia Commons

Figure 7.21: On the left, an unfairly
sliced cake. On the right, a cake sliced
into equal pieces. The size of each
right-hand slice is equal to the mean size
of the left-hand slices.


https://commons.wikimedia.org/wiki/File:Albert_Roosenboom_The_tempting_cake.jpg

Program 7.3: mean.cpp

#include <stdio.h>
int main () {
double energy;
double sum = 0.0;
int nvalues = O0;
double mean;
FILE *input;

input = fopen("energy.dat","r");
while ( fscanf( input, "%$1f", &energy ) != EOF ) {

sum += energy;
nvalues++;

mean = sum/nvalues;

printf ("Number of values is: %d\n", nvalues );
printf ("Mean value is: %$1f\n", mean );

fclose (input);

We could also modify our histogram program (Program 7.1) so that it
tells us the mean energy. Program 7.4 is a new version of hist.cpp
that adds up the energy values as they’re read, and prints out the mean
when it’s done. Again, we put a # on the front, so gnuplot will ignore
this line.

Notice that we want to include all of the energy values, even the
underflows and overflows. We want the arithmetic mean of all values.

Exercise 37: You Big Meanie!

Modify your earlier hist . cpp program so that it looks like
Program 7.4. Compile and run it. Does the value given by
the program look consistent with what you saw when you
plotted a histogram of the data (Figure 7.13)?
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Figure 7.22: In the 1968 Beatles movie
The Yellow Submarine, the Blue Meanies
hated music.

Source: unigami, at Deviant Art


http://unigami.deviantart.com/art/Chief-Blue-Meanie-from-Yellow-Submarine-280821413
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Program 7.4: hist.cpp, Version 2

#include <stdio.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
double sum = 0.0;
int nvalues = 0;
const int nbins = 50;

int bin[nbins];
FILE xinput;

binwidth = (xmax—-xmin)/nbins;
for ( 1i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "energy.dat", "r" );
while ( fscanf( input, "S$1f", &x ) !=

EOF ) {

sum += x; 4/—{ Add each value to the sum. I
nvalues++;4—_‘___% Countﬂuenunﬁmrofvahms.l

binno
if |

binno < 0

(x—-xmin) /binwidth;
|| binno >= nbins ) {

overunderflow++;

continue;

}

bin[binno]++;

}

fclose (input) ;

for ( i=0;

xlow
xmid
xhi
print
}
printf
printf
printf
printf
printf
printf
printf

f

i<nbins; i++ ) {
xmin + binwidth»*i;
xmin + binwidth=* (0.5+1);

xmin + binwidth=* (i+1);

// Skip this value and Jjump to the next.

// Increment the appropriate bin.

This version of the program prints the
average energy value. Changes from
Program 7.1 are shown in bold.

("$1f %1f %$1f %d\n", xlow, xmid, xhi, bin[il);
# Xmin = %$1f\n", xmin);

# Xmax = %$1f\n", =xmax);

# Binwidth = %$1f\n", binwidth);

# Nbins = %d\n", nbins);

# Saw %d over/underflows\n", overunderflow);

# Mean value is %1f\n", sum/nvalues );

# Nvalues = %d\n", nvalues );




7.6. Standard Deviation

Figure 7.13 shows that the energy values in energy.dat tend to bunch
up in one spot, forming a peak. If you were describing this shape to
someone, you could start by telling them that “the mean energy value is
35 MeV”. This says where the peak is, but it doesn’t tell them anything
about how wide it is. How can we measure the width of a peak like
this?

If the peak is wide, we might expect that a lot of data points would
be far from the mean value. In the terms used in Equation 7.1, we
might think about going through all of the points and adding up the
values of X; — X. Unfortunately, we’d find that this sum is always zero,
since some points are to the left of the mean and some to the right. It's
possible to prove mathematically that the sum of all of these positive
and negative distances will always add up to zero.

What we really want is just the distance from the mean, without worry-
ing about whether it’s positive or negative. Since the square of a real
number is always positive, we might think about adding up the squares
of the X; — X values. Statisticians define a quantity called the “sample
variance” that does just this. It’s defined this way*:

N
=y L X=X (72)

where s? is the variance. For the example we’ve been working on, the
units of the variance would be MeV? (energy squared). The square root
of the variance is called the “standard deviation”.> In our example, this
has units of MeV, and it can be used to describe the width of the peak
in Figure 7.13. The standard deviation tells us the “typical” distance
between a data point and the mean value.

Figure 7.24 shows some data along with its arithmetic mean (X) and
standard deviation (s). The data we observe is just a sample of all
the possible values we might see if we did an infinite number of
measurements. Our data is called the “sample” and the collection of
all possible values is called the “parent”. Underneath it all, like the
elephant inside the boa, is the true value that we're trying to estimate.

There’s a practical problem with using Equation 7.2 in a computer
program, though. Since it uses X (the mean value of the energy), we’d
have to first loop through all of the energy values to calculate their
mean, and then loop through them all again to calculate the variance.
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Figure 7.23: A comparison of
histograms made from two samples,
one with a small standard deviation
and one with a large standard deviation.
Both samples have the same mean value
and contain the same number of data
points.

Source: Wikimedia Commons

+Why do we divide by N — 1 instead
of N? A simple explanation is that the
variance is undefined if you have only
one data point.

5 This is another term that was intro-
duced in the 189os by Karl Pearson.


https://commons.wikimedia.org/wiki/File:Comparison_standard_deviations.svg
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Sample
Distribution

Parent
Distribution

Fortunately, clever mathematicians have provided us with a shortcut to
make things easier. It turns out that Equation 7.2 can be rewritten like
this:

2 1T [ 180
=N ;Xi _N(;Xz’) (7.3)

The right-hand sum in Equation 7.3 is the same one we're already using
in Program 7.4. To find the variance we also need the left-hand sum,
which is the sum of the squares of the values. Our program just needs
to do one loop, and keep two sums: the sum of the values and the sum
of their squares.

That’s what Program 7.5 does with our energy.dat data. The pro-
gram includes math.h at the top, since it uses the sqrt and pow
functions. We’ve also added a new variable sum?2 to store the sum of
the squares, from Equation 7.3. At the end of the program, we calculate
the standard deviation and print it out.

Figure 7.24: Sample distribution, parent
distribution (the set of all possible
measurements), and true value. X is the
mean of the sample, and s is its standard
deviation.
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Program 7.5: stddev.cpp

#include <stdio.h>
#include <math.h>

int main () {
double energy; This program is an improved version
double mean; of mean. cpp (Program 7.3) that prints

out the standard deviation of the energy
values. Changes from Program 7.3 are

double stddev;

double sum = 0.0; shown in bold.
double sum2 = 0.0;
int nvalues = 0;

FILE xinput;

input = fopen("energy.dat","r");
while ( fscanf( input, "%$1f", &energy ) != EOF ) {

sum += energy;
sum2 += pow( energy, 2 );
nvalues++;

mean = sum/nvalues;

stddev = sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) );
printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %1f\n", mean );

printf ("Std. Dev is: %$1f\n", stddev );

fclose (input);

We can apply the same technique to our ever-improving hist.cpp
program, giving it the ability to print out the standard deviation as well
as the mean value. That’s what we do in Program 7.6.

Exercise 38: Finding the Standard Devi-
ation

Create, compile, and run Program 7.6, a new version of
hist.cpp that now prints the standard deviation. How
large is this value in comparison with the width of the peak
in Figure 7.137
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Program 7.6: hist.cpp, Version 3

#include

#include

int main
int i,
double
double
double
double
double
int nva
const 1
int bin
FILE *1

binwidt

for ( 1
bin[i

}

input
while (

sum +
sum2
nvalu

binno
if |
ove
con
}
bin[b
}

fclose (

for ( 1

xlow =

xmid

xhi

print
}
printf
printf
printf
printf
printf
printf
printf

printf

<stdio.h>

<math.h><*‘ Needed for sqrt and pow. I

() |
binno, overunderflow = 0;

x, xlow, xmid, xhi, binwidth;
xmin 0.0;

xmax 50.0;

sum 0.0;

sum2 0.0;

lues 0;
nt nbins
[nbins];
nput;

50;

h

(xmax—-xmin) /nbins;

i<nbins; i++ ) {

0;

] =

"r" );
&xX )

fopen (
fscanf ( input,

"energy.dat",
ll%lf",

= X;

// Reset all bins to zero.

'= EOF ) |

This is an updated version Program 7.4.
Changes from Program 7.4 are shown
in bold.

+= pow( x,

2) ;4\{ Add square of each value to sum2.

es++;
= (x—-xmin) /binwidth;
binno < 0 ||
runderflow++;
tinue;

inno] ++;
input) ;

=0; i<nbins; i++ ) {
xmin + binwidth=*i;
= xmin + binwidth=* (0.5+1);
xmin + binwidth=* (i+1);
("%$1f %$1f %$1f %d\n",

f xlow,

$1f\n",
$1f\n",
Binwidth $1f\n",
Nbins $d\n", nbins);

Saw %d over/underflows\n",
Mean value is %1f\n",
Std. dev. is %1f\n",

xmin) ;
xmax) ;

Xmin
Xmax

binno >= nbins ) {

xmid,

sum/nvalues

// Skip this value and jump to the next.

// Increment the appropriate bin.

xhi,

binwidth) ;

overunderflow) ;

)i

bin[i]);

sgrt ( (sum2 - sumxsum/nvalues)/(nvalues-1) ) );

nvalues

= %d\n", )i

("# Nvalues




7.7. The “Normal” or “Gaussian” Distribution

The peak in Figure 7.13 is a bell-shaped curve. Curves like this occur
very frequently in data. In fact, they occur so frequently that this
shape is called the “Normal Curve”. The German mathematician Carl
Friedrich Gauss (1777-1855) was perhaps the first to appreciate the
significance of it, so it’s sometimes called a “Gaussian Curve”.

The ubiquity of this curve was a source of amazement to early statisti-
cians, who saw it popping up everywhere: astronomical data, actuarial
tables, agricultural data.

Why does this curve appear so often? Because of the “Central Limit
Theorem”, which says that any linear sum of random variables tends
toward a Normal distribution, no matter what the distribution of the
individual variables looks like.®

The Central Limit Theorem is so important that it’s called the “second
fundamental theorem of probability”. (The first is the Law of Large
Numbers.)

The Normal curve can be expressed mathematically by the following
equation:

(x—%)?

P(X) — Ae_ 252 (7.4)

The curve reaches its maximum at %, the mean value of x. The curve’s
width is controlled by s, the standard deviation. The height of the curve
at its maximum is A.

If we look at data that’s bunched together in a Normal distribution, the
standard deviation of the data gives us some quantitative information
about the way the data is distributed. We know, for example, that about
68% of Normally-distributed data lies within one standard deviation
away from the mean value. (See Figure 7.28.)

If Program 7.6 tells us that the standard deviation of our energy data
is 2.5 MeV and the mean is 35 MeV, that implies that 68% of our
energy values fall between 32.5 MeV and 37.5 MeV. If we were telling
someone about our measurements, we might say that the energy value
we observed was 35 + 2.5 MeV.
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Figure 7.25: Gauss is pictured on this
German banknote. If you look closely
you'll see a small picture of the Normal
curve at the left.

Source: Wikimedia Commons

¢ Note that this means you can construct
a pretty good Normal distribution just
by adding together sufficiently many
numbers pulled from any random
distribution. For example, roll six dice
and add their numbers together. Keep
doing this and recording the sum each
time. A histogram of the sums will look
very similar to the Normal distribution.

-10 -5 0 5 10

Figure 7.26: Three Normal curves with
standard deviations of 3 (the widest), 2
and 1.

B
Standard Deviation

Figure 7.27: The standard deviation of a
Normal curve is the horizontal distance
from the midline to one of the points
where the curvature changes from
positive to negative.


https://commons.wikimedia.org/wiki/File:10_DM_Serie4_Vorderseite.jpg
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We also know that about 95% of the data lie within 2 standard deviations
from the mean, and about 99.7% of the data are within 3 standard
deviations.

A

68% of Data
are within = s
from the mean

99.7% of Data

are within = 3s
from the mean

95% of Data

are within = 2s
from the mean

rd

X-S X X+s

Figure 7.28: If data are distributed
If you look at a Normal curve, you can find its standard deviation by Normally, 68% of the values fall within
one standard deviation from the mean.

- ¢ . 95% of values are within two standard
up) to negative (concave down). Mathematically, these points (called deviations, and 99.7% are within three

locating the places where the curvature changes from positive (concave

“points of inflection”) are where the 2" derivative of the function is standard deviations.
zero. The standard deviation is the horizontal distance from the mean
to either of these two points. (See Figure 7.27.)

Exercise 39: It's Only Fitting

We’ve seen that gnuplot can plot data, but it can also plot
functions. Several functions, like sin(x), cos(x), and exp(x)
are built into gnuplot, but you can also define your own
functions. Try starting up gnuplot and typing the following:

p(x) = axexp(-0.5% (x—m) *x*2/s5**2)
s=2.5

m=35

a=10000

plot "hist.dat" with impulses, p(x)

The first line defines a new function p (x) that’s just the



Normal curve given in Equation 7.4 above. The next three
lines set the parameters: s is the standard deviation, m is the
mean (X), and a is the height of the peak.

The last line plots your histogram data from the file hist .dat
and overlays a Normal curve on top of it. You can see that
the shapes are similar, but the curve doesn’t exactly match
the data.

We could try adjusting the values of s, m, and a by hand
to make the curve fit better, but gnuplot can do this for us
automatically.

Type the following gnuplot commands:

fit p(x) "hist.dat" via s,m,a
replot

The first command tells gnuplot to adjust the parameters s,
m, and a to make p (x) match the data in hist .dat. When
it’s done, it prints out a lot of information including the
new values of the parameters. The second command tells
gnuplot to re-do our last graph, which will now draw p (x)
using the new parameters. Does it fit better now?

But what about...?

In the data we’ve been looking at, each data point is some distance,
d (positive or negative) from the mean value. The sample standard
deviation, s, tells us how far a “typical” data point strays from
the mean, but there are other ways we could choose to quantify
a “typical” deviation. For example, we could look at the average
absolute value of d.

The standard deviation has some nice properties, though. In par-
ticular, it has a natural relationship to the Normal distribution. As
we saw above, 2s is the distance between the “points of inflection”
(the places where the curvature goes from positive to negative) of

the Normal distribution.

More importantly, statisticians tell us that the sample standard
deviation is usually the best estimate of the standard deviation
of the infinitely many data points we could possibly collect (the
“parent population”).
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Figure 7.29: A Normal curve

superimposed on our hist.dat data.

The top graph shows a curve

that

doesn’t quite match. The bottom graph
shows the curve after we’ve asked
gnuplot to adjust the parameters for the

best fit.
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7.8. Exploring The Central Limit Theorem

In Chapter 2 we learned how to simulate rolling dice. For example,
Program 2.4 generates a random number between 1 and 6, just like
rolling a 6-sided die. Program 7.7, below, is an updated version that
rolls a 6-sided die 1,000 times. If we used gnuplot to plot this program'’s
output, we would see something like Figure 7.30.

Notice that we see about the same number of rolls landing on each
number, which is what we’d expect from a fair die (or a good random-
number generator!). If we made a histogram of the values obtained
from rolling a single 6-sided die, it might look like Figure 7.31. As you
can see, each value has an equal probability of turning up.

Program 7.7: singledie.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int roll;

int min = 1;

int max = 6;

int nvals;

int 1i;
double x;
nvals = max - min + 1;

srand (time (NULL) ) ;

for ( roll=0; roll<1l000; roll++ ) {*=*
rand()/ (1.0 + RAND_ MAX);

min + (int) (nvals*x );
printf( "%d\n", i );

X

i

Some dice games require you to roll two or more dice at once, and add
up their numbers. Let’s modify Program 7.7 so that it rolls twelve dice
at once, instead of just rolling one die. We'll need to add an extra loop
and a couple of variables to do that. The result is Program 7.8.

6 T o e e

5 [ i S S+ 0 e s ansi ]

T P S TN ——

3 Jap— prmpn——

Number Rolled

2 L — -

1 b s somngm e ba g vevepe e o ]
0.0 1000 2000 300.0 4000 500.0 600.0 700.0 800.0 900.0 1.0k

Roll Number

Figure 7.30: The output of
singledie.cpp plotted using the
gnuplot command plot
"singledie.dat"
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Figure 7.31: A histogram of the values
obtained by rolling a single 6-sided die
1,000 times.




Program 7.8: multidice.cpp

#include
#include
#include
int main
int rol
int min
int max
int nva

int 1,

<stdio.h>
<stdlib.h>
<time.h>
0 A

1, die;

= 1;

= 6;

1s;

sum;

double x;

nvals =

srand (t

for ( r
sum =
for (

x =
i =
sum

}
print

max — min + 1;
ime (NULL) ) ;

011=0; roll<1000; roll++
0;

die=0; die<12; die++ ) {
rand () /(1.0 + RAND_MAX) ;
min + (int) (nvals*x );

+= i;

£f ( "$d\n", sum );

If we plotted the output of Program 7.8 we’d see something like the
upper graph in Figure 7.32. Notice that now the values aren’t spread
evenly any more. When we roll twelve dice and add them up, their sum
is most likely to be somewhere around 42. This is even more apparent
in the bottom graph of Figure 7.32, where we’ve increased the number

of rolls to 10,000.

To get a better sense of the distrubution of the values, let’s make a
histogram of them. We can do that by combining Program 7.8 with
Program 7.2. The result is Program 7.9 below. (Notice that we’ve set
the number of dice rolls to 10,000 now.) If we ran this program and
plotted its output using the gnuplot command

plot "dicehist.dat" using 1:4 with impulses"

we’d see something like Figure 7.33.
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Figure 7.32: The upper figure shows the
output of Program 7.8 plotted using
gnuplot. The bottom figure shows what
it would look like if we increased the
number of rolls from 1,000 to 10,000.
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Figure 7.33: A histogram of our dice
roll sums, created by Program 7.9, using
the following gnuplot command:

plot "dicehist.dat" using 1:4
with impulses
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Program 7.9: dicehist.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
int roll, die;
int min = 1;
int max = 6;

int nvals;

int i, sum;

double x;

const int nbins = 100;

int bin[nbins];

int binno, overunderflow = 0;
double xlow, xmid, xhi, binwidth;
double xmin = 0.0;

double xmax = 100.0;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.
}

nvals = max - min + 1;
srand (time (NULL) ) ;

for ( roll=0; roll<10000; roll++ ) {
sum = 0;

for ( die=0; die<l1l2; die++ ) {
x = rand()/ (1.0 + RAND_MAX) ;

i = min + (int) (nvals*x );

sum += 1i;

}

binno = (sum-xmin) /binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue; // Skip this value and jump to the next.
}

bin[binno]++; // Increment the appropriate bin.

}

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidthx*i;
xmid = xmin + binwidthx (0.5+i);
xhi = xmin + binwidth* (i+1);
printf ("%$1f %1f %1f %d\n", xlow, xmid, xhi, bin[i]);
}
printf $1£f\n", xmin);
printf Xmax = %1f\n", xmax);

("# Xmin
("#

printf ("# Binwidth = %1f\n", binwidth);
("#
("#

printf Nbins = %d\n", nbins);
printf Saw %d over/underflows\n", overunderflow);




Figure 7.33 shows that a value of 42 appears almost 700 times when
we sum up our twelve dice. The farther away from 42 we get, the less
likely we are to see a given sum. The distribution of values looks like
a Gaussian or Normal distribution, as described in Section 7.7. As
we noted in that section, this effect is known as the “Central Limit
Theorem”. It tells us that the sum of several random variables tends to
take on a Normal distribution.

Even though the distribution of numbers we get from each die is flat, as
shown in Figures 7.30 and 7.31, the sum of these numbers approaches
a Normal distribution (see Figures 7.32 and 7.33).

The fact that our observed values are centered around 42 makes sense
too. Each 6-sided die gives a value between 1 and 6, so the average
value we should get from a single roll of a die is (14 6)/2 = 3.5. That
means that the average value for the sum of twelve dice should be
12x3.5 = 42.
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Figure 7.34: Beans bounce off of pegs as
they roll down a “Galton Board”. At the
bottom they fall into bins, like histogram
bins. The sum of all the random left and
right bounces experienced by the beans
results in an approximately Normal
distribution.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Galton_board.png
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7.9. Analyzing Multi-Column Data

Statistics began as a study of demographic data (numerical data about
populations), so let’s take a look at some “people data” before we finish.
The US constitution mandates that a census be taken every ten years,
and the task of collecting and analyzing data falls on the US Census
Bureau.

Census takers collect a lot of data for each household they visit. They
might record the number of children, the number of bedrooms in the
house, the amount paid monthly in rent, and so forth. We might store
the data for each household in a row, with a column for each quantity
that was recorded. The result would look something like this:

0 1 3 10700 2 2 0
0 1 4 7800 2 40 0
0 1 3 64200 2 130 0
0 1 3 -1 2400 210 0
0 0 1 -1 2 10 780
0 1 3 44600 2 90 1905

In the following sections, we’ll be constructing a program that can read
a data file from the US Census Bureau that contains information about
1,285,588 households. The file has seven columns of integers for each
household. Each column represents a different measurement:

Column Description

Number of related children in household
Lot size

Number of bedrooms

Family income

Annual fuel cost

Monthly gas cost

Monthly rent

coUw kW N R O

The file we’ve been analyzing, energy . dat, contains only one column
of data. Only one measurement (the amount of energy deposited) was
recorded for each particle that passed through the detector. The census
taker, on the other hand, takes several measurements for each family.
Let’s look at how we might modify our earlier programs to allow them
to read such multi-column data.

One way to do it would be to replace our single variable (energy, in
the earlier programs) with an array. The number of elements in the
array will need to match the number of columns in the data file.

Figure 7.35: The US Census Bureau is
charged with conducting a decennial
census.

Source: Wikimedia Commons

Figure 7.36: Taking the census could be
a dangerous job. Consider the plight of
a census taker asked to survey these
denizen’s of an 1890 New York
“Bandit’s Roost”. This picture was taken
by Jacob Riis, who prowled New York’s
tenements accompanied by
then-Police-Commissioner Theodore
Roosevelt, documenting “How the
Other Half Lives” (the title of Riis’s
best-known book).

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Seal_of_the_United_States_Census_Bureau.svg
https://commons.wikimedia.org/wiki/File:Bandit's_Roost_by_Jacob_Riis.jpeg

Program 7.10 uses this strategy to analyze data from a seven-column
data file. In order to read each row, it loops through the seven elements
of the array data. The new variable field specifies which column of
the data we want to analyze, and the new program gives the variable
x the value of data[field]. (Program 7.10 sets field to o, but it
could be set to any value from o to 6.) The new program also changes
the name of the data file from energy.dat to census.dat.

Because Program 7.10 uses a “for” loop to read multiple items from
each line, we can no longer use a simple break when we reach the
end of the file, as we did when reading energy.dat. Remember from
Chapter 4 that the break statement only stops the loop it’s in. If we
used a break inside the “for” loop of Program 7.10 when we get to the
end of the file, the break would only stop the “for” loop. It wouldn't
stop the outer, enclosing “while” loop, so the program would keep
trying (and failing) to read lines forever.

There are several ways we could handle this. One of them is to use C’s
“goto” statement. A goto statement jumps immediately to another
location in your program. You might think that this could be a highly
dangerous thing to do, and you’d be right. There’s a superstition
among programmers that says goto should never be used, but experts
agree” that goto is sometimes the best solution in one specific case:
when your program needs to break out of nested loops like the ones
we have in Program 7.10.

Notice the line in Program 7.10 that just says “done: ;7. This is called
a “label”. A label can be any word, followed by a colon®, on a line by
itself. Labels don’t do anything. They just mark a spot in your program.
Think of them as bookmarks. When we say goto done; we're telling
the program to jump to the label named “done”. When Program 7.10
gets to the end of the file it’s reading, the goto statement jumps out of
the nested loops and continues below the done:; label.

Used in this way, goto statements can be a safe and efficient way to
break out of nested loops. If you think of goto as a kind of “super-
break” it’s quite unlikely that you'll be eaten by a velociraptor?... but
remain vigilant.
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7 See the “exception” under
ES.76 in the CPP Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines.

8 Notice that this is a colon, not a
semicolon. In the examples in this
book we'll also put a semicolon after
the label, just as we do with other C
statements.

9 See https:/ /xkcd.com/292.

Figure 7.37: Skull of Velociraptor
mongoliensis.

Source: Wikimedia Commons


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-goto
https://xkcd.com/292/
https://commons.wikimedia.org/wiki/File:Velociraptor_mongoliensis_type_skull_and_jaws.jpg

Read
lines
from file
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Program 7.10: census.cpp

#include <stdio.h>

#include <math.h>

int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;

const int nbins = 50;
int bin[nbins];
double sum 0.0;
double sum2 = 0.0;
int nvalues 0;

FILE *input;
int field=0;
double datal[7];

// Add "data"

// Select column 0 from data.
array.

binwidth = (xmax—-xmin)/nbins;
for ( 1=0; i<nbins; 1i++ ) {
bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "census.dat", "r" );
[ while (1) {
for ( i=0; i<7; i++ ) {
Get 7 if ( fscanf( input, "$1f", &data[i] ) ==
ltems goto done;
from }
each line }
x = data[field]; // Choose which column.
sum += X;
1 sum2 += pow( x, 2 );
nvalues++;
binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue;
}
bin[binno] ++;
L }
done:; <
fclose (input) ;
for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth=*i;
xmid = xmin + binwidth=* (0.5+1);
xhi = xmin + binwidth= (i+1);
printf ("$1f %1f $1f %d\n", xlow, xmid, xhi, bin[i]);
}
printf ("# Field number %d\n", field);
printf ("# Xmin = $1f\n", xmin);
printf ("# Xmax = %$1f\n", xmax);
printf ("# Binwidth = %1f\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %$1f\n", sum/nvalues );
printf ("# Std. dev. is %1f\n",
sqgrt ( (sum2 - sumxsum/nvalues)/ (nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

EOF ) {

Jump out of nested
for and while
loops when we reach
the end of the file




7.10. Filtering Data

Census takers can’t always collect all measurements from every house-
hold. Sometimes a measurement just doesn’t apply. What’s the monthly
rent on a house that’s not being rented? What’s the annual household
income for an unoccupied house? Our data sets will sometimes contain
special values that indicate “Not Applicable”. We might not want to
include these values in our averages, or show them on our histograms.
We could think of this a “filtering” our data.

In the census data we’re going to look at, these special values are
indicated by zeros or negative numbers. By making a couple of changes,
we can cause our program to ignore such values. First, we want to look
for special values whenever we read a line from our data file. When we
find one, we want to skip that line and just go on to the next. We can
accomplish this by adding the following section before the “sum +="
in Program 7.10:

if ((x <=0 ) {

continue; // Ignore zeros and negatives.

We’ll probably want to know how many values were ignored (or, equiv-
alently, how many weren’t). It would be a good idea to add a line like
the following at the end of the program, along with the other numbers
we print out:

printf ("# Saw %d data values\n", nvalues);

The variable nvalues tells us how many data points we really ana-
lyzed, not counting those we filtered out.

We can modify our data analysis program to filter our data any way
we like. We might even look at the other columns on each line when
deciding whether or not to use the data on that line. For example,
maybe we're interested in the number of children per household, but
only want to look at families paying more than $500 per month in rent.

7.11. Setting Analysis Parameters

Program 7.10 explicitly chooses a particular column to analyze by
setting the field variable. It would be nice if the program asked
us which column we wanted to use. We can easily add a section
somewhere before our while loop to do this:

printf ( "Pick a column [0-6]: " );
scanf ( "%d", &field );

CHAPTER 7. STATISTICS 229

Figure 7.38: The planck spacecraft
examined the microwave radition
leftover from the Big Bang. The figure
above shows analyses of planck’s data
with several different filters applied.

Source: Planck Mission, European Space Agency


http://www.cosmos.esa.int/web/planck/picture-gallery
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If we pick a different column, we might also want to use a different bin
width. (This is the width of the bins into which we drop our “virtual
marbles” while making a histogram.) A bin width of 1 is fine if we're
looking at the number of children per household, but we might want
a width of 10,000 if we're looking at annual household income. An
income difference of $1 isn’t very interesting, but $10,000 would be. We
could add another section to our program for setting the bin width:

printf ( "Enter bin width: " );
scanf ( "%$1f", &binwidth );

If we specify binwidth, we can calculate the value of xmax (the maxi-
mum value we're interested in) like this:

xmax = binwidth*nbins + xmin;

Let’s leave the lower end of our range (xmin) at zero, since the data in
each colum of our data set includes some small values.

We could add any number of similar sections to the beginning of a data
analysis program, to allow us to set any parameters we need. Maybe
we want to analyze only data for households with annual incomes
in a given range (say, between $20,000 and $30,000). In that case, the
program could ask for minincome and maxincome, and use those

variables when filtering the data.

Figure 7.39: Some members of the
author’s family, circa 1939.
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7.12. Using stderr

If our program asks the user for parameters, we introduce another
complication: some of the program’s output (the request to “Enter
bin width”, for example) needs to go to the computer’s display, so
the user can see it, but other output (the histogram data) needs to
be written into a file so we can plot it with gnuplot. If we just type
./census > output.dat then the user won't see the requests for
entering parameters, and the program will just sit forever waiting for
them.

There are several ways to solve this problem. For one, we could use
fprintf to write the histogram into a file instead of sending it to the
display, as we saw in Chapter 5.

Let’s look at another way of doing it, though. As we saw in Chapter 5,
we can open a file with fopen like this:

FILE xoutput;
output = fopen ("output.dat","w");

The variable output is a “file handle” that we can use later with
fprintf. We can open as many files as we want, and choose which
file handle to use when we want to print something into one of them.

It turns out that three file handles are automatically created whenever
you run your program. These are named stdout, stderr, and stdin.
The stdout file handle doesn’t point to a real file. Instead, it points to
your display. The printf statement uses this file handle whenever it
prints something. The statement printf ("Hi!"); is just equivalent
to fprintf (stdout, "Hi!") ;.

“

When you type a command like “. /census > output.dat” the
computer disconnects stdout from your display and connects it to
the file output.dat instead. This makes the output of any printf

statements go into the file instead of to your screen.

The stdin file handle points to your keyboard. The statement scanf ("%d",
&1i); is the same as fscanf (stdin, "%$d", &i);.

The third predefined file handle, stderr, also points to your display,
but it’s intended to be used for errors and warnings. Imagine, for
example, that you've typed “./census > output.dat” but your
program crashes with a Segmentation Fault error. The error message
should be sent to your display, not to the file. Error messages like this
are sent to stderr, which is still connected to your display.
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stderr connected
to screen.

stderr
T

Jcensus > output.dat —

T -

© 0100101
1110010

“Connect stdout to stdout |
the file output.dat”

1100001

We can use stderr for our own purposes, too. We want our “Enter
bin width” message to go to the display even if we’ve redirected the
program’s output into a file. All we need to do is send those messages
to stderr instead of stdout. We can do that by modifying a couple

of print f statements:

fprintf ( stderr, "Pick a column [0-6]: " );
scanf ( "%d", &field );

fprintf ( stderr, "Enter bin width: " );
scanf ( "%$1f", &binwidth );

Instead of print £, we use fprint £ to send these messages to stderr.

But what about...?

Are there other ways we could split the program’s output between
display and file? Why yes, I'm glad you asked!

One way involves the third predefined file handle, stdin. This nor-
mally points to your keyboard, and it’s used by scanf whenever it
reads some input. However, just like stdout, you can disconnect
stdin from the keyboard and connect it to a file instead. If you
did that, you could cause your program to read stored answers
from a file, rather than having to type them in at the keyboard.
Figure 7.41 shows how to do this, using the “<” symbol on the
command line. If we did it this way, the program would expect to
find two numbers in the file input .dat: the column number we
want to analyze, and the bin width.

output.dat

Figure 7.40: The predefined file handles
stdout and stderr both start out
pointing at your display, but they can be
redirected elsewhere.



“Connect stdin to “Connect stdout to
the file input.dat.” the file output.dat.”

Jcensus < input.dat > output.dat
A stdout

| stdin

5 0100101 2 0100101
1110010 1110010
, 1100110 , 1100110
1101101 1101101
1100001 1100001

input.dat output.dat

7.13. Improved Analysis Program

Program 7.11 is an improved analysis program that incorporates all of
the improvements we’ve talked about in the preceding sections. When
we run the program it asks us which column (o through 6) we want to
analyze, then it asks us what bin width we want to use. The histogram
data is sent to the display, unless we redirect it to a file.

Figure 7.42 shows some results from the program. To plot the income
graph, for example, we did this:

./census > income.dat

and then answered the questions:

Pick a column [0-6]: 3
Enter bin width: 10000

The output file was graphed with gnuplot as with our earlier histograms.

Notice that the data here aren’t bunched into Normal distributions like
the energy data. In the energy case, we were making many measure-
ments of the same value (the energy of some kind of particle striking
our detector). The only variations in these measurements were due to
random factors.

The census data, on the other hand, is inherently different from one
household to another. The distribution of values could give us some real
information about people’s lives. Nonetheless, we can still calculate the
mean values of things like income, and calculate the standard deviation
of our data sample. The standard deviation still tells us something
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Figure 7.41: We could redirect both
stdout and stdin if we wanted to. The

“<” on the command line means “Read

input from this file”, just as the “>”
means “Write output to this file”. If the
program asks us some questions, we can
save our answers in the file input .dat.
The program will read them from there,
instead of waiting for us to type them.
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about the width of the distribution, as it did with the energy data, even

though the income distribution is far from Normally-distributed.

Exercise 4o0: Little Pink Houses

For this exercise you'll need a copy of the file census.dat.

You'll find instructions for obtaining it in Appendix C.3 on
page 544.

First, examine census.dat with gnuplot. Start gnuplot and
type the command:

plot "census.dat" using 4

ghuplot numbers columns starting with 1, so this should

display a graph of household income similar to Figure 7.43.

Note the bar of negative values representing special cases
that our analysis program will ignore.

Now exit from gnuplot and compile Program 7.11 (the new
census. cpp, on Page 236). Run the program like this:

]iS ZIO 2‘5 3:0 3:5 4‘0 4‘5 50
# of Bedrooms
Figure 7.42: Some results from Program
7.11, plotted with gnuplot. Bin width was
set to 10,000 for the income graph, 100
for the rent graph, and 1 for the
bedrooms and children graphs.

in Dollars

Annual Income

5000 10000 15000 20000 25000 30000 35000 40000 45000

Household #

Figure 7.43: The output of the gnuplot
command
plot "census.dat" using 4.
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./census > income.dat

Select the income by choosing column number 3 (the pro-
gram starts numbering the columns with o). Use a bin width
of ten thousand.

2000

Now start up gnuplot again and ask it to plot the results of

8

your analysis:

Number of Households
8
8

plot "income.dat" using 1:4 with boxes

8

0
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 50000¢

By saying “using 1:4” we tell gnuplot to use column 1 Household Income, in Dollars
(the smallest value in each bin) as the value on the x axis, ) ) )

. . . Figure 7.44: The income histogram
and column 4 (the number of “virtual marbles” in each bin) produced by our analysis program.
as the y value. The graph shows us how many households

are in each income range.

If you have time, try plotting other columns from the census.dat
file and analyzing them.
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Program 7.11: census.cpp, Version 2

#include <stdio.h>
#include <math.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0;
double xmax;
const int nbins = 50;
int bin[nbins];
double sum = 0.0;
double sum2 = 0.0;
O .

int nvalues
FILE *input;
int field=0;
double datal[7]; // Add "data" array.

4

fprintf ( stderr, "Pick a column [0-6]: " );
scanf ( "%d", &field );

fprintf ( stderr, "Enter binwidth: " );
scanf ( "%1f", &binwidth );

xmax = binwidthxnbins + xmin; // Calculate xmax from xmin and binwidth.

for ( 1=0; i<nbins; 1i++ ) {
bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "census.dat", "r" );
while ( 1 ) {
for ( i=0; 1i<7; i++ ) {
if ( fscanf( input, "%1f", &datali] ) == EOF ) {

goto done;

x = datal[field]; // Choose which column.
if ((x <= 0 ) {

continue; // Ignore zeros and negatives, since they're special.

sum += X;
sum2 += pow( %X, 2 );
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nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue; // Skip this value and Jjump to the next.
}
bin[binno]++; // Increment the appropriate bin.
}
done:;
fclose (input) ;

for ( 1i=0; i<nbins; i++ ) {
xlow = xmin + binwidth=*i;
xmid = xmin + binwidth=* (0.5+1);
xhi = xmin + binwidth* (i+1);

printf ("$1f $1f %1f %d\n", xlow, xmid, xhi, bin[i]);
}

printf ("# Field number %d\n", field);
printf ("# Xmin = %$1f\n", xmin);

printf ("# Xmax = %$1f\n", xmax);

printf ("# Binwidth = %1f\n", binwidth);

(
(
(
(
printf ("# Nbins = %d\n", nbins);
(
(
(

printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %$1f\n", sum/nvalues );
printf ("# Std. dev. is %$1f\n",

sgrt ( (sum2 - sumxsum/nvalues)/ (nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

237
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7.14. Conclusion

In this chapter we’ve looked at some basic techniques for doing sta-
tistical analysis of data with computer programs. Histograms and
calculations of the mean and standard deviation are primary tools for
data analysis in the sciences.

The details can vary greatly, but the outline of most data analysis
programs will look much like Figure 7.45. We’ve discussed each of
these steps as we developed and improved our census analysis program.

Figure 7.45: The figure above shows an

O G et Param ete rS ;?é}gii\: n?.f a typical data analysis

oYy h
O Read Data

Ea y q:J
o
[] 8
4 3 N\ E
. Filter Data 5
W y ©
[] S
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e, 12

Oi Analyze

O Write Results
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Practice Problems

1. Write a small program named listmean.cpp that finds the mean
value of a list of numbers. Start out with an array of numbers, like
this:

double x[10] = {0,1,2,3,4,5,6,7,8,9};

Use a “for” loop to go through the elements of the array, adding
them up. At the end of the program, print out the mean value of
these numbers.

2. The “mean” that we’ve talked about in this chapter is the “arithmetic
mean”. There are other kinds of mean value that we could calculate.
One of them is called the “geometric mean”. To find the geometric
mean of a set of numbers, multiply them together and take the n-th
root of their product, where n is how many numbers are in the set.
For example, if we have the numbers 4, 5, and 6, their geometric
mean would be:

V4x5x6 or, alternatively  (4x5x6)!/3

Write a program named geomean . cpp that calculates the geometric
mean of these nine numbers:

double x[9] = {1,2,3,4,5,6,7,8,9};
Hints:

* You can use the pow function to find the n-th root. For example,
the 4th root of 38 would be pow ( 38, 1.0/4 ). Note that it’s
important to say 1.0/4 instead of 1/4, because the latter would
tell the computer that you wanted to trim the decimal places off
of the result.

¢ When summing up a bunch of numbers we start with sum = 0.0
and add each number by saying sum += x. When multiplying a
bunch of numbers, you might start by saying product = 1.0,
then multiply by each number by saying product *= x.

3. Using Program 7.5 as a starting point, create a program called
stats.cpp that prompts the user to enter numbers, one at a time,
and then prints out the mean value and standard deviation of the
numbers entered.Make sure the program can accept numbers that
have decimal places.

You'll need to think about how the user can let the program know
that he/she is finished entering numbers. If you only allow positive
numbers, you could ask the user to enter “~1" to stop the program.
There’s a better way to do it, though. It turns out that you can mimic
an “EOF” by typing Ctrl-D (that is, holding down the Ctrl key while
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pressing the D key). When a program sees Ctrl-D when reading
from the keyboard, it’s the same as seeing an “End Of File” when
reading from a file. Use this trick in your program. Hint: You won't
need to open or close any files, and you can use scanf instead of
fscanf.

4. Imagine an inebriated person standing beside a lamppost. He wants
to get home, so he starts walking, but each time he takes a step it’s
in a different, random, direction. How far away from the lamppost

will he be, on average, after 100 steps? 25

This is a well-known problem in mathematics called “the drunkard’s
walk”. As you can see from Figure 7.46, the distance travelled by the
drunkard can vary a lot from one trial to the next. If he walked in
a straight line, he’d end up 100 steps away from the lamppost, but
most of these random paths leave him much closer.

Write a program named drunkard.cpp that simulates 1,000 of
these 100-step paths and prints out the average final distance from
the lamppost. (Measure all distances in “steps”, which we assume

to be of equal length.) Make sure you use srand (time (NULL)) to

choose a different “seed” for the random number generator each Figure 7.46: The paths of 20 drunken

time you run your program. people, each shown in a different color.
) The lamppost is at the origin. The
Here are a few hints to help you: distance units are “steps”, which we
assume to be of equal length. Each
* You'll need a pair of nested loops: An outer loop for each path, person has taken 100 steps.

and an inner one for each step.

¢ Keep track of the person’s position with a couple of variables,
xpos and ypos. Remember to set them both back to zero at the
beginning of each path.

¢ Every time the person takes a step, generate a random angle like
this:
angle = 2.0xM_PIxrand()/ (1.0+RAND_MAX) ;
then add cos (angle) to xpos and sin (angle) to ypos to get

the person’s new position.

¢ At the end of each path, calculate the final distance from the origin
like this:

distance = sqgrt( Xpos*xpos + ypoOsS*ypos );

and add that to a sum of all of the distances, for use later when
you compute the mean distance.

¢ To check your work: your program should find that the average
final distance is about 8.86 steps. This is 0.886 x the square root
of the number of steps.



This kind of random motion is common in nature, making the
drunkard’s walk an important problem in science. In physics, for
example, it describes the random motions of molecules in a gas, or
the motion of impurities jumping across a surface. In chemistry it
describes the shapes of polymers. In economics, random walks can
even explain some of the variation in stock prices.

. Modify Program 7.11 so that it asks the user for two new parameters:
maxincome and minincome (maximum and minimum income) as
described on Page 230. Use these in the filter section of the program
(the section where we currently check to see if x is less than or equal
to zero). Skip the current row of data if the following is true:

data[3] < minincome || data[3] > maxincome

. The following program tests how fast your computer can create files.
The program repeatedly opens a file ("jittertest.dat"), writes into it,
then closes it. As it’s doing this it keeps track of how long each
open/write/close cycle takes (in microseconds).

Program 7.12: jitter.cpp

#include <stdio.h>
#include <sys/time.h>
#include <math.h>
long epoch;
void startclock () {
struct timeval t;
gettimeofday (&t, NULL);
epoch = t.tv_sec » (int)le6 + t.tv_usec;
}
int microtime () {
struct timeval t;
gettimeofday (&t, NULL);

return( (int) (t.tv_sec * (int)le6 +
t.tv_usec - epoch) );
}
int main () {
int 1i;

int tstart, delay;
FILE *x output;

startclock () ;

for ( i=0; 1<1000; 1i++ ) {
tstart = microtime();
output = fopen( "Jjittertest.dat", "w" );
fprintf ( output, "Testing...\n" );
fclose ( output );
delay = microtime() - tstart;
printf ( "%d\n", delay );
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Figure 7.47: Photons generated in the
center of the sun follow a “drunkard’s

walk” path as they make their way to
the sun’s surface. This twisty path can
include trillions of steps and take as
much as a million years to complete.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Sun920607.jpg
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The top part of the program (everything above int main ()) is just
some magic that lets us measure time to microsecond accuracy. Some
of this will become clear in Chapters g9 and 12, but for now, don’t
worry about how it works.

The program’s “for” loop opens, writes, and closes a file 1,000
times. Before opening the file, the program saves the current time (in
microseconds) in the variable t start. After the file is closed, the
program looks at the new time and calculates how long it took to
open, write, and close the file. This time (again in microseconds) is
stored in the variable named delay and printed with printf.

Copy this program, compile it and run it. You should see a string
of mostly 3-digit numbers. Now modify the program so that it
calculates the mean and standard deviation of delay and prints
those values at the end of the program.

The mean value will tell you how long, on average, it takes your
computer to open a file, write a little text into it, and close the file.
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Figure 7.48: If you graphed the
numbers from the jitter program,
they might look like this. As you can
see, sometimes an open/close takes a
lot longer than usual.
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Figure 7.49: If you made a histogram
from the numbers, it might look like
this. Note that most of the data are
clustered around 300 microseconds
here, but there are some measurements
that go all the way up to thousands of
microseconds. (This graph throws away
anything bigger than 2,000 s.)



