
8. Character Strings

8.1. Introduction

Figure 8.1: Some very early text: The
Epic of Gilgamesh, first written down
around 2,000 BCE. It tells the story of
King Gilgamesh and his friend Enkidu
and their epic journey to visit the wise
man Utnapishtim, who was a survivor
of the Deluge. New fragments of the
Epic were discovered in an Iraqi
museum in 2015.
Source: Wikimedia Commons

Until now we’ve avoided reading or writing text in our programs, and

have worked exclusively with numbers. Even though we use a lot of

numbers in science and engineering, we still need to work with words

sometimes. Wouldn’t it be convenient to have a header at the top of

each column of numbers in a data file, saying what that column means?

We might also want to use text for data values themselves, like “on”

or “off” instead of zero or one, to make our data easier for humans

to read. Even if we have a glossary of numerical values and their

meanings, like “32 = Virginia, 33 = Maryland”, it’s handy to be able

to just look at the data in a file and see its meaning directly, without

having to go look up the meaning of each number. B
G
D
H
W
Z
H

’
Y
K
L
M
N
S
‘

T P
S
Q
R

T
Š

Figure 8.2: The Phoenician alphabet.
Source: Wikimedia Commons

Early writing systems used written symbols to represent the sounds of

speech. Learning to read requires that you learn a sort of glossary of

these symbols and their speech equivalents. Computers can only store

data in the form of binary numbers, so somewhere there’s going to

need to be a glossary that matches up text with numerical equivalents.

In this chapter we’re going to see how computers store text, and how to

read, write and compare text in a C program. Although you might not

expect it, introducing text also introduces a lot of potential problems

for the programmer.

8.2. Character Variables
As we’ve seen, there are several different types of variables in C. We’ve

used “int” for integers and “double” for floating-point numbers.

Now we’re going to introduce another type of variable: “char”. A

char variable can hold one character (letter, number, punctuation, etc.)

http://www.smithsonianmag.com/smart-news/epic-of-gilgamesh-new-verses-discovered-worlds-oldest-story-180956844/?no-ist
http://www.smithsonianmag.com/smart-news/epic-of-gilgamesh-new-verses-discovered-worlds-oldest-story-180956844/?no-ist
https://commons.wikimedia.org/wiki/File:GilgameshTablet.png
https://commons.wikimedia.org/wiki/File:Phoenician_alphabet.svg

244 practical computing for science and engineering

Here’s a C statement that defines a char variable named letter and

gives it the initial value ’A’:

char letter = 'A';

Notice that we use single-quotes (apostrophes) around the letter. This

tells the computer that A isn’t the name of a variable, it’s literally just

the letter A. Program 8.1 shows how you might use char variables.

Program 8.1: checkyn.cpp

#include <stdio.h>

int main () {

char answer;

printf ("Can you ride a bike? (y or n): ");

scanf ("%c", &answer);

if (answer == 'y') {

printf ("Yay! Biking is fun.\n");

} else if (answer == 'n') {

printf ("Awww. You should learn.\n");

} else {

printf ("Might ride a bike, but can't follow instructions.\n");

}

}

Along with the new variable type, we need a new type of placeholder

for our printf and scanf statement. Just as we use “%d” for int and

“%lf” for double, we use “%c” for char. When we say “%c” we mean

“insert a single character here”.

Figure 8.3: Three Men on Wheels (1900,
aka Three Men on the Bummel) by Jerome
K. Jerome is a sequel to Three Men in a
Boat (to Say Nothing of the Dog) (1889). It
follows Jerome, George, and Carl on a
bicycle trip through Germany.

8.3. Character Strings
We can use an array of char elements to hold a chunk of text. We call

such an array a “character string” (see Figure 8.4). We’ll use the terms

“character array”, “character string”, and “string” interchangeably.

As we saw in Chapter 6, C lets us put numbers into an array when we

define it (although this is only practical for small arrays). For example,

we could define a small array of integers and print them out like this:

chapter 8. character strings 245

int array[5] = {1,2,3,4,5};

int i;

for (i=0; i<5; i++) {

printf ("%d\n", array[i]);

}

We could do something similar with an array of characters if we wanted

to:

char string[20] = {'t','h','i','s',' ',

'i','s',' ','a',' ',

't','e','s','t','.'};

int i;

for (i=0; i<20; i++) {

printf ("%c", string[i]);

}

Since we’ve omitted the \n all of the characters will be printed on

the same line, and the output will say “this is a test.” That’s a

really tedious way to define a chunk of text and print it out. Fortunately,

C provides with a couple of shortcuts to make it easier.

C
S C I E N E

Figure 8.4: Think of a character string
as being like a string of letter beads.

First of all, there’s a special way of setting the inital value of character

strings. Instead of using curly brackets and a list of single-quoted

characters, we can just enclose the text in double-quotes:

char motto[10] = "Science!";

Second, there’s a special placeholder, “%s”, for printing character

strings all at once, instead of one character at a time:

printf ("%s\n", motto);

Notice that we don’t have to use all of the elements of a character array.

In the example above, the text “Science!” is only eight characters long,

but we’ve defined motto to have ten elements. In fact, if we don’t

plan on ever putting more text into a character string, we can ask the

compiler to figure out its length automatically, by just leaving the length

blank:

char motto[] = "Science!";

246 practical computing for science and engineering

Of Course, we’ll run into trouble if we try to stuff more characters

into a character array than it will hold. This would create the same

problems we saw in Chapter 6 with other kinds of arrays.

In the following we’re going to look at several tiny programs that

illustrate some of the problems you might run into when you use

character strings in your programs. In each case, we’ll show you the

“right” way to do it

8.4. How Strings Are Stored

International Morse Code
1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.

U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Q
P

R
S
T

1
2
3
4
5
6
7
8
9
0

Figure 8.5: Morse Code replaces letters
with patterns of dots and dashes.
Source: Wikimedia Commons

Prior to the 1960s, the most widespread way of communicating data

electronically was morse code (see Figure 8.5). When a telegram was

sent, its text was encoded in morse code and transmitted through air

or a wire to its destination, where it was decoded back into text.

01000001 A 01010101 U

01000010 B 01010110 V

01000011 C 01010111 W

01000100 D 01011000 X

01000101 E 01011001 Y

01000110 F 01011010 Z

01000111 G

01001000 H 00110000 0

01001001 I 00110001 1

01001010 J 00110010 2

01001011 K 00110011 3

01001100 L 00110100 4

01001101 M 00110101 5

01001110 N 00110110 6

01001111 O 00110111 7

01010000 P 00111000 8

01010001 Q 00111001 9

01010010 R

01010011 S ...etc.

01010100 T

American Standard Code for
Information Interchange (ASCII)

00000000 = “NUL”

Figure 8.6: ASCII code replaces letters
with zeros and ones.

Morse code was fine for human telegraphers, but it was clumsy for

computers. In the 1960s the “American Standards Association” pub-

lished a new, more computer-friendly way of transmitting text. This

was called the American Standard Code for Information Interchange

(ASCII).

In ASCII, each character is represented by 8 bits of information (1

byte). When you store text in a file on disk, the text is stored as ASCII

characters. (Actually, other encodings like UTF-8 may be used these

days because they allow multi-national characters, but the principle is

the same. For simplicity, let’s just assume everything is ASCII.)

8.5. The Length of Strings
Take a look at Figure 8.7, where we define a 10-element character array

called name and put the word “Fred” into it. If we wanted to print the

text stored in name we might write a C statement like this:

printf ("%s\n", name);

That looks straightforward enough, but it leads to a puzzle: The char-

acter array name has ten elements, but we’re only using four of them.

How does the printf function know when it gets to the end of the

text? In fact, as we noted in Chapter 6, C doesn’t prevent us from

https://commons.wikimedia.org/wiki/File:International_Morse_Code.svg

chapter 8. character strings 247

reading or writing past the end of an array. Shouldn’t we have to tell

printf how many characters are in our text, or at least tell it how many

elements are in the name array? With other types of array, we haven’t

been able to just say “print the array”, so why are we able to do so with

character arrays?

F r e d \0

char name[10] = “Fred”;

0 1 2 3 4 5 6 7 8 9

char =
1 byte

10 bytes

name

Figure 8.7: The end of a string is
indicated by a special non-printable
character, the “NUL” character, which
we represent by ’\0’ here (see Figure 8.6).
Its ASCII representation is “00000000”.

The answer is that the end of the text in a character array is marked by

a special ASCII character, the “NUL” character, which has the ASCII

code 00000000. When we define a character string as in Figure 8.7 we

need to be sure to leave room for the longest text it will ever contain

plus one extra element to hold the trailing NUL character.

Without the NUL character, printf would just keep on printing bytes

until it happened to find a NUL somewhere in memory or caused the

program to crash, since it wouldn’t know where the character array

ended. In C programs, we represent the NUL character by \0.

Each character of a string is stored in memory as ones and zeros,

according to the ASCII code. Figure 8.8 shows an example of what you

might find in memory if your program contained the statement “char

day[] = "Tuesday";”

01010100

01110101

01100101

01110011

01100100

01100001

01111001

00000000

day
T

u

e

s

d

a

y

\0

Figure 8.8: This is how the word
“Tuesday” would be represented as
ones and zeros in memory, stored in an
eight-element character array named
day.

Whenever you use nano to create a text file (one of the cpp files you’ve

been writing, for example), the things you type are stored as ASCII-

encoded characters in a file on the computer’s disk. If you could see

the actual bits, and you understood ASCII, you could read the file’s

contents.

248 practical computing for science and engineering

8.6. The strlen Function
Can we get our program to tell us the length of a character string? Sure

thing! We can use the strlen function for this. For example:

char name[20] = "Bryan";

int length;

length = strlen(name);

printf ("This name is %d characters long.\n", length);

Some versions of the C compiler might give you an error message if you

try to use strlen directly as an argument to a function like printf

or in comparison with an integer in an “if” statement. That’s because

strlen doesn’t really return an int value. Instead of an int, strlen

uses a special data type named size_t.

If we tried to write a program containing a statement like this:

printf ("This name is %d characters long.\n", strlen(name));

the C compiler would complain that we’ve told printf to expect an

int (by using a %d), but strlen returns a size_t. The complaint would

look something like this:

program.cpp:6:62: warning: format '%d' expects argument of type 'int',

but argument 2 has type 'size_t {aka long unsigned int}' [-Wformat=]

printf ("This name is %d characters long.\n", strlen(name));

The cure for this is to either use a variable like length, as we did in

the first example above, or to explicitly tell the C compiler to convert

strlen’s value into an int. We could do that like this:

printf ("This name is %d characters long.\n", (int)strlen(name));

We’ve talked about this kind of re-casting of values in Chapter 2 and

Chapter 3.

chapter 8. character strings 249

8.7. Comparing Strings
Imagine that we have two character strings, and we want to compare

them to see if they’re the same. We might try something like the

following:

Program 8.2: scomp.cpp (Why doesn’t this work?)

#include <stdio.h>

int main () {

char s[] = "junk";

char t[] = "junk";

if (s == t) {

printf ("They match.\n");

} else {

printf ("They don't match.\n");

}

}

Why doesn’t this work? Because “s” and “t” are arrays. Think about

it: if we had two int variables, x and y, we could compare their

values with “if (x==y)”. Similarly, if we had two arrays of int

elements , a[10] and b[10], we could compare two of their elements

with “if (a[1] == b[1])”. But what would we mean if we typed

“if(a==b)”?

It turns out that, in C, if you type just the name of an array, you get the

memory address of the beginning of the array1. Since “s” and “t” in 1 We’ll learn more about this later.

the example above are two different arrays, each of which has its own

allocated section of memory, each of them will have a different address.

So, “if(s==t)” will never be true.

If you compile and run Program 8.2 you’ll see that it always says “They

don’t match.” This is obviously not the right way to compare two

strings.

One way to solve the problem would be to write a “for” loop and

compare each character in the two strings, one by one. This would be

inconvenient though, especially if we had to do it often. Fortunately, C

provides us with a function that can compare strings for us. It’s called

“strcmp” (for “string compare”).

250 practical computing for science and engineering

If we have two character strings, s and t, and give them to strcmp

like this:

result = strcmp(s, t);

the value of the result will tell us whether the two strings are the same.

There are three possiblities:

result = 0 The two strings are identical.

result > 0 s is “greater” than t

result < 0 s is “less” than t

In this context “greater than” and “less than” refer to the dictonary

order of the two strings. If s would come before t in a dictionary,

strcmp says that s is less than t. According to strcmp, “aardvark” is

less than “zebra”.

Program 8.3 shows the right way to compare two strings.

Program 8.3: scomp.cpp (Doing it the right way.)

#include <stdio.h>

#include <string.h>

int main () {

char s[] = "junk";

char t[] = "junk";

if (strcmp(s, t) == 0) {

printf ("They match.\n");

} else {

printf ("They don't match.\n");

}

}

Notice that we need to add a new #include line before we can use

the strcmp function.

Instead of saying “strcmp(s,t) == 0” in our “if” statement, we

could have saved some typing by saying “!strcmp(s,t)”. When we

say “if (CONDITION)”, the CONDITION is true if it has a non-zero

value, and false otherwise. Because strcmp returns 0 if the strings are

equal, we need to use a ! (read “not”) to logically invert this into a true

value. You might read such an “if” statement as “if strcmp doesn’t

return a non-zero value. . . ”.

chapter 8. character strings 251

Exercise 41: Comparing Strings

Create, compile, and run Program 8.3. Does it do the right

thing?

Try changing one of the strings, recompiling, and running

again. Does the program properly tell you that the two

strings are different now?

8.8. Reading Strings
We’ve used scanf and fscanf to read numbers. Now we’d like to

use these functions to read text. Can we do it?

There are some complications, and to understand them we’ll need to

know a little more about how scanf and fscanf work. Until now,

we’ve taken it on faith that we needed to put an ampersand (&) in front

of variable names when reading numbers with these functions. The rea-

son that’s true is because scanf and fscanf want the memory address

of a variable.2 If I have a variable named height, then “&height” will 2 We’ll learn why this is so when we
study functions in Chapter 9.be the address of the chunk of memory that the computer has assigned

to that variable.

As we saw in our bad string comparison example, the name of an array

is actually just the memory address of the beginning of the array. This

means we can leave off the “&” when we read a character array with

scanf.

There are still other complications, though, which we can illustrate with

Program 8.4. This program asks you to enter some text, and then just

tells you what you entered.

Program 8.4: sread.cpp (Not quite getting it right.)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

scanf("%s", string);

printf("You said %s\n", string);

}

The program defines a character array named string, and then uses

252 practical computing for science and engineering

scanf with the %s format specifier to read some text into this array.

Notice that the program omits the ampersand we’d use in scanf if we

were reading a number.

If you try giving this program a word like “Hello”, it seems to work

fine. In fact, any short, single word will work. But what if we give

it something longer, like “abcdefghijklmnopqrstuvwxyz”? Then

you’ll find that the program crashes with a “Segmentation Fault” error.

That’s because we’ve tried to go past the end of the string character

array, which only has room for ten characters. This is the same kind of

problem we had with numerical arrays in Chapter 6.

We can fix our program by just adding one letter: change “%s” to

“\%9s” in the scanf statement. This tells scanf to read no more than

nine characters. Why nine instead of ten? Because we need to leave room

for a NUL character at the end, to mark the end of the string. Now,

if we type “abcdefghijklmnoprstuvwxyz” the program will print

“abcdefghi” (just the first nine characters of the text we entered).

Program 8.5: sread.cpp (OK for some things.)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

scanf("%9s", string);

printf("You said %s\n", string);

}

Note that everything we’ve said about scanf applies to fscanf as

well.

Exercise 42: Safe String Reading

Create, compile and run Program 8.5. Try giving the pro-

gram some words without spaces, and then try giving it

sentences with spaces in them. Does it behave as expected?

What if you type a tab character instead of a space?

There’s still one problem left, though. Even the improved version of

the program has trouble when we enter text with spaces in it. If we

enter “this is a test”, the program says we typed “this”.

That happens because scanf stops reading text (%s) when it sees a

chapter 8. character strings 253

“white space” character (a space or a tab). This may not be what you

want your program to do. If you need to read strings containing spaces,

a better choice is “fgets”. The fgets function reads a specified

number of characters from a file. Even though we’re reading from the

keyboard, not a file, we can still use fgets.

Remember that we saw in Chapter 7 that three “files” are automatically

opened whenever we run a program: stdout, stderr, and stdin.

The first two usually point to your display, and the third (stdin)

usually points to your keyboard. We can use fgets in our program by

telling it to read from stdin. That’s what Program 8.6 does.

Program 8.6: sread.cpp (Better, but see next section...)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets(string, 10, stdin);

printf("You said %s\n",string);

}

See next section for caveats.

The fgets function takes three arguments: The name of a character

string variable in which to store what we read, the size of that character

string, and a file handle pointing to an open file to read things from.

fgets will read, at most, one less than the size of the character string,

automatically leaving space for the trailing NUL character.

But what about. . . ?

So why does “%s” stop at white spaces? It’s so we can do things

like this:

char name[10];

int year;

printf ("Enter your last name and birth year: ");

scanf("%9s %d", name, &year);

or like this:

char firstname[10], lastname[10];

scanf("%9s %9s", firstname, lastname);

If scanf didn’t stop at white spaces, the first example would try to

stick things like "Wright 1961" into "name". It would never know

254 practical computing for science and engineering

when you were done typing the first word, and had started typing

something else.

If you want the things you enter to be broken up into words, scanf

is a good choice. If you want everything to be put into one variable,

fgets is the thing to use.

8.9. Line Endings
There’s still a potential problem with Program 8.6 though, and it’s a

subtle one. To illustrate it, let’s make a small change to the program

and try running it again. The new version is Program 8.7.

Program 8.7: sread.cpp (Watch what happens now...)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets(string, 10, stdin);

printf("You said %s. You really did.\n",string);

}

If we ran Program 8.7 and entered the text hello, we’d see something

like the following:

Enter some text: hello

You said hello

. You really did.

What’s going on here? Shouldn’t the program have written “You said

hello. You really did.”, all on one line? The difference is due to the fact

that fgets interprets the “enter” key as an ASCII “newline” character,

and it puts that newline into string just like the other characters you

typed. In some circumstances that might be OK, but we’ll often want

to get rid of the extra newline.

Dealing with line endings can be especially tricky if your program

reads text from a file. For historical reasons, each of the three most

popular operating systems (Windows, OS X, and Linux) uses a different

way of indicating the end of a line in an ASCII file. OS X, for example,

uses the ASCII “CR” (“Carriage Return”) character, which we can write

as “\r” in C programs. Linux, on the other hand, uses the ASCII “LF”

chapter 8. character strings 255

(“Line Feed”) character, which we can write as “\n”. Windows uses

both, putting “\r\n” at the end of each line.

To make our programs as portable as possible, it would be nice if they

could deal with any of these.

To eliminate such spurious characters we first have to find them. Let’s

start by looking at a handy C function for finding particular characters

in a string. Consider Program 8.8.

Program 8.8: findchar.cpp

#include <stdio.h>

#include <string.h>

int main () {

char welcome[] = "Testing, testing. Are you there?";

int i;

i = strcspn(welcome, ".,?");

printf("The first punctuation is character number %d\n", i);

}

The strcspn function has a name that’s hard to remember3, but what 3 It’s an abbreviation for “string com-
plementary span”, but that’s no more
memorable.

it does is simple. You give strcspn a string and a list of characters

you’re interested in, then it steps through the string, one character at a

time, until it finds an interesting one. When it finds the first interesting

character it tells you its location.

Program 8.8 defines a character string named welcome. The program

uses strcspn to find the location of the first punctuation character in

this string. Remember that a character string is just an array of char

variables, and that array indices begin with zero. If you start with

zero and count characters, you’ll find that the “,” (the first punctuation

mark) is element number 7 of welcome, and that’s what Program 8.8

would tell you if you compiled and ran it.

In principle, we could use the strcspn to find \r and \n characters.

Once we’ve found them, we need to know how to get rid of them. That

turns out to be easy.

256 practical computing for science and engineering

Remember again that a character string is just an array of characters.

Once we know which array element holds a letter we want to change,

all we need to do is put a different character into that element.

Let’s get back to the most recent version of our sread program now

(Program 8.7). Take a look at Figure 8.9. At the top we see the contents

of string as Program 8.7 would see it right after the user types “hello”

and presses the enter key.

h e l l o \n \0
0 1 2 3 4 5 6 7 8 9

string

j e l l o \n \0
0 1 2 3 4 5 6 7 8 9

NUL marks the
end of the string.

NUL marks the
end of the string.

string[0] = 'j';string[0] = 'j';

Figure 8.9: Changing one character in a
string.

string is a 10-element character array. The next-to-last character is

“newline”, which we represent in C programs as \n. Following the

newline is an ASCII NUL character, represented by \0, which marks

the end of the string, as described in Section 8.5 above.

If we wanted to change “hello” into “jello”, we could say:

string[0] = 'j';

making the first letter (element number zero) of string a “j” instead

of an “h”, as shown at the bottom of Figure 8.9.

Now take a look at Figure 8.10. If we wanted to get rid of the newline

in string, we could replace character number 5. But what should

we replace it with? What if we put in another \0, as in the bottom

of Figure 8.10? Now the newline is gone, and the newly inserted \0

marks the new end of the string. (The second \0 is ignored.) We’ve

chopped the troublesome newline off the end of the string!

So, our two-part strategy for removing trailing \r and \n characters is

(1) use strcspn to locate them and (2) write an ASCII NUL character

chapter 8. character strings 257

h e l l o \n \0
0 1 2 3 4 5 6 7 8 9

string

h e l l o \0 \0
0 1 2 3 4 5 6 7 8 9

string

Now the string
ends here!

Now the string
ends here!

string[5] = '\0';string[5] = '\0';

Figure 8.10: Replacing a newline with a
NUL.

in their place. Program 8.9 shows a final version of our sread program

that implements this strategy. As you can see, we only need to add two

lines to the program.

Exercise 43: Space, The Final Frontier

Now modify Program 8.5 so that it looks like Program 8.9.

Try it again with input that includes spaces or tabs. How

does it behave differently?

Program 8.9: sread.cpp (Now deals with spaces and line endings)

#include <stdio.h>

#include <string.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets(string,10,stdin);

string[strcspn(string, "\r\n")] = '\0';

printf("You said %s. You really did.\n",string);

}

If we ran Program 8.9 and typed “hello”, the result would look like

this, as the user would expect:

Enter some text: hello

You said hello. You really did.

258 practical computing for science and engineering

The strcspn function gives the location of the first \r or \n, then the

program puts a \0 at that spot. This would be safe even if the string

didn’t contain any \r or \n characters. In that case, strcspn returns

the location of the \0 that’s already at the end of the string, and the

program wouldn’t end up changing anything.

Note that in Program 8.9 we could
have done things in two explicit steps,
by defining an integer variable i and
saying:

i = strcspn(string, "\r\n");

string[i] = '\0';

Either way is fine. Feel free to do it this
way if you find it easier to understand.

It’s generally a good idea to use strcspn in this way to trim off any

extra \r or \n characters. I recommend you do this whenever you use

fgets.

8.10. Assigning Values to Strings
Since strings are arrays, we also need to take care when assigning values

to them in our programs. Take a look at Program 8.10 for example. This

looks pretty straightforward. We have two character string variables, s

and t, and we want to set t equal to s, just like we’ve been doing with

numerical variables.

Program 8.10: sassign.cpp (This won’t work)

#include <stdio.h>

int main () {

char s[10] = "Testing";

char t[10];

t = s;

printf("%s\n", t);

}

You’ll find that g++ refuses to compile this program though. If you try,

you’ll probably see an error message like this:

sassign.cpp: In function 'int main()':

sassign.cpp:6: error: invalid array assignment

Why does this happen? Remember that t and s are arrays, not single

values. The C compiler is telling you that it can’t figure out what you

want to do here.

What we’d like to do is make each element of the t array be the same

as the corresponding element of the s array. We could write a “for”

loop to go through all of the array elements and do that, but there’s an

easier way to do it with character arrays.

We can use the “spnrintf” function to “print” the value of one string

into another string. This is what we do in Program 8.11.

chapter 8. character strings 259

Program 8.11: sassign.cpp (The right way.)

#include <stdio.h>

int main () {

char s[10] = "Testing";

char t[10];

snprintf(t, 10, "%s", s);

printf("%s\n", t);

}

The snprintf function is like printf, but it takes two extra argu-

ments: the name of a string, and the number of characters. In Program

8.11 snprintf will write a maximum of ten characters into the char-

acter string named t. It’s important that snprintf lets us specify the

maximum number of characters, so we don’t write past the end of t.

We could also to things like this:

snprintf (t, 10, "Hello world!\n");

which would put the text "Hello world!" into t.

Internally, snprintf just does the same thing as looping through all

of the characters in the arrays, one by one, and setting their values.

Exercise 44: For Internal Use Only

Create, compile and run Program 8.11. Try modifying the

program by replacing “Testing” with something longer that

includes spaces. (You may need to increase the size of the s

and t character arrays.) Recompile the program and make

sure it does what you expect.

8.11. Summary of Good String Usage
In the preceding sections we’ve gone through a bunch of best practices

for using character strings. Let’s summarize what we’ve learned:

Figure 8.11: Unfortunately, String
Theory has nothing to do with character
strings, but this Calabi-Yau manifold is
too attractive to leave out.
Source: Wikimedia Commons

Comparing Strings

We can’t compare strings the same way we compare numbers. If we

try to do so, we’ll always be misled into thinking that the strings are

https://commons.wikimedia.org/wiki/File:CalabiYau5.jpg

260 practical computing for science and engineering

different, even if they’re not. To do it right, use strcmp to compare

strings. (You’ll need to add #include <string.h> to use strcmp.)

Remember that strcmp returns zero if the strings are equal. Here’s a

usage example:

if (strcmp(s, t) == 0) {

printf("They're the same!\n");

}

Reading Strings from the User

C provides us with a special format placeholder, %s, for reading strings.

Since a character string is an array, we need to take care not to go past

the end of the array. There are two good ways to read strings: one for

when you want each “word” (separated by spaces) to go into its own

variable, and another for when you want everything the user types

(including spaces) to go into a single variable.

• If you want to split the input wherever there’s a space, use scanf.

Always specify the number of characters by putting a number be-

tween % and s. The number should be one less than the length

of the character string array, to leave room for a NUL character at

the end. Here’s a usage example, suitable for reading text into a

10-character-long string:

scanf ("%9s", string);

• If you want to put all of the input, spaces and everything, into one

variable, use the fgets function. Be sure that the size you give

it matches the actual size of the character string variable. fgets

will automatically leave room for the trailing NUL character. Also,

use strcspn to trim off trailing newlines. Here’s a usage example

suitable for a 10-character long string:

fgets (string, 10, stdin);

string[strcspn(string, "\r\n")] = '\0';

Assigning Values to Strings

We can’t just assign values to character string variables the same way

we do with numerical variables. Instead, use snprintf to “print” text

into the variable. Here’s a usage example that would copy the contents

of the variable s into the 10-character-long variable t:

snprintf(t, 10, "%s", s);

chapter 8. character strings 261

Writing past the end of a string array is a very common programming

bug. It often leads to crashes, and is responsible for many security flaws.

Sticking to the methods above will help you avoid these problems in

your programs.

8.12. Reading a Gradebook
Let’s look at a practical program that uses the string techniques we’ve

been talking about. In this example we’ll be reading students’ names

and grades from a gradebook file and calculating grade averages.

Take a look a Program 8.12. It reads names and columns of grades from

a file like this:

Figure 8.12: Albert Gleizes, Composition
pour Jazz (1915)
Source: Wikimedia Commons

Davis 9.2 9.8 9.8 10. 9.2 9.1

Gillespie 8.7 8.7 8.7 8.6 8.9 9.2

Monk 10. 9.0 9.5 9.0 9.1 9.8

Vaughan 9.9 9.9 9.8 8.5 9.0 9.8

Coltrane 9.0 9.1 8.9 9.9 9.7 8.6

Mingus 8.9 9.8 8.6 9.8 9.9 9.8

Parker 9.6 10. 9.1 9.1 9.8 8.9

Holliday 9.2 8.7 10. 8.9 9.8 9.0

Armstrong 8.6 8.6 9.0 9.2 8.6 8.7

Ellington 9.8 9.6 9.6 9.6 10. 10.

Fitzgerald 9.8 9.2 9.9 9.8 8.7 9.6

The first column is the student’s last name, and the other columns are

grades for each of six homework assignments.

Program 8.12 uses fscanf to read the students name and store it in

the 20-character-long string variable named lastname. To make sure

it doesn’t go past the end of lastname, the program tells fscanf to

use the format “%19s”, limiting the number of characters to 19 at most,

and leaving at least one space to store the terminating NUL character

marking the end of the string.

This program uses a technique similar to the one used in our census

program in Chapter 7 for reading the multi-column data in the file

grades.dat. A “for” loop reads ngrades numbers from each line

of the file. Unlike the census program, we don’t read the numbers into

an array, since this program doesn’t care which number was in which

column. We only want to add them up, so we can calculate the mean.

The last line of Program 8.12 prints out each student’s name and mean

grade. Notice that we tell printf to print only the first two decimal

https://en.wikipedia.org/wiki/File:Albert_Gleizes,_1915,_Composition_pour_Jazz,_oil_on_cardboard,_73_x_73_cm,_Solomon_R._Guggenheim_Museum,_New_York_DSC00542.jpg

262 practical computing for science and engineering

Program 8.12: grades.cpp

#include <stdio.h>

int main () {

int ngrades=6;

char lastname[20];

double sum, grade;

int i;

FILE *gradebook;

gradebook = fopen("grades.dat","r");

while (fscanf(gradebook, "%19s", lastname) != EOF) {

sum = 0.0;

for (i=0; i<ngrades; i++) {

fscanf(gradebook, "%lf", &grade);

sum += grade;

}

printf ("%s %.2lf\n", lastname, sum/ngrades);

}

}

Read

all lines

from file

Get all

grades

from

each line

places of the numbers by using “%.2lf”. As we saw in Chapter 3, a

format like “%n.mlf” means “show m characters with n to the right

of the decimal place.” (We can omit the n if we just want to specify the

number of decimal places.)

If we ran Program 8.12 we’d see something like this:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

The program seems to be doing its job, but the output could be more

readable. It would be nice if things lined up in straight columns. If

we change the last printf statement we could make things a little

prettier:

chapter 8. character strings 263

printf ("%20s %.2lf\n", lastname, sum/ngrades);

We’ve changed %s into %20s. If we ran the modified program, the

result would look like this:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

What happened? When we say %20s we mean “make the output string

exactly 20 characters long, padding it on the front with spaces if there’s

not enough text to fill the full 20 characters.”

If we don’t like this right-justified style, we can move the text over to

the left by changing %20s into %-20s:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

Exercise 45: Reading and Writing Text

Here’s a challenge for you. Write a program named classes.cpp

that asks the user how many classes he or she has on each

day of the week. After collecting the data, the program

should write the name of each weekday and the number of

classes on that day into a data file named classes.dat

264 practical computing for science and engineering

The program should have a loop that asks the user to enter

the name of the day of the week and the number of classes

on that day. If the user enters “quit” as the day, the loop

should stop.

The program should start out something like this:

#include <stdio.h>

#include <string.h>

int main () {

char day[10];

int classes;

FILE *output;

output = fopen("classes.dat", "w");

It would be a good idea to use two separate scanf state-

ments to read the day name and the number of classes,

instead of trying to read both with the same scanf. (Can

you think of a reason why this is so?)

Here are some hints:

• Remember that you don’t need a & in front of the variable

name when you read a character string with scanf (but

you do when you read a number).

• You can test to see if a day contains the text “quit” like

this:

if (strcmp(day, "quit") == 0)

• You can write things into a file using fprintf, like this:

fprintf (output, "%s %d\n", day, classes);

Compile and run your program. The file it creates (classes.dat)

should look like this:

Monday 4

Tuesday 2

Wednesday 3

Thursday 2

Friday 3

chapter 8. character strings 265

This is similar to the data files we’ve graphed with gnuplot in

the past, except that one of the columns contains text. Start

up gnuplot and type the following to cause it to use the days

of the week as labels on the X axis:

set xrange [-1.5:5.5]

set yrange [0:6]

plot "classes.dat" using 2:xticlabels(1) with boxes

The first two commands set the range of the X and Y axes so

that the data will fit nicely on the graph. The third command

tells gnuplot to plot the second column of the data, and use

the first colum as the labels on the X axis. The result should

look something like Figure 8.13.

Sometimes you might want the X axis labels to be verti-

cal. You can do this by giving gnuplot the command “set

xtics rotate by 90”, and then typing “replot”. Give

it a try. What happens if you use -90 instead of 90?

 0

 1

 2

 3

 4

 5

 6

Monday Tuesday Wednesday Thursday Friday

N
u
m

b
e
r

o
f
C

la
s
s
e
s

Day of Week

Figure 8.13: Your class schedule might
look something like this.

8.13. Reading Column Headers
It would be nice if the columns of our gradebook file had headers,

telling the name of each column’s assignment. Maybe something like

this:

Figure 8.14: Adi Holzer, Satchmo (Louis
Armstrong) (2002)
Source: Wikimedia Commons

HW1 HW2 HW3 HW4 HW5 HW6

Davis 9.2 9.8 9.8 10. 9.2 9.1

Gillespie 8.7 8.7 8.7 8.6 8.9 9.2

Monk 10. 9.0 9.5 9.0 9.1 9.8

Vaughan 9.9 9.9 9.8 8.5 9.0 9.8

Coltrane 9.0 9.1 8.9 9.9 9.7 8.6

Mingus 8.9 9.8 8.6 9.8 9.9 9.8

Parker 9.6 10. 9.1 9.1 9.8 8.9

Holliday 9.2 8.7 10. 8.9 9.8 9.0

Armstrong 8.6 8.6 9.0 9.2 8.6 8.7

Ellington 9.8 9.6 9.6 9.6 10. 10.

Fitzgerald 9.8 9.2 9.9 9.8 8.7 9.6

Program 8.13 on page 267 is designed to read this modified data file.

In addition to the things our previous program did, this new program

also calculates a class average for each assignment. To do this, it needs

to sum up the numbers in each column and divide the sum by the

https://en.wikipedia.org/wiki/File:Adi_Holzer_Werksverzeichnis_899_Satchmo_(Louis_Armstrong).jpg

266 practical computing for science and engineering

number of students. The sum for each column is stored in an element

of the new array named class_sum4. As the file is read, the students 4 Why do we use const when defining
ngrades here? Look back at page 172

in Chapter 6.
are counted by the variable nstudents.

But what about the column headers? Just as we have a class sum for

each column, we have a header for each column, and we’d like to save

those headers in an array so we can print them out later. But remember

that a character string is already an array char variables, so we’re in

need of an array of arrays.

That’s what the variable named assignment is for. It’s a six-element

array of 10-character strings. Once we’ve read the column headers into

it, we might imagine the array looking like Figure 8.15.

H W 1 \0

H W 2 \0

H W 3 \0

H W 4 \0

H W 5 \0

H W 6 \0

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

Figure 8.15: An array of character strings
holding the column headers from our
gradebook file.

Since the column headers are in the first line of the file, they’re read

first. Program 8.13 uses a “for” loop to read the headers into elements

of the assigment array.

The program then proceeds more or less like Program 8.12, except that

the new program also keeps a running sum of each column, in the

class_sum array, and counts the number of students.

At the end, a new loop goes through all of the assignments, printing

out the column header and mean grade for each.

chapter 8. character strings 267

Program 8.13: grades.cpp, Now With Headers!

#include <stdio.h>

int main () {

const int ngrades=6;

char lastname[20];

double sum, grade;

int i;

double class_sum[ngrades];

char assignment[ngrades][10];

int nstudents = 0;

FILE *gradebook;

gradebook = fopen("grades-with-headers.dat","r");

for (i=0; i<ngrades; i++) {

fscanf(gradebook, "%9s", assignment[i]);

class_sum[i] = 0.0;

}

while (fscanf(gradebook, "%19s", lastname) != EOF) {

sum = 0.0;

for (i=0; i<ngrades; i++) {

fscanf(gradebook, "%lf", &grade);

sum += grade;

class_sum[i] += grade;

}

printf ("%-20s %.2lf\n", lastname, sum/ngrades);

nstudents++;

}

printf("\nClass averages:\n");

for (i=0; i<ngrades; i++) {

printf ("%10s %.2lf\n", assignment[i], class_sum[i]/nstudents);

}

}

268 practical computing for science and engineering

8.14. Handling Errors
Up until now, we’ve been assuming that the files our programs want to

read really exist. But mistakes sometimes happen in the real world. We

might accidentally rename or delete a data file, or we might mis-type

the file’s name when we write it into a program. What happens if a

program tries to open a file that doesn’t exist? Let’s try it and see. Take

a look at Program 8.14.

Program 8.14: filecheck.cpp

#include <stdio.h>

int main () {

FILE *input;

input = fopen("nosuchfile.dat", "r");

// Do some stuff, then close the file...

fclose (input);

}

If nosuchfile.dat doesn’t exist, the program will give us an error

message saying “Segmentation fault”5. That’s not very helpful, 5 This error is generated when fclose

tries to close input, which was never
really set because the file couldn’t be
opened.

and it might take us a while to figure out that we’d typed the file’s

name wrong, or put the file in the wrong place.

We can do better. Take a look at Program 8.15. This version of the

program checks to see if an error has occurred and prints out a more

informative error message. This program does several new things, so

let’s look at them one by one.

Program 8.15: filecheck.cpp, with error messages

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

int main () {

FILE *input;

input = fopen("nosuchfile.dat", "r");

if (!input) {

fprintf (stderr, "Error opening file: %s\n", strerror(errno));

exit(1);

}

// Do stuff, then close the file...

fclose (input);

}

chapter 8. character strings 269

First of all, there are many kinds of errors that a function like fopen

might encounter. For example:

• Maybe the file you’re asking for doesn’t exist.

• Maybe you don’t have permission to read or create the file.

• If you’re trying to create a new file, there might be no more room

left on the disk.

In order to tell us what happened, the function identifies each of

these conditions with an “error number”. Notice that we’ve added

“errno.h” to the list of #include statements at the top of the program.

Among other things, this defines a new variable named errno that

will always contain a number identifying the most recent error.

Having an error number is a step in the right direction, but words

would be even better. That’s what the strerror function does. It tells

us, in plain English, what a particular error number means. strerror

returns a character string that our program can print out to describe

the error. In order to use strerror we need to add “#include

<string.h>”.

Finally, we need to have some way to stop the program when we see an

error. There’s often no point in continuing after something goes wrong,

and doing so could even be dangerous. To stop a program immediately,

we can use the exit function. It takes a single argument (an integer)

that’s passed along to the operating system to indicate whether the

program finished successfully or died because of an error. A value of

zero indicates success, and anything else means failure6. exit requires 6 We won’t make use of these exit
values in this book, but they can be
handy when writing “scripts” that run
programs for you.

stdlib.h.

If we ran our improved program (with nosuchfile.dat still missing),

it would say:

Error opening file: No such file or directory

That’s much more informative than “Segmentation fault”! When

writing programs, think about what might go wrong and try to deal

with these situations gracefully.

270 practical computing for science and engineering

Figure 8.16: We all make mistakes. In
1890, palaeontologist Othniel Marsh
humiliated his rival Edward Cope by
pointing out that Cope had
reconstructed the skeleton of
Elasmosaurus with the head on the wrong
end!
Source: Wikimedia Commons8.15. Converting Characters to Numbers

As we noted in Section 8.4, the computer stores everything as ones and

zeros, and it uses ASCII codes to store characters. For example, the

ASCII code for an upper-case 'A' is 01000001. If we interpreted this as

a binary number, it would be equal to the decimal number 65.

There’s an ASCII code for each character on your keyboard, including

all the numbers. The ASCII code for the digit '1' is 00110001. Inter-

preted as a binary number, this would be equivalent to the decimal

number 49. Take a look back at Figure 8.6 to see the ASCII codes for

some other digits.

On the other hand, computers store integer numbers as a binary repre-

sentation of the number. For example, the number 1 would be stored as

00000001. Maybe you can see how this could create some confusion.

As far as the computer is concerned, character '1' is completely different

from the number 1.

Figure 8.17: Luigi Pirandello was the
author of the 1921 play Six Characters in
Search of an Author. I remember the 1976

PBS production, starring John
Houseman and Andy Griffith(!).
Source: Wikimedia Commons

Sometimes we’ll need to convert a character that represents a digit into

an actual number. How can we do that? The first clue is to notice that

the ASCII codes for all of the digits in Figure 8.6 are sequential. If we

converted these binary numbers into decimal, we’d see that '0', '1', '2',

and '3' are represented by the numbers 48, 49, 50, and 51.

The second clue is provided by a feature of C that we haven’t mentioned

before: C is perfectly happy to do math with char variables. It just

treats the character variable as though it had a value equivalent to the

decimal representation of its ASCII code. So, the computer would see

'1'+'2' as 49+50, giving a value of 99.

Using these two clues we can do a little math and determine the

numerical value of a character. Take a look at the figure below.

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

48 49 50 51 52 53 54 55 56 57

ASCII
number
(decimal)

'7'-'0' = 55-48 = 7

https://en.wikipedia.org/wiki/File:Cope_Elasmosaurus.jpg
https://commons.wikimedia.org/wiki/File:Luigi_Pirandello_1934b.jpg

chapter 8. character strings 271

If we want to find the numerical value of the character '7' we just

need to subtract the character '0' from it. In a program, that might

look like this:

int n;

char c = '7';

n = c - '0';

printf("The numerical value of %c is %d\n", c, n);

But what about. . . ?

What if we have a multi-digit number represented as a string? For

example, the string "186282"? In principle, we could go through

it one digit at a time, converting each character into a number and

multiplying it by the appropriate power of ten, then adding up

all the results. This would be tedious though, and it seems like

something we might need to do pretty often.

Fortunately, as we’ll see in Chapter 9, C provides us with two

functions that will do the work for us. They’re named atoi and

atof. The atoi function converts a string of digits into an integer.

The atof function converts a string that might contain decimal

points into a double. For example:

char ci = "12345";

char cd = "67.890";

int i;

double d;

i = atoi(ci);

d = atof(cd);

As we’ll see in Chapter 9, these two functions come in very handy

in one particular situation: Interpreting command-line arguments.

Let’s look at an example that uses this trick.

8.16. Multiplicative Persistence
In Number Theory there’s a fun property of numbers called multiplica-

tive persistence7. Take the number 39, for example. It’s represented by 7 See this YouTube video by Matt
Parker on the Numberphile channel:
https://www.youtube.com/watch?v=Wim9WJeDTHQ

the two digits 3 and 9. If we multiply 3 × 9 we get another number,

27. Multiplying 2 × 7 gives 14. Multiplying 1 × 4 gives 4. Now we’re

down to just one digit after three steps: 39 → 27 → 14 → 4. We say

https://www.youtube.com/watch?v=Wim9WJeDTHQ

272 practical computing for science and engineering

that 39 has a multiplicative persistence of 3, meaning that we can do

this procedure of multiplying the digits three times before we get to a

single-digit number.

Figure 8.18: Still I Persist in Wondering is
the name of an excellent story collection
by Edgar Pangborn.
Source: Goodreads

Try this with some other numbers. You’ll find that most numbers have

only a small persistence. 39 is actually the first one that gets as high as

3. The persistence of 77 is 4. The first number with a persistence of 5 is

679, and you have to go all the way to 6,788 to find a number that has a

persistence of 6. Mathematicians think that no base-10 number has a

multiplicative persistence greater than 11, but this remains unproven

(although it’s been checked for numbers up to 1020,000!).

Let’s write a program that tests the multiplicative persistence of a given

number. Take a look at Program 8.16.

Program 8.16: mpersist.cpp

#include <stdio.h>

#include <string.h>

int main () {

const int maxdigits = 10;

char number[maxdigits];

int length;

int product;

int i;

printf ("Please enter a number, up to %d digits long: ", maxdigits-1);

fgets (number, maxdigits, stdin);

number[strcspn(number, "\r\n")] = '\0';

length = strlen(number);

while (length > 1) {

product = 1;

for (i=0; i<length; i++) {

product *= number[i] - '0';

}

snprintf (number, maxdigits, "%d", product);

length = strlen(number);

printf ("%d %s\n", length, number);

}

}

The program stores a number in a character array. This lets us easily

https://www.goodreads.com/author/show/155249.Edgar_Pangborn

chapter 8. character strings 273

get each digit of the number, since each digit is one element of the

array. The program uses strlen to find the string’s length. Notice

that the “while” loop keeps going as long as length is greater than

one. Each time around the loop, a “for” loop goes through all the

digits of the number, converting each digit to its numerical equivalent

by subtracting '0'. The variable named product keeps track of the

product obtained by multipying the digits together.

If we ran the program, we would see something like this:

Please enter a number, up to 9 digits long: 39

2 27

2 14

1 4

The first column is the number of digits, and the second column is the

current product.

274 practical computing for science and engineering

8.17. Pattern Matching
We’ve seen how strcmp lets us compare two strings to see if they’re

equal, but what if we want to know whether the string fits some fuzzier

pattern? For example, we might want to know if the string begins with

an upper-case letter, or we might want to check for any of the strings

“y”, “Y”, “yes”, or “YES”.

The GNU C compiler supports a powerful pattern-matching system

called “Regular Expressions”. Regular Expressions (sometimes called

“regexp” for short) are used in many computer languages. A little

knowledge about them will be useful no matter what language you

use.

Figure 8.19: Source: Wikimedia Commons

Regular Expressions are a way of specifying a pattern that you want to

match. The pattern is written as a group of symbols that can represent

particular characters, ranges of characters, or wildcards of various

kinds that will match any character. The Regular Expression language

is extensive, but here are some commonly-useful symbols and their

meanings:

Symbol Meaning

. Match any single character.

* Match zero or more of the preceding item.

+ Match one or more of the preceding item.

? Match zero or one of the preceding item.

{n,m} Match at least n, but not more than m, of the preceding item.

ˆ Match the beginning of the line.

$ Match the end of the line.

[abc123] Match any of the enclosed list of characters.

[ˆabc123] Match any character not in this list.

[a-zA-Z0-9] Match any of the enclosed ranges of characters.

this|that Match “this” or “that”.

\., *, etc. Match a literal “.”, “*”, etc.

Regexp patterns can get confusing very quickly, but here are some

simple examples:

ˆY Match any string beginning with Y.

ˆ[Bb]ob Match any string beginning with bob or Bob.

100$ Match any string ending in 100.

ˆT.*day$ Match Tuesday, Thursday, or any other string

that begins with a T and ends with day.

ˆdata[0-9][0-9]\.dat Match data01.dat, data02.dat, or any other

string with data followed by two digits and .dat.

https://commons.wikimedia.org/wiki/File:Persian_Silk_Brocade_-_Bergamot_Armlet_-_Seyyed_Hossein_Mozhgani_-_1972.jpg

chapter 8. character strings 275

Program 8.17 uses regular expressions to identify strings that begin with

upper-case letters. A string like Montana would match, but montana

wouldn’t.

The program uses two functions to accomplish this: regcomp and

regexec. The first function “compiles” a Regular Expression into an

internal form that’s easier for the computer to use. The second function

uses this compiled Regular Expression to test a string. In this case, the

Regular Expression we’re using is ˆ[A-Z], which matches any string

that begins with the upper-case characters A through Z.

Notice that we need to add #include <regex.h> in order to use

these functions. regex.h also defines a new type of variable, regex_t,

that’s used for storing the compiled version of a Regular Expression.

A complete description of the regcomp and regexec functions is

beyond the scope of this course, but Program 8.17 illustrates their basic

usage. In this example, regcomp compiles our expression and stores

the compiled version in the variable named reg. The “REG_NOSUB |

REG_EXTENDED” argument we give regcomp just specifies a couple of

options that you’ll probably want to use.

The program gives the regexec function the compiled Regular Expres-

sion (stored in the variable reg) and the name of a string variable to

test. The other three arguments we give regexec aren’t really used in

this case, but they should usually be set to the values shown here.

Program 8.17: match.cpp

#include <regex.h>

#include <stdio.h>

int main()

{

regex_t reg;

char string[100];

printf ("Enter a word: ");

scanf("%99s", string);

regcomp(®, "^[A-Z]", REG_NOSUB | REG_EXTENDED);

if (regexec(®, string, 0, NULL, 0) == REG_NOMATCH) {

printf ("Doesn't match.\n");

} else {

printf ("\"%s\" Matches!\n", string);

}

}

276 practical computing for science and engineering

8.18. Conclusion
Character strings aren’t particularly exciting, but it can be convenient

to be able to use them in your programs. When doing so though, be

careful not go past the end of your character arrays, and remember that

you need to use strcmp to compare strings. If you stick to the best

practices outlined above, you should be alright.

Figure 8.20: The author’s Uncle Buster,
playing a stringed instrument. Buster
was a character. (Character. String. See
what I did there?)

chapter 8. character strings 277

Practice Problems

Figure 8.21: In 1755 Samuel Johnson
published his A Dictionary of the English
Language. It remained the most
respected English dictionary until more
comprehensive dictionaries were
published in the 20th Century.
Source: Wikimedia Commons

1. Write a program called dict.cpp that asks the user for two words

(reading them with scanf), and then tells you which word would

come first in the dictionary. If the two words are the same, the

program should tell you so. Assume the words are less than 100

characters long.

2. Write a program called hiname.cpp that asks users to enter their

first and last names, on a single line like “Bryan Wright”. Use a

single scanf statement to read the user’s names. Make the program

then say “Hi”, followed by the user’s first name, like “Hi Bryan!”.

3. Write a program called getpoem.cpp that asks users to enter the

first line of their favorite poem. Let the line be up to 100 characters

long. Make your program open a file named firstlines.dat and

write the line into the file. Be sure to open the file for “appending”,

by giving fopen an "a" as its last argument8. Try running the

8 See Chapter 5.

program several times and entering different lines. If you look at

firstlines.dat with nano, you should see all of the lines you’ve

typed in.

4. The following statement will get the current time (measured in

seconds since January 1, 1970) and put it into an integer variable

named start:

start = time(NULL);

Knowing this, write a program called type1.cpp that tests how

fast a user can type the phrase “I love programming!”. Make sure

the program tells the user what to do.Hints:

• Use a character string at least 30 characters long to capture what

the user types.

• Remember to add “#include <time.h>” for the time function

• Use fgets to read what the user types

• Check the time before typing and the time after typing, then look

at the difference to find out how long it took. Tell the user how

many seconds it took him or her to type the phrase.

• Don’t bother to check whether the user typed the right thing.

Assume the user is honest.

Figure 8.22: The stylish Olivetti
Valentine typewriter, designed by Ettore
Sottsass to be “sensual and exciting”.
Source: Wikimedia Commons

5. After completing Problem 4 modify the program so that it uses a

for loop to ask the user to type the phrase three times, then tells

https://commons.wikimedia.org/wiki/File:Samuel_Johnson_by_Joshua_Reynolds_2.png
https://commons.wikimedia.org/wiki/File:Olivetti_Valentine.jpg

278 practical computing for science and engineering

the user his or her average speed. Give the speed in three ways:

average number of seconds to type the phrase, number of characters

per second, and number of words per minute (where a standard

“word” is five characters or spaces). Be sure to allow for non-integer

speeds like “1.5 characters per second”. Call the new program

typing.cpp.

6. First, fetch a copy of Lewis Carroll’s book Alice in Wonderland by

typing either:

Figure 8.23: Source: Wikimedia Commons

wget http://tinyurl.com/y9nrg3xh

or

curl -L -O http://tinyurl.com/y9nrg3xh

After you’ve downloaded the file, rename it by typing:

mv y9nrg3xh alice.txt

Then, write a program named wordlength.cpp that reads alice.txt

and reports the average length of the words in the book. The pro-

gram should define a large (say, 100-character-long) character string,

then it should have a loop that repeatedly uses fscanf to read

words from the file. Use the strlen function to find each word’s

length (see Section 8.6).

Can you see why we often use 5 characters as the length of a standard

“word” when measuring text?

Hints: To find the average you’ll need to first add up the lengths of

all the words. I recommend you use a double variable to hold this

sum. If your program tells you the average word length is exactly an

integer, you’ve done something wrong.

7. After completing Problem 6 create a new version of your program

that also makes a histogram that shows the distribution of word

lengths. (See examples in Chapter 7.) To do this, you’ll need to add

an integer array that will keep track of how many words have a

given length. Call this array count and make it 50 elements long.

Each element of the array will contain the number of words that have

a length equal to that bin’s index. For example, count[5] will have

the number of 5-letter words. At the end of the program, print out

two columns showing the number of letters and how many words

had that many letters. Call your new program wordhist.cpp.

https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_22.png

chapter 8. character strings 279

Notice that, by making our array 50 elements long, we limit ourselves

to words with a length between zero and 49 letters. Be sure your

program checks the word length to make sure it isn’t outside those

limits.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45 50

N
u
m

b
e
r

o
f
L
e
tt
e
rs

Word Length

Figure 8.24: If you plot a histogram of
the word lengths, you should see
something like this.

If your program also prints out the average word length (as in

Problem 6) make sure to put a # at the beginning of the line, so

gnuplot won’t be confused by it if you want to plot your results (see

Figure 8.24).

8. Write a program named charcount.cpp that counts how many

times each letter of the alphabet appears in a file full of text, treating

upper- and lower-case letters as different. Start out by downloading

a copy of Alice in Wonderland by Lewis Carroll. You can do this with

one of the two commands below:

wget http://tinyurl.com/y9nrg3xh

or

curl -L -O http://tinyurl.com/y9nrg3xh

Lewis Carroll, whose real name was
Charles Lutwidge Dodgson, was also
an accomplished mathematician who
made significant contributions to that
field.
Source: Wikimedia Commons

After you’ve downloaded the file, rename it for convenience by

typing:

mv y9nrg3xh alice.txt

Your program should take advantage of the fact that, in C, a character

is equivalent to the character’s numerical ASCII code. For example,

the character “A” is ASCII character number 65. If you have a

character variable named c, you can get the numerical ASCII code

for the character it contains by saying (int)c (that is, just “casting”

the character as an int). These numbers are in the range from zero

to 255.

At the top of your program, create a 256-element array of integers

named count, like this:

int count[256] = {0};

The = {0} is a trick we saw earlier in this chapter that sets all of

the array elements to zero initially. Your program should contain

a “while” loop that reads one character at a time from the file

alice.txt. Each time a character is read, add 1 to the element of

count that has an index corresponding to that character’s ASCII

code. You can do that with a line like this:

https://commons.wikimedia.org/wiki/File:LewisCarrollSelfPhoto.jpg

280 practical computing for science and engineering

count[(int)c]++;

After the “while” loop is finished, the program should have two

“for” loops to print its results. The first loop should print counts for

character numbers 65 through 90, which corresponds to all the upper-

case letters. The second loop should print counts for characters 97

through 122, the lower-case letters. Each line of the output should

be printed like this:

printf ("%c %d\n", i, count[i]);

where i is the character number. Notice that if we print an integer

variable using %c the program will just print the character corre-

sponding to that number. So, for example, if the file contained the

character “A” 807 times, the program would print a line like this for

that character:

A 807

After you’ve written your program and tested it, try redirecting its

output into a file, like this:

./charcount > charcount.dat

Then you can use gnuplot to generate the graph in Figure 8.25. The

gnuplot command to do this is:

plot "charcount.dat" using ($0):2:xtic(1) with impulses

There are two bits of magic here: First, ($0) tells gnuplot to use the

line number as the x value. Second, xtic(1) tells gnuplot to use the

values in column 1 of the data file as the labels on the x axis.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

A BCDE FGH I J K LMNOPQRS T UVWX Y Z a b c d e f g h i j k l mn o p q r s t u v w x y z

Figure 8.25: Number of each character
seen in Alice in Wonderland. Notice that
“e” is the most common, as is typical in
English-language text.

chapter 8. character strings 281

9. First, fetch a copy of the file unixdict.txt by typing either:

wget http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

or

curl -L -O http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

(whichever works on your computer). This file contains a long list of

over 25,000 English words. You can open the file with nano to see

them.

Write a program named longestword.cpp that reads this file and

finds the longest word. The program should print the word and its

length. Use the strlen function to find each word’s length (see

Section 8.6)

Use the strerror function, as described above in Section 8.14, to

print an error message if the file unixdict.txt can’t be found.

Figure 8.26: A dictionary from
1st-Century BCE Uruk, in Mesopotamia.
Source: Wikimedia Commons

Assume that no word is longer than 1,000 characters. Also (of course)

assume that all the words have more than zero characters.

Hints: You’ll need to define two character strings: one to hold the

word you’ve just read from the file, and another to keep track of the

word that has the maximum length so far. Also, you’ll find it simpler

if you do the following as soon as you read each word:

length = strlen(word);

then look at the value of length when deciding whether this word

is longer than the current record-holder. Use an integer variable to

keep track of the length of the current record-holder. the top of your

program might look something like this:

char word[1000];

char maxword[1000];

int length;

int maxlength;

https://commons.wikimedia.org/wiki/File:Dictionary_with_colophon-AO_7661-IMG_0190-white.jpg

