
9. Functions

9.1. Introduction
Despite what you may think after reading the preceding chapters, C is

really a very minimal language with only a small vocabulary of about

32 words. This is one reason C has been so successful.

Functions allow you to extend the
capabilities of the C compiler.

Different types of computer understand different binary instructions,

so programs that run on each kind of computer need to be created by a

compiler that knows that computer’s instruction set. Because making

a C compiler is relatively easy (compared to many other computing

languages), C is often the first language available when a new type of

computer is developed.

* auto * int
* break long

case register
* char * return
* const short
* continue signed

default sizeof
* do * static
* double struct
* else switch

enum typedef
extern union
float unsigned

* for * void
goto volatile

* if * while

Figure 9.1: The 32 words of the C
language, with an asterisk beside those
we’ve already covered or will cover in
this chapter.

Even though the C language is simple, it’s powerful because we can

extend its abilities by adding “functions” to it. We’ve already used

many of these: printf, for example, isn’t part of the C language. It’s

a separate function that has been added. The same is true of the other

reading and writing functions we’ve been using, and the math functions

like sqrt. All of these are found in standard “libraries” of functions

that are usually installed along with the C compiler. The functions

in these libraries are themselves written in C. They’re essentially pre-

compiled snippets of programs, ready to be plugged in where you need

them.

Just as you can extend a house by building an extra room, you can

build functions that extend the C compiler’s capabilities. In this chapter

we’ll learn how functions work, and see how to create functions of our

own.

C’s functions let us define simple words to do complicated things. This

is especially useful when we have to do a complicated operation over

and over again, but it can help us in other ways too. Functions can

be re-used in other programs, and using functions can help you avoid

programming mistakes.

284 practical computing for science and engineering

9.2. What’s a Function?
Let’s start out by reviewing the kind of functions you’ve used in math

class. Figure 9.2 shows the mathematical function f (x) = x2 + 3.

The function is like a machine that takes some raw materials and

processes them to produce an output. The function’s raw materials

are its arguments. The function in Figure 9.2 takes one argment, which

we’ve called x here. We could just as easily have written f (y) = y2 + 3.

The name we give the argument doesn’t matter. It’s just a placeholder.

x

Out

7

52

f(x) = x2 + 3

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

f(
x
)

x

f(x) = x
2
 + 3

Figure 9.2: You’re probably familiar
with mathematical functions. A
function takes some arguments (inputs),
performs some operations on them,
then spits out a result.

When we write f (x) = x2 + 3 we’re defining a function. We’ve given

our function a name, f , we’ve specifed that it takes one argument (x),

and we’ve said what the function does with that argument to produce

an output (square the argument and add three to it). If we put in the

value 7, as in Figure 9.2, we’ll get out the value 52. We could try a range

of different input values and plot the corresponding output values on a

graph, as in the lower part of Figure 9.2.

Functions can have more than one argument. Consider the function

g(x, y) shown in Figure 9.3. This function takes two arguments (x and

y) and produces an output that combines them in a particular way.

Functions can have any number of arguments.

x

Out

4

22

y

6

g(x,y) = x + 3y

Figure 9.3: A function that takes two
arguments, x and y. Given x=4 and y=6

as arguments, the function’s output
would be 22.

Functions can also make use of other functions, as illustrated in Figure

9.4. Here, the function h(x) is defined to be h(x) = i(x) + 5, where i(x)

is another function, defined as i(x) = 3x2. If we gave h(x) an input of

x=2, it would find i(2) = 3×4 = 12, and then add five to this to find that

h(2) = 17.

i(x) = 3x2

x

Out

2

17

h(x) = i(x) + 5

Figure 9.4: The function h(x) shown
above uses another function i(x).

A function in a C program has all the properties we described above:

• A function has a name

• The function takes arguments and uses them to produce an output

• The behavior of a function is described by defining the function

• Functions can have any number of arguments (in fact we’ll see that C

function sometimes take no arguments at all!)

• Functions can use other functions

As we’ll see below, C functions also have some properties that aren’t

present in mathematical functions.

chapter 9. functions 285

Let’s look at how we might define a function in a C program. Figure 9.5

shows a C function that takes an input value (an integer we call x) and

produces an output value that’s equal to x*x + 3. This is analogous

to the mathematical function we saw in Figure 9.2.

x

Out

7

52

int f(int x) {

int result;

result = x*x + 3;

return (result);

}

Figure 9.5: A C function named f that
does the same thing as the
mathematical function shown in Figure
9.2.

Program 9.1 shows how we might insert this function at the top of a

program, and use it to print some values of the function for various

values of its argument. We could plot the program’s output with gnuplot

to create a graph like the one shown in Figure 9.2.

Program 9.1: funcfun.cpp

#include <stdio.h>

int f (int x) {

int n;

n = x*x + 3;

return (n);

}

int main () {

int i;

for (i=0; i<10; i++) {

printf ("%d %d\n", i, f(i));

}

}

Function definition

Using the function

This looks different from anything we’ve written before. We’ve added

a new section above int main(). The new section defines a function

named f. It says that the function accepts one int argument, and

returns an int value. We then use this new function inside main(),

in our printf statement.

You’ll probably notice that the first line of our function definition looks

an awful lot like the int main() statement that we’ve been using in

all of our programs. That’s no coincidence. main is a function just like

sqrt, printf, or our new f function. It turns out that, in C, almost

everything is inside of some function. When we run a C program, the

computer looks for a function named “main” and does whatever that

function tells it to do. We’ll see later that we can even give arguments

to main, as we do with other functions.

Also notice that we’ve defined our new function above main. The

compiler needs to know about a function before we can use it. One way

286 practical computing for science and engineering

to ensure this is to define new functions at the top of the program. We’ll

see another way to do this later, in Chapter 11, where we’ll find out

that the line #include <stdio.h> tells the compiler about functions

like printf and scanf.

When we use a function in a program, it’s as though the program takes

a detour into the function and then comes back again with a value:

int main () {

 int i;

 for (i=0; i<10; i++) {

 printf ("%d %d\n", i, f(i));

 }

}

int f(int x) {

 ...

 return (n);

}

Return to main...

Enter function...

Figure 9.6: The “flow” of the program
travels into the function, and then comes
back with a result.

Exercise 46: First Function

• Create, compile, and run Program 9.1. Redirect the pro-

gram’s output into a file by running it like this:

./funcfun > funcfun.dat

• Then use gnuplot to plot the program’s output, using the

gnuplot command:

plot "funcfun.dat" with lines

Does your result look like Figure 9.2?

• Now modify your program so that f (x) = x2 + 20. Com-

pile the program, and run it like this to produce a second

data file (funcfun2.dat):

./funcfun > funcfun2.dat

then use the following gnuplot command to plot both files

on the same graph:

plot "funcfun.dat" with lines, "funcfun2.dat" with lines

chapter 9. functions 287

9.3. Function Anatomy
The anatomy of a function definition looks like Figure 9.7. First we

need to specify what type of value the function will return. This can

be any of the types we use for variables: double, int, or char, for

example.

type name (type1 var1, type2 var2, ...){
...
}

Type of data
returned

Function
Name

Type of 1st
argument 1st argument Any number of arguments,

but only one return value.

Any number of arguments,
but only one return value.

Figure 9.7: The general form of a
function definition.The return value of a C function is like the value you get when you

evaluate a function in algebra. The C expression sqrt(4.0), for

example, would return the value 2.0. The type of value returned by

sqrt is a double.

By defining the type of value the function will return, you make it pos-

sible for the C compiler to check whether you’re putting that value into

an appropriate variable. If I write a statement like “x = sqrt(4.0);”

the compiler will check to see if x is a double variable and give me a

warning or an error message if it isn’t.

Next we give the new function’s name. This must be different from

the name of any other function in your program. Function names

can contain letters (upper- or lower-case), numbers and underscores.

As with variables (see Chapter 2), it’s best to start the name of your

function with a letter.

After the function’s name, we list any arguments and their types. Our

f (x) function takes just one argument, and it’s an integer. When we use

a function in our program, the C compiler checks to make sure we’re

giving it the right number of arguments, and that the arguments are of

the right type. If we’ve done something wrong, the compiler gives us a

warning or an error message. Return J. Meigs, Jr., Governor of Ohio,
US Postmaster General, and US Senator.
As far as I know, C’s ‘return”
statement wasn’t named for him, nor he
for it.
Source: Wikimedia Commons

At the end of our function, as in our f (x) function, we can optionally

return a value, but we aren’t obligated to return anything. Sometimes

a function just does something without returning a value. For example,

https://commons.wikimedia.org/wiki/File:Return_J._Meigs,_Jr._by_Witt.jpg

288 practical computing for science and engineering

we might want a function that just prints some text. If a function

doesn’t return a value, we specify the function’s type as “void”, like

this:

void howLong(int hours, int mins, int secs){

printf("This class is %d seconds long\n",

hours*3600 + mins*60 + secs);

}

Functions that do return a value use the return statement to do so. In

our f (x) example, the statement “return(n)” says that the function

is done, and sends its result, n, back to the main function. Functions

can only return one value.

Functions don’t need to have any arguments, either. The rand function

is an example of this. When defining a function that takes no arguments,

just put an empty pair of parentheses after the function name.

Finally, functions can’t be defined inside other functions. We couldn’t,

for example, define a new function inside main.

9.4. Functions that Use Other Functions

Figure 9.8: An adjustable voltage source
is connected to a resistor, causing
current to flow through the resistor.

Georg Simon Ohm (left), Alessandro
Volta (center), and André-Marie
Ampère, for whom the units of
resistance, electrical potential, and
current are named.
Source: Wikimedia Commons, 1, 2, 3

Consider the apparatus shown in Figure 9.8. Ohm’s law tells us that

the current (which we represent by the symbol i) flowing through the

resistor is given by:

i = V/R

where V is the voltage across the resistor and R is the resistance.

Another law (Joule’s Law) tells us that the power output of the resistor

(which we represent by p) is given by:

p = i2R

The power is a measure of how fast the resistor is emitting energy,

mostly in the form of heat. When we run a current through a resistor,

the resistor heats up.

If we know the voltage and resistance, we can calculate the current,

and then we can use the current to calculate the power. If we measure

resistance in ohms, voltage1 in volts, and current in amperes, the power 1 also called electrical potential

we calculate will be given in units of watts.

Let’s write a program that calculates the power output of the resistor at

various voltage settings. The result might look like Program 9.2.

https://commons.wikimedia.org/wiki/File:Georg_Simon_Ohm3.jpg
https://commons.wikimedia.org/wiki/File:Alessandro_Volta.jpeg
https://commons.wikimedia.org/wiki/File:Ampere_Andre_1825.jpg

chapter 9. functions 289

Program 9.2: ohm.cpp

#include <stdio.h>

double current (double v, double r) {

return (v/r);

}

double power (double v, double r) {

double i, p;

i = current (v, r);

p = i*i*r;

return (p);

}

int main () {

double r = 100; // ohms.

double vmin = 0; //volts.

double vmax = 12; //volts.

double v, p, vstep;

int n;

v = vmin;

vstep = (vmax - vmin)/100.0;

for (n=0; n<100; n++) {

p = power (v, r);

printf ("%lf %lf\n", v, p);

v += vstep;

}

}

Notice that we’ve defined two functions, current and power. The

current function tells us how much current will flow through the re-

sistor when a given voltage is applied across it. It takes two arguments,

v and r, and returns a value for the current. Because this is a very

simple function (it just divides v by r) we can do the calculation right

in the return statement. The current function just has one line in it!

But what about the power function. Shouldn’t it have current as one of

its arguments, instead of voltage? Sure, we could do it that way, but we

want our program to tell us the power for a given voltage, so why not

write our power function so that it does the calculation for us? Here

we’ve written the power function so that it takes voltage and resistance

as arguments, then internally uses the current function to calculate

290 practical computing for science and engineering

the current, before going on to calculate the power and return that.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12

P
,
in

 w
a
tt
s

V, in volts

Figure 9.9: Power versus voltage for a
100 ohm resistor.

This makes our main program very simple. We just loop through

several voltage values and use the power function to find the power

value at each voltage. The program assumes the resistance is 100 ohms.

The program starts at the voltage vmin and goes up to the voltage

vmax in 100 steps. Notice that we calculate the size of each voltage step

(vstep) before starting the loop, and then add vstep to the voltage

each time we go around. If we used gnuplot to plot the program’s

output, we’d see a graph like Figure 9.9.

Three high-power 100 ohm resistors,
with power ratings of 10, 50, and 100

watts. Each has an aluminum case with
cooling fins to help dissipate heat.
Source: Wikimedia Commons

When you buy a resistor, you need to pay attention to the resistor’s

power rating. Some resistors can only tolerate a power output of 1
8 watt.

Trying to increase the power beyond that would cause the resistor to

burn or melt. Resistors that can tolerate more than one watt are often

called power resistors. Based on our program’s output (as graphed in

Figure 9.9) we’d need a power resistor that can tolerate at least 1.4 watts

if we intend to put 12 volts across it.

Exercise 47: Your Volt Counts!

Create, compile and run Program 9.2. Send the program’s

output into a file and plot the data using gnuplot.

9.5. Variable Scope
If we run two different programs, we don’t expect that the variables

in one program will interfere with the variables in the other. It would

be perfectly OK if one program had an int variable named number

and the other program had a double variable with the same name.

Variables don’t affect things outside the program they’re in. A program-

mer might say that the “scope” of a variable doesn’t extend outside the

program.

A scope of a different kind: UVa’s own
Professor Kathryn Thornton replaces
solar panels on the Hubble Space
Telescope.
Source: Wikimedia Commons

In fact, in C, the scope of a variable might not even extend to other

functions in the same program. Each variable in a C program has either

a “local” or a “global” scope. All of the variables we’ve seen so far have

local scope. This means that they can only be used inside the function

where they’re defined. Outside of that function, it’s as though these

variables don’t even exist. (See Figure 9.10 on Page 292.)

The scope of a variable is determined by where it’s defined. Variables

defined inside a function are local to that function. Take a look at

Program 9.3.

https://commons.wikimedia.org/wiki/File:Arcol_High_Power_Resistor.jpg
https://commons.wikimedia.org/wiki/File:Kathryn_Thornton_replacing_the_solar_arrays_of_the_Hubble_space_telescope_during_the_STS-61_mission_9400261.jpg

chapter 9. functions 291

Program 9.3: scope.cpp (This won’t work)

#include <stdio.h>

void printstuff () {

printf ("The value of n is %d\n", n);

}

int main () {

int n = 100;

printstuff();

}

If you tried to compile this program, g++ would say:

scope.cpp: In function 'void printstuff():

scope.cpp:4: error: 'n' was not declared in this scope

The variable n is only defined inside main. As far as the printstuff

function knows, this variable doesn’t even exist.

On the other hand, variables defined outside of any function are global.

(See Figure 9.10.) They can be used anywhere in your program. Here’s

a modified version of the program above. All we’ve done is move one

line:

Program 9.4: scope.cpp, with a global variable

#include <stdio.h>

int n = 100;

void printstuff () {

printf ("The value of n is %d\n", n);

}

int main () {

printstuff();

}

The variable n now has a global scope, meaning that every function in

your program has access to it. The program will now compile, and do

what you expect.

292 practical computing for science and engineering

double number;

int number;

main()

func2()

char number[100];

func1()

int height;

double height;

prog.cpp

Figure 9.10: The three variables named
number in prog.cpp are completely
independent. Each one only exists
inside the function where it’s defined.
Also notice that the int variable named
height has a global scope, and can be
used by any function. The function
func2, however, overrides the global
height, replacing it with a local
double variable that only exists within
that function.

But what happens if you define a global variable, and then define a

local variable with the same name? In that case, the local variable takes

precedence. Figure 9.10 illustrates this. The function func2 defines a

double variable named height, even though there’s already a global

int variable with the same name. Inside func2, the name height

will always refer to the local double variable, and the global variable

of the same name will be inaccessible.

It might be tempting to make all of your program’s variables global,

but avoid this temptation. In general you should use global variables

sparingly. If many functions can change a variable’s value it’s very

difficult to keep track of what’s going on. It’s much better to pass

values to functions explicitly, via arguments, rather than to define them

globally. For clearer code, it’s best to restrict variables to the smallest

possible scope. That being said, let’s look at how global variables might

profitably be used in a program.

9.6. Using Global Variables
Imagine that a rock is dropped from a balloon floating 1,000 meters

above the ground, and falls under the influence of earth’s gravity. We’ll

assume that the balloon is close enough to the earth so that we can use

a constant value of g = 9.8m/s2 for the rock’s acceleration2. After some 2 We’ll also ignore the effects of air
resistance.time, t, the rock’s speed will be:

v(t) = gt

and it will be at a height h, where:

h(t) = 1000 −
1

2
gt2

Program 9.5 tracks the falling rock for ten seconds. Every hundredth

of a second it prints out the rock’s current velocity and height. Two

functions named velocity and height calculate those quantities.

Notice that both functions are so trivial that they only contain a return

statement. Both functions need to know the acceleration of gravity, so

we store this in a global variable named g.

chapter 9. functions 293

Program 9.5: falling.cpp

#include <stdio.h>

double g = 9.8; // meters per second^2.

double velocity (double t) {

return (g*t);

}

double height (double t) {

return (1000 - 0.5*g*t*t);

}

int main () {

double t = 0; // elapsed time, in seconds

int i;

for (i=0; i<1000; i++) {

t += 0.01;

printf ("%lf %lf %lf\n", t, velocity(t), height(t));

}

}

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 0 1 2 3 4 5 6 7 8 9 10

h
e
ig

h
t(

t)
,
in

 m
e
te

rs

t, in seconds

Figure 9.11: The height of a falling
stone dropped from 1,000 meters, as a
function of time.

Exercise 48: I’ve Fallen and I Can’t Get Up!

Create and compile Program 9.5, then run the program like

this:

./falling > falling.dat

The resulting file should contain three columns representing

time, velocity and height. Now plot the height data by

starting gnuplot and telling it:

plot "falling.dat" using 1:3 with lines

The phrase using 1:3 tells gnuplot to use the first column

(time) for the horizontal values on the graph, and the third

column (height) for the vertical values. Does your plot look

like Figure 9.11? What does a graph of velocity (instead of

height) versus time look like?

294 practical computing for science and engineering

9.7. Multiple Returns
Imagine that you’re a fighter pilot who’s been asked to fly his plane

along a very specific (and quite odd) path. After you take off, you’re

supposed to rise steadily to a height of 1,000 meters, and then fly

sinusoidally up and down for a while to evade enemy fire. After that,

you’re supposed to level off and fly at a constant height.

From the ground, your flight might look like Figure 9.12.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

h
e
ig

h
t

distance

DR

Fok

425

I7

Figure 9.12: Our quirky flight path,
which rises linearly for the first 250

meters, undulates for the next 250

meters, and then levels off. Fasten your
seatbelts!

Can we write a function that tells us the plane’s height as a function of

how far the plane has travelled horizontally? One complication is the

fact that our flight path has three distinct parts: takeoff, evasion, and

cruising. As we see from Figure 9.12 each of the first two parts covers a

horizontal distance of 250 meters.

The real “Red Baron”, Manfred von
Richthofen, the German WWI flying ace
who flew a red Fokker triplane.
Source: Wikimedia Commons

We might consider writing a function that has an “if” statement, like

this:

if (x < 250) {

// Takeoff

...

} else if (x >= 250 && x < 750) {

// Evasion

...

} else {

// Cruising

...

}

https://commons.wikimedia.org/wiki/File:Manfred_von_Richthofen.jpg

chapter 9. functions 295

Where x is the horizontal distance the plane has travelled.

Using such an “if” statement, we could define a “height” function

like this:

Aircraft sometimes do fly along odd
trajectories. NASA’s “Vomit Comet”
creates zero-gravity conditions by
temporarily flying along a parabolic
path. Commercial ventures like “Zero
Gravity Corporation” now use the same
technique offer the experience to
non-astronauts, like Physicist Stephen
Hawking.
Source: Wikimedia Commons, Wikimedia Commons

Program 9.6: redbaron.cpp

#include <stdio.h>

#include <math.h>

double height (double x) {

if (x < 250) {

return(1000 * x / 250);

} else if (x >= 250 && x < 750) {

return(1000 + 250 * sin (2 * M_PI * (x-250) / 250));

} else {

return(1000);

}

}

int main () {

int i;

double x = 0;

for (i=0; i<1000; i++) {

x += 1.0;

printf ("%lf %lf\n", x, height(x));

}

}

Notice that the height function contains more than one return state-

ment. That’s OK. The function will use whichever return statement

is appropriate, based on the value of x. It’s perfectly alright to have a

function use different return statements in different circumstances.

It’s important to remember that a return statement ends the work

done by a function. For example, if we had two lines like these in a

function:

return (1);

return (2);

The function would always return a value of 1, since the first return

would tell the function to stop working and return a value.

https://commons.wikimedia.org/wiki/File:Zero_gravity_flight_trajectory_C9-565.jpg
https://commons.wikimedia.org/wiki/File:Physicist_Stephen_Hawking_in_Zero_Gravity_NASA.jpg

296 practical computing for science and engineering

9.8. Circus Physics

Source: Wikimedia Commons

Consider the situation depicted in Figure 9.13. A circus performer, “La

Femme Melinite”, is launched from a cannon and flies throught the air,

landing in a pool some distance away. As her manager, we’d like to

make sure she doesn’t miss, so we need to tell the roustabouts where

to put the pool for a given cannon angle and initial velocity.

Figure 9.13: A human cannonball,
launched at an intial velocity V0, at an
angle θ from the horizontal.

Fortunately, we’ve had some Physics classes so we know how to find

the answer mathematically. The roustabouts, on the other hand, are all

English majors. We need to write a computer program that they can

use to find out where to put the pool each time they set up the circus.

The program will need to incorporate the mathematical facts of the

problem. For example, we know that the total “time of flight” will be

given by Equation 9.1, using the y-component of the initial velocity (see

Figure 9.14).

tpool =
2V0y

g
, g = the acceleration of gravity (9.1)

Figure 9.14: Using a little vector math,
we can find the x and y components of
V0.

In our program, we could write a function that does the calculation in

Equation 9.1. It might look like this:

double time_of_flight (double v0, double angle) {

double t;

t = 2.0 * v0 * sin(angle) / g;

return (t);

}

https://commons.wikimedia.org/wiki/File:Poster_for_the_Cirque_d'Été_1887_'La_femme_Mélinite'_-_Gallica.jpg

chapter 9. functions 297

Program 9.7 is a little program that uses this function to tell us the time

of flight. Notice that we’ve used a global variable, g, to hold the value

of the acceleration of gravity. This value will be needed by several of

the functions we’ll be writing.

The Circus, by Georges Seurat (1891)
Source: Wikimedia Commons

Program 9.7: cannon.cpp

#include <stdio.h>

#include <math.h>

double g = 9.81; // Acceleration of gravity.

double time_of_flight (double v0, double angle) {

double t;

t = 2.0 * v0 * sin(angle) / g;

return (t);

}

int main () {

double vinit;

double theta;

printf ("Enter angle, in radians: ");

scanf ("%lf", &theta);

printf ("Enter velocity, in m/s: ");

scanf ("%lf", &vinit);

printf ("Time of flight is %lf sec.\n",

time_of_flight(vinit, theta));

}

When we show this program to the roustabouts we’re disappointed

to find that they don’t know how to measure angles in radians. No

problem, though. We’ll write a function that converts degrees into

radians, and let them enter the angle in degrees:

360
o

=

2π radians
double to_radians (double degrees) {

return (2.0 * M_PI * degrees / 360.0);

}

The to_radians function just contains one line (a return statement)

and doesn’t even define any variables. Now, after our program reads the

angle, we can convert it into radians by saying “theta = to_radians(theta)”.

Our Physics education also tells us how to find the maximum height of

https://commons.wikimedia.org/wiki/File:Georges_Seurat_019.jpg

298 practical computing for science and engineering

La Femme Melinite’s trajectory. (We want to make sure she doesn’t hit

the canvas of the Big Top!)

tpeak =
tpool

2
(9.2)

h = V0ytpeak −
1

2
gt2

peak (9.3)

A circus tent.
Source: Wikimedia Commons

This lets us write a function max_height to tell us how high our

human cannonball will go.

double max_height (double v0, double angle) {

double tpeak;

double h;

tpeak = time_of_flight(v0, angle) / 2.0;

h = v0*sin(angle)*tpeak - g*tpeak*tpeak/2.0;

return (h);

}

The last and most important thing we’re interested in is the horizontal

distance she will travel. That’s given by Equation 9.4.

d = V0xtpool (9.4)

We can express this in C as follows:

double range (double v0, double angle) {

double d;

d = v0 * cos(angle) * time_of_flight(v0, angle);

return (d);

}

Source: Wikimedia Commons

Putting all of these functions together with our earlier program, we get

Program 9.8.

https://commons.wikimedia.org/wiki/File:CircusTent02.jpg
https://commons.wikimedia.org/wiki/File:The_Orfords,_poster_for_Forepaugh_%26_Sells_Brothers,_1897.jpg

chapter 9. functions 299

Program 9.8: cannon.cpp, with distance and height

#include <stdio.h>

#include <math.h>

double g = 9.81; // Acceleration of gravity.

double to_radians (double degrees) {

return (2.0 * M_PI * degrees / 360.0);

}

double time_of_flight (double v0, double angle) {

double t;

t = 2.0*v0*sin(angle)/g;

return (t);

}

double max_height (double v0, double angle) {

double tpeak;

double h;

tpeak = time_of_flight(v0, angle) / 2.0;

h = v0*sin(angle)*tpeak - g*tpeak*tpeak/2.0;

return (h);

}

double range (double v0, double angle) {

double d;

d = v0 * cos(angle) * time_of_flight(v0, angle);

return (d);

}

int main () {

double vinit;

double theta;

printf ("Enter angle, in degrees: ");

scanf ("%lf", &theta);

theta = to_radians(theta);

printf ("Enter velocity, in m/s: ");

scanf ("%lf", &vinit);

printf ("Time of flight is %lf sec.\n",

time_of_flight(vinit, theta));

printf ("Max height is %lf meters.\n",

max_height(vinit, theta));

printf ("Range is %lf meters.\n",

range(vinit, theta));

}

300 practical computing for science and engineering

Let’s try our program out. Imagine that our flying lady is launched at

a speed of 60 miles per hour (the world record for a human cannonball

was set by someone travelling at about 70 mph). That’s approximately

equal to 27 meters per second. If the cannon is pointing upward at an

angle of 45°, our program tells us the following:

Enter angle, in degrees: 45

Enter velocity, in m/s: 27

Time of flight is 3.892331 sec.

Max height is 18.577982 meters.

Range is 74.311927 meters.

The Circus, Charles Demuth (1917)
Source: Wikimedia Commons

Note that the Big Top will need to be at least 20 meters tall: as high as

a six-story building! Also notice that she’ll be in the air for almost four

seconds. That’s not bad, considering that riders in the Vomit Comet

get only 25 seconds of weightlessness during each of the airplane’s

parabolic leaps (Figure 9.7).

9.9. Passing Values to Functions
The argument names we use when defining a function become local

variables inside that function, just like any other local variables that we

might define inside it. We can demonstrate that with Program 9.9.

Program 9.9: passing.cpp

#include <stdio.h>

void changenum (int number) {

printf ("Multiplying %d by 1000...\n", number);

number = number * 1000;

printf ("...the result is %d\n", number);

}

int main () {

int mynum = 1234;

changenum(mynum);

printf ("My number is now %d\n", mynum);

}

If we ran this program, we’d see something like this:

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234

https://commons.wikimedia.org/wiki/File:Charles_Demuth_-_The_Circus_(1917).jpg

chapter 9. functions 301

What’s going on? Why isn’t the last number 1234000?

When we use the function, the computer copies the values of the

arguments we give it into the internal, local variables named in the

function definition. In Program 9.9, the value of mynum (1234) gets

copied into the changenum function’s local variable number. Nothing

we do to number has any affect on the variable mynum in main.

In fact, the local variables inside functions are, by default, non-existent

whenever the function isn’t being used. Let’s take a look at the com-

puter’s memory before, during, and after using the changenum func-

tion. Figure 9.15 shows what we might see.

S

T

A

C

K

1234int mynum;

1234000int number;

o
th

e
r v

a
ria

b
le

s

main

1234int mynum;

o
th

e
r v

a
ria

b
le

s

main

1234int mynum;

o
th

e
r v

a
ria

b
le

s

main

changenum

Before invoking
changenum:

While changenum
is running:

changenum's variables get
pushed onto the stack.

After changenum
is done:

changenum's variables get
popped off the stack.

Figure 9.15: The stack before, during,
and after using the changenum
function.

When the function begins, the computer allocates some memory at

the top of the stack for each of the function’s local variables. When

the function finishes, the allocated memory is freed up for other uses

(perhaps by the next function that’s used). A function’s local variables

literally disappear when they’re not in use.

We can actually see that mynum and number are stored in different

locations by asking our program to print the memory address of each

of these variables. Program 9.10 does that by using &number and

&mynum to get the memory addresses, and C’s special placeholder for

printing memory addresses, “%p”.

302 practical computing for science and engineering

Program 9.10: passing.cpp

#include <stdio.h>

void changenum (int number) {

printf ("number is at %p\n", &number);

printf ("Multiplying %d by 1000...\n", number);

number = number * 1000;

printf ("...the result is %d\n", number);

}

int main () {

int mynum = 1234;

printf ("mynum is at %p\n", &mynum);

changenum(mynum);

printf ("My number is now %d\n", mynum);

}

If we run Program 9.10 we’ll see something like this3: 3 The memory addresses are written as
hexadecimal (base-16) numbers.

mynum is at 0xbfd36ccc

number is at 0xbfd36cb0

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234

9.10. Static Variables
As we saw in the preceding section, a function’s local variables disap-

pear when the function isn’t in use, and are re-created each time we

use the function. What if we want to save the value of one of these

variables? Maybe, for example, we’d like to have a counter that tells

us how many times the function has been called. We could accomplish

that with a global variable, but there’s also another way to do it.

Source: Wikimedia Commons

Take a look at Program 9.11. It uses the word “static” to tell the

compiler that we want to retain the value of a variable even when the

function isn’t being used. Static variables don’t live on the stack with

other variables. They have their own place in memory, where they

don’t get wiped out every time the function is called.4 4 The non-static variables we’ve been
using so far are formally called “auto-
matic” variables. If we wanted to, we
could explicitly use the word “auto” in
front of the variable definition to show
this, but that’s seldom done.

https://commons.wikimedia.org/wiki/File:Static_slide.jpg

chapter 9. functions 303

Program 9.11: counter.cpp

#include <stdio.h>

void myfunc () {

static int count = 0;

if (count == 0) {

printf ("This is the first time we've used this function\n");

} else {

printf ("We've already used this function %d times\n", count);

}

count++;

}

int main () {

int i;

for (i=0; i<5; i++) {

myfunc();

}

}

Notice that we can still intialize a static variable. In Program 9.11

we set the initial value of count to zero. This is only done once, the

first time the function is used. The variable won’t be reset to zero every

time we call the function.

If we ran this program, we’d see something like this:

This is the first time we've used this function

We've already used this function 1 times

We've already used this function 2 times

We've already used this function 3 times

We've already used this function 4 times

If we had omitted the word “static”, the variable count would be

wiped out and reset to zero every time we used the function, so it would

just keep repeating “This is the first time we’ve used this function”.

9.11. Passing Addresses
What if we really want one function to be able to change the value of a

variable in another function? To do that, we need to know where to find

the variable in the computer’s memory. As we’ve seen before, we can

304 practical computing for science and engineering

use an & in front of a variable’s name to get its memory address. But

how do we tell the computer to stick a value into a particular memory

address? C provides another symbol, “*” that we can use to help us do

this.

Program 9.12 is a modified version of Program 9.9. In the new version,

instead of giving changenum the value of mynum, we give it the address

of mynum.

Looking for the right (memory)
address?
Source: Wikimedia Commons

Program 9.12: passing.cpp

#include <stdio.h>

void changenum (int *number) {

printf ("Multiplying %d by 1000...\n", *number);

*number = *number * 1000;

printf ("...the result is %d\n", *number);

}

int main () {

int mynum = 1234;

changenum(&mynum);

printf ("My number is now %d\n", mynum);

}

Memory addresses can be stored in special variables called “pointers”.

In our new definition of changenum, we say that this function should

get a “pointer to an integer” (int *) as its argument. Pointers “point”

at the memory location where some data is stored. The * means that

this variable is a pointer.

Inside changenum we use the * operator in another way. The ex-

pression “*number = ...” means “set the variable at this memory

location to ...”5. 5 Programmers call & the “referencing
operator” and * the “dereferencing
operator”.

If we ran Program 9.12 we’d see this, showing that we have actually

changed the value of mynum:

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234000

https://commons.wikimedia.org/wiki/File:Stamp_US_1973_8c_mailman.jpg

chapter 9. functions 305

9.12. Bouncing Molecules
In 1827, botanist Robert Brown noticed something odd while looking at

pollen grains in water, through a microscope. The pollen grains were

very small, but he saw that they emitted even smaller particles that

we now know were bits containing starch and fat. This in itself was

interesting, but Brown was also fascinated by the fact that these tiny

particles moved around continously, as though they were alive.

Robert Brown, botanist, by Henry
William Pickersgill (1782-1875).
For much more information about
Brown’s work, see this modern-day
recreation of it by researchers at
Hamilton College.
Source: Wikimedia Commons

On further experiments with inorganic matter like bits of glass and

granite, he found that those particles displayed the same behavior.

What caused them to move? Today we know that the particles Brown

observed were being jostled by water molecules, and we call this phe-

nomenon “Brownian Motion”.

Program 9.13 simulates the motion of a tiny particle floating on the

surface of some water. It begins by picking a random starting position

for the particle by setting the x and y coordinates of the particle’s

position to random numbers between zero and one.

The program then tracks the particle through 10,000 collisions. Each

collision moves the particle by some random amount. The function

move takes the particle’s current x and y coordinates and changes them

to new values by adding a random amount between -0.5 and 0.5. Notice

that we give move the addresses of x and y, making it possible for the

function to change the values of these variables, as described in Section

9.11 above.

The program prints each new position, so we could plot the particle’s

path if we wanted to. Figure 9.16 shows the path of a typical particle.

-60

-50

-40

-30

-20

-10

 0

 10

-15 -10 -5 0 5 10 15 20

Figure 9.16: The path of a typical particle
in our brownian motion simulation.
For a deeper investigation of the
mathematics of random walks, see this
video from the PBS show “Infinite
Series”:
https://www.youtube.com/watch?v=stgYW6M5o4k

http://physerver.hamilton.edu/Research/Brownian/index.html
http://physerver.hamilton.edu/Research/Brownian/index.html
https://commons.wikimedia.org/wiki/File:Robert_brown_botaniker.jpg
https://www.youtube.com/watch?v=stgYW6M5o4k

306 practical computing for science and engineering

Program 9.13: brownian.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

void move (double *x, double*y) {

*x = *x + rand()/(1.0+RAND_MAX) - 0.5;

*y = *y + rand()/(1.0+RAND_MAX) - 0.5;

}

int main () {

double x, y;

int i;

srand(time(NULL));

// Pick a random initial position:

x = rand()/(1.0+RAND_MAX);

y = rand()/(1.0+RAND_MAX);

// Move around:

for (i=0; i<10000; i++) {

move(&x, &y);

printf ("%lf %lf\n", x, y);

}

}

chapter 9. functions 307

9.13. Passing Arrays to Functions
Sometimes we want a function to operate on an array. We can do that,

as shown in Program 9.14, which finds the biggest element of an array

of doubles. We could use this to find the most heavily-laden coal car

in our coal train example from Chapter 6, for example.

Source: Wikimedia Commons

Program 9.14 fills an array with random values, and then uses the

function maxelement to find the element that contains the largest

value.

Program 9.14: findmax.cpp

#include <stdio.h>

#include <stdlib.h>

int maxelement (int size, double array[]) {

double max;

int imax;

int i;

for (i=0; i<size; i++) {

if (i == 0) {

max = array[i]; // Use first number as first guess.

} else {

if (array[i] > max) {

max = array[i];

imax = i;

}

}

}

return (imax);

}

int main () {

double array[100];

int i;

for (i=0; i<100; i++) {

array[i] = rand();

printf ("%d %lf\n", i, array[i]);

}

printf ("The biggest element is number %d\n",

maxelement(100, array));

}

Notice that we tell the compiler that one of maxelement’s arguments

will be an array by putting [] after the variable name. Also notice that

we need to tell the function how big the array is. The size argument

to maxelement tells the function how many elements are in the array.

https://commons.wikimedia.org/wiki/File:Coal_train_approaching_the_Wearmouth_Rail_Bridge,_Sunderland,_1994_-_geograph.org.uk_-_137748.jpg

308 practical computing for science and engineering

Exercise 49: Dot Products

Imagine you have two 3-dimensional vectors, A and B. Each

of these can be represented as 3-element array in C. In

mathematics, the “dot product” of two 3-d vectors is

A · B = ∑
i

AiBi (9.5)

or, writing out the sum:

A · B = A0B0 + A1B1 + A2B2 (9.6)

Write a function that takes two 3-element double arrays as

arguments and returns their dot product as a double value.

Test your function with a program that multiplies these two

arrays together and prints out their dot product:

double a[3] = { 1.0, 2.0, 3.0 };

double b[3] = { 4.0, 5.0, 6.0 };

9.14. The Chaos Game
Let’s write another program that passes arrays to a function. This

program will play “The Chaos Game”. the rules of this game are:

In Discordianism, Eris is regarded as
the goddess of chaos. She says “I am
the substance from which your artists
and scientists build rhythms. I am the
spirit with which your children and
clowns laugh in happy anarchy. I am
chaos. I am alive, and I tell you that you
are free.” (from the Principia Discordia).
Source: Wikimedia Commons

1. Pick three reference points on a piece of paper and label them P1,

P2, and P3.

2. Draw another point (let’s call it b) anywhere on the paper.

3. Randomly choose one of the reference points. For example, you

could roll a 6-sided die and pick P1 if you get 1 or 2, P2 if you get 3

or 4, and P3 if you get 5 or 6.

4. Draw a new point halfway between b and the reference point you

picked. This point becomes the new b.

5. Go back to step 3 and repeat.

Doing this by hand would get boring pretty quickly, so let’s write a

computer program to do it for us. Program 9.15 repeats steps 3 and 4

10,000 times, printing the new coordinates of b each time.

http://www.ology.org/principia/
https://commons.wikimedia.org/wiki/File:Eris_Antikensammlung_Berlin_F1775.jpg

chapter 9. functions 309

At the top of the program we define our three reference points. Each

point is represented by a 2-element array containing the point’s x and y

coordinates. The function movehalf takes the point b (also represented

by a 2-element array) and moves it half of the way toward one of our

reference points.

Notice that we give b to movehalf as an array. You might remember

that, in Chapter 8, we learned that C programs interpret an array’s

name (without an element number after it) as the memory address of

the array. This means that when we give a function an array as one

of its arguments, the function is able to change the values of the array

elements, just as when we give a function the memory address of a

single variable (which we saw above, in Section 9.11).

The main function picks random starting values for the coordinates

of our point b, then uses the rules of the Chaos Game to move this

point around. Instead of rolling a die, the program generates a random

number between zero and one. If this number is less than 1/3 the

program moves the point halfway to point P1. If it’s between 1/3 and

2/3 it moves toward P2. If it’s between 2/3 and 1, it goes toward P3.

We could save the program’s output in a file by typing “./chaos >

chaos.dat”, and then we could graph these points with the gnuplot

command “plot "chaos.dat" with dots”. The result is shown

in Figure 9.17.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.17: A “Sierpinski Triangle” (or
“Sierpinski Gasket”) drawn by playing
The Chaos Game. Telling gnuplot to use
“dots” causes it to draw small points
instead of symbols. For more on The
Chaos Game see this Numberphile video:
https://www.youtube.com/watch?v=kbKtFN71Lfs

https://www.youtube.com/watch?v=kbKtFN71Lfs

310 practical computing for science and engineering

You might well be surpised by this result! The shape you see is called a

Sierpinski Triangle (or Sierpinski Gasket). Since we picked a random

direction each time, you might have expected the points to be spread

evenly around the page. In fact, no matter where you start on the page,

the points will eventually be “attracted” to the red areas on the graph.

This shape is an example of a “chaotic attractor”. Even though we can’t

predict where a given point will land on the graph, the overall pattern

of all the points is very orderly and well-defined. This is an example of

order emerging spontaneously from randomness. Such phenomena are

common in the natural world, where simple underlying rules can lead

to intricately beautiful structures.

Program 9.15: chaos.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

double p1[2] = {0,0};

double p2[2] = {0.5,1.0};

double p3[2] = {1.0,0.0};

void movehalf (double b[], double point[]) {

b[0] = b[0] + 0.5*(point[0] - b[0]);

b[1] = b[1] + 0.5*(point[1] - b[1]);

}

int main () {

double r, b[2];

int i;

srand(time(NULL));

b[0] = rand()/(1.0+RAND_MAX);

b[1] = rand()/(1.0+RAND_MAX);

for (i=0; i<10000; i++) {

r = rand()/(1.0+RAND_MAX);

if (r < 1.0/3) {

movehalf(b, p1);

} else if (r < 2.0/3) {

movehalf(b, p2);

} else {

movehalf(b, p3);

}

printf ("%lf %lf\n", b[0], b[1]);

}

}

chapter 9. functions 311

9.15. Command-Line Arguments
If main is just a function, can we give it arguments? Yes we can, but

they must always be a particular pair of arguments. It turns out that the

arguments given to main contain anything you type on the command

line after the name of your program. These extra things are called

“command-line arguments”.

Take a look at Program 9.16. This program uses several new concepts.

First, notice that main now has two arguments, int argc and char

*argv[]. The main function must always have either these two argu-

ments or none at all. The first argument, argc, tells the program how

many arguments you typed on the command line when you ran the

program. The second argument is an array of character strings, each

element of which contains one of the command-line arguments.

Program 9.16: args.cpp

#include <stdio.h>

int main (int argc, char *argv[]) {

int i;

for (i=0; i<argc; i++) {

printf ("argv[%d] = \"%s\"\n", i, argv[i]);

}

}

Let’s see what happens when we run the program. If we just type

./args the program says:

argv[0] = "./args"

argv[0] will always contain the name of the program itself, as it’s

typed on the command line. Now look what happens if we type

./args hello 1 2 3 on the command line:

argv[0] = "./args"

argv[1] = "hello"

argv[2] = "1"

argv[3] = "2"

argv[4] = "3"

We could use these command-line arguments to control our program’s

behavior if we wanted to.

Notice, however, that all of the elements of argv are character strings,

312 practical computing for science and engineering

not numbers. In the example above, argv[1] is equal to the character

string "1", not the number 1. We can see how these differ by looking

at how each value is stored in the computer’s memory:

00000001

00110001

int x = 1;

char x = '1';

What's inside “x”:

The ASCII code for

the character '1'.

The ASCII code for

the character '1'.

C’s standard libraries provide a pair of functions for converting strings

to numbers: atof and atoi. The atof function converts a character

string into a floating-point number (a double), and atoi converts a

string into an int. In order to use these functions, we need to add

#include <stdlib.h> at the top of the program. In the next section

we’ll look at a program that uses these functions.

Here’s a simple program that illustrates the use of atoi to convert

a command-line argument into an int. The program counts up to a

number given on the command line. For example, if you said:

./countto 10

the program would count to ten.

Program 9.17: countto.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

int i,n;

n = atoi(argv[1]);

for (i=0; i<=n; i++) {

printf ("%d\n", i);

}

}

Convert argu-

ment to int

chapter 9. functions 313

9.16. Command-Line Cannon
Let’s use command-line arguments to write an improved version of

our earlier “cannon” program. Program 9.18 shows a modified version

of Program 9.8, omitting the definitions for functions other than main.

(The other functions will be the same for both programs.)

The new version of the program lets us enter the angle and intial

velocity on the command line when we run the program, instead of

asking the user for these values. For example, we could type:

./cannon 45 27

to point the cannon at a 45°angle and specify an initial velocity of 27

m/s.

Program 9.18 first checks to see if you’ve given it the right number of

command-line arguments by looking at the value of argc. We want to

make sure the user has given values for theta and vinit. If not, the

program prints out a friendly usage message and stops the program.

We can stop the program at any time by using the “exit” function,

which is part of C’s standard library of functions. exit takes one

argument: an integer number specifying the exit status of the program.

This can be any number you like, but usually anything other than zero

means that the program failed. You can put an “exit(0);” statement

at the end of your programs, but it’s not necessary.

Notice that we check to make sure argc is equal to 3. Why 3? Won’t

there be only two arguments, theta and vinit? The argv array

actually contains one extra thing: the name of the program itself. If we

type “./cannon 45 27”, the elements of argv look like this:

argv[0] = "./cannon";

argv[1] = "45";

argv[2] = "27";

Program 9.18 uses atof to convert the command-line values of theta

and vinit into numbers.

Finally, program 9.18 uses the program name as part of the friendly

error message it prints if the user doesn’t supply enough command-line

arguments.

314 practical computing for science and engineering

Program 9.18: cannon.cpp, with command-line arguments

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

// Other functions go here....

int main (int argc, char *argv[]) {

double vinit;

double theta;

if (argc != 3) {

printf ("Syntax: %s theta vinit\n", argv[0]);

exit(1);

}

theta = atof(argv[1]);

theta = to_radians(theta);

vinit = atof(argv[2]);

printf ("Time of flight is %lf sec.\n",

time_of_flight(vinit, theta));

printf ("Max height is %lf meters.\n",

max_height(vinit, theta));

printf ("Range is %lf meters.\n",

range(vinit, theta));

}

chapter 9. functions 315

Exercise 50: Hang Time

Write a program like Program 9.18 using the time_of_flight

function from Program 9.8. The program should accept two

command-line arguments, theta and vinit, and it should

print the time of flight based on the values supplied by the

user.

Keeping the angle at 45°, run your program repeatedly to

find the minimum initial velocity (to the nearest m/s) the

acrobat would need if she wanted to remain in the air for at

least 25 seconds (matching a ride on the Vomit Comet).

9.17. Passing Functions to Other Functions
We’ve written a lot of programs that print a list of x and y values. The

“Red Baron” program (Program 9.6) earlier in this chapter is a recent

example. These programs loop through a bunch of x values, compute

the y value for each, and print the results. The value of y is given

by some function of x. The function might be something simple like

sqrt(x) or it might be something complicated, like the Red Baron’s

flight path.

George Clinton, “the Godfather of
Funk”.
Source: Wikimedia Commons

No matter what the function is, though, we often do the same thing

with it: calculate its value for several x values and print the result.

Wouldn’t it be nice if we had a function that would accept the name of

a “y-generating” function, and print a list of x and y values using it?

Let’s make one!

Take a look at Program 9.19. As you can see, its main just contains one

statement. This statement uses the function plotit to produce a list

of 100 x and y values for y =
√

x, with values of x ranging between

zero and 500. The first argument to plotit is the address of the sqrt

function. Just as we passed the addresses of variables to a function in

Section 9.11, we can also pass the address of a function.

At the top of the program is the plotit function. To tell plotit to

expect a function address, we write one of its arguments as:

double (*func)(double)

which means “this argument will be the address of a function that takes

a double as its only argument and returns a double”. This kind of

https://commons.wikimedia.org/wiki/File:George_Clinton_in_Centreville.jpg

316 practical computing for science and engineering

argment is called a “function pointer” because it points to the memory

address of a function. In general, such an argument will have this form:

type (*name) (type1, type2, ...)

Type of data
returned

Function
Pointer

Type of 1st
argument

Type of 2nd
argument

Figure 9.18: General form of a function
pointer.

Inside plotit, we can use the name func to refer to the function, no

matter what it really is.

When we use the plotit function, we give it the address of the

function to be plotted by writing the function’s name, just as we do for

arrays.

We could replace sqrt with cos to get a list of values for y = cos(x),

or we could use exp to get y = ex. We can use any function that takes

a double as its only argument and returns a double.

Program 9.19: funcplot.cpp

#include <stdio.h>

#include <math.h>

void plotit (double (*func)(double), int nsteps, double xmin, double xmax) {

int i;

double x, step;

step = (xmax - xmin)/nsteps;

x = xmin;

for (i=0; i<nsteps; i++) {

printf ("%.10e %.10e\n", x, func(x));

x += step;

}

}

int main () {

plotit(sqrt, 100, 0, 500);

}

Finally, notice that plotit uses the format %.10e when printing

numbers. As we’ve seen before, the .10 tells printf to print ten

decimal places. The plotit function uses e instead of lf to tell

printf to print the numbers in scientific notation. This gives our

function the ability to print a wide range of numbers.

chapter 9. functions 317

9.18. Using qsort for Sorting
In Chapter 6 we looked at the “Bubble Sort” algorithm, which we used

for sorting the elements of an array. Now let’s look at a faster, more

flexible way of sorting array elements.

Licorice Allsorts are among the author’s
favorite candies. Yum!
Source: Wikimedia Commons

The C standard libraries contain a function named qsort (for “Quick

Sort”) that can be used to sort any kind of array. To use it, we give

qsort the name of the array to be sorted, and the address of a function

(written by us) for comparing any two array elements. When the

function compares two elements (let’s call them element a and element

b) it should return zero if the two elements are the same, −1 if a is less

than b, or 1 if a is greater than b.

Since qsort can be used to sort any type of array, we can’t assume that

the array elements will be ints or doubles or any other specific type.

Because of this, qsort passes a and b to our comparison function as

void variables (variables without any specific type), and it’s up to the

comparison function to figure out how to use them.

Here’s what a comparison function for comparing two integers might

look like:

int compare_int(const void *i1, const void *i2){

int a, b;

a = *(int *)i1;

b = *(int *)i2;

if (a<b) {

return (-1);

} else if (a>b) {

return (1);

} else {

return (0);

}

}

As you can see, the two arguments given to the comparison function

are the addresses (notice the asterisks) of two void variables (meaning

variables of any type). The function first needs to convert those into

integers. It does this by converting the void addresses into int ad-

dresses, then it puts another asterisk on the left to get the actual integer

values stored at those addresses and store them in the variables a and

b. Then it’s just a straightforward “if” statement to compare the two

https://en.wikipedia.org/wiki/Liquorice_allsorts
https://commons.wikimedia.org/wiki/File:Liquorice_Allsorts_in_a_glass_bowl.jpg

318 practical computing for science and engineering

numbers and return zero, −1, or 1, whichever is appropriate.

Program 9.20 reads an unsorted list of integers from a file and uses

the qsort function to sort them. The unsorted numbers are in a file

named unsorted.dat. The program will read as many numbers as

are in the file, up to a maximum of 1,000 numbers. After the numbers

are sorted, the program prints them in their sorted order, from smallest

to largest.

Program 9.20: sortit.cpp

#include <stdio.h>

#include <stdlib.h>

int compare_int(const void *i1, const void *i2){

int a, b;

a = *(int *)i1;

b = *(int *)i2;

if (a<b) {

return (-1);

} else if (a>b) {

return (1);

} else {

return (0);

}

}

int main (int argc, char *argv[]) {

FILE *input;

const int nmax = 1000;

int i, n=0, numbers[nmax];

input = fopen("unsorted.dat", "r");

while (n<nmax &&

fscanf(input, "%d", &numbers[n]) != EOF) {

n++;

}

fclose (input);

qsort((void *)numbers, n, sizeof(int), compare_int);

for (i=0; i<n; i++) {

printf("%d\n", numbers[i]);

}

}

chapter 9. functions 319

Program 9.20 gives the qsort function four arguments:

Coat of arms of “Sort”, a town in
Catalonia, Northwest Spain. Its name
means “luck” in the Catalan language.
Source: Wikimedia Commons

1. The name of the array to be sorted, cast as a “(void *)”. This

gives qsort the memory address of the array, without specifying

any particular variable type.

2. The number of elements to be sorted. Note that this doesn’t have

to be all of the elements in the array. In the example above, if

unsorted.dat only contained 100 numbers, then n would be 100,

even though the array has 1, 000 elements.

3. The size (in bytes) of each element of the array. Since qsort doesn’t

know what kind of elements it’s sorting, we need to tell it how big

they are. Here we use the sizeof statement that we introduced in

Chapter 6.

4. Finally, we give qsort the name of our comparison function. In this

case, it’s just the compare_int function we wrote above.

When our comparison function compares two elements, we’re free to

define what we mean by “greater than”, “less than”, or “equal”. Why

would we need this flexibility? Imagine, for example, that we had a coal

train with many cars, each with a different amount of coal, and each

destined for a different customer. We might have an array of customer

IDs. We could just sort the array in order of increasing ID number, but

we might sometimes want to sort the list of IDs based on how much

coal they ordered, or by how many miles it is from the coal mine to the

customer. The qsort function gives us the flexiblity to do that6. 6 Later on, in Chapter 12, we’ll see that
C lets us define our own, complicated,
variable types. The qsort can even be
used with those, since we get to define
our own comparison function.

https://commons.wikimedia.org/wiki/File:Escut_de_Sort.svg

320 practical computing for science and engineering

9.19. Conclusion
Writing your own functions in C is easy, and can be beneficial in several

ways. Using functions can help you:

• Avoid duplicating the same code many times within a program.

If you find yourself typing the same set of statements again and

again, it’s time to think about creating a function to replace them.

• Make your program easier to modify.

After you’ve encapsulated a task within a function, you can easily

modify it to make it better, without having to modify the rest of your

program.

• Re-use your code in other programs.

Once you’ve written your function, you can re-use it in other pro-

grams.

• Catch programming mistakes.

The compiler makes some syntax checks when a function is called,

so this is an opportunity to catch mistakes.

• Avoid accidentally changing variables.

As we’ve seen, variables inside a function are independent from

variables of the same name in other functions.

I encourage you to get into the habit of writing code that breaks work

up into bite-sized functional chunks. Modularizing your programming

jobs keeps you from reinventing solutions, and helps unclutter the

visual flow of your programs, making it easier to see what the program

is doing.

Later, we’ll be learning how to create your own libraries of pre-compiled

functions that you can reuse again and again.

chapter 9. functions 321

Practice Problems

“Functional” is a solo piano piece
composed by Thelonious Monk, “the
genius of modern music”.
Source: Wikimedia Commons

1. As we saw in Chapter 7, a Normal (or Gaussian) curve is described

by the equation:

P(x) = Ae
−

(x−x)2

2s2

If we let A = 1, x = 10, and s = 1 the equation gets simplified to:

P(x) = e−
(x−10)2

2

Write a program named gauss.cpp that contains a function named

P that returns the value of P(x) from the simplified equation above.

Note that you’ll need to include math.h at the top of your program

so you can use the exp and pow functions. The function should take

one double argument (the value of x) and return a double value.

In the main part of your program, create a loop that steps through

200 values of x, from zero to 19.9 in steps of 0.1. For each value of x,

print x and P(x).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

Figure 9.19: Your gauss.cpp
program’s output should look like this
if you plot it with gnuplot.

If you put the program’s output into a file and plot it with gnuplot

you should see something like Figure 9.19.

2. Write your own version of Program 9.17 (countto.cpp) that adds a

check to make sure the user has supplied a number on the command

line. If the user doesn’t give a number, the program should print

a friendly message describing how to run the program, then exit

without doing anything else. See Program 9.18 for an example that

shows how to use the exit function.

The Trylon and Perisphere were two
buildings made for the 1939 New York
World’s Fair. The Perisphere had a
diameter of 180 feet. You could travel
through it on a moving sidewalk and
look down a diorama depicting a
utopian city.
Source: Wikimedia Commons

3. Write a program named sphere.cpp that calculates the volume

of a sphere, given its radius. Remember that the formula for the

volume of a sphere is V = 4
3 πr3. Use command-line arguments,

as described in Section 9.15 above, to allow the user to specify the

radius on the command line. For example, for a sphere of radius 3.5,

the user should be able to run the program like this:

./sphere 3.5

The program should just print out the calculated volume with no

commentary. So, if the sphere’s radius is 3.5, the program should

print 179.594380.

Make sure the program checks to see if the user has specified the

radius, and print an error message and exit if they haven’t. See

Program 9.18 for an example of this.

Hints: Since the radius can, in general, contain decimal places

you’ll need to use atof to convert the command-line argument

to a number. See Program 9.18 for an example.

https://en.wikipedia.org/wiki/Thelonious_Monk
https://commons.wikimedia.org/wiki/File:Thelonious_Monk,_Minton's_Playhouse,_New_York,_N.Y.,_ca._Sept._1947_8William_P._Gottlieb_06241).jpg
https://commons.wikimedia.org/wiki/File:US_853.jpg

322 practical computing for science and engineering

4. Write a program named compare.cpp that contains a C function

named “similar” that compares two double numbers and returns

an integer value of 1 if the numbers differ by less than 0.0001, or 0 if

they’re farther apart. The program should ask the user for the two

numbers to compare, and read them in with scanf. The program

should use your function to compare the numbers, and tell the user

(in clear, friendly words) if they’re within 0.0001 of each other.

5. The formula for computing the amount of money in a savings ac-

count is:

Mnow = Morig

(

1 +
r

n

)nt

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 2 4 6 8 10 12 14 16 18 20

B
a
n
k
 B

a
la

n
c
e

Number of years

Figure 9.20: Bank balance over 20 years,
starting with $1,000, with 5% interest
compounded 4 times per year.

where Mnow is the amount of money you currently have, Morig is

the amount you originally deposited, r is the interest rate the bank

is paying you, n is the number of times per year that the interest

is added to your account, and t is the number of years since you

originally deposited the money.

Write a program named lucre.cpp containing a function named

mnow that begins like this:

double mnow (double morig, double rate, int ntimes, int years)

where the arguments correspond to Morig, r, n, and t, in that order.

the function should use these arguments to compute Mnow.

Your program should ask the user for the original amount of money

in her/his account, then print how much money will be in the

account each year for the next 20 years, assuming an interest rate

of 0.05 (5%) with interest added 4 times per year. Use your mnow

function to do the calculations. The program’s output should be two

columns: year number (0, 1, 2, ...etc.) and Mnow for that year.

6. Write a program named volumes.cpp that calculates the volumes

of some common shapes. Define three functions named vsphere,

vbox, and vcone to calculate the volume of a sphere, a box, and a

cone, respectively. Your definition of the vsphere function should

start like this:

h

r

Figure 9.21: The volume of a cone is
1
3 πr2h, where r and h are as shown in
the diagram above.
The volume of a sphere is 4

3 πr3.
The volume of a box is just length ×
width × height.

double vsphere (double r)

where r is the sphere’s radius. The definition of vbox should start

like this:

double vbox (double l, double w, double h)

where l, w, and h are the length, width, and height of the box. The

definition of vcone should start like this:

double vcone (double r, double h)

chapter 9. functions 323

where r is the radius of the cone’s base and h is the cone’s height.

See Figure 9.21 for the formulas you’ll need.

Your program should ask the user to specify which shape to use like

this:

Enter the type of shape (1=sphere, 2=box, 3=cone):

then the program should ask the user for the dimensions of the

shape, calculate its volume using the appropriate function, and tell

the user the result.

7. Create a program that adds two numbers: Write a program named

add.cpp that accepts two integers as command-line arguments (see

Section 9.15 above). The program should add the two numbers and

tell you what their sum is. For example, if you type this:

./add 23 52

The program should print “75”.
Speaking of adders, the harmless
Eastern Hognosed Snake (Heterodon
platyrhinos) is sometimes called a “puff
adder” because it tries to frighten you
by spreading its head like a cobra and
hissing. If that doesn’t work, it will roll
over onto its back and play dead. If you
turn it upright, it will roll over again
just to prove that it’s really dead.
(“Don’t bother me! I’m busy being
dead!”)

8. Write a program named maxnum.cpp that accepts a list of numbers

on the command line and tells you which of the numbers is the

largest. The program should accept numbers with decimal places,

so you’ll need to use double variables and the atof function. (See

Section 9.15 above for information about using command-line ar-

guments.) You should be able to run your program like this, for

example:

./maxnum 12 13 128 765 2 4 3 -78

Maximum number is 765.000000.

Make sure your program can deal properly with negative numbers.

If it’s given the numbers -2 and -5, it should tell you that the largest

number is -2.

9. Write a program named testprime.cpp that checks to see if a

given integer is prime. (Remember that a prime number is one that

can only be divided evenly by itself and 1.) The program should

accept the number to be tested on the command line. For example:

./testprime 8675309

Tommy Tutone, the band responsible
for the 1981 hit song 867-5309/Jenny.
Source: Wikimedia Commons

The program should say something like “8675309 is prime” or

“8675309 is NOT prime”. The program should check the value of

argc to make sure the user has supplied a number to be checked. If

not, the program should tell the user what to do, and use exit(1) to

stop. See Section 9.15 above for information about using command-

line arguments.

If we call the number to be checked n, then your program should

look to see if n can be divided by any of the numbers from 2 to

https://en.wikipedia.org/wiki/Heterodon
https://en.wikipedia.org/wiki/File:Tommy_Tutone_band_Greenville_2017.jpg

324 practical computing for science and engineering

n-1, inclusive. You can use the % operator to check each number.

Remember that n%i will be zero if n can be evenly divided by i.

Refer to Chapter 4 for more information about the % or “modulo”

operator.

Note that your program will only be able to work on numbers that

are small enough to fit into an integer variable. On most computers,

the biggest number that can fit into an int will be 2,147,483,647.

Teacher and astronaut Christa
Macauliffe experiencing weightlessness
in NASA’s “Vomit Comet”. She died
tragically in 1989, when the space
shuttle Challenger exploded shortly after
launch.
Source: Wikimedia Commons

10. Write a new version of Program 9.6 (redbaron.cpp) that uses a differ-

ent function for the flight path. Instead of the complicated function

in Program 9.6, use:

h(x) = 10000 −
(x − 3000)2

10000

and modify the “for” loop so that it does 6,000 steps instead of

1,000, tracking the plane over a distance of 6,000 meters.

Run your program and redirect the output into a file, then plot the

file using gnuplot. What shape does it make? The graph should

approximate the path followed by a “zero-G” aircraft near the top of

its trajectory (see Figure 9.7).

11. In physics and math we often want to go through a list of numbers

“cyclically”. By this I mean that when we get to the end of the list we

start back at the beginning again. For example, if our list contained

the numbers 1, 2, 3 we could start at any of the numbers and write

them down, in order, starting back at the beginning if necessary,

until we’d written them all.

We could write this cyclic list in any of the following equivalent

ways:

1 2 3

2 3 1

3 1 2

Notice that the list rotates in a particular direction, clockwise in this

case, as shown in Figure 9.22.

1

23

Figure 9.22: A cyclic list of numbers.

Imagine that we have three variables, i, j, and k with initial values

i=1, j=2, and k=3. Write a function named rotate that uses the

techniques described in Section 9.11 above to change the values of

these variables, moving the value of i to j, the value of j to k, and

the value of k to i. The function should start out like this:

void rotate (int *i, int *j, int *k)

Use your function in a program named cycle.cpp that prints out

the initial values of i, j, and k, then uses your rotate function to

“rotate” the values of the three variables three times, printing out

their new values after each rotation.

https://commons.wikimedia.org/wiki/File:Christa_McAuliffe_Experiences_Weightlessness_During_KC-135_Flight_-_GPN-2002-000149.jpg

chapter 9. functions 325

12. Sometimes a program needs to accept a file name on the command

line. Write a program named randfile.cpp that can be run like

this:

./randfile random.dat

When the program is run like this, it should generate 1,000 random

numbers and write them into a new file named random.dat. You

can just use the rand function to generate each random number.

The program should check to make sure the user has supplied a file

name, and print an error message and exit if not. (See Program 9.18

for an example of this.)

Hint: The command-line arguments argv[1], etc., are character

strings, so you don’t need to do any conversion with atoi or atof.

In this program, you can just put argv[1] in place of the file name

in your fopen statement.

The fascinating properties of
strings.(Sitzendes Mädchen mit einer
Katze, 1903, by Albert Anker.)
Source: WikiArt

13. A character string is just an array of characters. As we saw in

Chapter 8, C provides us with a handy strlen function that can tell

us the length of the text stored inside a character string. The strlen

function does this by looking for the special “NUL” character that

terminates the string.

Complete the following program (named fakestrlen.cpp) by

adding a function named mystrlen that does the same thing the

built-in strlen function does.

#include <stdio.h>

int mystrlen (char string[]) {

// Insert your function here.

}

int main () {

char string1[] = "Help, I'm trapped in a computer!";

char string2[] = "Just kidding!";

char string3[] = "They made me say that!";

printf ("String 1 length is %d\n", mystrlen(string1));

printf ("String 2 length is %d\n", mystrlen(string2));

printf ("String 3 length is %d\n", mystrlen(string3));

}

Hints: Your function should use a while loop that starts with the

first character of the string (character number zero) and checks each

character to see if it’s the NUL character, which is written as '\0'

in C. The loop should continue for as long as the current character

isn’t a NUL. When the loop is done, the function should return the

number of the current character.

https://www.wikiart.org/en/albert-anker/sitzendes-m-dchen-mit-einer-katze-1903

326 practical computing for science and engineering

14. Hot objects tend to emit heat and light in a range of wavelengths.

The temperature of the object determines which wavelengths are

emitted the most. In 1900 Max Planck wrote down the modern

mathematical description of these emissions (known as “black body

radiation”). The relationship between the intensity, I of radiation at

a given wavelength, λ, depends on temperature, T, like this:

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3

In
te

n
s
it
y
 (

x
1
0

1
2
 W

/s
r/

m
2
/m

)

Wavelength (microns)

5000 K

4000 K

3000 K

Figure 9.23: I(λ) for several
temperatures. Notice that the peak of I
moves to the left as temperature
increases. This shows that hotter objects
emit more high-frequency radiation.
(Low wavelengths correspond with high
frequencies, and vice versa.)

I(λ) = 2hc2

λ5
1

exp(hc
λkT)−1

where exp is the exponential function and the physical constants are

(in SI units):

Symbol Name Value

The speed of light in a vacuum c 2.99792458 × 108

Planck’s constant h 6.62606896 × 10−34

Boltzmann’s constant k 1.3806504 × 10−23

Write a function named intensity that begins like this:

double intensity (double lambda)

where lambda is λ and the function returns the value of I(λ) from

the equation above. Use a global variable named t to set the temper-

ature to 5,000 Kelvin.

Use this function in a program named planck.cpp. The program

should also contain the function named plotit that we used in

Section 9.17. Have your program use the plotit function to print

100 values of I(λ), with λ going from 0.1e-6 meters to 3e-6 meters.

If you plot your results with gnuplot you should see a curve like the

largest curve in Figure 9.23.

Detail from Vanitas by Adriaan Coorte.
Source: Wikimedia Commons

15. Using the technique shown in Program 2.4 (diceroll.cpp) in Chapter

2, write a program that emulates a die with an abritrary number of

sides. Call the new program unidie.cpp. The user should be able

to specify the minimum and maximum numbers on the die by giving

the program command-line arguments. The program should contain

a function named roll that takes min and max as arguments and

returns a random integer between min and max, inclusive. Make

sure the program checks to see if the user has provided the necessary

command-line arguments, and takes apprpriate action if not. When

the program is run, it should print out the random number “rolled”

by the die.

https://commons.wikimedia.org/wiki/File:WLANL_-_zullie_-_Vanitas,_Adriaan_Coorte_(1).jpg

