
11. Libraries

11.1. Introduction

“Pay no attention to the man behind the curtain!”

—The Wizard of Oz

Ah, but we must, dear Wizard. The time has come to lift the veil that’s

hidden some of C’s inner workings. In particular, we’ll now take a look

at the place where the C compiler finds all of those functions we’ve

been using: things like printf, sqrt, and rand. We’ve seen that we

can write our own functions, but where do these “built-in” functions

live. Somewhere over the rainbow?

The Wonderful Wizard of Oz, by L. Frank
Baum (1900). In 1902 it was made into a
Broadway musical, and a film in 1939.
Source: Wikimedia Commons

As we’ll see, these functions are collected in “libraries”. This kind of

library contains pre-compiled snippets of code that g++ can plug into

your programs.

Some programmer long ago wrote a function called sqrt, just as

you’ve written functions in your own programs. This function was then

converted into binary instructions that a computer can understand, and

stored in a library for later use. When g++ compiles a program that

uses the sqrt function, it finds this chunk of binary instructions in the

library and inserts it into your program.

If you write a program that uses a function named flyingmonkeyspeed,

g++ first looks at your cpp file to see if you’ve written your own func-

tion with that name. If not, g++ then looks through a standard list of

libraries to see if one of them contains a function with that name. If no

function is found in either place, g++ gives you an error message.

Source: Wikimedia Commons

In this chapter we’ll explore libraries and other strange creatures related

to the inner workings of the g++ compiler. Let’s take a stroll down the

Yellow Brick road and see what we find.

http://www.gutenberg.org/ebooks/43936
https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_006.png
https://commons.wikimedia.org/wiki/File:BauW170B.jpg

366 practical computing for science and engineering

11.2. The g++ Assembly Line
L. Frank Baum’s The Wonderful Wizard of Oz, published in 1900, was

an American fairy tale that celebrated the ingenuity and inventiveness

that was in the air at that time. Orville and Wilbur Wright were

making manned glider flights at Kitty Hawk. The Automobile Club

of America held the first automobile race in the United States. Henry

Ford would found the Ford Motor Company three years later, based on

revolutionary principles of assembly line production.

The dark side of Henry Ford: Ford was
an outspoken antisemite, and mandated
the distribution of a copy of the rabidly
antisemitic newspaper, The Dearborn
Independent, with each Ford automobile
sold. In Germany, Nazi leaders cited
Ford’s influence on their movement.
Ford is mentioned favorably in Hitler’s
Mein Kampf and, in a 1931 interview,
Hitler said that Ford was his
"inspiration".
Source: Wikimedia Commons

Ford’s assembly lines are a good analogy for what we’ll be talking

about in this chapter. To understand why, we’ll need to look inside

g++.

We’ve learned that g++ takes a line like this:

printf ("Hello, world!\n");

and translates it into instructions the computer can understand, like

this:

1001110001010111011110001001111001.......

g++ actually does this job in three discrete steps, called “preprocessing”,

“compiling”, and “linking”, and interesting things happen at each stage.

When you type g++ -Wall -o hello hello.cpp you can imagine

your program travelling along an assembly line. At each stop along the

assembly line, the program is modified or translated in some way, until

a shiny new binary program pops out at the far end, ready to be run.

g++ Assembly Line

Pre-
Processing Compiling Linking

Figure 11.1: g++ does its work in several
stages.

So far, we’ve only talked about the middle step, where g++ translates C

language statements into binary. Now let’s look at the other two steps,

starting with “preprocessing”.

https://commons.wikimedia.org/wiki/File:Henry_ford_1919.jpg

chapter 11. libraries 367

11.3. Preprocessing
You might be surprised to learn that the #include statements we’ve

been putting at the top of our programs aren’t really part of the C

language at all. Instead, they belong to a separate “C preprocessor

language”. All of the statements in this language begin with #. The

C preprocessor provides you with some handy shortcuts that make

writing C programs easier. The most useful of these is #include.

When you compile a program, g++ begins by running your file through

the preprocessor. When the preprocessor sees #include <stdio.h>

it searches through a predefined list of directories1, looking for a file 1 Remember that “directory” is just
another word for “folder”.named stdio.h. When it finds the file, the preprocessor inserts this

file’s contents into your program just as though you had typed them

directly in at the spot where you said #include <stdio.h>. If

stdio.h can’t be found (maybe you typed its name wrong?) you’ll

get an error message.

Figure 11.2: The C preprocessor takes
the contents of stdio.h and inserts
them into your program.The “.h” in the name of files like stdio.h stands for “header”. The

content of these files, when #include’ed, acts as a header at the top

of your program that defines some symbols (like M_PI from math.h),

or prepares your program to use some functions.

There are a couple of variations on the #include statement, and how

they behave might vary slightly from one C compiler to another. In

general:

368 practical computing for science and engineering

• #include "file.h", with quotes around the file name, first looks

for file.h in the same directory as the program, then searches through

the predefined list of directories.

• #include <file.h>, with angle brackets2 around the file name, 2 Also known as “less than” and
“greater than” symbols.only looks through the predefined list of directories.

As you’ve probably guessed by now, you can write your own header

files to be included in your program. If you do this, best practice is to

use #include "file.h" for your own files, and reserve #include

<file.h> for system files.

But what about. . . ?

Can you find out where g++ will look for files like stdio.h?

The list of directories that are searched will vary from one kind of

computer to another, but you can see the list by typing the follow-

ing magic command, which invokes the preprocessor (named cpp)

directly:

echo | cpp -xc++ -Wp,-v -P

The output should look something like this:

#include "..." search starts here:

#include <...> search starts here:

/some/directory/some/where

/some/other/directory

/maybe/another/directory

End of search list.

If you want to spy on what a program looks like after be-

ing run through the preprocessor, type “cpp -P hello.c >

hello.out” and look at hello.out with nano. Near the bot-

tom of the file you’ll see the C statements from your original

program, but most of the file will be the contents of stdio.h.

11.4. Some Handy Random-Number Functions

Source: Wikimedia Commons

Let’s look in on Dorothy and see how she’s progressing down the

Yellow Brick Road. Hmm. It looks like she’s still in Munchkinland.

Those pesky little Munchkins are swarming around her, dancing and

singing and generally getting underfoot. Sheesh! How’s she ever

supposed to make it to the Emerald City? And the Wicked Witch is

looking for her, too. That swarm of Munchkins is like a big, neon,

https://commons.wikimedia.org/wiki/File:Munchkins.png

chapter 11. libraries 369

“Come and Get Me!” sign.

Oh well. Since we’re programmers, this whole situation just begs to

be simulated. Let’s try to make a model of the Munchkin distribution

around Dorothy.

We’ll probably need some random numbers to do that. Until now, we’ve

been using the rand function directly, but we know how to write our

own functions now, so let’s write one that makes it easier to generate

one sort of random numbers we’re often interested in. Take a look at

the function rand01 below.

double rand01 () {

static int needsrand = 1;

if (needsrand == 1) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}
 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

C
o
u
n
t,
 o

u
t
o
f
1
0
0
,0

0
0
 T

ri
e
s

Pseudo-Random Number

Figure 11.3: Histogram of 100,000

pseudo-random numbers generated by
rand01.

The function rand01 generates a pseudo-random real number be-

tween zero and one (see Figure 11.3). The most important part of

the function is just a return statement that sends back the value

rand()/(1.0+RAND_MAX). We’ve used this in lots of programs al-

ready, but it’s much easier to type rand01 than “rand()/(1.0+RAND_MAX)”.

The function also saves us work in another way. Remember how

we used the srand function to initialize the pseudo-random number

generator so we get a different set of numbers each time we run the

program? The rand01 function takes care of that for us.

To make sure it only uses srand once, the function defines a variable

called “needsrand” (“need srand”) that starts out with a value of

1. The first time rand01 is used, it invokes srand and then sets

needsrand to zero. The next time rand01 is used it checks the value

of needsrand and discovers that it doesn’t need to use srand again.

Notice that needsrand is defined as “static”. As we discussed in

Chapter 9, variables inside functions are wiped out when the func-

tion finishes unless we declare them static. Since we want to use

needsrand to remember what we did the last time rand01 was used,

this variable needs to be static.

370 practical computing for science and engineering

Let’s assume that the Munchkins are swarming around Dorothy, each

trying to get as close to her as possible, and elbowing each other out of

the way occasionally. We might assume that the density of Munchkins

would be highest near Dorothy, and fall off like a Normal curve at

larger distances from her.

Figure 11.4: A Normal (bell-shaped)
distribution. It resembles a
slightly-melted witch’s hat.

How can we generate pseudo-random numbers distributed like this? It

turns out that there’s a handy statistical trick for generating numbers

in an approximately Normal distribution3. All we need to do is take 3 Why does this magic work? Unfor-
tunately, that’s beyond the scope of
this book, but in general it relies on the
Central Limit Theorem, mentioned in
Chapter 7

12 numbers generated by rand01, add them up, and subtract 6. The

numbers obtained this way will be distributed approximately like a

Normal distribution with a mean value of 0 and a standard deviation

of 1 (see Figure 11.5.). That’s what this function named normal does:

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-3 -2 -1 0 1 2 3

C
o

u
n

t,
 o

u
t

o
f

1
0

0
,0

0
0

 T
ri
e

s

Pseudo-Random Number

Figure 11.5: Histogram of 100,000

pseudo-random numbers generated by
normal.

With those two functions, we’re ready to simulate the distribution

of Munchkins around Dorothy, as they might appear when viewed

through the Wicked Witch’s crystal ball. That’s what Program 11.1

does.

chapter 11. libraries 371

Program 11.1: munchkin.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

const int nmunchkin=1000; // Munchkin population.

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

void xydump (int npoints, double x[], double y[], char filename[]) {

FILE *output;

int i;

output = fopen(filename, "w");

for (i=0; i<npoints; i++) {

fprintf(output, "%lf %lf\n", x[i], y[i]);

}

fclose (output);

}

int main () {

int i;

double x[nmunchkin], y[nmunchkin];

double r, theta;

char filename[] = "munchkin.dat";

for (i=0; i<nmunchkin; i++) {

r = normal();

theta = 2.0*M_PI*rand01();

x[i] = r*cos(theta);

y[i] = r*sin(theta);

}

xydump(nmunchkin, x, y, filename);
}

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

y

x

Figure 11.6: The view from the Witch’s
Munchkin-Scope.

372 practical computing for science and engineering

Notice that, for convenience, we’ve also created a function named

xydump that writes the x and y coordinates of the Munchkin’s positions

into a file. When plotted with gnuplot, the result looks like Figure 11.6.

(For this figure, I’ve turned on a grid by giving gnuplot the command

“set grid”.)

Program 11.1 gets the x and y coordinates by generating a random

distance from Dorothy (r), with a Normal distribution centered on

her, and a random angle (theta). A little trigonometry turns these

numbers into the Cartesian coordinates x and y.

11.5. Making a Header File
Program 11.1 contains several functions that might be useful in other

programs. We often need random numbers, and we often dump data

into a file. We could always just copy the functions into the next

program we write, but let’s think about how we might make it easier

to re-use these functions.

Dynamism of a Man’s Head, by Umberto
Boccioni (1913).
Source: Wikimedia Commons

Take a look at Program 11.2. This program does the same thing as

Program 11.1, but it’s a lot shorter! That’s because we’ve shoveled all

of the functions (and our nmunchkins variable) into a new header file

that we call munchkin.h.

Speaking of heads, Thomas M. Disch’s
short story “Fun with Your New Head”
is well worth reading.

Program 11.2: munchkin.cpp, with new header file

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "munchkin.h"

int main () {

int i;

double x[nmunchkin], y[nmunchkin];

double r, theta;

for (i=0; i<nmunchkin; i++) {

r = normal();

theta = 2.0*M_PI*rand01();

x[i] = r*cos(theta);

y[i] = r*sin(theta);

}

xydump(nmunchkin, x, y, "munchkin.dat");

}

https://commons.wikimedia.org/wiki/File:Dynamism_of_a_Man%27s_Head_by_Umberto_Boccioni,_1913.jpeg
https://en.wikipedia.org/wiki/Under_Compulsion

chapter 11. libraries 373

Notice that we’ve used #include "..." instead of #include <...>,

since this is a header file we’ve written ourselves (not a system file)

and we’ll keep it in the same directory where we keep munchkin.cpp.

The file munchkin.h just contains the stuff we left out when we went

from Program 11.1 to Program 11.2. It looks like this:

“I’ve got a header, but I’m still a
no-brainer!”
Source: Wikimedia Commons

Program 11.3: munchkin.h

const int nmunchkin=1000; // Munchkin population.

double rand01 () {

static int needsrand = 1;

if (needsrand) {

srand(time(NULL));

needsrand = 0;

}

return (rand()/(1.0+RAND_MAX));

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for (i=0; i<nroll; i++) {

sum += rand01();

}

return (sum - 6.0);

}

void xydump(int npoints, double x[], double y[], char filename[]) {

FILE *output;

int i;

output = fopen(filename, "w");

for (i=0; i<npoints; i++) {

fprintf(output, "%lf %lf\n", x[i], y[i]);

}

fclose (output);

}

We can compile Program 11.2 by typing g++ -Wall -o munchkin

munchkin.cpp, just like any other program we’ve written. During the

preprocessing phase, g++ replaces “#include "munchkin.h"” with

https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_009.png

374 practical computing for science and engineering

the contents of munchkin.h, and then proceeds just as though we’d

typed those things directly into our program when we wrote it.

This is clearly one way that we could re-use our functions in another

program. The next time we write a program that needs these functions,

we can just add the line #include "munchkin.h" at the top and

we’ll have them.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.7: Exercise 55 should produce
a graph like this.

Exercise 55: Munchkin Functions

Create the file “munchkin.h” (Program 11.3). Write a

program named normaltest.cpp that uses #include

"munchkin.h" to obtain the Munchkin functions we’ve

written.

By using the normal function, have the program write out

10,000 pseudo-random numbers distributed in a Normal

distribution.

Run the program like this:

./normaltest > normaltest.dat

then plot normal.dat using the gnuplot command plot

"normal.dat". The result should look like Figure 11.7.

11.6. Some Statistical Functions
Let’s see how far Dorothy has gotten while we were simulating Munchkins.

Oh no! She’s about to cross the poppy field! I wonder if she’ll make it

across without falling asleep? It looks like another simulation is called

for.

When Baum wrote The Wonderful
Wizard of Oz poppies brought to mind
the soporific qualities of opium. By the
time the book had become the 1939 film,
poppies brought to mind the darker
memories of World War I’s Flanders
Fields.
Source: Wikimedia Commons

Program 11.4 is the result. It simulates 1,000 runs through the poppy

field. During each run, the time spent in the field is broken up into

1-minute segments. Using a “poppytoxicity” that tells us the proba-

bility of falling asleep after one minute’s exposure to the poppies, and a

random number (like rolling dice), the program tests to see if Dorothy

fell asleep during each 1-minute segment. Every time she makes it

all the way across the poppy field, the program increments a counter

variable named nsuccess.

At the end, the program tells us the maximum distance covered in any

https://commons.wikimedia.org/wiki/File:If_Ye_Break_Faith_-_Victory_bonds_poster.jpg

chapter 11. libraries 375

run, the mean distance of all runs, and the standard deviation of the

run distances.

The program uses the random-number functions from our previous

program by include’ing munchkin.h. You’ll notice that the pro-

gram uses several variables that aren’t visibly defined: dorothyspeed,

poppytoxicity, and poppyfieldsize. At the bottom of the pro-

gram there are also references to some new functions: maxelement,

mean, and stddev. These missing things are all defined in a new

header file named poppy.h.

The variables defined there look like this:

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

Notice that we’ve declared each of these variables (and nmunchkin

in munchkin.h) to be “const”. This tells the compiler that these

numbers are constants, and shouldn’t change. If we accidentally tried

to change one of these values somewhere in our program, the compiler

would give us an error message.

Zwei Schlafende Maedchen auf der
Ofenbank, by the Swiss artist Albert
Anker (1895).
Source: Wikimedia Commons

We also define some useful new functions in poppy.h (see “Program”

11.5). The first of these is mean, which tells us the mean value of an

array of values. Similarly, the function stddev tells us the standard

deviation of the values. These functions use techniques we talked about

in Chapter 7. The last new function is maxelement, which finds the

element number of the biggest value in an array. This is a function

we’ve used already, in Program 9.14 in Chapter 9.

Poor Dorothy! With the running speed, toxicity, and field size we’ve

given it, the program says she’s very unlikely to make it across the field.

On average, she would only make it about 6% of the way across, and

even in the luckiest case she only gets 2
3 of the way:

0 trials ended in success.

Max distance = 0.666667 miles

Mean distance = 0.061200 miles

Std. Dev. = 0.091728 miles

https://commons.wikimedia.org/wiki/File:Anker_Zwei_schlafende_M%C3%A4dchen_auf_der_Ofenbank.jpg

376 practical computing for science and engineering

Program 11.4: poppy.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "munchkin.h"

#include "poppy.h"

int main () {

double delta;

double distance;

double trial[1000];

int i;

int nsuccess = 0;

delta = dorothyspeed/60.0; // Distance covered in 1 min.

for (i=0; i<1000; i++) {

distance = 0;

while (1) {

if (rand01() <= poppytoxicity) {

break;

}

distance += delta;

if (distance >= poppyfieldsize) {

nsuccess++;

break;

}

}

trial[i] = distance;

}

printf ("%d trials ended in success.\n", nsuccess);

printf ("Max distance = %lf miles\n", trial[maxelement(1000,trial)]);

printf ("Mean distance = %lf miles\n", mean(1000,trial));

printf ("Std. Dev. = %lf miles\n", stddev(1000,trial));

}

chapter 11. libraries 377

Program 11.5: poppy.h

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

double mean (int nelements, double array[]) {

int i;

double sum=0;

for (i=0; i<nelements; i++) {

sum += array[i];

}

return (sum/(double)nelements);

}

double stddev (int nelements, double array[]) {

int i;

double sum=0;

double average;

average = mean(nelements, array);

for (i=0; i<nelements; i++) {

sum += pow(array[i]-average, 2);

}

return (sqrt(sum/(nelements-1)));

}

int maxelement (int nelements, double array[]) {

double max=0;

int i, imax;

for (i=0; i<nelements; i++) {

if (array[i] > max) {

max = array[i];

imax = i;

}

}

return (imax);

}

378 practical computing for science and engineering

Exercise 56: Run Dorothy Run!

Create the files poppy.cpp (Program 11.4) and poppy.h

(Program 11.5).

Compile and run the program to verify that your results

match those obtained above. Then modify poppy.h by

increasing Dorothy’s speed. Re-compile the program and

run it again. How fast does Dorothy need to run in order

to have about a 50/50 chance of making it across? (In other

words, in order to make it across successfully in 50% of the

1,000 trials.)

11.7. Some Histogram Functions
We can imagine that we might continue like this through our whole

programming career, creating new functions and saving them in header

files for later use. But what if we had thousands of functions, some of

them long and complex. That’s the case with C’s collection of standard

functions.

It could take g++ several minutes to compile the contents of a very

long header file, or a bunch of header files, containing thousands of

functions. We don’t want to wait that long to compile our program,

especially if we only need one or two functions from our collection.

Let’s try writing a new program, and use it as an opportunity to explore

another way of saving functions for later use. What shall we write?

We’ll look to Dorothy again for inspiration.

Thanks to Glinda the Good, Dorothy has made it out of the poppy field,

but now (gasp!) she’s being chased by a swarm of flying monkeys.

The swarm contains some energetic young monkeys who always want

to race ahead, and some lazy monkeys who always lag behind. When

they start out chasing Dorothy they’re all flying together, but after a

mile or two they’ve spread out, with the fast flyers in front and the

slower ones at the rear.

For some reason, the town of Motala,
Sweden, has on its coat of arms two
flying monkeys and a propeller. This
clearly deserves an explanation, but I
can offer none.
Source: Wikimedia Commons

Let’s write a program to make a histogram of the spatial distribution of

the flying monkeys after they’ve flown for an hour. We’ll need to use

our random-number functions to set the speeds of the monkeys, and

https://commons.wikimedia.org/wiki/File:Motala_stad_vapen.svg

chapter 11. libraries 379

we can use our statistical functions to check the mean speed to make

sure it looks reasonable. The result is Program 11.6.

The first thing you’ll notice is that the program include’s the file oz.h

instead of either of the header files we’ve written so far. Among other

things, this file contains definitions for some new constants that we’ll

be using:

const int nmonkeys = 1000; // Number of flying monkeys in swarm.

const double meanmonkeyspeed = 25; // mph, same as an unladen European swallow.

const double monkeyspeedspread = 5; // mph, std. dev. of monkey speeds.

The program starts out by setting the speeds of the monkeys. It does this

by starting with the mean monkey speed4, then adding or subtracting 4 By this we mean mean monkey speed,
not mean monkey speed, although the
latter might be appropriate too.

some random amount based on our normal function. The program

also initializes the position of each monkey to “0 miles” at this point.

In the program’s second loop it steps through 60 minutes of time,

minute by minute. In each “time slice” the program moves each monkey

forward by an amount based on that monkey’s speed.

After 60 minutes have passed, we make a histogram5 of the monkeys’ 5 If you’ve forgotten how histograms
work, take another look at Chapter 7.current positions. We start out by using a new function (which we’ll

see soon) named resethist to set all of this histogram bins to zero.

The program then loops through all of the monkeys and drops a “virtual

marble” into the appropriate histogram bin for each, using another

new function named addtohist. When it’s all done with this, the

program dumps the histogram data into a file, using our last new

function histdump.

The output file (monkey.dat) will contain two columns: the distance

travelled, and the number of monkeys that have travelled that distance.

We could plot this with gnuplot and get a graph similar to Figure

11.8.

11.8. Linking
Okay, so that’s a pretty picture (if you’re into that kind of thing), but

how did we get Program 11.6 to compile? Did we just pack all of our

functions and constant definitions into the header file named oz.h?

No, we did something a little fancier. We created a library of Oz-related

380 practical computing for science and engineering

Program 11.6: monkey.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "oz.h"

int main () {

double speed[nmonkeys]; // Speed of each monkey.

double position[nmonkeys]; // Total distance flown by each monkey.

int minute;

int monkey;

double xmin, xmax;

int nbins = 50;

int bin[nbins];

char filename[]="monkey.dat";

for (monkey=0; monkey<nmonkeys; monkey++) {

speed[monkey] = meanmonkeyspeed + monkeyspeedspread*normal();

if (speed[monkey] < 0.0) {

speed[monkey] = -speed[monkey]; // "Hey buddy, turn around!"

}

position[monkey] = 0.0;

}

printf ("Min speed = %lf\n", speed[minelement(nmonkeys,speed)]);

printf ("Max speed = %lf\n", speed[maxelement(nmonkeys,speed)]);

printf ("Mean speed = %lf\n", mean(nmonkeys, speed));

for (minute=0; minute<60; minute++) {

for (monkey=0; monkey<nmonkeys; monkey++) {

position[monkey] += speed[monkey]/60.0;

}

}

resethist(nbins,bin);

xmin = position[minelement(nmonkeys,position)];

xmax = position[maxelement(nmonkeys,position)];

for (monkey=0; monkey<nmonkeys; monkey++) {

addtohist(nbins, bin, xmin, xmax, position[monkey]);

}

histdump (nbins, bin, xmin, xmax, filename);

}

chapter 11. libraries 381

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

M
o

n
k
e

y
s

Position, in Miles from Start

Figure 11.8: The distribution of the
monkey swarm after flying for one hour.

functions.

Before talking about libraries, we need to return to the g++ “assembly

line”. (Refer back to Figure 11.1.)

After preprocessing your hello.cpp file, the main work of the com-

piler happens. g++ takes the preprocessed C code and converts it into

a binary form that’s digestible by the CPU. But what about functions

that aren’t defined in our program, like “printf”? How can the C

compiler write CPU instructions for these functions? In fact, it can’t:

instead, it just inserts placeholders in the code for now.

Source: Wikimedia Commons

The placeholders referring to things that aren’t in your hello.cpp file

are resolved in the final step, which is called “linking”. In this stage,

g++ invokes another program, called “ld”, which looks through a set

of standard libraries, trying to find a function called printf. We’ll talk

about how libraries are created soon, but for now you just need to know

that a library contains pre-compiled chunks of code that correspond to

functions like printf. The linker copies any chunks it needs from the

libraries, and inserts them into the appropriate places in your program.

There are three important things to note about linking:

• First, the chunks of code in the libraries are pre-compiled, so they’re

already binary code that’s ready to be used by your CPU.

https://commons.wikimedia.org/wiki/File:SanDiegoCityCollegeLearningResource_-_bookshelf.jpg

382 practical computing for science and engineering

Figure 11.9: g++ looks through libraries
to find any missing functions.

• Second, if the linker can’t find a chunk of code corresponding to a

function that you’ve used, it will spit out an error message telling

you that it has run into an unresolved reference (your program

refers to a function that can’t be found). This may mean that you

need to tell the compiler to look elsewhere, in other libraries besides

the standard ones. (Or it may mean that you have a typo in your

program!)

• Third, the linker only copies the functions that your program really

uses. It doesn’t insert a copy of the whole library into your program.

“I heart libraries!”
Source: Wikimedia Commons

11.9. Creating a Library
It’s very easy to create a library of your own. Say, for example, that we

have a file called oz.cpp that contains a lot of spiffy Oz-related functions

that we’ve written. The file doesn’t contain a complete program (there’s

no “main()”), it just contains the Oz functions. It might look like

Program 11.7.

oz.cpp contains all of the Munchkin, poppy, and flying monkey func-

tions that we’ve written so far in this chapter.

The first step in turning this into a library is to convert our C code into

binary code. This isn’t a whole program, so we’re going to skip the

“linking” step that g++ did in the example above. We can do this by

typing:

g++ -Wall -c oz.cpp

https://commons.wikimedia.org/wiki/File:Tin_Woodman.png

chapter 11. libraries 383

This tells g++ to just do the pre-processor and compile steps and then

stop. It produces an output file called oz.o, where the .o stands for

“object”. An object file contains binary code that has been compiled,

and is ready to be inserted into a program.

Pre-
Processing Compiling Linking

oz.cpp

oz.o

Figure 11.10: An “object” file is created
by converting your C code into binary,
but not plugging in any functions from
libraries.

The “ar” command6 can be used to pack object files into a library and 6 “ar” is short for “archive”.

index them for later use. For example, we could create a new library

containing our Oz functions:

ar -csr liboz.a oz.o

where “c” means “create the library if it doesn’t exist”, “s” means

“generate an index”, and “r” means “replace anything of the same

name that is already in the library”.

By default, g++ looks for functions like printf in a set of system

libraries that are installed along with g++. A library named libm.a

contains most of the math functions, and libc.a contains most other

things. The library libstdc++.a contains many C++-specific func-

tions.

384 practical computing for science and engineering

Program 11.7: oz.cpp

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

double rand01 () {
static int needsrand = 1;
if (needsrand) {

srand(time(NULL));
needsrand = 0;

}
return (rand()/(1.0+RAND_MAX));

}

double normal () {
int nroll = 12;
double sum = 0;
int i;
for (i=0; i<nroll; i++) {

sum += rand01();
}
return (sum - 6.0);

}

void xydump(int npoints, double x[], double y[], char filename[]) {
FILE *output;
int i;
output = fopen(filename, "w");
for (i=0; i<npoints; i++) {

fprintf(output, "%lf %lf\n", x[i], y[i]);
}
fclose (output);

}

double mean (int nelements, double array[]) {
int i;
double sum=0;
for (i=0; i<nelements; i++) {

sum += array[i];
}
return (sum/(double)nelements);

}

double stddev (int nelements, double array[]) {
int i;
double sum=0;
double average;
average = mean(nelements, array);
for (i=0; i<nelements; i++) {

sum += pow(array[i]-average, 2);
}
return (sqrt(sum/(nelements-1)));

}

int maxelement (int nelements, double array[]) {
double max=0;

chapter 11. libraries 385

int i, imax;
for (i=0; i<nelements; i++) {

if (array[i] > max) {
max = array[i];
imax = i;

}
}
return (imax);

}

int minelement (int nelements, double array[]) {
double min = 1.0e+30;
int i;
int imin;
for (i=0; i<nelements; i++) {

if (array[i] < min) {
min = array[i];
imin = i;

}
}
return (imin);

}

void resethist (int nbins, int bin[]) {
int i;
for (i=0; i<nbins; i++) {

bin[i] = 0; // Reset all bins to zero.
}

}

void addtohist (int nbins, int bin[], double xmin, double xmax, double value) {
int binno;
double binwidth;
binwidth = (xmax-xmin)/(double)nbins;
binno = (value-xmin)/binwidth;
if (binno >= 0 && binno < nbins) {

bin[binno]++; // Increment the appropriate bin.
}

}

void histdump (int nbins, int bin[], double xmin, double xmax, char * filename) {
FILE *output;
int i;
double binwidth;
binwidth = (xmax-xmin)/(double)nbins;
output = fopen(filename, "w");
for (i=0; i<nbins; i++) {

fprintf (output, "%lf %d\n", xmin+binwidth*(double)i, bin[i]);
}
fclose (output);

}

386 practical computing for science and engineering

11.10. Using Your New Library
Now we have our new library, liboz.a, and we can use it when we

compile programs. Say, for example, that we want to use one of our

fancy new Oz functions in the monkey.cpp program. If liboz.a is

in the current working directory, we might type:

g++ -Wall -o monkey monkey.cpp -L. -loz

The “-L” qualifier tells g++ to look in an additional directory when

trying to find libraries. (In this case, the directory is “.”, which means

the current working directory.) The “-l” qualifier says to link the

program with the following library, where we leave off the “lib” prefix

and the “.a” suffix on the library’s name7. 7 In the early days of the GNU
project there was a library called
“libiberty.a”, so you could type
“-liberty”.

g++ Assembly Line

Pre-Processing Compiling Linking

.A.A

Figure 11.11: The g++ assembly line
processing monkey.cpp.

Exercise 57: Monkey Swarm

Create the files oz.h (Program 11.8), oz.cpp (Program

11.7), and monkey.cpp (Program 11.6).

Use oz.cpp to create a library named liboz.a. Compile

the monkey.cpp program using this new library. Run the

program. It should produce the file monkey.dat containing

a histogram of the monkey positions after 1 hour of flying.

Plot the histogram using the gnuplot command plot "monkey.dat"

with boxes". The result should look like Figure 11.8.

chapter 11. libraries 387

But what about. . . ?

Can you look at a library and see what’s inside it?

You can add more than one object file to a given library. The

command “ar -t libsomething.a” will show you the names

of the object files that were put into the library. Many of C’s built-in

functions live in a library called libc.a. The location of this file

will vary from one type of computer to another, but if you can

find it, try using “ar” to list the object files it contains. You’ll see

thousands of them.

To see the names of functions and symbols in the library’s index,

you can use the “nm” command. Each name will be shown with a

one-letter symbol. The names of the functions in this library will be

identified by a “T”. The nm command is often useful when you’re

trying to figure out which library contains a particular function.

11.11. Function Prototypes
You might have noticed that we still haven’t looked inside the header

file “oz.h” that’s used in monkey.cpp and oz.cpp. Here’s what it

looks like:

Program 11.8: oz.h

const int nmunchkin=1000; // Munchkin population.

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

const int nmonkeys = 1000; // Number of flying monkeys in swarm.

const double meanmonkeyspeed = 25; // mph, same as an unladen European swallow.

const double monkeyspeedspread = 5; // mph, std. dev. of monkey speeds.

double rand01 ();

double normal ();

void xydump(int npoints, double x[], double y[], char filename[]);

double mean (int nelements, double array[]);

double stddev (int nelements, double array[]);

int maxelement (int nelements, double array[]);

int minelement (int nelements, double array[]);

void resethist (int nbins, int bin[]);

void addtohist (int nbins, int bin[], double xmin, double xmax, double value);

void histdump (int nbins, int bin[], double xmin, double xmax, char filename[]);

388 practical computing for science and engineering

It’s probably not surprising that this file contains all of the constant

definitions that we’ve been using, but what’s the other stuff there for?

The second half of oz.h contains “function prototypes”. These are

one-line statements that define the syntax for using a function. They

say what kind of value the function returns, how many arguments it

wants, and what types of arguments.

By including oz.h at the top of our monkey.cpp file, we give g++ the

information it needs to make sure we’re using these functions correctly.

Why is this necessary now that we’re using a library? Until now, we’ve

been defining our functions right at the top of our programs. The

function definition itself tells g++ the function’s syntax. Now that we’ve

moved the function definitions into a library, we need to create these

function prototypes to give g++ that information.

Function prototypes make up much of the header files we’ve been using.

Files like stdio.h and math.h contain prototypes for functions like

printf and sqrt.
“Don’t be afraid to make your own
libraries!”
Source: Wikimedia Commons

11.12. Static versus Dynamic Libraries
There are actually two different kinds of libraries: static and dynamic

libraries. Much of what we’ve said so far applies only to static libraries.

A static library has a name like "libsomething.a", with ".a" standing for

"archive". Static libraries are used by the linker as we described above.

Dynamic libraries are slightly different. When a program uses dynamic

libraries, the binary code for the functions you use isn’t physically

inserted into the binary file created by the linker. Instead, a reference

is inserted into the file. This reference says that, when the program is

run, the function should be loaded as needed from a dynamic library.

Dynamic library files usually have names ending in “.so”, “.dll”, or

“.dylib”, depending on what kind of computer you’re using.

Why would you want to use dynamic libraries instead of static libraries?

There are several reasons:

• Dynamic libraries save disk space. If every program contained

its own copy of “printf” a lot of space would be wasted. With

dynamic libraries, there’s only one copy of these functions.

https://commons.wikimedia.org/wiki/File:Cowardly_Lion.png

chapter 11. libraries 389

• Dynamic libraries make upgrades easy. Imagine that there’s a serious

bug in an old version of a library, and you want to install a newer

version. If it’s a static library, it’s not sufficient to just install the new

“libsomething.a” file. Programs that were compiled with the old

static library will still have buggy functions inside them. In order to

give all of your programs the benefit of the new library, you’d need

to recompile all of them, so that the new, un-buggy functions from

the library would be copied into the new binary files.

With Dynamic libraries all you need to do is install a new “libsomething.so”

(or “.dll” or “.dylib”) file. Any programs that use the library will

automatically, immediately, see the benefit of the upgrade, without

your needing to do anything else. This can be very important if the

bug is a security hole.

• Dynamic libraries save memory. When you run a program, it gets

copied into memory. Just as with disk space, multiple copies of

library functions waste memory. When programs use dynamic

libraries, the operating system is smart enough to load only one

copy of each library into memory. This copy is shared by all of the

programs that need that library.

Buddy Ebsen (right), later the star of
The Beverly Hilbillies, originally had the
role of the Tin Man in the 1939 movie
version of The Wizard of Oz. He resigned
because of health problems, possibly
due to the aluminum dust that was part
of his costume.
Source: Wikimedia Commons

For all of those reasons, most of the programs installed on your com-

puter use at least some dynamic libraries.

OK, so dynamic libraries sound great. But what’s the down side?

Well, here’s one: What happens if you copy your program to another

computer that doesn’t have all of the dynamic libraries that the program

needs?

When compiling a program with dynamic libraries, it’s also possible

to specify a particular version of a library, or even to say where we’re

going to expect to find the library on disk. These things can also make

a binary file un-portable if another computer has a different version of

a library, or if the library is stored in a different location on disk.

The procedures for creating and using shared libraries will vary sig-

nificantly from one kind of computer to another, so we unfortunately

won’t be able to cover them here.

https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_006.png

390 practical computing for science and engineering

11.13. Conclusion
Whew! That was quite an adventure, but Dorothy has finally clicked

her ruby slippers8 together three times, and returned safely home to 8 Silver slippers in the original book.

Kansas. Even better, we now know how to create our own libraries.

Creating libraries of functions can make it easier for you to re-use

functions you’ve written. As you go further in programming, you’ll

also discover many useful libraries that have been written by other

programmers. For example:

• The GNU Scientific Library is a rich collection of functions relevant

to math, science, and engineering.

• LAPACK (Linear Algebra PACKage) is standard library for dealing

with problems in “linear algebra” (matrices and such).

• FFTW (“The Fastest Fourier Transform in the West”) is the go-to

library for Fourier transforms.

• libjpeg is a free library for reading and writing jpeg files.

The details of installing and using these will depend on the kind of

computer you’re using, and which C compiler you use.

Figure 11.12: Dorothy’s ruby slippers, in
the Smithsonian National Museum of
American History.
Source: Wikimedia Commons

http://www.gnu.org/software/gsl/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://libjpeg.sourceforge.net/
https://commons.wikimedia.org/wiki/File:Smithsonian_National_Museum_of_American_History_-_Dorothy_Ruby_Slippers_(6269207855).jpg

chapter 11. libraries 391

Practice Problems
1. In Program 11.6 we introduced the histogram functions addtohist,

resethist, and histdump. In Program 11.1 we introduced the

function normal, which generates pseudo-random number dis-

tributed “normally”. These functions were then included in liboz.a.

In order to use the histogram functions in a program, you need to

first define a variable that will be the histogram’s bins. You might

do something like this:

const int nbins=50;

int bin[nbins];

The lines above would define a 50-element array named bins.

Write a program named testnormal.cpp that uses these functions.

The program will need a line like:

#include "oz.h"

to get the necessary header file. Have the program define a 50-

element array like bin above, and have it use resethist to reset

all of the values in the array to zero.

Then have the program generate 1,000 pseudo-random numbers,

using the normal function. Each time a number is generated, add

it to the histogram using the addtohist function. Tell addtohist

that the minimum and maximum values to be histogrammed are -3

and 3, respectively.

After generating all of the numbers and adding them to the his-

togram, dump the histogram’s contents into a file using the histdump

function. Call the output file testnormal.dat.

Compile your program, linking it against the liboz.a library so

that it can find the necessary functions.

After running your program, use gnuplot like this to see the his-

togram:

plot "testnormal.dat"

Does it look like a “normal” distribution?

2. In Chapter 9 we used two functions named to_radians, to convert

degrees into radians, and time_of_flight, to find the time of

flight of a projectile fired with a given angle and speed.

Add these functions to oz.cpp, and add prototypes for them to

oz.h. You’ll also need to add the following to oz.cpp:

const double g = 9.81; // Acceleration of gravity.

Re-build the liboz.a library.

392 practical computing for science and engineering

Test your newly-rebuilt library by compiling the following program

named oztest.cpp:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "oz.h"

int main () {

double angle = 45.0; //degrees.

double v0 = 27.0; // m/s.

printf ("%lf\n", time_of_flight(v0, to_radians(angle)));

}

The result should match what we saw when using the same angle

and speed in Chapter 9: about 3.9 seconds.

