
12. Structures

12.1. Introduction
Before the widespread use of fingerprinting, investigators in Europe

and the U.S. used a system called the portrait parlé to identify criminals.

Introduced in the 1880s by Alphonse Bertillon, this was a detailed

written description of a person’s physical characteristics. You’ll find

many references to the portrait parlé in Victorian detective fiction by

writers like Gaston Leroux.

A “Bertillon card” describing the
physical characteristics of Alphonse
Bertillon himself.
Source: Wikimedia Commons
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Each chemical element has many
properties: Atomic number, atomic
mass, ionization energies, and so forth.
Source: Wikimedia Commons

Even black holes, perhaps the most
featureless bodies in the universe, have
at least three properties: mass, angular
momentum, and charge.
Source: Wikimedia Commons

Anything studied by researchers will probably have more than one

interesting property. In Chapter 6 we saw that researchers often make

several measurements at the same time. For example, a census-taker

visiting a house might record the number of children, the household

income, the size of the house, and so forth. We could store each of these

quantities in a separate variable, but we know that they’re all actually

properties of a single household. It might be convenient if that reality

could be reflected in our programs.

Also, in Chapter 9 we learned that C functions can only return a single

value. It would sometimes be useful to return several related values at

once. Imagine, for example, that we were working with 3-dimensional

vectors, which have x, y, and z components. Wouldn’t it be great if

we had a function that could add two vectors and return all three

components of their sum?

Fortunately, C allows us to do both of these things through a mechanism

called “structures”. Structures let us store several related measurements

in one convenient place. Let’s look at how to create and use structures

by working through some examples.

https://en.wikipedia.org/wiki/File:Bertillon,_Alphonse,_fiche_anthropom%C3%A9trique_recto-verso.jpg
https://commons.wikimedia.org/wiki/File:Periodic-table-of-chemical-elements.svg
https://commons.wikimedia.org/wiki/File:BlackHole.jpg
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12.2. The “struct” Statement
If we were comparing Virginia with other states, we might write a

program that had variables like this:

int va_population;

double va_area;

double va_income;

It’s tedious to create all of these variables, and could rapidly become

confusing as we added more properties of the state, or more states. C

provides us with a better way to do it, by allowing us to create custom-

made variables that pack several properties together in one place. This

is done with the “struct” statement:

struct {

int population;

double area;

double income;

} va;

The statement above defines a new variable, va, that has, packed within

it, several values of different types. The variable va isn’t an int or a

double or any of the other types we’ve used so far. It’s a “structure”.

This structure is a completely new, custom-made type that contains

whatever we want it to contain.

Once we’ve defined our va variable, we can set its properties like this:

va.population = 8326289;

va.area = 42774.2;

va.income = 61044;

The dot operator (“.”) singles out one of the properties of the structure.

Similarly, we can use the properties of the structure in just the same

way we’ve used variables in the past:

if ( va.population < 8491079 ) {

printf ("Virginia has fewer people than New York City\n");

}

We could even define an array of such structures, just as we’ve defined

arrays of int or double variables:

struct {

char name[20];

int population;
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double area;

double income;

double birthrate;

double deathrate;

} state[50];

Here we’ve defined an array of 50 structures, one for each of the 50

states. We’ve also added some more properties, such as the state’s

name. We can set the properties of an individual state by referring to it

by its element number:

snprintf( state[0].name, 20, "Virginia" );

state[0].population = 8326289;

state[0].area = 42774.2;

state[0].income = 61044;

...etc.

This would make it easy to loop through all of the states:

for ( i=0; i<50; i++ ) {

printf ( "Pop. of %s is %d\n", state[i].name, state[i].population );

}

What if we wanted to use the same structure for other variables? Say, for

example, we wanted to store census data for a group of 100 countries.

We could just re-type the structure definition:

struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} state[50];

struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} country[100];
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There’s a better way to do it, though. Instead of re-typing the “struct”

statement, we can use “typedef” to define a name for this kind of

structure.

12.3. Using “typedef”
If we want to re-use our structure, we can do something like this:

typedef struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} census;

census state[50];

census country[100];

The statements above define a new variable type named “census”. We

can use this new type to define variables, just like the int and double

types we’ve used before. In the example above, we define two census

arrays, one of 50 states and one of 100 countries.

typedef and struct are so often used together that many textbooks

lump them into a single statement, “typedef struct”, but they can

be used separately too.

For example, typedef can be used to define an alternative name for

any variable type. For example:

//Define aliases for some types:

typedef int funds;

typedef double weight;

typedef int days;

//Use these aliases to define some variables:

funds bank_balance;

weight fish_per_month[12];

days til_christmas;

This may make it easier for you to re-define your variables later on. Say,

for example, that you’ve made so much money that you now need to



chapter 12. structures 397

use a “long int”1 to count your fortune! If your program uses the 1 In C, “long int” is a variable type
that can hold larger number than a
plain,old int is capable of holding.

“funds” type for all of your accounting variables, then you’ll only need

to change one line: the typedef statement that defines “funds”.

12.4. Using Vectors in Programs
A “vector” is something that has both a magnitude and a direction.

Physical properties like velocity and acceleration are vectors. Even

though an eastbound car and a westbound car may have the same

speed, their velocities are different, since they’re going in different

directions.

In many fields of science and mathematics, it’s very useful to be able

to define and use vectors in computer programs. Vectors are often

represented by their x, y, and z components in a Cartesian coordinate

system.

Portrait of Rene Descartes, French
philosopher, mathematician, and
scientist, for whom the “cartesian”
coordinate system is named. As a
philosopher, he’s famous for his
statement “cogito ergo sum” (“I think,
therefore I am”).
Source: Wikimedia Commons
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Figure 12.1: The cartesian coordinate
system.
Source: Wikimedia Commons

We could use our new-found knowledge of the struct and typedef

commands to make it easy to write programs that deal with vectors.

All we need to do is define a new variable type that’s designed to hold

a vector’s three cartesian components.

typedef struct {

double x;

double y;

double z;

} Vector;

We can then define variables that have the new type Vector. For

example, we might define a vector named “velocity”, and give it a

magnitude of 60 mph along the x axis:

Vector velocity;

velocity.x = 60;

velocity.y = 0;

velocity.z = 0;

When initializing a “structure” variable, we can also take advantage of

the following shortcut:

Vector velocity = {60,0,0};

The items listed in the curly brackets are the initial values for each of

https://commons.wikimedia.org/wiki/File:Frans_Hals_111_WGA_version.jpg
https://commons.wikimedia.org/wiki/File:3D_Cartesian.svg
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the structure’s properties, in the same order they appear in the struct

statement.

Now that we can define our own variable types, we can write functions

that return more information. In C, functions can only return one

“value”, but that value can be a structure. Program 12.1 shows a few

examples of this, with our new variable type highlighted. Notice that

we can use our new type for arguments to our functions or the values

the functions return.

The add_vector function defined in Program 12.1 adds two vectors

together and returns their sum as a third vector. The scale_vector

function “scales” a vector by multiplying its magnitude by some amount

but leaving its direction unchanged. The print_vector function just

prints out a vector’s components.

We could generalize our vector functions to any number of dimensions,

and reduce the amount of repetitive typing in them, by replacing the x,

y, and z components with a three-element array of components:

const int dimension = 3;

typedef struct {

double x[dimension];

} Vector;

Instead of x, y, and z, we would then use x[0], x[1], and x[2]. A

function like scale_vector would then look like this:

Vector scale_vector ( double r, Vector v ) {

Vector vscale;

int i;

for ( i=0; i<dimension; i++ ) {

vscale.x[i] = r * v.x[i];

}

return ( vscale );

}

This would also require that we change the way we initialize our vectors:

Vector v1 = {{0,0,1}};

Vector v2 = {{1,0,0}};

(Notice the double curly brackets.) This says that the first (and only, in

this case) property of v1 is an array containing the values 0, 0, and 1.

Compare this to our earlier case with x, y, and z properties.
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Program 12.1: vector.cpp

#include <stdio.h>

#include <math.h>

typedef struct {

double x;

double y;

double z;

} Vector;

Vector scale_vector ( double r, Vector v ) {

Vector vscale;

vscale.x = r * v.x;

vscale.y = r * v.y;

vscale.z = r * v.z;

return ( vscale );

}

Vector add_vectors ( Vector v1, Vector v2 ) {

Vector sum;

sum.x = v1.x + v2.x;

sum.y = v1.y + v2.y;

sum.z = v1.z + v2.z;

return ( sum );

}

void print_vector ( Vector v ) {

printf ( "x = %lf\n", v.x );

printf ( "y = %lf\n", v.y );

printf ( "z = %lf\n", v.z );

}

int main () {

Vector v1 = {0,0,1};

Vector v2 = {1,0,0};

printf ( "Vector 1:\n" );

print_vector( v1 );

printf ( "Vector 2:\n" );

print_vector( v2 );

printf( "Sum of vectors:\n" );

print_vector( add_vectors( v1, v2 ) );

printf ( "Pi times Vector 1:\n" );

print_vector( scale_vector( M_PI, v1 ) );

}
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Exercise 58: What's Your Vector Victor?

Starting with vector.cpp, modify the program so that it

prompts the user for the x, y, z components of two vec-

tors, then prints out the components of the sum of the two

vectors.

But what about. . . ?

When we studied arrays in Chapter 6 and character strings in Chapter 8 we found that we couldn’t just

make two arrays equal by saying “array1 = array2”, or compare arrays the way we’d compare single

variables. Are there similar restrictions on structures?

First, regarding setting structures equal, there’s good news. The following will work fine:

typedef struct {

double width;

double height;

} Rectangle;

Rectangle r1, r2;

r1.width = 8.5;

r1.height = 11.0;

// Make r2 equal r1:

r2 = r1;

Another easy shortcut for setting the value of a structure is this:

// Set the width and height of rectangle r1:

r1 = (Rectangle){8.5,11.0};

Regarding the comparison of two structures, the answer is the same as for arrays. The usual comparison

operators (==, <, >, et cetera) won’t work. You’ll need to compare the properties of your structures

yourself. For example, with our rectangles above we might write:

if ( r1.width == r2.width && r1.height == r2.height ) {

printf ( "They're equal!\n" );

}



chapter 12. structures 401

12.5. Gravitation

Isaac Newton’s grave in Westminster
Abbey.
Source: Wikimedia Commons

Okay, now we have vectors so let’s do something with them. Imagine

you have two masses, say the Earth and the Sun. Newton’s Law of

Gravitation tells us that each of these bodies will attract the other with

a force whose magnitude is given by:

F = G
mearthmsun

r2
(12.1)

where mearth and msun are the masses of the bodies, and r is the distance

between them. G is Newton’s gravitational constant, equal to about

6.67 × 10−11 m3

kgs2 . Earth and Sun pull on each other with equal force,

but in opposite directions.

In principle, if we know a body’s initial position and velocity, its mass,

and the forces acting on it, we can predict its future motion. Could

we simulate the motion of the Earth and the Sun? Let’s try! In the

following, we won’t spend much time discussing the physics of the

problem. We’ll focus on the programming challenges it presents.

Figure 12.2: The earth-sun system,
showing some of the vector quantities
we might want to use in our program. ~F
represents the force of the sun on the
earth. The origin of our cartesian
coordinate system is shown in the lower
right corner. The vectors xe and xs

represent the position of the earth and
sun in this coordinate system.

First, we’ll need a little more information from Newton. He also tells

us that force and acceleration are related in this way:

~F = m~a (12.2)

where ~F is a vector representing the magnitude and direction of the

https://commons.wikimedia.org/wiki/File:Isaac_Newton_grave_in_Westminster_Abbey.jpg
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total force on an object, m is the object’s mass, and ~a is the object’s

acceleration. In order to predict the motion of an object, we’ll need to

know its acceleration. We can get this by rearranging Equation 12.2:

~a =

~F

m
(12.3)

The photo above shows a false-color
image of two icy “cryovolcanos” on
Pluto. After nearly ten years in space,
NASA’s New Horizons space probe
whizzed past Pluto during a few hours
in 2015, snapping thousands of photos
and taking measurements of many
kinds. This kind of precise navigation
demands highly sophisticated computer
simulations.
Source: NASA/JHUAPL

Next, we’ll need to know how acceleration affects an object’s motion.

Acceleration is the rate of change of velocity, so we might guess that

after a small amount of time, ∆t, the object’s velocity will change by

~a∆t. We also know that velocity is the rate of change of position, so we

might approximate the change of position during a short time as ~v∆t.

Given this chain of relationships, we can start with an object’s initial

position and velocity, then move forward in time by small steps and

follow the changes in the object’s position.

Both the Earth and the Sun move in response to their mutual gravita-

tional attraction. We’ll be tracking several properties of each of these

objects: mass, velocity, position, and the force acting on the object. This

sounds like a good place to use C’s structures.

Here are the structures we’ll be using, with convenient “typedef”

names given to them:

const int dimension = 3;

typedef struct {

double x[dimension];

} Vector;

typedef struct {

double mass;

Vector x; // Position

Vector v; // Velocity

Vector f; // Force on the body

} Body;

As before, we’ve defined a new type of variable called Vector to hold

vectors. Now we add a variable called Body that holds information

about one of the bodies we’ll be tracking. Notice that the Body type

has several properties that are of the Vector type.

In addition to the vector functions we’ve already written, we’ll need a

http://pluto.jhuapl.edu/Multimedia/Science-Photos/pics/CryoVolcanism_Mountains-Rt-txt.jpg
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few others:

Vector invert_vector ( Vector v ) {

Vector inverse;

int i;

for ( i=0; i<dimension; i++ ) {

inverse.x[i] = -v.x[i];

}

return ( inverse );

}

Vector subtract_vectors ( Vector v1, Vector v2 ) {

return ( add_vectors( v1, invert_vector(v2) ) );

}

double vector_magnitude ( Vector v ) {

double size2=0;

int i;

for ( i=0; i<dimension; i++ ) {

size2 += v.x[i]*v.x[i];

}

return ( sqrt( size2 ) );

};

The function subtract_vectors is the companion to the add_vectors

function we saw earlier. Subtraction is just equivalent to adding an

inverse, so we implement the subtraction function by defining a new

invert_vector function and then using it along with add_vectors

to do the subtraction. Finally, we’ll need to know the size of vector

quantities, so we define a new function named vector_magnitude

to do this.

Armed with all of these new tools, we’re now ready to tackle the

weighty problem of swinging the Earth around the Sun. The result is

Program 12.2. Here we’ve swept all of the functions we’ve discussed so

far into a header file named gravity.h.

The program steps through time in 10,000-second jumps (about 3 hours).

In each “time slice” the program updates the position and velocity

of Earth and Sun, based on the force of their mutual gravitational

attraction, then writes out the current time and the position of each

body.
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Program 12.2: gravity.cpp

#include <stdio.h>

#include <math.h>

#include "gravity.h"

int main () {

// All units in kilograms, meters, kilograms, and seconds.

// mass position velocity force

Body sun = {2.0e+30, {{0,0,0}}, {{0,0,0}}, {{0,0,0}}};

Body earth = {1.5e+24, {{1.5e+11,0,0}}, {{0,0,3.2e+4}}, {{0,0,0}}};

double distance, force, deltat=1e+4; // About 3 hours.

int i, nsteps = 10000;

double G = 6.67e-11;

Vector r, deltax, deltav;

for ( i=0; i<nsteps; i++ ) {

// Find forces from law of gravitation:

r = subtract_vectors( earth.x, sun.x );

distance = vector_magnitude( r );

force = G*sun.mass*earth.mass/(distance*distance);

sun.f = scale_vector ( force/distance, r );

earth.f = invert_vector( sun.f );

// Update positions and velocities for next step:

// Sun

deltax = scale_vector ( deltat, sun.v );

sun.x = add_vectors( sun.x, deltax );

deltav = scale_vector ( deltat/sun.mass, sun.f );

sun.v = add_vectors( sun.v, deltav );

// Earth

deltax = scale_vector ( deltat, earth.v );

earth.x = add_vectors( earth.x, deltax );

deltav = scale_vector ( deltat/earth.mass, earth.f );

earth.v = add_vectors( earth.v, deltav );

// Write out current time and positions

printf ("%lf ", deltat*(double)i );

print_vector ( sun.x );

print_vector ( earth.x );

printf ("\n");

}

}
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If we save the program’s output into a file we can plot the results with

gnuplot. Some of the results are shown in Figures 12.3 and 12.4. As

you can see, our simulation gives earth a rather rough ride. The orbit

is approximately regular, but doesn’t come back quite to the place it

started. If we asked the program to simulate more time steps the orbit

would eventually become a spiral.

-2e+11

-1e+11

 0

 1e+11

 2e+11

-2e+11 -1e+11  0  1e+11  2e+11

Figure 12.3: The Earth’s orbit as
approximated by Program 12.2.

 0  3e+07  6e+07  9e+07

Figure 12.4: The Earth’s position on the
X-axis as a function of time, as
approximated by Program 12.2.

By looking at the period of Earth’s movement along the X-axis of our

coordinate system, we can estimate the length of Earth’s year. An actual

year is about 3× 107 seconds long, but our simulated Earth has a rather

longer year of about 4.5 × 107 seconds.

Don’t use this program to navigate your space probe to Pluto! We could

probably improve the program in several ways. We could use more

precise values for the mass, distance, and initial velocity of the Sun and

Earth, for example. Still, for a relatively simple program the results

aren’t too bad.

Figure 12.5: New Horizons’ trajectory
through the Pluto system is a stunning
example of precise navigation.
Source: NASA/JHUAPL

But what about. . . ?

Yow! that’s all very impressive, but those vector function things

are really hard to read:

sun.x = add_vectors( sun.x, deltax );

Wouldn’t it be so much nicer if you could just write “sun.x =

sun.x + deltax”? If you use the extra features of C++, you can!

http://blogs.nasa.gov/pluto/wp-content/uploads/sites/253/2015/10/NHPlutoEncounterTrajectory_NomV8_Guo20150615.png
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C++ has extra capabilities beyond those of plain C. One of them

is called “operator overloading”. This allows you to define how

operators like + and - act when used with structures.

All we need to do is add the following to the gravity.h file used

by Program 12.2:

Vector operator+( Vector v1, Vector v2 ) {

return ( add_vectors ( v1, v2 ) );

}

Vector operator-( Vector v1, Vector v2 ) {

return ( subtract_vectors ( v1, v2 ) );

}

This tells the compiler that, when it sees you adding two vectors

in an expression like “vsum = v1 + v2”, it should pass v1 and

v2 to your add_vectors function and use that to add the vec-

tors. The “operator-” statement does the analogous thing for

subtraction.

12.6. Complex Numbers
Like vectors, another natural use for structures is the representation of

complex numbers. These are numbers of the form a + ib, where a and

b are real numbers, and i is
√
−1. The value of a is called the “real part”

of the complex number, and b is its “imaginary part”.

Using struct and typedef we can define a new variable type for

holding complex numbers:

typedef struct {

double re; // real part

double im; // imaginary part

} Complex;

The “magnitude” of a complex number represents its size, taking both

of its components (real and imaginary) into account. The magnitude

is just the same as though real and imaginary components were the

x and y components of a cartesian vector: magnitude =

√

Re2
+ Im2.

Similarly, complex numbers add in the same way that 2-dimensional

vectors add.

Strangeness enters the picture when we begin multiplying complex
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numbers. Since they involve multiples of i, and i × i = −1, minus signs

begin to appear in surprising places.

We could use our new variable type to define a few functions for

operating with complex numbers:

double magnitude_complex( Complex z ) {

return sqrt( z.re*z.re + z.im*z.im );

}

Complex multiply_complex ( Complex a, Complex b ) {

Complex result;

result.re = a.re*b.re - a.im*b.im;

result.im = a.im*b.re + a.re*b.im;

return ( result );

}

Complex add_complex ( Complex a, Complex b ) {

Complex result;

result.re = a.re + b.re;

result.im = a.im + b.im;

return ( result );

}

12.7. The Mandelbrot Set

Mathematician Robert W. Brooks, who
along with Peter Matelski discovered
the Mandelbrot set in 1978. The set was
later named in honor of Benoit
Mandelbrot, who studied it extensively.
Source: Wikimedia Commons

Figure 12.6: Brooks and Matelski’s first
published picture of the Mandelbrot set.
We can do better than that!
Source: Wikimedia Commons

Mathematicians love to play games with numbers. Let’s try one here.

Here are the rules:

Take two numbers, c and z0. Pick any number you want for c, but set

z0 equal to zero. Now write down the value of z2
0 + c. Call this new

number z1. Now write down the value of z2
1 + c. Call this z2. Keep

doing this for more and more zn values. We might expect that each z

would be bigger than the last.

We coult write a little program to test this. Let’s pick c = 1 as the c

value and see what happens:

https://commons.wikimedia.org/wiki/File:Robert_W._Brooks.jpg
https://commons.wikimedia.org/wiki/File:Mandel.png
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Program 12.3: mandelseries.cpp

#include <stdio.h>

#include <math.h>

int main () {

double c=1;

double z=0;

int i;

printf ("For c = %lf:\n", c );

for ( i=0; i<10; i++ ) {

printf ( "z %d = %lf\n", i, z );

z = pow(z,2) + c;

}

}

The output of this program would be:

For c = 1.000000:

z 0 = 0.000000

z 1 = 1.000000

z 2 = 2.000000

z 3 = 5.000000

z 4 = 26.000000

z 5 = 677.000000

z 6 = 458330.000000

z 7 = 210066388901.000000

z 8 = 44127887745906175377408.000000

z 9 = 1947270476915296285689291011464375055838871552.000000

Wow! We were right. The numbers get big pretty quickly. But is this

true for all values of c? Let’s try a negative number and see what

happens. How about c = −1?:

For c = -1.000000:

z 0 = 0.000000

z 1 = -1.000000

z 2 = 0.000000

z 3 = -1.000000

z 4 = 0.000000

z 5 = -1.000000

z 6 = 0.000000
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z 7 = -1.000000

z 8 = 0.000000

z 9 = -1.000000

Hmm. It just oscillates back and forth between zero and one, and never

gets any bigger. Is this true for all negative numbers? No, if we try

c = −2 we’ll find that, after one flip, all of the rest of the values are

equal to 2! If we use c = −3, though, we’ll see that the numbers once

again blow up, and become very large very quickly. This is intriguing!2 2 If you’re a mathematician.

What if we extended this to complex numbers? Would they be even

weirder? Yes, indeed they would!

In 1978 two mathematicians, Robert W. Brooks and Peter Matelski, tried

this and discovered what’s known today as the “Mandelbrot Set”. It

has manyfascinating qualities, including the fact that its boundary is

infinitely rough. If you zoom in on most common-or-garden-variety

shapes, you’ll find that sooner or later you just see smooth surfaces

or curves. Not so with the Mandelbrot set. This shape is equally

squiggly at every scale. The Mandelbrot Set’s boundary is so squiggly

that it behaves as something more than a 1-dimensional curve. We

call such shapes “fractals”, because they appear to have “fractional”

dimensionality.
Approximate fractal shapes often
appear in nature. This piece of broccoli
is a good example.
Source: Wikimedia Commons

Frost patterns on a window also exhibit
fractal behavior.
Source: Wikimedia Commons

Figure 12.6 shows Brooks and Matelski’s first illustration of the Man-

delbrot set. It shows the “complex plane”, where complex numbers are

plotted with their real part on the x axis and their imaginary part on the

y axis. This graph uses ASCII characters to indicate the c values on the

complex plane which don’t cause the series to blow up. (We call these

c values “stable”.) This graph was produced in 1978, when computer

technology was much less capable than it is now. We should be able to

make a much better illustration using the computers available to us in

the 21st century.

Program 12.4 is the result. It uses the Complex variables we defined in

the preceding section. It uses a header file named complex.h which

contains the typedef statement and function definitions we wrote

earlier for dealing with complex numbers.

The program divides the complex plane into a 250 × 250 grid. Each

point on the grid represents a complex number, c, that we’ll test to

see if it makes the “Mandelbrot series3” blow up. The program takes 3 See Program 12.3.

advantage of something mathematicians have proven about the Man-

delbrot series: if a complex number has a magnitude greater than 2, we

https://en.wikipedia.org/wiki/File:Fractal_Broccoli.jpg
https://en.wikipedia.org/wiki/File:Frost_patterns_2.jpg
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know for sure that it will cause the series to blow up. This means we

only need to look at a region within a distance of 2 from the origin. As

soon as our series wanders outside of this region, we we know that it

will blow up.
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5i c = 3 + 4ic = 3 + 4i

Figure 12.7: The complex number
c = 3 + 4i located on the complex plane.

The heart of the program is the function mandel_test which we’ll use

to test each value of c. It calculates up to 100 terms of the Mandelbrot

series for this value. If one of the terms wanders more than a distance

of 2 away from the origin, we know this c value isn’t stable, and we can

stop calculating terms. If we make it all the way to 100 terms without

becoming unstable, we assume that c is stable. The function just returns

the number of terms before instability was detected, or 100 if we made

it through all 100.

Each time we test a value of c, we write out its real and imaginary parts,

and the number of terms returned by the mandel_test function, into

a file named mandel.dat.

The resulting file will have three columns of numbers: Real part, imag-

inary part, and number of terms. We can ask gnuplot to read this

file and interpet it as an image, with the first two columns giving the

coordinates of each pixel, and the third column giving its color. We

do this by giving gnuplot the command “plot "mandel.dat" with

image”. You can see the result in Figure 12.8. Beautiful!
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Figure 12.8: The Mandelbrot set,
generated by Program 12.4 and
visualized by gnuplot. See Wikipedia for
much more information about this
fascinating and beautiful structure.

https://en.wikipedia.org/wiki/Mandelbrot_set
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Exercise 59: Fun with Fractals

Create mandel.cpp and complex.h. Compile and run

mandel.cpp, then plot your results with gnuplot.

Now try modifying the program by changing the x and y

limits in main. Make x go from -0.76 to -0.75, and y go from

0.04 to 0.06. This will zoom in on the edge of the circle on

the left-hand side of the graph. The result should look like

Figure 12.9.
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Figure 12.9: Zooming in on the edge of
the large circle on the left-hand side of
the graph.

Silver crystals growing on a ceramic
substrate. Note the different crystal
domains that grow and bump into each
other.
Source: Wikimedia Commons

Magnetic domains in a piece of steel.
Source: Wikimedia Commons

12.8. Growing Domains
Let’s briefly go away from structures and look at a problem that just

uses good ol’ double values.

Imagine that we have a just-plowed 100 × 100 field of barren earth.

Over time, a few seeds of two different species are blown onto the

field. The seeds germinate, grow, and begin to reproduce, spreading

each species outward from the sites where the initial seeds fell. The

two species are incompatible, so new seeds won’t grow in land already

occupied by the other species.

This kind of problem is very common in science. It doesn’t have to

be the seeds of plants we’re talking about. It could be two different

crystal structures crystallizing out of a solution, it could be magnetic

domains growing in a magnet, or it could be the expansion of human

settlements in a formerly unoccupied territory.

Program 12.5 simulates the situation we’ve described. It defines the

2-dimensional array color[100][100] that will hold a color for each

sqare area of the field. The color tells us which species is living in

that area. The colors will just be three numbers: 0 means the square is

empty, 1 means that species number 1 has colonized this area, and 2

means the same for species number 2.

The program uses the rand01 function we wrote in Chapter 9. At the

beginning, the elements of color are initialized to one of the three

colors, based on random “dice rolls” made using rand01.

In the middle of the program, we start looping through a large number

(1 million) of “turns”. During each turn, the program uses rand01

https://commons.wikimedia.org/wiki/File:Silver_surface_crystal_growth_SEM.png
https://commons.wikimedia.org/wiki/File:Magnetic_domain_with_arrows_by_Zureks.png
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Program 12.4: mandel.cpp

#include <stdio.h>

#include <math.h>

const int NTRIALS=100;

#include "complex.h"

int mandel_test( Complex c ) {

Complex z = c;

int counts = 0;

while ( magnitude_complex( z ) <= 2.0

&& counts<NTRIALS ) {

counts++;

// z -> z^2 + c

z = add_complex( multiply_complex(z,z), c );

}

return counts;

}

int main(){

double xmin = -2.0;

double xmax = 0.5;

double ymin = -1.25;

double ymax = 1.25;

Complex c;

int nim,nre, counts;

const int NSTEPS = 250;

FILE *outp = fopen("mandel.dat","w");

for (nre=0; nre<NSTEPS ; nre++) { // loop over real axis

c.re = xmin + (xmax-xmin) * nre/NSTEPS;

for (nim=0; nim<NSTEPS; nim++) { // loop over imaginary axis

c.im = ymin + (ymax-ymin) * nim/NSTEPS;

counts = mandel_test(c);

fprintf(outp,"%lf %lf %d\n",c.re,c.im,counts);

}

}

fclose(outp);

return 0;

}
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to pick a random element of color. It then randomly picks another

element one space left, right, up, or down from that element. If this

second element is empty (that is, its color is 0), the second element’s

color is set equal to the first element. The first element has “colonized”

the second.

To pick a random direction, we make use of a new operator that we

haven’t seen before. This is C’s “trinary” operator. Most of the operators

in C, like +, -, *, /, et cetera, work on one or two values. The trinary

operator is the only operator in C that uses three values. It acts like an

abbreviated “if else” statement, and is indeed exactly equivalent to

this. It’s just shorter to write.

The syntax of the trinary operator is:

condition ? do this if true : do this if false

The statement above is exactly equivalent to:

if ( condition ) {

do this if true

} else {

do this if false

}

At the end of Program 12.5 the elements of color are printed out in a

particular way. We can think of a 2-dimensional array like color as

being a matrix of some number of rows and some number of columns.

In Program 12.5 we print out the array elements in just this way. Each

line of the output corresponds to a row of the matrix, and the number

of lines is equal to the number of rows.

If we run the program, directing it output into a file like this “./domain

> domain.dat”, we can plot the results with gnuplot. We’ve written

the program’s output as a matrix of values, which is different from the

kinds of files we’ve asked gnuplot to read before. That’s OK, though.

We just need to let gnuplot know that the file is in this format. Here’s

how to do that:

plot "domain.dat" matrix with image

The word matrix tells gnuplot that the file is in the form of an n × m

matrix with a newline at the end of each row.

If we modified the program so that it just showed us the initial dis-
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Program 12.5: domain.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double rand01 () {
static int needsrand = 1;
if ( needsrand ) {

srand(time(NULL));
needsrand = 0;

}
return ( rand()/(1.0+RAND_MAX) );

}

int main () {
int color[100][100];
int i,j,n,direction,inew,jnew,t;
double roll;

// Initialize:
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
roll = rand01();
if ( roll < 0.10 ) {

color[i][j] = 1;
} else if ( roll < 0.20 ) {
color[i][j] = 2;

} else {
color[i][j] = 0;

}
}

}

// Take turns:
for ( t=0; t<1000000; t++ ) {

i = 1.0 + 98.0*rand01();
j = 1.0 + 98.0*rand01();

rand01() < 0.5 ? direction=0 : direction=1;
rand01() < 0.5 ? n=0 : n=1;
if ( direction == 0 ) {

inew = i-1+2*n;
jnew = j;

} else {
inew = i;
jnew = j-1+2*n;

}

if ( color[inew][jnew] == 0 ) {
color[inew][jnew] = color[i][j];

}
}

// Write results:
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
printf ("%d ", color[i][j] );

}
printf ("\n");

}
}
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tribution of seeds, the output would look like the left-hand graph in

Figure 12.10. The unaltered program would show us the distribution

of species after 1 million turns. That would look like the right-hand

graph Figure 12.10.
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Figure 12.10: Initial distribution of two
species in the beginning (left) and after
some time has passed (right). Black
represents uncolonized spaces.

12.9. Simulating Evolution
In the preceding example, each element of our array has only one

property (color). What if the elements had more properties? We could

store all of the properties by using an array of structures instead of an

array of ints.

Charles Darwin, who developed the
theory of evolution by natural selection,
as described in his 1859 book The Origin
of Species.
Source: Wikimedia Commons

To illustrate this, let’s assume that our two species are small animals

that can compete with each other for resources. Each element of our

simulation array is a small habitat that can contain a family of these

animals, and let’s follow the members of each species over a long time

and watch them spread and respond to natural selection.

In 1859 Charles Darwin published his Origin of Species. Both he and

Alfred Russel Wallace had hit, more or less simultaneously, on the idea

of “evolution by natural selection”. This theory says that evolution

occurs because of three factors:

• Inheritance of characteristics. (Individuals tend to pass along some

of their characteristics to their offspring.)

• Variability. (Offspring aren’t identical to their parents, due to random

variations.)

• Natural Selection. (Some characteristics make individuals who pos-

sess them more likely to have offspring, either because they make the

individual more long-lived, more competitive for resources, more

fertile, or through other mechanisms.)

https://commons.wikimedia.org/wiki/File:Charles-Darwin-portrait-standing-photo-1881.png
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It’s not uncommon for larger animals to have an advantage over smaller

ones, so let’s keep track of the average size of the individuals in each

of our small habitats. If the family in one habitat tries to take over an

occupied neighboring habitat, we’ll assume that the side with bigger

individuals will win.

If you’re interested in this kind of thing,
you should read a little book called The
Theory of Island Biogeography by Robert
H. MacArthur and Edward O. Wilson
(pictured above). If you’re even more
interested, you should read Wilson’s
massive tome titled Sociobiology: The
New Synthesis.
Source: Wikimedia Commons

There are also disadvantages to being larger, though. Larger animals

tend to reproduce more slowly. This means that it should take more

“turns” in our program for larger animals to colonize a new habitat.

A second disadvantage comes from the environment itself. A given area

has limited food, water, and other resources. Larger individuals take

more resources. If our individuals got too big, they’d be like elephants

in a small back yard. There just wouldn’t be enough food to support

them and they’d eventually die. Mice, on the other hand, could thrive

in the same environment.

With these considerations in mind, let’s create a structure that could

represent each of our array elements. It might look like this:

typedef struct {

int species; // Which species occupies?

double size; // Avg. size of individuals.

int lastturn; // Last time this family tried expanding.

double capacity; // Capacity of this habitat.

} Habitat;

The structure above records the identity of the species occupying this

habitat. This will just be a number: 0, 1, or 2, as in our preceding

example. Then it records the average size of the individuals who live in

this habitat. As we’ll see later, we’ll assume that size is some measure

of the individuals’ height. The property lastturn records the last time

these individuals tried to colonize a neighboring habitat. We’ll use this

to allow for the fact that it takes larger individuals longer to reproduce.

Finally, capacity tells us the maximum size of indidviduals that can

thrive in this habitat.

We might define a 100 × 100 array of such structures like this:

Habitat h[100][100];

It’ll be convenient to have some functions for dealing with these struc-

tures, so let’s create a header file that contains these. It might look like

“Program” 12.6. You’ll see our old friends rand01 and normal from

Chapter 9, as well as some new things specific to this program.

https://commons.wikimedia.org/wiki/File:Plos_wilson.jpg
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The function init_habitats sets up the initial conditions by choos-

ing a random species (or no species) for each element of the array. It also

sets the size of the inhabitants of this element. It assumes that, intially,

the size of all individuals of any species is about “1” (in some arbitrary

units), but that there’s about a 10% variability between individuals. The

function uses our normal function to generate the random variations.

init_habitats also sets the “capacity” of each element to 50. If the

size of the individuals in this habitat exceeds this value, bad things will

begin to happen for them.

The function dumpsnapshot will be used to dump out a “snapshot”

of the conditions in our field every once in a while, so we can see

how things are progressing. It writes out a file with a name like

“habitat-nn.dat”, where “nn” is number we give dumpsnapshot.

The file is in the same “matrix” format we used in Program 12.5. The

function meansize calculates the mean size of the individuals in a

given species. As we’ll see, this will change as time progresses. This

function will let us track those changes.
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Figure 12.11: Three snapshots in the
evolution of our field occupied by two
competing species. At the top, we see
the initial random distribution. Over
time, the families in each of the initial
habitats colonize neighboring habitats,
perhaps driving out occupants of the
other species. The middle snapshot
shows an intermediate time, where the
species have acheived some kind of
equilibrium. Because size is
advantageous, natural selection drives
members of each species toward larger
sizes. In the last snapshot, we see the
result when the size of individuals
exceeds the capacity of the habitat.
Black squares show habitats where
colonists have died out due to lack of
resources.

Program 12.7 uses these structures and functions to actually do our

simulation. After calling init_habitats, it launches into a loop of

50,000,000 turns. In each turn, the program behaves similarly to Pro-

gram 12.5. One difference appears in the next-to-last “if” statement,

which no longer just checks to see if the neighboring element is unoc-

cupied. Now, even if the neighbor is already occupied, it will still be

taken over if the its occupants are smaller.

When the program calculates wait it
uses the function ceil from C’s math
library. This function rounds a number
up to the nearest integer. There’s also a
floor function, which rounds down to
the nearest integer.

In the final “if” statement, we enforce a wait period after we’ve taken

over an element. We’re not allowed to take over another element until

the wait period has passed. The wait period is calculated from our size.

If the size is larger, the wait period is longer (simulating longer gestation

periods for larger animals). We assume that the wait is proportional

to the mass of individuals. Since we said that size was a measure of

their height, we assume that their mass is proportional to size cubed.

Earlier in the program, after we’ve picked a random element, we check

to see if the size of the individuals in that element has exceeded the

element’s capacity. If so, we assume they die, and set species equal

to 0 for that element, making it empty and available for colonization.

When we run the program, it will make two kinds of output. First,

it will create ten snapshot files, showing the state of our array at ten

different times during its evolution. Second, it will periodically print to

the screen two numbers, representing the mean size of species 1 and
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Program 12.6: evolve.h

double rand01 () {
static int needsrand = 1;
if ( needsrand ) {

srand(time(NULL));
needsrand = 0;

}
return ( rand()/(1.0+RAND_MAX) );

}

double normal () {
int nroll = 12;
double sum = 0;
int i;
for ( i=0; i<nroll; i++ ) {

sum += rand01();
}
return ( sum - 6.0 );

}

double meansize ( int species ) {
int i,j;
double sum=0;
int n=0;
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
if ( h[i][j].species == species ) {

sum += h[i][j].size;
n++;

}
}

}
return( sum/(double)n );

}

void dumpsnapshot (int isnap) {
FILE *output;
char filename[100];
int i,j;

sprintf (filename,"habitat-%02d.dat",isnap);
output = fopen( filename,"w" );
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
fprintf (output, "%d ", h[i][j].species );

}
fprintf (output,"\n");

}
fclose( output );

}

void init_habitats () {
int i, j;
double roll;
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
roll = rand01();
if ( roll < 0.10 ) {

h[i][j].species = 1;
} else if ( roll < 0.20 ) {

h[i][j].species = 2;
} else {

h[i][j].species = 0;
}
h[i][j].size = 1.0 + variability*normal();
h[i][j].lastturn = 0;
h[i][j].capacity = 50.0;

}
}

}
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the mean size of species 2.

We can plot the snapshots with gnuplot just as we plotted the output of

Program 12.5:

plot "habitat-00.dat" matrix with image

The result will be plots like the ones shown in Figure 12.11.

If you run the program several times, you’ll find that the results will

vary widely. Sometimes the two species acheive an equilibrium, as in

Figure 12.11, but often one species will completly take over the field.

By directing the program’s output into a file (“./evolve > evolve.dat”)

we can look at how the mean size of each species varies over time. Fig-

ure 12.12 shows the trend in size for one species in one simulation.
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Figure 12.12: Because larger size is
favored by natural selection in our
model, the mean size of individuals in
each species grows over time, until it
reaches a plateau at the maximum
capacity the habitats can accommodate.

The trend toward larger sizes over time is very common in nature, and

is sometimes referred to by evolutionary biologists as “phyletic size

increas” or “Cope’s Rule” (after palaeontologist Edward Drinker Cope).

We’re all made familiar with this tendency in childhood, when we first

see pictures of tiny early horses like Eohippus (see Figure 12.13).

Figure 12.13: The tiny horse-ancestor,
Eohippus, as illustrated by
palaeontological artist Charles R. Knight
in 1905. Stephen Jay Gould has written
an interesting essay about the long
history of comparing the size of
Eohippus to that of a “fox terrier”. You
can find it in his collection of essays
Bully for Brontosaurus.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Eohippus.jpg
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Program 12.7: evolve.cpp

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

typedef struct {
int species;
double size;
int lastturn;
double capacity;

} Habitat;

Habitat h[100][100];
double variability=0.1;

#include "evolve.h"

int main () {

int i,j,n,direction,inew,jnew,t,isnap=0;
double wait;
int turns=50000000;

// Initialize:
init_habitats();

for ( t=0; t<turns; t++ ) {

if ( t%(100*100) == 0 ) {
printf ( "%lf %lf\n", meansize(1), meansize(2) );

}
if ( t%(turns/10) == 0 ) {

dumpsnapshot( isnap );
isnap++;

}

i = 1.0 + 98.0*rand01();
j = 1.0 + 98.0*rand01();

if ( h[i][j].size > h[i][j].capacity ) {
h[i][j].species = 0;
continue;

}

rand01() < 0.5 ? direction=0 : direction=1;
rand01() < 0.5 ? n=0 : n=1;
if ( direction == 0 ) {

inew = i-1+2*n;
jnew = j;

} else {
inew = i;
jnew = j-1+2*n;

}
if ( h[inew][jnew].species == 0 ||

h[inew][jnew].size < h[i][j].size ) {
wait = ceil( pow(h[i][j].size,3) );
if ( t - h[i][j].lastturn > wait ) {
h[inew][jnew].species = h[i][j].species;
h[inew][jnew].size = h[i][j].size + variability*normal();
h[inew][jnew].lastturn = t;
h[i][j].lastturn = t;

}
}

}
}
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12.10. Conclusion
Objects in the real world always have more than one interesting prop-

erty. C’s structures allow us to encapsulate an object’s multiple prop-

erties in a single variable. As we’ve seen in this chapter, the typedef

statement can allow us to simplify our code by defining new variable

types using these structures.

If we moved forward into the extra features offered by C++, we’s see

that structures are the precursor of even more powerful things called

“classes”. A C++ class incorporates multiple properties as well as a set

of functions (called “methods”) that are particular to a given type of

object.

We’ve also seen several new computing techniques in this chapter.

The techniques we used for dealing with gravitational interactions

can be refined and improved to make them suitable for really useful

calculations of the orbits of celestial bodies. The techniques we’ve seen

for dealing with interactions between neighboring objects (the domain

example and the evolution example) have wide applicability in physics

and biology.


