
13. Bitwise Operators and

Binary Numbers

13.1. Introduction
Back in what this author still regards as “the good old days” it was

easy to control individual bits in a computer’s memory. Computers

like the PDP-11/70 shown in Figure 13.1 actually had switches on the

front for doing just that. In order to start the computer, the user would

carefully set the switches to a particular pattern of ones and zeroes

(usually written on a yellowed piece of paper taped to the front of the

computer), perhaps repeating this process several times with different

patterns, inching the computer along until it could continue on its own.

Figure 13.1: The front panel of a DEC
PDP-11/70, showing the switches that
were used to load a binary starting
address into the computer’s memory.
Image: Wikimedia Commons

Computers have changed a lot since then, but it’s still possible, and

sometimes necessary, to switch individual bits on and off. The C

programming language provides us with a set of tools for doing that.

180 nm180 nm

a single bita single bit

Figure 13.2: An electron microscope’s
view of a memory chip, showing
individual memory cells. Each cell is
essentially a little switch, approximately
180 nanometers wide. The wavelength
of green light is shown to give an idea
of the size.
Image: Wikimedia Commons

It’s fun to think about what happens when your program changes the

value of a single bit. Each memory cell in a modern computer is smaller

than the wavelengths of visible light. When you change the value of

a single bit, you’re causing a precise physical change in an incredibly

tiny object.

Why would you want to the ability to flip individual bits? First of all,

bits are the smallest unit of data storage, and by efficiently setting bits

you can minimize the amount of space required to store your data on a

disk, and the amount of time required to transmit your data from one

place to another. Secondly, the CPU in your computer understands how

to flip bits on and off, and it can do these operations very quickly. If you

can do your calculations by flipping bits instead of more complicated

operations like multiplication and division, you can make your program

run much faster.

https://commons.wikimedia.org/wiki/File:Pdp-11-70-panel.jpg
https://commons.wikimedia.org/wiki/File:STM32-SEM-HD.jpg

424 practical computing for science and engineering

13.2. Binary Numbers
Before we start talking about bits, we first need to understand binary

numbers. In our society, we normally write numbers in what might be

called “decimal positional” notation. This means that each digit of a

number represents some multiple of a power of ten, and the position

of the digit indicates which multiple. Take a look at Figure 13.3 for

example.

0 0 0 0 0 2 3 7
100101102103104105106107

= 2×100 + 3×10 + 7×1

(10,000,000) (1,000,000) (100,000) (10,000) (1,000) (100) (10) (1)

Figure 13.3: The number 237 in decimal
positional notation.

The position of each digit tells us how “valuable” it is. You might think

of the digits as being like the contents of the bins in a cash register. The

rightmost slot is for one-dollar bills, the next is for tens, and the next

is for 100s. If we had two $100 bills, three $10 bills, and seven $1 bills,

we’d have $237. As we go from right to left, each slot has ten times the

value of the preceding one. A number system based on powers of ten is

called a “decimal” system from the Greek word deka, meaning ten. The

%d we use when printing integers with printf stands for “decimal

integer”.

×100 ×10 ×1

Figure 13.4: To represent a number in
our usual decimal notation we need to
be able to select from a set of ten digits
at each position. We could think of each
position as having a dial with ten
settings, from zero to nine. The number
237 is shown here.

To make our cash register analogy accurate, we’d have to imagine that

as soon as you get ten $1 bills you exchange them for a $10 bill and put

that into the next slot to the right, and do a similar operation whenever

we get to ten bills in any of the other slots. With this rule, each slot in

our number can contain one of ten symbols — 0, 1, 2, 3, 4, 5, 6, 7, 8, or

9 — telling us how many “bills” are in that slot. If we go beyond nine,

we need to move to the next slot to the right.

We don’t have to use powers of ten, though. We could base our system

on any number we want. We probably started using the decimal

system because we have ten fingers. If we’d had twelve fingers we

might have used a system based on powers of twelve. There are even

be some advantages to using such a “duodecimal” system1. In fact,

1 Take a look at this Numberphile video:
https://www.youtube.com/watch?v=U6xJfP7-
HCc

vestiges of an old 12-based counting system show up in our daily lives

whenever we buy a dozen doughnuts or look at a clock. If we used

a 12-based positional system for writing numbers, we’d need twelve

possible symbols for each slot.

Figure 13.5: In binary notation, each
slot can contain only a zero or a one, so
instead of the knob in Figure 13.4 you
might think of each binary digit as a
switch.

What if we had to use only two symbols? Then we could write numbers

in a “binary” positional notation. (The word binary comes from the

Latin bis, meaning “twice”.) Each slot in a binary number indicates

some number of multiples of two, and each digit is either 0 or 1. (See

Figures 13.5 and 13.6.)

Why would we be interested in binary numbers? Because each digit

https://www.youtube.com/watch?v=U6xJfP7-HCc
https://www.youtube.com/watch?v=U6xJfP7-HCc

chapter 13. bitwise operators and binary numbers 425

1 1 1 0 1 1 0 1
2021222324252627

= 1×128 + 1×64 + 1×32 + 1×8 + 1×4 + 1×1
= 237 (decimal)

(128) (64) (32) (16) (8) (4) (2) (1)

Figure 13.6: The number 237 (decimal)
would be written like this in binary.

can be represented by a switch, and it’s easy to make switches. We can

make switches that are both very small (so that many of them can be

packed into a small space) and very fast (meaning that each switch can

be turned on or off very quickly)2. Once we have some switches, we 2 Speed and size are correlated. As
switches get smaller, they can also be
turned on or off more quickly. That’s
one reason manufacturers put so
much effort into making the already-
microscopic components of modern
CPUs even smaller.

can use them as the digits of binary numbers.

Each digit in a binary number is called a “bit”. You can think of it as a

switch that can be flipped to a value of zero or one. Computers usually

deal with bits in groups of eight (or multiples of eight). A group of

eight bits is called a “byte”. (Half a byte, four bits, is sometimes called

a “nybble”.)

Figure 13.6 shows how the decimal number 237 would be written as a

binary number. Each bit represents a power of 2, and can have a value

of one or zero. Let’s call the right-most bit “bit 0”, the next one “bit 1”

and so on, with each bit numbered according to the power of 2 that it

represents.

Decimal Binary

1 1

2 10

3 11

8 1000

10 1010

64 1000000

100 1100100

127 1111111

128 10000000

200 11001000

255 11111111

Figure 13.7: Decimal and binary
representation of some numbers.

There are a couple of things we might notice right away with this

system. First, the bit number increases toward the left. If we were given

a bunch of bits, numbered zero through seven, and asked to write them

down, we might be inclined to start with bit 0 on the left-hand side of

the page, then write the others going left-to-right, as we usually arrange

things in English. We write the digits of numbers in the opposite way,

though, no matter which base (10, 12, 2, or something else) we use. We

don’t usually think about this, but it’s important to keep it in mind as

we start working with the digits of binary numbers.

Second, we might notice that this system can only represent positive

integers. We haven’t provided any way to represent non-integers or

even negative integers. We’ll address these concerns soon.

426 practical computing for science and engineering

Figure 13.7 shows the decimal and binary representations of some

numbers. Notice that the largest number we can write with eight bits

(one byte) is 255. This corresponds to all bits being set to 1. If we want

to write larger numbers, we’re going to need more bits.

13.3. Bits and Variables
When we write a statement like “number = 42;” in a C program,

we’re asking the computer to store the value 42 in a variable named

number. But what really happens inside the computer? Each variable

in our program is just a named section of the computer’s memory.

When we define a variable named number, the computer reserves a

few bits of memory that can be used to store that variable’s value.

We can use the sizeof statement3 (see page 167) to find out how much 3 The value returned by sizeof isn’t
actually an int, so to keep printf

from complaining we force the value to
be an int by putting “(int)” in front
of it.

space has been reserved for a given variable. The space is reported as a

number of bytes (8-bit chunks). For example:

#include <stdio.h>

int main () {

int i;

double d;

char c;

printf ("Size of i is %d bytes.\n", (int)sizeof(i));

printf ("Size of d is %d bytes.\n", (int)sizeof(d));

printf ("Size of c is %d bytes.\n", (int)sizeof(c));

}

4 bytesint

00001001

01010101

00010010

10110011

01011001

00110111

10110011

01111010

01011010

00101100

10000010

00110111

8 bytesdouble

00100101 1 bytechar

8 bits

Figure 13.8: Different types of variable
use different amounts of storage.

If we compiled and ran this program, we’d see something like this:

Size of i is 4 bytes.

Size of d is 8 bytes.

Size of c is 1 bytes.

As you can see, different types of variable will generally have different

amounts of space. The C language standards don’t specify exactly

how big the storage space for each type of variable should be, so these

numbers may vary from one C compiler to another, but the values

shown above are typical.

If the program tells us that int variables are allocated 4 bytes (32 bits)

of storage space, what’s the biggest number we can store in an int?

We might think it would be a binary number with 32 ones, like this:

chapter 13. bitwise operators and binary numbers 427

11111111111111111111111111111111

which is 4,294,967,295 (a little over 4 billion) in decimal representation.

But if we reached that conclusion we’d be forgetting that int variables

can hold either positive or negative numbers. Somehow, we’ve got to

reserve at least one bit to indicate whether the number is positive or

negative.

It would be great if we could peek at the bits inside an actual variable,

to see how they’re arranged. Let’s start by looking at the smallest kind

of variable identified by the program above: the char variable, which

has only one byte (8 bits) of storage.

13.4. Character/Number Equivalence
You might recall from Chapter 8 that each character is represented by a

numerical ASCII code. Figure 13.9 shows the characters corresponding

to the ASCII codes from zero to 127. You’ll see that the table includes

all of the letters and numbers you’ve come to know and love, and many

of the other symbols on your keyboard. For example, the upper case

letter “A” is character number 65.

There are also some non-printable characters. For example, the NUL

character (which we sometimes write as \0) is there as character num-

ber zero. Character number 10 is the newline (also called linefeed)

character, \n. Characters like newline, horizontal tab, formfeed, and

space are used the move around on your screen, but don’t actually print

anything. Some of the non-printing characters are extremely weird

things like DLE, NAK, SYN, and ETB. These are used to control the flow

of ASCII data sent across a communications line.

One important fact is that, in C, a character and its ASCII number

are almost entirely interchangeable. The following program prints the

number 65 twice. The first time, it tells printf to print it as a number.

The second time, it tells printf to print it as a character:

#include <stdio.h>

int main () {

printf ("As a number it's %d\n", 65);

printf ("As a character it's %c\n", 65);

}

The only substantial difference in the two printf lines is that one uses

428 practical computing for science and engineering

ASCII

Number Character

ASCII

Number Character

ASCII

Number Character

ASCII

Number Character

0 NUL '\0' 32 SPACE 64 @ 96 `

1 SOH (start of heading) 33 ! 65 A 97 a

2 STX (start of text) 34 " 66 B 98 b

3 ETX (end of text) 35 # 67 C 99 c

4 EOT (end of transmission) 36 $ 68 D 100 d

5 ENQ (enquiry) 37 % 69 E 101 e

6 ACK (acknowledge) 38 & 70 F 102 f

7 BEL '\a' (bell) 39 ' 71 G 103 g

8 BS '\b' (backspace) 40 (72 H 104 h

9 HT '\t' (horizontal tab) 41) 73 I 105 i

10 LF '\n' (new line) 42 * 74 J 106 j

11 VT '\v' (vertical tab) 43 + 75 K 107 k

12 FF '\f' (form feed) 44 , 76 L 108 l

13 CR '\r' (carriage ret) 45 - 77 M 109 m

14 SO (shift out) 46 . 78 N 110 n

15 SI (shift in) 47 / 79 O 111 o

16 DLE (data link escape) 48 0 80 P 112 p

17 DC1 (device control 1) 49 1 81 Q 113 q

18 DC2 (device control 2) 50 2 82 R 114 r

19 DC3 (device control 3) 51 3 83 S 115 s

20 DC4 (device control 4) 52 4 84 T 116 t

21 NAK (negative ack.) 53 5 85 U 117 u

22 SYN (synchronous idle) 54 6 86 V 118 v

23 ETB (end of trans. blk) 55 7 87 W 119 w

24 CAN (cancel) 56 8 88 X 120 x

25 EM (end of medium) 57 9 89 Y 121 y

26 SUB (substitute) 58 : 90 Z 122 z

27 ESC (escape) 59 ; 91 [123 {

28 FS (file separator) 60 < 92 \ '\\' 124 |

29 GS (group separator) 61 = 93] 125 }

30 RS (record separator) 62 > 94 ^ 126 ~

31 US (unit separator) 63 ? 95 _ 127 DEL

Figure 13.9: ASCII codes between zero
and 127 and their corresponding
characters.

chapter 13. bitwise operators and binary numbers 429

%d as a placeholder and the other uses %c. The %d tells printf to treat

65 as a number, and %c says to treat it as a character. If we ran the

program, we’d see:

As a number it's 65

As a character it's A

Perhaps even more surprisingly, we’d see the same results if we wrote

the program this way:

#include <stdio.h>

int main () {

printf ("As a number it's %d\n", 'A');

printf ("As a character it's %c\n", 'A');

}

As far as C is concerned, 'A' is exactly equivalent to 65.

Exercise 60: Character Building

Write a program named charnum.cpp that uses a for loop

to print out the numbers from 33 to 126, inclusive, and the

ASCII character that corresponds to each number. The pro-

gram’s output should be two columns, with the first column

being the number and the second column its corresponding

ASCII character. Note that, because of the equivalence of

characters and numbers in C, the loop can either go from

33 to 126 or from '!' to '~' (see Figure 13.9).

If we could look directly at the 8 bits that store a character variable’s

value, we’d see that they’re just a binary representation of a character’s

ASCII number. For example, ’A’ is character number 65, which is

01000001 when expressed as an 8-bit binary number.

430 practical computing for science and engineering

13.5. A Simple Encryption Scheme (rot13)
Imagine that we took all of the lower-case ASCII letters and arranged

them in a circle, as in Figure 13.10. Below each letter is shown its ASCII

character number. There are 26 letters, so if we start at any letter then

move 13 spaces around the circle we’ll find ourselves at a different letter

that’s exactly on the opposite side of the circle.

+13

Figure 13.10: Adding 13 to the value ’a’
moves halfway around the circle to ’n’.
Adding 13 again would bring us back to
’a’.

You could use this as a simple way of “encrypting” a message. Start

out by writing down your message, then replace each letter with a

different one, halfway around the circle. The person receiving your

encrypted message could easily decode it (assuming he or she knows

the code!) by just going 13 more spaces around the circle, to get back

to the original letter.

This simple encryption scheme is called rot13, since it picks a replace-

ment letter by rotating 13 spaces around the circle. In the early days of

the Internet, rot13 was often used to obscure text. For example, if you

posted a movie review that contained spoilers, you might use rot13

to encrypt those parts. Anyone who really wanted to read them could

chapter 13. bitwise operators and binary numbers 431

decrypt the text, but if you didn’t want to know how the movie ended,

you’d be in no danger of having it accidentally spoiled for you.

Fortunately, it’s easy to write a program that can understand rot13.

Since moving by 13 spaces can be used to either encrypt or decrypt

a message, you can write one program that will work for either task.

Give it some plain text, and it will encrypt it. Give it some encrypted

text, and it will give you back the original message.

Writing such a program is particularly easy in C, since we’re free to use

characters and their numbers interchangeably. Program 13.1 shows one

way to do it.

Program 13.1: rot13.cpp

#include <stdio.h>

int main () {

char letter, position, newposition;

while (scanf("%c", &letter) != EOF) {

if (letter >= 'a' && letter <= 'z') {

position = letter - 'a';

newposition = (position + 13)%26;

letter = 'a' + newposition;

}

printf ("%c",letter);

}

}

Ony change

lower-case letters.

Shift by 13 letters.

The program uses a “while” loop to read characters, one at a time.

Each time it reads a character, it checks to see whether this is one of the

lower-case characters ’a’ through ’z’. These are the only letters that

are part of the circle that we’re using for encryption (see Figure 13.10).

Any other characters will be left alone. Notice that we don’t have to

switch between the character’s name (like ’a’) and its ASCII number

(like 97). C takes care of this for us automatically.

Whenever we find a lower-case letter, we then identify the letter that’s

opposite it on our letter circle. This circle of letters is a lot like a clock.

Remember that in Chapter 4 we talked about clocks, and said that

they’re an example of modular arithmetic. When a clock’s hand goes

past twelve, it starts over again at one. We say that the modulus of the

clock is twelve. If we set a clock’s hour hand at 3 and wait 16 hours

we’ll find that the hand now points to 7. In terms of modular arithmetic,

we’d say that (3 + 16)%12 = 7, since 7 is the remainder obtained

after dividing 3+16 by 12.

432 practical computing for science and engineering

Our circle of letters has 26 positions instead of 12, so it has a modulus

of 26. But there’s also another difference: our letters don’t start at 1.

Instead, they start with ’a’ (or, equivalently, 97 in C). When we look

at a clock, the “12” position is both the beginning and the end of the

circle of numbers. When we do modular arithmetic on a clock, we

assume that the clock numbers tell us how many hours away from 12

we are. We could imagine that, when the clock’s hour hand gets to 12

it’s briefly twelve hours away from where it started, then as is passes

twelve it’s instantaneously back at zero. In our clock’s modulo-12

counting system, zero is just the flip side of 12.

So, for example, if we were given the letter ’y’ and wanted to find out

which letter was on the opposite side of the circle, we first find how

far we are from ’a’. This is just 'y'- 'a'. Then we add 13 to this

distance and find the remainder after dividing by 26:

('y' - 'a' + 13) % 26

The remainder tells us how far away from ’a’ we’ll be when we move

to the letter on the opposite side of the circle. To find out this letter’s

ASCII number, we just add ’a’ to it. That’s what Program 13.1 does.

Exercise 61: A Lot of Rot

Create and compile Program 13.1. Run the program and type

some text. When you press Enter or Return, the program

should print the rot13-encrypted version of your text. For

example, if you type “this is a test” the program will tell you

that the encrypted version of this is “guvf vf n grfg”. Press

Ctrl-D to exit the program. If you run the program again

and type “guvf vf n grfg”, the program will translate it back

into “this is a test”.

If you have a whole file full of text you want to encrypt

(a file named secretmessage.txt, for example), you can

rot13-encrypt the whole thing by typing this command:

cat secretmessage.txt | ./rot13

Amaze your friends! Confuse your enemies!

Now that we have some understanding of how character variables are

stored, it’s natural to wonder how other kinds of variables stored. It

would be nice if we could examine them bit by bit to find out. We

can do this, but first we’ll need to learn a little about C’s “bitwise

operators”. In particular, we’ll need to learn about “bitwise shift” and

“bitwise and”.

chapter 13. bitwise operators and binary numbers 433

13.6. The Shift Operators

Figure 13.11: If you’ve never used a
typewriter, you might not know that the
shift key originally shifted part of the
typewriter up or down, to get access to
upper-case letters. This reduced the
number of keys that were needed.
Before the shift key was invented
typewriters either had separate keys for
each upper and lower case letter, or
they could only type in upper (or lower)
case.
Image: Wikimedia Commons

It should be obvious that the following program will print “1”. (Try it

yourself if you don’t believe me!)

#include <stdio.h>

int main () {

printf ("%d\n", 1);

}

but what would the following do?:

#include <stdio.h>

int main () {

printf ("%d\n", 1<<3);

}

You might be surprised to find that it prints “8”. What’s going on here?

What does that “<<3” do?

Let’s think about binary numbers again, and imagine that we have an

8-bit binary number representing the value “1”, like this:

0 0 0 0 0 0 0 1
2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

Figure 13.12: The number 1 written as
an 8-bit binary number. As with decimal
numbers, extra zeros on the left-hand
side don’t matter. We can write 1 or 01
or 00001, and they all mean the same
thing.

Referring to Figures 13.12 and 13.13, we see that we could write any

power of 2 in binary form by just writing down a lot of zeros and

putting a one in the slot corresponding to the desired power. So, 2

(decimal) is written as 10 (binary), 4 is written as 100, 8 is 1000, and

so on. If we started with a one in the first slot, we could imagine

generating all of the other powers of 2 by just shifting the one to the

left by some number of slots. (See Figure 13.13.)

Power Decimal Binary

20 1 00000001

21 2 00000010

22 4 00000100

23 8 00001000

24 16 00010000

25 32 00100000

26 64 01000000

27 128 10000000

Figure 13.13: Powers of 2 written as
8-bit binary numbers.

That’s exactly what C’s << operator does. It shifts all of the bits in

a number toward the left by a given amount. Bits shifted past the

left-hand edge are lost, and empty slots on the right-hand side are

filled in with zeros. In the program above, 1<<3 means “Start with the

number 1 in binary, then shift all of the bits to the left by three spaces.”

As you can see from Figure 13.14, that would give you 8, and that’s

what the program above prints out.

https://commons.wikimedia.org/wiki/File:Shift_(4261060942).jpg

434 practical computing for science and engineering

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0
2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

Lost

1<<3=

1=

Added zeros

Figure 13.14: Starting with the 8-bit
binary representationn of the number 1,
we can shift all of the digits three spaces
to the left to get 8 by saying “1<<3”.

It’s interesting to think about what happens to a number when we shift

its digits to the left like this. Shifting the digits of a decimal number to

the left is equivalent to multiplying that number by some power of ten.

Ten times 237 is 2370. One hundred times 237 is 23700. Similarly, if we

shift the digits of a binary number to the left, we multiply it by a power

of two. For example, <<1 multiplies the number by two, <<2 multiplies

by four, and <<3 multiplies by eight.

<<1 Means

“Shift 1 Place to the Left”

Figure 13.15: The “left-shift” operator,
<<, shifts each bit leftward by a given
amount. Like birds on a perch, bits that
get shifted too far “fall off”.
Image: OpenClipart

What do we mean when we say that bits shifted “past the edge” are

lost? Where is the edge? As we saw above when we were playing with

the sizeof statement, each variable in a program has some amount

of storage space allocated to it. The bits that represent that variable’s

value are stored in that space. We can shift those bits around, but the

space is finite, and if we shift too far we lose some information4. For 4 As we’ll see, this also means that
there’s a maximum number that can
be stored in any variable. What that
number is will depend on the variable’s
type.

simplicity, many of the figures in this chapter will assume that we only

have eight bits available (one byte), but in reality we’ll usualy have

more space (four or eight bytes) for each of our numerical variables.

Figure 13.17 shows some examples that start with a different 8-bit

binary number (237 in decimal notation). Each time we shift left, some

bits drop off the edge and are irretrievably lost. If we shift far enough,

as in the bottom case, all of the original bits are lost, and we’re left with

only zeros. If you only have eight bits to store your number in, you’re

in trouble if you shove things over by eight spaces.

Note that it’s perfectly OK to shift the bits by 0 spaces, even though

that doesn’t change anything. The expression 1<<0 is just the same as

1. As we’ll see, this is sometimes convenient.

https://openclipart.org/detail/4611/wintersky

chapter 13. bitwise operators and binary numbers 435

Not surprisingly, there’s also a “right-shift” operator, >>. Figure 13.18

shows some examples. It works just like the left-shift operator, but

moves things in the opposite direction. Don’t think that you can use

a right-shift to recover bits that have dropped off the edge due to a

left-shift, though. That doesn’t work5. Any bits that are dropped are 5 More accurately, you can’t depend on it.

gone forever.

Exercise 62: Bit Drill

Let’s get some practice with the bit-shift operators. Write a

program named bitdrill.cpp that loops through values

of i from 0 through 31 and prints i and 1<<i for each value.

You might see a surprise for 1<<31 !

When you printed the value of 1<<i you probably used “%d”

in your printf statement. Try changing this to “%u”, then

recompile your program and run it again. Does the value

of 1<<31 change? We’ll explain why this happens a little

later.

One final note about the exercise above: if you look at Figure 13.13

you can see that the binary representation of each of the numbers you

generated (each 1<<i) would be mostly zeros except for a single 1 in

bit number i. Apparently, we can use 1<<i to create a number that

just has one particular bit turned “on”. This fact will come in handy in

the next section.

Okay, so we see that it’s possible to shift bits left and right. What

good does that do us? Remember that our goal was to be able to see

how the bits are really arranged when we store a number in a variable.

Bit-shifting is one of the tools we’ll need to do that, but we’ll also need

another tool: the “bitwise and”. We’ll get to that in a later section,

but first we need to learn a little more about how a computer stores

numbers.

Figure 13.16: Bit drill, meet drill bits.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Drillbits.jpg

436 practical computing for science and engineering

1 1 1 0 1 1 0 1

2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

1 1 0 1 1 0 1 0

1 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0

Lost

x=237

x<<1

x<<2

x<<8

Figure 13.17: If you shift far enough, all
of the original bits are lost.

1 1 1 0 1 1 0 1

2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

0 1 1 1 0 1 1 0

0 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0

Lost

x=237

x>>1

x>>2

x>>8

Figure 13.18: The right-shift operator, >>,
shifts bits rightward by a given number
of slots.

chapter 13. bitwise operators and binary numbers 437

13.7. Signed and Unsigned Integers
In Section 13.6 you might have been surprised by the output of your

bitdrill.cpp program. If you used “%d” when printing the values

you probably saw that the program’s output looked like Figure 13.19.

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576

21 2097152

22 4194304

23 8388608

24 16777216

25 33554432

26 67108864

27 134217728

28 268435456

29 536870912

30 1073741824

31 -2147483648

Figure 13.19: The output of the
bitdrill.cpp program from Section
13.6, using %d to print the numbers.

Why is the last number negative? To figure it out, let’s start by consider-

ing what this number’s bits look like. Figure 13.20 shows the left-most

few bits of this 32-bit number (all of the other bits are zero). We might

expect this number to be equal to 231, which is a little over two billion.

1 0 0 0 0 0 0 0
2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

...

...

Figure 13.20: The left-most bits of the
32-bit number 1<<31.

The explanation has to do with the way the computer stores negative

numbers. In order to store both negative and positive numbers we need

to reserve at least one bit that will indicate the number’s sign. That’s

part of the explanation for what we see in our program’s output, but

it’s clearly not the whole story. If the top-most bit just indicated the

sign, then our last number would be “−0”, not −2, 147, 483, 648.

To make computations faster, computers actually use a slightly more

complicated way of storing negative integers called “two’s complement”

notation. The two’s complement of a binary number can be formed by:

1. Flipping every 1 to a 0, and every 0 to a 1, and

2. Adding 1 to the result.

This might seem pointless, but it has a distinct advantage: it lets the

computer add numbers together without needing to check their signs.

Adding the two’s complement of a number turns out to work just the

same as subtracting that number.

If we just reserved one bit as a “sign bit”, we’d always need to check the

sign when adding numbers, and then decide whether to add or subtract.

This would add extra steps to our calculation, slowing things down.

By using two’s complement notation we avoid this. As it turns out,

the bit pattern we produced by doing 1«31 is the two’s complement

of 2, 147, 483, 648, so to the computer it represents the negative of that

number.

438 practical computing for science and engineering

Using two’s complement notation for negative numbers, a 32-bit integer

can hold any number between −2, 147, 483, 648 and 2, 147, 483, 647. Any

number that has 1 as its left-most bit is assumed to be negative, and

interpreted as the two’s complement of the value. Figure 13.21 shows

the binary representation of some typical numbers.

Decimal Binary, 32 bits, Signed

0 00000000.00000000.00000000.00000000

1 00000000.00000000.00000000.00000001

32 00000000.00000000.00000000.00100000

256 00000000.00000000.00000001.00000000

1 billion 00111011.10011010.11001010.00000000

2 billion 01110111.00110101.10010100.00000000

2,147,483,647 01111111.11111111.11111111.11111111

-2,147,483,648 10000000.00000000.00000000.00000000

-256 11111111.11111111.11111111.00000000

-32 11111111.11111111.11111111.11100000

-1 11111111.11111111.11111111.11111111

Figure 13.21: Some representative signed
32-bit integers. Groups of eight bits (1
byte) have been separated by dots for
clarity.

The table is arranged in order of increasing binary numbers, from all

bits “off” to all bits “on”. Notice that when we go past the biggest

positive number (a little over 2 billion) the value jumps immediately to

the smallest negative number. The value when all bits are “on” is −1.

What if we know that all of our values are going to be positive? Are

we still limited to a maximum value of 2,147,483,647? It seems a shame

to reserve part of the available range for negative numbers when we

know we won’t have any.

If you try changing “%d” into “%u” in your bitdrill.cpp program,

you’ll see that the last thing it prints is now a positive number:

31 2147483648

0 4,294,967,295

2,147,483,647-2,147,483,648 0

2,147,483,647

Signed Integer Range

Unsigned Integer Range

Figure 13.22: A visual comparision of
the range of int and unsigned int

variables.

The “%u” format specifier tells the program to interpret the binary data

as an “unsigned integer”. Unsigned integers don’t wrap around to

negative values halfway through their range. Instead, they start at zero

and just keep getting bigger. The biggest value that can be stored in a

32-bit unsigned integer is 4, 294, 967, 295 (a little over 4 billion), which

in this case is represented by a 32 “on” bits. Figure 13.23 shows the bit

patterns that correspond to some representative unsigned integers.

chapter 13. bitwise operators and binary numbers 439

Decimal Binary, 32 bits, Unsigned

0 00000000.00000000.00000000.00000000

1 00000000.00000000.00000000.00000001

32 00000000.00000000.00000000.00100000

256 00000000.00000000.00000001.00000000

1 billion 00111011.10011010.11001010.00000000

2 billion 01110111.00110101.10010100.00000000

2,147,483,647 01111111.11111111.11111111.11111111

2,147,483,648 10000000.00000000.00000000.00000000

3 billion 10110010.11010000.01011110.00000000

4 billion 11101110.01101011.00101000.00000000

4,294,967,295 11111111.11111111.11111111.11111111

Figure 13.23: Some representative
un-signed 32-bit integers. Groups of
eight bits (1 byte) have been separated by
dots for clarity.

The int variables we’ve used so far are for holding signed integers. If

you know you won’t need negative numbers, you can define a variable

as “unsigned int”, and use %u as a placeholder when reading or

writing its value.

Notice that an unsigned integer uses the same pattern of bits to represent

4, 294, 967, 295 as the pattern that’s used to represent −1 for signed

integers. It’s worth pausing to think about what this means. If we

see 32 “on” bits in the computer’s memory, we don’t know whether it

represents −1 or 4, 294, 967, 295. It could even represent other values.

32 bits is the same size as four 8-bit char variables, so these bits could

represent an array of four characters. It’s not enough to know what

binary data is stored in a variable’s memory location. We also need to

know the variable’s type. The type tells us how to interpret the data we

see.

Program 13.2 can be used to illustrate the difference between int

variables and unsigned int variables.

Program 13.2: unsigned.cpp

#include <stdio.h>
int main () {

int i;
unsigned int j;

printf ("Enter an integer: ");
scanf ("%d", &i);
printf ("You entered %d\n", i);

printf ("Enter an integer: ");
scanf ("%u", &j);
printf ("You entered %u\n", j);

}

440 practical computing for science and engineering

If you ran this program and gave it 4000000000 (4 billion) each time

it asked you for a number, you’d see the following:

Enter an integer: 4000000000

You entered -294967296

Enter an integer: 4000000000

You entered 4000000000

Sometimes we can choose which way we want to display the same data

by just changing the placeholder in our printf statement, as we did

when we changed %d to %u in the bitdrill.cpp program. There

are subtle rules that control the way C converts data from one type to

another, though, so be careful, especially when comparing variables of

different types. Take a look at the following program, for example6: 6 This example is adapted from an excel-
lent, but rather technical, explanation by
Ozgur Ozcitak at StackOverflow.

Program 13.3: plusminus.cpp

#include <stdio.h>

int main() {

unsigned int plus_one = 1;

int minus_one = -1;

if(plus_one < minus_one) {

printf("1 < -1 \n");

} else {

printf("Math isn't broken.\n");

}

}

If we compiled this program, g++ would give us a warning about

comparing signed and unsigned numbers, but it would still create a

program we could run. If we ran the program, it would erroneously

tell us that 1 is less than −1. That’s because in this situation g++

assumes we want to compare the two numbers as though they were

both unsigned integers. As we saw above, the signed integer −1 is the

same as the unsigned integer 4, 294, 967, 295.

Notice that 4, 294, 967, 295 is 232
− 1. In general, if we have n bits for

storing an unsigned integer, the biggest number we can store will be

2n
− 1.

One final note: If you wanted to, you could explicitly define int

variables as signed int, to make clear that they’re different from

unsigned int. You don’t have to, though. If you don’t specify

whether the variable is signed or unsigned, the default is signed.

https://stackoverflow.com/a/50632/7379479

chapter 13. bitwise operators and binary numbers 441

4 0 0

5 9 9

Subtract Each Digit from 9

6 0 0Add 1

Original Number

Ten's Complement

Constructing the
ten's complement
of a number

Constructing the
ten's complement
of a number

Figure 13.24: The “ten’s complement”
of a number can be formed by
subtracting each digit from 9 and then
adding 1 to the resulting number.

Figure 13.25: “Complementary colors”
are pairs of colors that combine to form
white (or black in some color systems).
Each is the “complement” of the other,
meaning that each supplies what the
other lacks. Similarly, the ten’s
complement (or two’s complement) of a
number supplies what the number
lacks to become a power of ten (or two).

But what about. . . ?

What does “two’s complement” mean, anyway? And how can you

possibly subtract by adding? The answers depend on the fact that

numbers in a computer always have a limited number of digits.

For example, an unsigned int variable might have 32 bits — 32

binary digits – in the computer’s memory. If we try to put too large

a number into that space, the upper digits of the number will be

lost. If the biggest number we can store is 4,294,967,295 (expressed

in binary, of course) but we try to put in 4,294,967,296, we’ll see

that our variable ends up containing the value zero! 4,294,967,297

would give us 1, 4,294,967,298 would give us 2, and so forth. It’s

like the numbers get to the maximum value and then wrap around

to the beginning again.

This is analogous to an old-fashioned arcade game like Asteroids,

where characters that went off the right side of the screen reap-

peared on the left side.

It might be easier to understand if we look at a “ten’s complement”

example, where we work in the more-familiar base 10. Imagine

that we want to subtract 400 from 700. Let’s start by putting a 700-

pixel-long bar on the screen of a 1,000-pixel-wide arcade console,

as in the figure above.

If we wanted to subtract 400 pixels from the bar’s length, we could

442 practical computing for science and engineering

just move to the left by that amount and chop the bar off at the

vertical dashed line. This is the same as subtracting 400 pixels from

the bar’s length.

Alternatively, though, we could find the ten’s complement of 400

and add that much to the bar’s length, causing it to wrap around

when it bumps into the edge of the screen. The ten’s complement

of the number is just the difference between the number and the

total width of the screen. That difference turns out to be 600 pixels

in this example. As you can see, going forward a distance of 600

pixels (which wraps us around to the other side of the screen)

leaves us at the same dashed vertical line. We end up at the same

place as if we’d subtracted 400 pixels.

For 3-digit numbers the ten’s complement is the amount you need

to add to get to 1,000, because you can only hold numbers up

to 999 in three digits. After that, the numbers roll over like an

odometer to 000. For 4-digit numbers the limit would be 9,999, and

the ten’s complement would be the amount you need to add to get

10,000. In general, for n digits the ten’s complement of a number x

is 10n
− x. Similarly, the n-digit two’s complement of x would be

2n
− x.

One way to find the ten’s complement of a number is to subtract

each of the number’s digits from 9, and then add 1 to the result,

as shown in Figure 13.24. This might seem roundabout when we

could just subtract the number from 1,000 (for 3 digits) and be

done with it, but it’s useful when working with binary numbers.

In base 2, instead of subtracting from 9, you just flip the value of

each bit. This is something the computer can do very quickly. It

turns out that flipping the bits and adding 1 to the result is much

faster than finding the twos complement any other way.

Figure 13.26: Many cartoon characters
also have four digits. This is Felix the
Cat, one of the author’s favorites. He
first appeared in Feline Follies in 1919.
You can watch it at archive.org.
Image: Wikimedia Commons

https://archive.org/details/FelixTheCat-FelineFollies1919
https://commons.wikimedia.org/wiki/File:Felix_the_cat.svg

chapter 13. bitwise operators and binary numbers 443

13.8. Bitwise Logic
Way back in Chapter 3 we learned about the “and” and “or” (&& and

||) logical operators that we often use inside “if” statements. For

example, the statement:

Figure 13.27: The mathematics of logic
is called “Boolean Algebra” after its
inventor, George Boole, a 19th Century
British mathematician. Boole studied
how true and false assertions could be
chained together using “ands” and
“ors” to trace a mathematically rigorous
path leading to a specific conclusion.
His work was the foundation of
modern computer science.
Image: Wikimedia Commons

if (a<3 && b>4)

can be read as “if a is less than three and b is greater than four”,

whereas the statement:

if (c==1 || d<7)

means “if c equals one or d is less than seven”.

The && operator compares two expressions and tells us whether both

expressions are true. The || operator compares two expressions and

tells us whether at least one of them is true.

It turns out that C has a set of similar operators for comparing individ-

ual bits of binary numbers. These operators are & and |. (Note that,

unlike the logical operators we’ve used before, these new operators

aren’t doubled. Each is just a single character.) These operators treat

“1” as true and “0” as false.

Consider the example in Figure 13.29, which sets z equal to x&y. As

you can see, the & operator compares two numbers, bit by bit, looking

for places where the bits of both numbers are set to “1”. If both bits

are “1”, then the resulting bit is “1”, otherwise, it’s “0”.

Figure 13.28: The ampersand, &, once
had the distinction of being a member
of the alphabet, as seen in this page
from the 1863 “Dixie Primer, for the
Little Folks”. When reciting the
alphabet the “little folks” would end by
saying “X, Y, Z, and per se and”, the
slurring of which gave rise to the
character’s name. The character itself is
a combination of the letters Et, the Latin
word for “and”.
Image: Wikimedia Commons

We can summarize the behavior of the & operator with a truth table,

as in Figure 13.30. This shows the value that a bit of x&y will have

if the corresponding bits of x and y have the values given in the

shaded squares. A bit of x&y is only true (has a value of “1”) if the

corresponding bits of x and y are both true.

https://commons.wikimedia.org/wiki/File:Portrait_of_George_Boole.png
http://docsouth.unc.edu/imls/moore/moore.html
http://docsouth.unc.edu/imls/moore/moore.html
https://en.wikipedia.org/wiki/File:Alphabet_with_ampersand.jpg

444 practical computing for science and engineering

1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

0 1 0 0 1 0 0 1

x=

z=x&y

y=

& & & & & & & &

Figure 13.29: The result of a bitwise
“and” of two binary numbers is another
number that only has a 1 in the spots
where both of the original numbers had a
1.

0 0

0 1

0 1
x

0

1

y

&

Figure 13.30: Truth table for &, the
“bitwise and” operator. The result is
only true if both x and y are true.

The & operator is valuable because it can be used to find out whether a

particular bit of a given number has a value of 0 or 1. Let’s try it out

by examining the bits in the number 237. You can see this number’s

binary representation at the top of Figure 13.31.

Now let’s constuct another binary number. Recall that we can make a

binary number with a single 1 in any slot we choose by starting with

1 and shifting with the << operator. The middle line of Figure 13.31

shows a number that has a single 1 in slot number 3. The number is

1<<3. That’s equal to 8 in decimal notation, but all we really care about

is the fact that it’s all zeros except for a 1 in bit number 3. We might

call this number a “mask” because (as we’ll see) we’re going to use it

to hide all but one bit of the first number.

If we “bitwise and” these two numbers together, the result is what’s

shown in the bottom row of Figure 13.31. The 1 in this row is telling us

that bit number 3 is “on” in the number we’re testing (the top row).

We can use a other masks to test other bits. For example, Figure 13.32

shows how we could use 1<<4 as a mask to test bit number 4 of our

number. In this case, the bottom row shows all zeros, indicating that

bit number 4 is “off”.

chapter 13. bitwise operators and binary numbers 445

1 1 1 0 1 1 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

237=

237&(1<<3)=

1<<3=

& & & & & & & &

Figure 13.31: Testing bit 3 of the number
237. The result shows that this bit is
“on”.

1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

237=

237&(1<<4)=

1<<4=

& & & & & & & &

Figure 13.32: Testing bit 4 of the number
237. The result shows that this bit is
“off”.

446 practical computing for science and engineering

All of this leads us to the general rule that we can test bit number i of

a number, n, by checking the value of n&(1<<i). If this value is zero,

then the bit is “off”. If the value is non-zero, then the bit is “on”. We’ll

use this fact in the next section, when we start examining the inner

workings of variables.

Before we go on, though, let’s look at another useful bitwise logic

operator: the “bitwise or” operator, |. Figure 13.33 shows how this

operator works. If we have two values, x and y, and combine them

with the |operator to get a new value, z = x|y, the result has a 1 in

any slot where either x or y had a 1. The truth table for this operator

is shown in Figure 13.34.

1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

1 1 1 1 1 1 0 1

x=

z=x|y

y=

| | | | | | | |

Figure 13.33: The result of a bitwise “or”
of two binary numbers is another
number that has a 1 in the spots where
either of the original numbers had a 1.

0 1
1 1

0 1
x

0

1
y

|

Figure 13.34: Truth table for |, the
“bitwise or” operator. The result is true
wherever either x or y is true.

Another bitwise operator we should talk about is the “exclusive or”

(often called “xor”) operator, ^. Unlike the “or” operator, z = x^y

gives a 1 in any position where one and only one of the original numbers

has a 1. Figure 13.35 illustrates this. As you can see in the bottom

row, there’s a zero wherever both bits are “off”, but there are also zeros

whenever both bits are “on”. The truth table for the ^operator is shown

in Figure 13.36.

chapter 13. bitwise operators and binary numbers 447

1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

1 0 1 1 0 1 0 0

x=

z=x^y

y=

^ ^ ^ ^ ^ ^ ^ ^

Figure 13.35: The result of a bitwise
“exclusive or” of two binary numbers is
another number that has a 1 in the spots
where only one of the original numbers
had a 1.

0 1

1 0

0 1
x

0

1
y

^

Figure 13.36: Truth table for ^, the
“exclusive or” operator. The result is
true wherever only one of x or y is true.

Finally, to complete our toolkit of bitwise operators there’s the “bitwise

not”, ~. This operator changes every 0 to 1 and every 1 to 0. For

example, if x contains the bits 11101101, then ~x will be 00010010.

If you think of each 1 or 0 as “true” or “false”, then the “not” operator

changes each “true” into “not true”, and each “false” into “not false”.

The following table summarizes the bitwise logical operators we’ve

talked about in this section:

Operator Symbol Usage Description

Bitwise and & z = x&y Bits of z are 1 only where bits of both

x and y are 1.

Bitwise or | z = x|y Bits of z are 1 where bits of either x or

y are 1.

Bitwise xor

(“Exclusive or”)

^ z = x^y Bits of z are 1 where bits of either x or

y are 1, but not where both are 1.

Bitwise not ~ z = ~x Bits of z are the opposite of the corre-

sponding bits in x.

448 practical computing for science and engineering

13.9. Examining Bits

1 0 1 0 1 0
202122232425

= 1×32 + 1×8 + 1×2
= 42 (decimal)

(32) (16) (8) (4) (2) (1)

Figure 13.37: The number 42 expressed
in binary.

Now that we know about bit-shifting and the bitwise “and” opera-

tor we’re ready to write a program that examines individual bits in

the computer’s memory. Remember that we can check the value of

n&(1<<i) to find out whether bit number i of the number n is “on”

or “off”, as we saw in Section 13.8.

Program 13.4 puts the value 42 into a variable named n and then

examine’s the variable’s bits one by one.

Program 13.4: printbits.cpp

#include <stdio.h>

int main () {

unsigned int n = 42;

int i, on, nbits;

nbits = 8*sizeof(n);

for (i=nbits-1; i>=0; i--) {

on = n & (1<<i);

if (on != 0) {

printf ("1");

} else {

printf ("0");

}

}

printf ("\n");

}

sizeof gives bytes.

1 byte = 8 bits.

Start at highest bit

and work down.

If this value is zero,

the bit is “off”.

If we ran this program, it would print:

00000000000000000000000000101010

Is this really equal to 42 in decimal? Let’s take a look. We can ignore

the long line of zeros on the left-hand side, so we only need to look at

the right-most 6 bits. As you can see from Figure 13.37, this is indeed

the binary representation of the decimal number 42.

Figure 13.38: In Douglas Adams’
Hitchhiker’s Guide to the Galaxy books, 42

is the answer to the “ultimate question
of life, the universe and everything”.
Image: Wikimedia Commons

https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
https://commons.wikimedia.org/wiki/File:Douglas_adams_portrait_(cropped_2).jpg

chapter 13. bitwise operators and binary numbers 449

Exercise 63: Bit by Bit

Create, compile and run Program 13.4. It should print the

binary version of the decimal number 42. Try changing the

value of n in the program, recompiling it and running it

again. What happens if you set n to a power of 2 (like 2, 4,

8, 16, and so forth)? What happens if you set it to a value

that’s one less than a power of 2 (like 3, 7, 15, 31, ...)?

Try a few even numbers, paying attention to the right-most

digit of the output, and then try a few odd numbers doing

the same. Do you see a pattern?

If you’re tired of re-compiling the program, modify it so that

it asks you for the number instead of having the number

written into the program. Pay attention to the kind of format

specifier (placeholder) you use in your scanf statement.

Make sure it matches the type of the variable you’re reading

the number into.

Try giving the program the number 4294967295 (the biggest

number that an unsigned int can hold. What does the

output look like? What happens when you give it even

bigger numbers?

Figure 13.39: In the past, data was
sometimes saved on paper tapes like this.
Each line (vertical column in this picture)
represents a binary number. A large
punched-out hole represents a 1 and the
un-punched spaces are zeros. (Ignore the
line of small holes. That’s for moving the
tape.) The right-hand tape in this picture
is written using 7-bit ASCII characters.
The bottom-most position in each line is
a special “parity bit” wich isn’t part of
the character but is used for
error-checking. The other bits can be
read from bottom to top as a binary
number representing an ASCII character
(see the table in Figure 13.9). The visible
part of the right-hand tape says:
10.1 TYPE"DO YOU LOVE ME?"

Let’s hope the poor programmer wasn’t
disappointed.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:PaperTapes-5and8Hole.jpg

450 practical computing for science and engineering

13.10. Using xor for Encryption

Figure 13.40: Les Deux Soers (1889), by
Pierre-Auguste Renoir.
Image: Wikimedia Commons

You and your best friend want to exchange secret messages. Fortunately,

you know about the bitwise “exclusive or” (xor) operator, ^, and that’s

all you need for writing a simple encryption program.

Take a look at Program 13.5 (secretletter.cpp) below.

Program 13.5: secretletter.cpp

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

char letter;

char key;

if (argc != 2) {

fprintf (stderr, "Usage: %s key\n", argv[0]);

exit(1);

}

key = argv[1][0];

while (scanf("%c", &letter) != EOF) {

printf ("%c", letter^key);

}

}

Make sure user

has supplied a key.

The key is the first (and only)

letter of the first argument.

Combine each letter

with the key, using xor.

This program takes one command-line argument: a single letter that

forms the “key” for your encrypted message. Only someone who

knows the key will be able to unscramble the message.

The program works by taking each letter you type and “xor-ing” its bits

with the bits of the key. The resulting encrypted letter is then printed

out. The program will keep reading letters until it sees an “End of

File” signal, which you can give it by typing Ctrl-D. The encrypted

characters the program generates might not be viewable on your screen,

and some of them might even cause your display to misbehave in weird

ways. Because of this, it would be a good idea to redirect the program’s

output into a file, like this:

./secretletter b > secretstuff.dat

In this example I’ve used the letter “b” as my secret key, but you can

use any character you like. Just don’t tell anyone except your friend.

https://commons.wikimedia.org/wiki/File:Les_deux_soers.jpg

chapter 13. bitwise operators and binary numbers 451

Once you’ve made the encrypted file (secretstuff.dat in the exam-

ple above), you can e-mail it to your friend, secure in the knowledge

that nobody else will be able to read it.

Figure 13.41: Julia Child — author of
The Art of French Cooking and beloved
host of The French Chef — had an earlier
career as a spy. During World War II
she worked for the OSS, stationed in Sri
Lanka and China, where she passed
encrypted intelligence back to the US.
Image: Wikimedia Commons

But how will your friend decode the message? That’s where the xor

operation really comes in handy. It turns out that if you have three

binary numbers, plain, key, and encrypted, and you do this to

them:

encrypted = plain ^ key

then the following is also true:

plain = encrypted ^ key

so all your friend needs to do is run the encrypted message back

through the same program, using the same key. Once your friend

receives your message, he or she can decrypt it by typing:

cat secretstuff.dat | ./secretletter b

This is like what we did earlier to “decrypt” files created with Program

13.1 (rot13.cpp).

One obvious weakness of this program is that a Bad Guy could decrypt

our message by just trying all the possible letters we might have used

as our secret key. Even if we allow any letter (upper or lower case) or

number as the key, that’s still only 62 possibilities, and it wouldn’t take

that long to try them all.

We could improve our security by using a whole word as our key – a

password! Each time the program encrypts a character it could use the

next letter in the word, until it gets to the end and then starts over at

the beginning of the word. With that change, the number of possible

keys (still assuming only letters and numbers) becomes 62n, where n is

the maximum length of our password. For 8-letter passwords, that’s

628
= 218, 340, 105, 584, 896 possiblities! It would be very hard for a

Bad Guy to try all of these.

Program 13.6 shows how you might modify the secretletter.cpp

program to make it use a whole word as the key. Then necessary

changes are shown in bold. Notice that we use the strlen function

to find the length of the “key word” (or “password”), and we use the

modulo operator (%) and the number of characters read so far (nchars)

to keep cycling through the letters of the key word.

https://commons.wikimedia.org/wiki/File:Julia_Child_portrait_by_©Lynn_Gilbert,_1978.jpg

452 practical computing for science and engineering

Program 13.6: secretword.cpp

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main (int argc, char *argv[]) {

char letter;

char key;

int keynumber, keylength, nchars=0;

if (argc != 2) {

fprintf (stderr, "Usage: %s key\n", argv[0]);

exit(1);

}

keylength = strlen(argv[1]);

while (scanf("%c", &letter) != EOF) {

keynumber = nchars%keylength;

key = argv[1][keynumber];

printf ("%c", letter^key);

nchars++;

}

}

Figure 13.42: “Say the secret word and
win a hundred dollars!” Groucho Marx
was the host of a quiz show named You
Bet Your Life. At the beginning of the
show the audience was shown a secret
word. If a contestant used the word
during the quiz, a rubber duck holding
a $100 bill descended on a string.
Image: Wikimedia Commons

This program works just the same as the earlier version. Start typing

your message after entering a command like this:

./secretword groucho > secretstuff.dat

where “groucho” is whatever you choose to use as your password and

secretstuff.dat is the encrypted version of your message. Again,

type Ctrl-D when you’re finished typing the message. Your friend can

then decrypt the message by typing:

cat secretstuff.dat | ./secretword groucho

The simplicity of xor encryption comes with a price. Another relation

between the key, the plain message, and its encrypted version is this:

key = encrypted ^ plain

meaning that, if an enemy ever obtains both the encrypted and de-

crypted versions of one of your messages, they can find the key you’ve

used! Even with a multi-letter key, if bad guys ever get snippets of

https://commons.wikimedia.org/wiki/File:Groucho_Marx_-_portrait.jpg

chapter 13. bitwise operators and binary numbers 453

encrypted and unencrypted data that are longer than our key, they’ll

be able to calculate all the letters in the key. Because of this weakness,

the same password shouldn’t be used more than once when doing this

kind of encryption.

Figure 13.43: A Soviet poster: “In order
to have more, it is necessary to produce
more. In order to produce more, it is
necessary to know more.”
Image: Wikimedia Commons

In the days of the cold war, Soviet spies came to the US armed with

a pad full of encryption keys. Their associates back in the USSR had

identical pads. Whenever a spy needed to send back some information,

he’d use one of the keys to encrypt it, then throw away that key. When

his compatriot received the message, he’d decrypt it using the first key

on his pad, and then discard that key. This type of encryption key is

called a “one-time pad”.

Exercise 64: Spies Like Us

Create, compile, and run Program 13.6 (secretword.cpp).

Try encrypting a message, writing the encrypted output into

a file named “encrypted.dat”.

Look at encrypted.dat with nano. It should look like

nonsense.

Now try decrypting the message. Does the text displayed

on your screen match your original message? What happens

if you use the wrong password when attempting to decrypt

the message?

What happens if you only use the first part of the password

when decrypting the message? For example, if you used

“charlottesville” as the password when encrypting the mes-

sage, what happens if you use “charlotte” when decrypting

it? (Make sure your message is longer than the password.)

Note that you can use spaces in the password, but if you do

you’ll need to enclose it in quotes, like this:

./secretword "a long password" > encrypted.dat

and do the same when decrypting the message.

https://commons.wikimedia.org/wiki/File:Soviet_Poster_4.jpg

454 practical computing for science and engineering

13.11. long and long long Variables

Figure 13.44: Long, long hair! An
average human has about 100,000 scalp
hairs, a number that could easily be
stored in an int.
Image: Wikimedia Commons

There are almost 8 billion people on Earth. Imagine that you had to

give each person an ID number. You wouldn’t be able to store that

number in an int or even an unsigned int. They can only store

numbers up to about 2 and 4 billion, respectively.

What if we want to store an integer that’s bigger than the biggest thing

that will fit into an unsigned int? C offers some other variable types

that might accommodate your needs. Two of them are “long int”

and “long long int”.

The C standard doesn’t specify how many bits each of these types has.

It only requires that long int be at least as large as int, and that

long long int be at least as large as long int. In some cases, two

(or even all three) of these types of variables will have the same number

of bits. Typically, though, you’ll find that at long long int can hold

significantly larger numbers than int.

We can again use sizeof to find out how many bits each of these

types uses.

#include <stdio.h>

int main () {

int i;

long int ilong;

long long int ilonglong;

printf ("Size of i is %d bytes.\n", (int)sizeof(i));

printf ("Size of ilong is %d bytes.\n", (int)sizeof(ilong));

printf ("Size of ilonglong is %d bytes.\n", (int)sizeof(ilonglong));

}

If we ran this program on a typical computer, we might see something

like this:

Size of i is 4 bytes.

Size of ilong is 8 bytes.

Size of ilonglong is 8 bytes.

Since a byte is 8 bits, this means that an int has 4 × 8 = 32 bits, a

long int has 8 × 8 = 64 bits, and a long long int also has 64 bits.

If we stored the number 42 in an int variable on this computer, its bits

would look like this:

00000000000000000000000000101010

https://commons.wikimedia.org/wiki/File:Fille_aux_longs_cheveux.jpg

chapter 13. bitwise operators and binary numbers 455

but the same value stored in a long int would look like this:

00101010

Just as with plain int variables, there are signed and unsigned versions

of long and long long int variables: unsigned long int and

unsigned long long int.

Each of these types has an appropriate placeholder to use in printf

and scanf statements. The table below lists them.

Type Format Specifier

int %d

unsigned int %u

long int %ld

unsigned long int %lu

long long int %lld

unsigned long long int %llu

What’s the biggest number that will fit into each of these types of

integer? With the information from sizeof and what we now know

about how integers are stored we could figure it out, but there’s an

easier way. Your programs can use the file limits.h to find the

biggest or smallest numbers we can put into a given type of variable.

limits.h defines symbols like INT_MAX and INT_MIN, which tell

you the maximum and minimum valuse an int can hold. Here are

some useful values to look at:

Symbol Meaning

INT_MIN The smallest negative value that can be held in an int.

INT_MAX The largest positive value that can be held in an int.

LONG_MIN The smallest negative value that can be held in a long

int.

LONG_MAX The largest positive value that can be held in a long

int.

LLONG_MIN The smallest negative value that can be held in a long

long int.

LLONG_MAX The largest positive value that can be held in a long

long int.

UINT_MAX The largest value that can be held in an unsigned int.

ULONG_MAX The largest value that can be held in an unsigned long

int.

ULLONG_MAX The largest value that can be held in an unsigned long

long int.

456 practical computing for science and engineering

Notice that there are no symbols for the minimum values of the un-

signed types. For those, the minimum is always zero.

With all that in mind, we could write a little program to tell us the

limits on our various integer types. Program 13.7 does that.

Figure 13.45: Composer John Cage. The
longest piece of music I’m aware of is
John Cage’s Organ2/ASLSP (As Slow as
Possible), which is currently being
performed on an organ in Halberstadt,
Germany. The performance will end on
September 5, 2640, after 639 years! If we
created a timer that counted how many
seconds the performance has lasted, it
would only need to count to a little over
20 billion. This wouldn’t fit into an int,
but it would easily fit into a 64-bit long
long int.
Image: Wikimedia Commons

Program 13.7: printsizes.cpp

#include <stdio.h>

#include <limits.h>

int main () {

printf ("INT_MAX is %d\n", INT_MAX);

printf ("LONG_MAX is %ld\n", LONG_MAX);

printf ("LLONG_MAX is %lld\n", LLONG_MAX);

printf ("INT_MIN is %d\n", INT_MIN);

printf ("LONG_MIN is %ld\n", LONG_MIN);

printf ("LLONG_MIN is %lld\n", LLONG_MIN);

printf ("UINT_MAX is %u\n", UINT_MAX);

printf ("ULONG_MAX is %lu\n", ULONG_MAX);

printf ("ULLONG_MAX is %llu\n", ULLONG_MAX);

}

If we ran this program on a typical computer we might see something

like the following:

INT_MAX is 2147483647

LONG_MAX is 9223372036854775807

LLONG_MAX is 9223372036854775807

INT_MIN is -2147483648

LONG_MIN is -9223372036854775808

LLONG_MIN is -9223372036854775808

UINT_MAX is 4294967295

ULONG_MAX is 18446744073709551615

ULLONG_MAX is 18446744073709551615

This tells us that, on this computer, the biggest number we can store

in any of these integer types is 264
− 1, or 18, 446, 744, 073, 709, 551, 615

(about 1.8 × 1019, or 18 quintillion). This is the maximum value of an

unsigned long int or an unsigned long long int here.

Figure 13.46: Mathematicians at the
University of Hawaii have estimated
that there are about 7.5 quintillion
grains of sand on Earth.
Image: Wikimedia Commons

How big is 18 quintillion? That’s more than twice the estimated number

of grains of sand on earth! We could give each sand grain a serial

number if we wanted to.

https://en.wikipedia.org/wiki/As_Slow_as_Possible
https://en.wikipedia.org/wiki/As_Slow_as_Possible
https://commons.wikimedia.org/wiki/File:John_Milton_Cage_Jr.jpg
https://web.archive.org/web/20121219042143/www.hawaii.edu/suremath/jsand.html
https://web.archive.org/web/20121219042143/www.hawaii.edu/suremath/jsand.html
https://commons.wikimedia.org/wiki/File:A_beach_in_Maldives.jpg

chapter 13. bitwise operators and binary numbers 457

Figure 13.47: The two closet-sized boxes
in the foreground are IBM 350 disk
drives, introduced in 1956. Each drive
can hold a whopping 3.75 Megabytes of
data. That’s about the size of a single
photograph from a modern digital
camera.
Image: Wikimedia Commons

But what about. . . ?

Operating systems like Microsoft Windows and computer proces-

sors like those made by Intel often say they’re “64-bit” or “32-bit”.

What does that mean?

64-bit processors are CPUs that can read and process data in 64-bit

chunks. This effectively lets them do more work in less time than

a 32-bit processor. Most CPUs you’ll find in desktop and laptop

computers today are 64-bit devices.

A 64-bit operating system takes advantage of a 64-bit CPU’s abil-

ities. One key advantage of 64-bit operating systems is that they

can store the addresses of memory or disk locations in 64-bit-wide

variables. For example, a 32-bit operating system has trouble with

files larger than 2 Gigabytes or amounts of memory larger than 4

Gigabytes — the maximum numbers that can be stored in signed

and unsigned 32-bit integers. As we’ve seen above, the limits on

64-bit integers are astronomically higher, allowing 64-bit operating

systems to use much larger files and amounts of memory.

Data adapted from Wikimedia Commons

As you can see from the graph above, disks have continued to

grow rapidly in size over the last 40 years. Disks holding tens

of thousands of Gigabytes are now available. The move to 64-bit

operating systems was necessary to accommodate this growth.

https://commons.wikimedia.org/wiki/File:BRL61-IBM_305_RAMAC.jpeg
https://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.svg

458 practical computing for science and engineering

13.12. int Variables with Specific Widths

Figure 13.48: Two uintatheres pause for
a drink in this beautiful painting by
Charles R. Knight.
Image: Field Museum

As we noted above, the C standards don’t specify the exact number

of bits that an int, long, or long long variable should have. The

standards just say that each has at least as many bits as the preceding

type.

Sometimes, though, we want to have an integer variable with a specific

number of bits. For example, if we wanted our program to read binary

data in 4-byte chunks, it would be nice to have a 4-byte-long variable to

store each chunk.

The header file stdint.h defines some new types that we can use in

situations like this:

Type Size Format for printf Format for scanf

uint8_t 8 bits (1 byte) PRIu8 SCNu8

uint16_t 16 bits (2 bytes) PRIu16 SCNu16

uint32_t 32 bits (4 bytes) PRIu32 SCNu32

uint64_t 64 bits (8 bytes) PRIu64 SCNu64

These variable types each hold unsigned integers. There are corre-

sponding signed types with names like int8_t, but you’ll probably

find that the unsigned types are more useful.

There are new placeholders (“format specifiers”) for each of the new

types, and that these placeholders look different from the ones we’ve

used before. In order to use them, you’ll first need to include inttypes.h7. 7 Some older C compilers will complain
about these formats unless you also
add this arcane line at the top of your
program:
#define __STDC_FORMAT_MACROS

Notice that there are different placeholders for printf and scanf.

These placeholders are used a little differently, too. Take a look at the

following example, which reads a number into a uint8_t variable and

then prints the value back out:

Program 13.8: uintathere.cpp

#include <stdio.h>

#include <stdint.h>

#include <inttypes.h>

int main () {

uint8_t n;

printf ("Enter a number: ");

scanf("%"SCNu8, &n);

printf ("You entered %"PRIu8"\n", n);

}

https://www.fieldmuseum.org/blog/photo-archives-charles-knight-paintings-gallery
https://www.fieldmuseum.org/field-museum-natural-history-conditions-and-suggested-norms-use-collections-data-and-images

chapter 13. bitwise operators and binary numbers 459

Instead of saying something like "%d", where the placeholder is inside

the quotes, these new placeholders need to go outside the quotes. Notice,

for example, how the template we give printf in the program above

has three sections: a beginning quoted section, followed by PRIu8,

then finally another quoted section. Whenever you want to use one of

these new-fangled placeholders, you need to exclude it from the quotes

like this, but leave the % inside!

Here’s another example, where we’re printing two uint8_t variables:

printf ("The numbers are %"PRIu8" and %"PRIu8"\n", n, m);

Why all these complications? It’s because these types were added to

the C standards long after the original types like int. The new types

add new functionality without breaking anything that’s already there.

This required a little fancy footwork.

13.13. The Size of Literal Numbers
When a program does a calculation like “n = 2*5-3” it stores the

numbers 2 and 5 somewhere in the computer’s memory, then multi-

plies 2*5 and stores the result somewhere, then adds 3 to the result.

What amount of memory does the program reserve for these numbers

and intermediate results while it’s working?

Figure 13.49: The scientist and author
Carl Sagan was famous for talking
about the “billions and billons” of stars
out there. The phrase was used so often
that an informal unit called the “sagan”
has been defined. It’s equal to at least 2

billion plus 2 billion (“billions and
billions”), or 4 billion.
Image: Wikimedia Commons

In general, the program will look at each number and try to find an

appropriately-sized type of storage to put it in. For example, the current

version of g++ will first try to treat the number as an int. If it won’t fit

into the number of bits allocated for an int, it will move up to a long

int or a long long int. The numbers 2, 5, and 3 in the example

above would all fit into an int, which has 32 bits (4 bytes) on most

computers. If we looked at the computer’s memory while the program

was running, we’d see something like this:

00000000.00000000.00000000.00000010

00000000.00000000.00000000.00000101

00000000.00000000.00000000.00000011

representing (from top to bottom) 2, 5, and 3. (I’ve inserted dots in the

numbers above to separate them into byte-sized chunks for clarity.)

If we used the number “8000000000” (8 billion) in our program, it

might be stored in memory like this:

00000000.00000000.00000000.00000001.11011100.11010110.01010000.00000000

since that number is too large to fit into only 32 bits.

https://commons.wikimedia.org/wiki/File:Carl_Sagan_Planetary_Society.JPG

460 practical computing for science and engineering

You can use the sizeof statement to find out exactly how many bytes

a program will use to store a given number. For example, this program:

#include <stdio.h>

int main () {

printf ("%d bytes\n", (int)sizeof(2));

printf ("%d bytes\n", (int)sizeof(2000000000)); // 2 billion.

printf ("%d bytes\n", (int)sizeof(4000000000)); // 4 billion.

printf ("%d bytes\n", (int)sizeof(8000000000)); // 8 billion.

}

might print:

4 bytes

4 bytes

8 bytes

8 bytes

That’s all interesting, but do we need to worry about it? Yes, it turns

out that we do sometimes. Imagine what would happen if we had a

statement like:

n = 2000000000*4+7;

which starts by multiplying 2 billion (a number that will fit in 4 bytes)

by 4.

When the computer sees an expression like 2000000000*4 it guesses

how much space to allocate for the result by looking at the sizes of the

numbers being multiplied. Since each of the numbers in this example

would fit into 4 bytes, the computer allocates 4 bytes for the result. But,

as we’ve seen above, the result here (8 billion) won’t fit into 4 bytes.

Most modern compilers are smart enough to anticipate this problem,

and they’ll give you a warning message like:

warning: integer overflow in expression

n = 2000000000*4+7;

^

But the compiler can only catch the most obvious variations on this

problem. Imagine what would happen in a slightly more complicated

situation:

chapter 13. bitwise operators and binary numbers 461

Program 13.9: literal.cpp

#include <stdio.h>

int main () {

int x;

long int n;

printf ("Enter multiplier: ");

scanf ("%d", &x);

n = 2000000000*x+7;

printf ("%ld\n", n);

}

Here, instead of multiplying by 4, we ask the user to enter a multiplier

when we run the program. The compiler can’t know in advance what

the user will type, so the compiler would give you no warning or error

messages, but if you ran the program and entered 4 as the multiplier,

bad things could happen.

The variable n is a long int, which is large enough8 to hold the 8 See Section 13.11 above. Note that
the details will vary, depending what
operating system and compiler you
use, but the principles are the same
everywhere.

expected result of our calculation (8,000,000,007), but the program

might incorrectly tell us that the answer is -589,934,585!

What’s happening in this case? Let’s follow the process step by step:

1. The program multiples 2,000,000,000,000 × 4, which should equal 8

billion. If we had 8 bytes (64 bits) to store the number, it would look

like this:

00000000.00000000.00000000.00000001.11011100.11010110.01010000.00000000

2. Since the computer has only allocated 4 bytes, the left-most 1 gets

chopped off:

00000000.00000000.00000000.00000001. 11011100.11010110.01010000.00000000

Chop this off

leaving us with:

11011100.11010110.01010000.00000000

This isn’t equal to 8 billion now. Interpreted as an int, it’s equal to

-589,934,592.

3. We now add 7 to this, to get -589,934,585, which is exactly what the

program told us.

462 practical computing for science and engineering

How could we have avoided this problem? It turns out that you can tell

the compiler how much space to reserve for a number. In the example

above, we could fix the problem by adding one letter:

n = 2000000000L*x+7;

The L after the number tells the compiler that we want to reserve as

many bits as a long int variable9. With that change, the program 9 We could have used either an upper-
or lower-case L. I’ve used an upper-case
letter here to avoid mistaking it for the
number 1.

would correctly tell us that the answer is 8,000,000,007.

We can use other suffixes on numbers to select other types. The table

below shows some of the possibilities:

Type Suffix

long int L

long long int LL

unsigned int U

unsigned long int UL

unsigned long long int ULL

If you want to use the specific-width types like uint32_t, defined in

stdint.h10, the syntax is a little different. For those types, you can 10 See Section 13.12.

use a statement like:

n = UINT64_C(2000000000)*x+7;

which tells the compiler that you specifically want to reserve 64 bits for

storing the first number. Some other similar options are listed in the

table below:

Type Syntax

uint8_t UINT8_C()

uint32_t UINT32_C()

uint64_t UINT64_C()

As you can see, numbers inside a computer aren’t as simple as the

numbers we use in math class. The complications arise because the

computer has a limited amount of space to store each number. You

should think about this whenever you’re working near the limit of the

largest numbers your variables can contain.

chapter 13. bitwise operators and binary numbers 463

13.14. Hexadecimal Numbers
When we write a number like 1729 we assume that it’s expressed in

base 10 (decimal) notation. In the preceding sections we’ve seen that

it’s also possible to write numbers in base 2 (binary) notation. There

are a couple of other useful notations that you should be aware of. One

of them is “hexadecimal” (or “hex”), which uses 16 as its base.

Figure 13.50: Srinivasa Ramanujan
(1887-1920) was a brilliant Indian
mathematician. While visiting
Ramanujan, the English mathematician
G.H. Hardy remarked that the number
on a taxicab, 1729, was rather
uninteresting. Ramanujan replied that
this number was, in fact, very
interesting, being the smallest number
that’s the sum of two cubes in two
different ways:13

+ 123 and 93
+ 103.

Since then, 1729 has been known as
“Ramanujan’s taxicab number”.
Image: Wikimedia Commons

We know that in base 10 we have ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and

9) and in base 2 we have two digits (0 and 1). Apparently we’ll need

sixteen digits for base 16! Since we only have ten number symbols on

our keyboards, what symbols do we use for the extra six digits? The

convention is to use the letters ’A’ through ’F’. The table in Figure 13.51

shows some decimal numbers with their hex equivalents. It also shows

the binary version of each number.

As you can see, this is how we’d count to sixteen in hexadecimal:

1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10. In hex, the number “10” is equal to

1 × 16 + 0 × 1:

0 0 1 0
160161162163

(4,096) (256) (16) (1)

Decimal Hex Binary

0 0 0000 0000

1 1 0000 0001

2 2 0000 0010

3 3 0000 0011

4 4 0000 0100

5 5 0000 0101

6 6 0000 0110

7 7 0000 0111

8 8 0000 1000

9 9 0000 1001

10 A 0000 1010

11 B 0000 1011

12 C 0000 1100

13 D 0000 1101

14 E 0000 1110

15 F 0000 1111

16 10 0001 0000

17 11 0001 0001

18 12 0001 0010

31 1F 0001 1111

32 20 0010 0000

63 3F 0011 1111

64 40 0100 0000

100 64 0110 0100

128 80 1000 0000

255 FF 1111 1111

Figure 13.51: Some decimal numbers
with their hexadecimal and binary
(8-bit) equivalents. A space splits each
binary number into two 4-bit “nybbles”.

Hexadecimal numbers are useful whenever you can divide a set of bits

into 4-bit groups. Notice that in table in Figure 13.51 we’ve split the

binary version of each number into two 4-bit chunks. You might recall

that 4 bits (half a byte) is called a “nybble”. The minimum number that

can be stored in 4 bits is, of course, zero, and the maximum number is

15. That gives 16 possible values that we can represent with 4 bits, just

like the 16 possible digits of hexadecimal numbers.

Since there are two nybbles in each byte, that means that the value

stored in a byte can be represented by two hexadecimal digits. That

value can be anything from 00 through FF, which corresponds to a

https://commons.wikimedia.org/wiki/File:Srinivasa_Ramanujan_-_OPC_-_2.jpg

464 practical computing for science and engineering

range of decimal values from zero to 255.

Let’s look at the binary representation of the number 1729:

00000000.00000000.00000110.11000001

We could use spaces to break this into 4-bit nybbles:

0000 0000 0000 0000 0000 0110 1100 0001

Converting each nybble into its hex equivalent, we’d get:

0 0 0 0 0 6 C 1

0 6 C1
160161162163

= 6×256 + 12×16 + 1×1
= 1729 (decimal)

(4,096) (256) (16) (1)

These eight hex digits (000006C1) represent the same value as the 32

bits of the number’s binary representation. Since hex notation is much

more compact than binary, and since it’s easy to convert between binary

and hex, we often use hexadecimal numbers in computing.

Hex numbers are used so often in computing that the C language has

some built-in facilities for dealing with them. For example, we can write

hex numbers directly into our program without needing to convert

them into decimal. If we wanted to give a variable the value FF in hex

(which is 255 in decimal), we could say:

n = 0xFF;

When we start a number with “0x”, the compiler assumes that the

number is written in hexadecimal notation. This might take a little

getting used to, since it looks like you’re writing “zero times FF”, but

you’ll get the hang of it. The zero at the beginning tells the compiler that

this is a number, and not a variable name (since variable names can’t

start with digits), and the x means that the number is in heXadecimal.

(Note that it doesn’t matter whether you use an upper-case or lower-

case x, but programmers usually stick to lower-case.)

Figure 13.52: Symbols like these, often
found on the sides of Pennsylvania
barns, are called “Hex signs”.
Image: Wikimedia Commons

We can also read and write numbers in hex notation. The placeholder

“%x” means “read or write this number as hex”. For example, these

statements:

n = 1729;

printf ("In hex the number is %x.\n", n);

would print:

In hex the number is 6c1.

https://commons.wikimedia.org/wiki/File:IntegrityBarnstar.png

chapter 13. bitwise operators and binary numbers 465

Notice that this printed a lower-case “c”. If we wanted to print upper-

case letters, we could have used “%X” instead, to get 6C1. If we wanted

to print a 0x at the beginning of the number, as we would if we used

the number in a program, we could use “%#x”, like this:

printf ("In hex the number is %#x.\n", n);

which would print “In hex the number is 0x6c1.” As before,

using an upper-case X would cause the printed letters to be upper-case.

When using “%x” with scanf, case doesn’t matter. For example, these

statements:

printf ("Enter number: ");

scanf("%x",&n);

would accept a number written as 6c1 or 6C1. It would also be OK if

you entered 0x6c1 or 0x6C1. As always, scanf tries to be forgiving.

If you’ve ever created web pages, you’ve probably already encountered

hex numbers. In that context, these numbers are often used to specify

colors. For example, if you see “#FFA500” that means 100% red, about

65% green, and no blue, which would mix together on your screen to

give you a nice orange color. (The color #0006C1” is a nice dark blue.)

#FFA500
Figure 13.53: The three pairs of hex
digits in this kind of color specification
tell the computer how much red, green,
and blue to mix together. Each pair of
digits is a number between 00 and FF.Color specifications like these consist of three pairs of hex digits, telling

the computer how much red, green, and blue to use. Each pair of digits

represents one 8-bit byte. The number stored in this byte says how

much of that color to use, on a scale from 00 (none of it) to FF (all of

it). Altogether, the color specification takes up 3 bytes of storage, or 24

bits. You’ll often see this referred to as “24-bit color”. This many bits

can store any of 224
= 16, 777, 216 different values, so that’s how many

colors it’s possible to specify this way.

Let’s try writing a little program that uses hex numbers to play with

color. Program 13.10 loops through some of the values for R, G, and

B and prints the resulting hexadecimal color identifier. Since (as we

noted above) there are over 16 million possible R,G,B combinations, the

program won’t print them all. Instead, it uses only eight out of the

possible 256 values for R, G, or B. That means the program will print

8 × 8 × 8 = 512 different colors.

The program has three nested loops. Each loop gives one of the primary

colors (R, G, or B) values between 00 and FF in steps of 32. That gives

eight values for each of the primary colors (since 256/32 = 8).

466 practical computing for science and engineering

Program 13.10: colorcube.cpp

#include <stdio.h>

int main () {

int r,g,b;

int step=32;

for (r=0; r<=0xFF; r+=step) {

for (g=0; g<=0xFF; g+=step) {

for (b=0; b<=0xFF; b+=step) {

printf ("%d %d %d ", r,g,b);

printf ("0x");

printf ("%02x", r);

printf ("%02x", g);

printf ("%02x", b);

printf ("\n");

}

}

}

}

Figure 13.54: Hexe means “witch” in
German. Here’s W.W. Denslow’s
illustration of the Wicked Witch of the
West, from L. Frank Baum’s The
Wonderful Wizard of Oz.
Image: Wikimedia Commons

The program’s output has four columns, with each line looking some-

thing like this:

16 176 48 0x10b030

The first three numbers are the R, G, and B values expressed as decimal

numbers between 0 and 255. The fourth colum is a single hexadecimal

number corresponding to these RGB values.

Note that we’ve written the number in the format C uses for hex

numbers, by starting it with “0x”. This makes it easy to use the output

with other programs that understand this way of writing hex numbers.

After the 0x we write the R, G, and B values as hex numbers. Since

we want each of these numbers to have two digits, we can’t just use %x

as the placeholder. We want to force printf to print two digits, even

if the left-hand one is zero. We can make this happen by adding “02”

between % and x. The 2 tells printf to always leave room for 2 digits,

and the 0 says to put a zero on the left if there would otherwise not be

a digit there11. 11 See Appendix E for other printf
tricks.

https://commons.wikimedia.org/wiki/File:Wicked_Witch_of_the_West.png

chapter 13. bitwise operators and binary numbers 467

Exercise 65: Color Cube

Create and compile Program 13.10. Run the program and

redirect its output into a file, like this:

./colorcube > colorcube.dat

We can use gnuplot to visualize the output of our program.

We’ll use gnuplot’s splot command to plot points in 3-

dimensional space, where the x, y, and z coordinates of each

point are the R, G, and B values from our program. The

fourth column will determine each point’s color. Fortunately,

gnuplot also uses a leading 0x to identify hex numbers, just

as C does.

Start up gnuplot and give it the following commands:

set hidden3d

set xyplane 0

set view equal xyz

splot "colorcube.dat" using 1:2:3:4 pt 7 ps 6 lc rgb variable

The result should look something like the left-hand figure

below:

Try grabbing the cube with your mouse and rotating it

around!

How does this gnuplot magic work? The first three com-

mands have the following effects:

• set hidden3d causes gnuplot to “hide” objects that are

“behind” others in 3-d plots like this. Without this setting,

the stacking of objects depends on the order in which

468 practical computing for science and engineering

gnuplot draws them, which might not have anything to

do with which object is “closer” to the viewer.

• set xyplane 0 causes gnuplot to set the cube on the x-y

plane. Without this, splot will leave some space below

the cube.

• set view equal xyz causes all of the axes to have

equal scales. This makes the plot a cube, rather than a

shoebox.

While still in gnuplot, try turning each of these options off,

one at a time, by using unset instead of set, and then

typing replot after unsetting each one. This will show you

the effect of each setting.

The last gnuplot command (splot...) says that we want

to use columns 1, 2, 3, and 4 of the file. The “lc rgb

variable” at the end of the line tells gnuplot that the color

of each point will be specified in RGB format and will be

given by the last column of our data file. The “pt 7” and

“ps 6” control the point type and point size. These choices

cause the points to be plotted as large circles.

Figure 13.55: A “hex” can also be a curse.
Here’s a Roman curse written on a lead
tablet. The writing says, in part, “I curse
Tretia Maria and her life and mind and
memory and liver and lungs mixed up
together. . . ” Yow! The tablet is in the
British Museum.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Curse_tablet_BM_1934.11-5.1.jpg

