
C. Getting Example Data Sets

C.1. Star Data (HYG Database)
David Nash, amateur astronomer, has assembled a database of nearby

stars that combines data from three sources:

• The Hipparcos satellite’s massive survey of millions of stars

• The Yale Bright Star Catalog, containing data for about 10,000 stars

• The Gliese Catalog of Nearby Stars, containing about 4,000 stars.

Nash combined the nearby stars in these databases to form the HYG

database (for “Hipparcos, Yale, Gliese”).

Figure C.1: The Hipparcos satellite
before launch.
Source: Wikimedia Commons

For one of the exercises in Chapter 5 you’ll need to download the HYG

database and create a new, smaller, database from it. The resulting

file will be called stars.dat and it’s used in Exercise 31. Here’s how

to get the database and create stars.dat from it. The process will

involve a couple of mysterious commands that I won’t explain, but feel

free to do some research on your own to find out what they do. The

steps to create stars.dat are:

1. Fetch the HYG database. There are two tools that let you do this

easily. Use whichever tool is installed on the computer you’re using.

The first tool is wget. The wget command lets you download files

from a web site without needing to use a web browser. Here’s how

to use wget to download the HYG database;

wget https://raw.github.com/astronexus/HYG-Database/master/hygdata_v3.csv

If the computer you’re using doesn’t have wget, it probably has a

similar tool named curl. Here’s the curl command for download-

ing the database:

curl -L -O https://raw.github.com/astronexus/HYG-Database/master/hygdata_v3.csv

http://astronexus.com/node/10
https://en.wikipedia.org/wiki/Hipparcos
https://en.wikipedia.org/wiki/Bright_Star_Catalogue
https://en.wikipedia.org/wiki/Gliese_Catalogue_of_Nearby_Stars
https://github.com/astronexus/HYG-Database
https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec.jpg

542 practical computing for science and engineering

2. Extract the part of the data that we’ll be using in Exercise 31. Note

that this is one big, long command without any line breaks. Every

character in it is important, so type carefully. (If you can cut-and-

paste the command, it’s a good idea to do so.)

cat hygdata_v3.csv | grep -v -E 'Sol|^id' | awk -F, '{print $18,$19,$20}' > stars.dat

What does this command do? First, it uses the grep command to

exclude two rows of data: a row of column headers, and the row

for our Sun (which is included in the data just like other local stars).

Second, it uses the awk command to select only three columns: just

the columns that hold the x, y, and z coordinates of each star.

That’s it! You now have the stars.dat database, and you’re ready for

Exercise 31.

You might want to play around with other data in the HYG database.

If so, you can find a description of the data it contains here:

https://github.com/astronexus/HYG-Database

C.2. Normally-Distributed Data
Chapter 7 uses the file energy.dat for several exercises. This file

contains simulated energy measurements from a scintillation counter.

The energy values are “normally” distributed, meaning that when

we make a histogram of the values it has the shape of a Normal

distribution.

You can generate energy.dat by compiling Program C.1 and running

it like this:

./mkenergy > energy.dat

Figure C.2: Carl Friedrich Gauss, who
studied the Normal distribution
extensively.
Source: Wikimedia Commons

Program C.1 uses a technique called the Box-Muller Transform to

generate normally-distributed numbers. It defines a function named

normal that takes two arguments (the mean of the distribution and

its standard deviation) and returns a single pseudo-random number.

(You’ll understand how to create C functions after reading Chapter

9.) The program’s main function just uses normal to generate 100,000

numbers. By changing the mean and standard deviation, you can

change the distribution of the numbers. Try it, it’s fun!

https://github.com/astronexus/HYG-Database
https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg
https://en.wikipedia.org/wiki/Box–Muller_transform

chapter c. getting example data sets 543

Figure C.3: Statistician George E.P. Box,
one of the inventors of the Box-Muller
transform.
Source: Wikimedia Commons

Program C.1: mkenergy.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

double normal(double mean, double sigma) {

// Use Box-Mueller Tranform to generate

// normally-distributed numbers.

const double epsilon = 1e-9;

const double two_pi = 2.0*M_PI;

static double z0, z1;

static int generate=1;

static int initialized=0;

double u1, u2;

if (!initialized) {

srand(time(NULL));

initialized = 1;

}

if (!generate) {

generate = 1;

return z1 * sigma + mean;

} else {

do

{

u1 = rand() * (1.0 / RAND_MAX);

u2 = rand() * (1.0 / RAND_MAX);

}

while (u1 <= epsilon);

z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2);

z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2);

generate = 0;

return z0 * sigma + mean;

}

}

int main () {

int i;

for (i=0; i<100000; i++) {

printf ("%lf\n",normal(35.0,2.5));

}

}

https://commons.wikimedia.org/wiki/File:GeorgeEPBox.jpg

544 practical computing for science and engineering

C.3. Census Data (American Community

Survey)

Figure C.4: A U.S. census worker
transcribing data onto punched cards
during the 1950s.
Source: Wikimedia Commons

In addition to the decennial census mandated by the U.S. constitution,

the Census Bureau conducts many other surveys. One of these is the

ongoing American Community Survey (ACS), which gathers data about

how Americans live in their communities. Data from the ACS help

local governments decide how to spend their money.

ACS data can be downloaded from the Census Bureau’s web site. In

order to protect the identities of the citizens who respond to the survey,

only an anonymized sample of the data (called a “Public Use Microdata

Sample” or “PUMS”) is provided. These data sets are available here:

https://www.census.gov/programs-surveys/acs/data/pums.html

Exercise 40 on page 234 uses a data file named census.dat derived

from the ACS data collected during the years 2011 through 2013. Here’s

how to make it:

1. First, as in Section C.1 above, you’ll need to fetch some data from

a web site. If your computer has the wget command, you can do it

this way:

wget http://www2.census.gov/acs2013_3yr/pums/csv_hus.zip

otherwise, you can use the curl command like this:

curl -L -O http://www2.census.gov/acs2013_3yr/pums/csv_hus.zip

2. The file you downloaded is named csv_hus.zip. This file has

several data sets packed inside it, so the next step is to unpack them.

You can do this by using the following command:

unzip csv_hus.zip

This will extract five files:

ss13husa.csv

ss13husb.csv

ss13husc.csv

ss13husd.csv

ACS2011-2013_PUMS_README.pdf

The last file contains documentation describing the data, and the

other files contain the actual data, broken into four parts.

If you looked inside one of the csv files you unpacked, you’d see that

each line of the files was just a list of values separated by commas.

https://commons.wikimedia.org/wiki/File:Early_US_Census_Machines_1950_08010.jpg
https://www.census.gov/programs-surveys/acs/about.html
https://www.census.gov/programs-surveys/acs/data/pums.html

chapter c. getting example data sets 545

The “csv” in the file name stands for “comma-separated values”.

The data is organized in rows and columns. Each row represents

a single household, and each column is a particular kind of data

about that household (number of children or household income, for

example). The top row is a comma-separated list of abbreviations

telling us what each column represents.

3. To produce our census.dat file we’re going to extract just a few of

these columns. We could do this using awk and grep, as we did in

Section C.1, but this is a book about C programming, so let’s use a C

program to do it this time.

The program datafilter.cpp (Program C.2) contains a lot of stuff

that you haven’t seen before unless you’ve already finished reading

this book. Much of it will become clear after you reach Chapter 8,

and most of the rest after you read Chapter 9. The only parts that we

won’t cover in this book are the malloc and free functions. You’ll

have to learn about those in a different book, or do some research

on your own.

For now, just save this program as datafilter.cpp and compile

it by typing “g++ -Wall -o datafilter datafilter.cpp”.

4. The datafilter program needs a configuration file to tell it what

to do. Using nano, create a file called census.conf containing the

following lines:

,

-1

NRC

ACR

BDSP

FINCP

FULP

GASP

GRNTP

Notice that the first line is just a comma on a line by itself. This tells

datafilter that the columns in our data file will be separated by

commas. The second line of the file tells datafilter that it should

replace any missing data values with “-1”. The rest of the lines are

a list of columns that datafilter should select. These are the names

that appear in the top row of each csv file.

546 practical computing for science and engineering

Program C.2: datafilter.cpp

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
int main(int argc, char *argv[])
{

const int maxcolumns = 100;
const int maxlength = 4096;
char *output[maxcolumns];
char *wanted[maxcolumns];
int wantedfield[maxcolumns];
int nwanted;
char line[maxlength];
char *position;
char delimiter[maxlength];
char blankvalue[maxlength];
char *word;
int i, field;
FILE *input;
FILE *setup;

// Check syntax:
if (argc > 3) {

fprintf (stderr, "Syntax: %s datafile configfile\n", argv[0]);
exit (1);

}

// Open data file:
if (!strcmp(argv[1], "-")) {

fprintf (stderr, "Reading data from stdin.\n");
input = stdin;

} else {
if ((input = fopen (argv[1], "r"))) {

fprintf (stderr, "Reading data from %s.\n", argv[1]);
} else {

fprintf (stderr, "Error opening \"%s\": %s\n", argv[1], strerror(errno));
exit(1);

}
}

// Open configuration file:
if ((setup = fopen (argv[2], "r"))) {

fprintf (stderr, "Reading setup from %s.\n", argv[2]);
} else {

fprintf (stderr, "Error opening \"%s\": %s\n", argv[2], strerror(errno));
exit(1);

}

// Read delimiter:
fgets(delimiter, 10, setup);
delimiter[strcspn(delimiter, "\r\n")] = 0;

// Read blank value:
fgets(blankvalue, maxlength, setup);
blankvalue[strcspn(blankvalue, "\r\n")] = 0;

// Read fields:
nwanted = 0;

chapter c. getting example data sets 547

for (i=0; i<maxcolumns; i++) {
if (!fgets (line, maxlength, setup)) { // Break at EOF.

break;
}
line[strcspn(line, "\r\n")] = 0;
wanted[i] = (char *)malloc(strlen(line) + 1);
snprintf(wanted[i], strlen(line) + 1, "%s", line);
nwanted++;

}

// Close configuration file:
fclose (setup);

// Read header:
fgets(line, maxlength, input);
line[strcspn(line, "\r\n")] = 0;
position = line;
field = 0;
while (position != NULL) {

word = strsep(&position, delimiter);
for (i=0; i<nwanted; i++) {

if (!strcmp(word, wanted[i])) {
wantedfield[i] = field;

}
}
field++;

}

// Read data:
while (fgets(line, maxlength, input)) {

line[strcspn(line, "\r\n")] = 0;
position = line;
field = 0;
while (position != NULL) {

word = strsep(&position, delimiter);
for (i=0; i<nwanted; i++) {

if (field == wantedfield[i]) {
output[i] = (char *)malloc(strlen(word) + 1);
if (strlen(word)) {

snprintf(output[i], strlen(word) + 1, word);
} else {

snprintf(output[i], strlen(blankvalue) + 1, blankvalue);
}

}
}
field++;

}
for (i=0; i<nwanted; i++) {

printf ("%s ", output[i]);
free (output[i]);

}
printf ("\n");

}

if (input != stdin) {
fclose (input);

}
}

548 practical computing for science and engineering

5. Now we’re ready to create census.dat. Type the following com-

mands to do it:

./datafilter ss13husa.csv census.conf > census.dat

./datafilter ss13husb.csv census.conf >> census.dat

./datafilter ss13husc.csv census.conf >> census.dat

./datafilter ss13husd.csv census.conf >> census.dat

Each of these lines processes one of the csv data files and appends

the columns extracted from it onto the end of the file census.dat.

Seven columns are extracted from the original data. These columns

are1: 1 Notice that we’ve numbered them like
the elements of a C array, starting with
zero instead of one.

0 NRC Number of related children in household

1 ACR Lot size, in acres

2 BDSP Number of bedrooms

3 FINCP Family income

4 FULP Annual fuel cost

5 GASP Monthly gas cost

6 GRNTP Monthly rent

If you’d like to do further research with this data you can find a

complete description of each of the columns in the csv files here:

http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2011-2013.txt

http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2011-2013.txt

