
D. Some Notes About gnuplot

D.1. What is gnuplot?
gnuplot is a general-purpose plotting/graphing program that is quite

flexible and surprisingly powerful. It can graph 2- and 3-d functions

defined by the user. gnuplot also has a wide array of built-in functions,

covering trigonometry, as you might expect, but also extending to

bessel functions, the gamma function, the error function (erf) and many

others.

gnuplot can also plot 2- and 3-d data. Data can be read in either ascii

or binary format. Since gnuplot allows you to specify the layout of the

data file, it can accommodate many different file formats.

gnuplot is cross-platform (Linux, Windows and OS X), and it’s free and

open-source.

gnuplot is command-line driven. This means that you can write scripts

and re-use them later, and it makes it possible to easily tell other people

what you’ve done. The program also has very good built-in help. Just

type ´́ help´́ at the gnuplot command prompt, and you can browse

through documentation for every feature.

gnuplot has been around for many years and is widely used, so there

are many gnuplot experts on the Web, offering useful advice. You’ll

find many gnuplot demos on the Web. Here’s a trio of particularly

informative sites:

• http://gnuplot.sourceforge.net/demo/

• http://www.gnuplotting.org/

• http://www.gnuplot.info/screenshots/

http://gnuplot.sourceforge.net/demo/
http://www.gnuplotting.org/
http://www.gnuplot.info/screenshots/

550 practical computing for science and engineering

D.2. Plotting functions:
Plotting 2-d functions in gnuplot is quite intuitive for most people. In

the example below, we’re plotting a parabola. (In gnuplot ** means

´́ exponentiate´́ .)

plot x**2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

By default, gnuplot displays 2-d functions with lines and 3-d functions

with a mesh surface. The next few examples show how we can control

the style with which functions are displayed. (See Figure D.1.)

Plotting a symbol at each point:

plot x**2 with points

Explicitly connecting the points with lines (this is the default):

plot x**2 with lines

Displaying a symbol at each point, AND connecting the points with

lines:

plot x**2 with linespoints

Displaying an ´́ impulse´́ (a narrow vertical line) for each point:

plot x**2 with impulses

chapter d. some notes about gnuplot 551

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

Figure D.1: Top row, left to right: plot
with points and lines. Bottom row,
left to right: plot with linespoints

and impulses.

552 practical computing for science and engineering

Displaying a box for each point (like a histogram). (Note that gnuplot

doesn’t have much of a built-in ability to generate histograms from

data, but I’ll show you later how you can fool it into making passable

histograms without too much trouble.)

plot x**2 with boxes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-10 -5 0 5 10

x**2

Figure D.2: A plot using the boxes
style.

Here’s our first look at a 3-d function. Note that, if you display this in

gnuplot, you can grab the graph and move it around in three dimensions,

to display it from different angles.

splot x**2+y**2

-10
-5

 0
 5

 10-10
-5

 0
 5

 10
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

x**2+y**2

Figure D.3: A function of two variables,
plotted using splot (for “Surface Plot”).

When gnuplot plots a function, it generates a set of points within a

range of X values (or X and Y values, for 3-d functions), then displays

those points. Later, we’ll see how to control the number of points. By

default, gnuplot selects X, Y (and Z, if applicable) ranges based on some

internal algorithms that generally do a pretty good job of showing the

function’s interesting features. We can also explicitly tell gnuplot what

these ranges should be, as we’ll see later.

D.3. Defining Functions:
As I mentioned, gnuplot has many built-in functions. Here’s a plot of

the sine of x:

plot sin(x)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure D.4: The built-in function
sin(x).

chapter d. some notes about gnuplot 553

You can also define your own functions, perhaps using some of gnuplots

functions as building-blocks:

f(x) = sin(x)*exp(x/(2.0*pi))

plot f(x)

-3

-2

-1

 0

 1

 2

 3

 4

-10 -5 0 5 10

f(x)

Figure D.5: A plot of sin(x)e
x

2π .

Note that gnuplot predefines ´́ pi´́ for us. You can define your own

variables, too. In the following example, we define a function of x. The

function uses a parameter ´́ s´́ , which we can set to whatever value we

want:

s = 10.0;

f(x) = exp(-x**2/(2*s**2))

plot f(x)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-10 -5 0 5 10

f(x)

Figure D.6: A gaussian curve with
s=10.

Now we can change the value of s, and plot the function again:

s = 1.0

plot f(x)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

f(x)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

f(x)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

f(x,2.5)

Figure D.7: Top to bottom: Gaussian
curves with s = 1, 2, and 2.5.

Note that gnuplot lets you repeat the last graphing operation by just

typing ´́ replot´́ :

s = 2.0

replot #<-- note

And also note, above, that you can insert comments anywhere on the

gnuplot command line by preceding them with a ´́ #´́ . This will be useful

when you start writing scripts for gnuplot.

We can see the current value of a variable by using the ´́ print´́ com-

mand, and we can erase a variable completely by using the ´́ undefine´́

command:

print s

undefine s

Here’s another way we could have defined the function f(x) above. Here

we pass the parameter explicitly as one of the function’s arguments:

f(x,s) = exp(-x**2/(2*s**2))

plot f(x,2.5)

554 practical computing for science and engineering

Now we can easily plot a family of curves with different values of this

parameter. In gnuplot, you can plot many different things with a single

plot command. The things you want to plot are separated by commas.

By default, gnuplot will try to automatically set the displayed ranges so

that everything fits on the graph.

plot f(x,2.5), f(x,1.0), f(x,5.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

f(x,2.5)
f(x,1.0)
f(x,5.0)

Here’s another way of displaying functions. The ´́ filledcurves´́ style

takes several parameters. In this example, we give it the parameter

´́ y1=0´́ , which says to fill the area between the curve and y=0. (We use

´́ y1´́ because gnuplot allows several different y axes – one at left and

one at right, for example. ´́ y1´́ is the first y axis.)

plot besj0(x) with filledcurves y1=0, besj1(x) with filledcurves y1=0

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

besj0(x)
besj1(x)

Figure D.8: Bessel functions plotted with
filled curves.

D.4. Setting Ranges:
Until now we’ve let gnuplot decide what ranges of X and Y values to

display. Here’s how we can tell gnuplot to display an explicit range:

set xrange [-20:20]

replot

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

besj0(x)
besj1(x)

Once set, this range is used for all subsequent plots. We can also set a

one-time range right along with the ´́ plot´́ command:

chapter d. some notes about gnuplot 555

plot [-30:30] f(x,1.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-30 -20 -10 0 10 20 30

f(x,1.0)

A range set as in the example above will ony affect the current plot.

Just as with the X range, we can of course set the Y range (and the Z

range, when appropriate):

set yrange [0:2]

replot

 0

 0.5

 1

 1.5

 2

-30 -20 -10 0 10 20 30

f(x,1.0)

You can view the current ranges by typing ´́ show xrange´́ or ´́ show

yrange´́ or ´́ show zrange´́ . You can reset the a range to auto-scaling by

giving the range the value ´́ [*:*]´́ :

set xrange [*:*]

set yrange [*:*]

D.5. Multiple Plots:
gnuplot lets you display multiple plots on a single page. To do this, use

the ´́ set multiplot´́ command. Here are some examples:

set multiplot layout 1,2

plot f(x,1)

plot f(x,5)

unset multiplot 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20-15-10-5 0 5 10 15 20

f(x,1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20-15-10-5 0 5 10 15 20

f(x,5)

Figure D.9: layout 1,2 creates two
side-by-side plots.Choosing layout 1,2 creates two side-by-side regions for plotting. If

we choose layout 2,1 we get two regions, one on top of the other.

set multiplot layout 2,1

plot f(x,1)

plot f(x,5)

unset multiplot

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -15 -10 -5 0 5 10 15 20

f(x,1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -15 -10 -5 0 5 10 15 20

f(x,5)

Figure D.10: layout 2,1 creates two
vertically-stacked plots.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20-15-10-5 0 5 10 15 20

f(x,1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20-15-10-5 0 5 10 15 20

f(x,5)

-20-15-10-5 0 5 10 15 20 0 0.5 1
 1.5 2

 0 50 100 150 200 250 300 350 400 450 x**2+y**2

-20-15-10-5 0 5 10 15 20 0 0.5 1
 1.5 2

-8000-6000-4000-2000 0 2000 4000 6000 8000 10000 x**3+y**3

Figure D.11: A 2 × 2 grid of four plots.

As you might have guessed, the two numbers after layout just tell

gnuplot how many horizontal and vertical regions the display should

be divided into. If we want to display four plots in a 2 × 2 grid, we can

do this:

set multiplot layout 2,2

plot f(x,1)

plot f(x,5)

splot x**2+y**2

splot x**3+y**3

unset multiplot

556 practical computing for science and engineering

D.6. Keys, Titles, and Labels:
You may have noticed that gnuplot places a ´́ key´́ in the upper right-

hand corner of each plot, identifying the information that’s being

plotted. You may sometimes want to turn this off. gnuplot provides a

mechanism for this:

unset key

replot

-20 -15 -10 -5 0 5 10 15 20 0
 0.5

 1
 1.5

 2
-8000
-6000
-4000
-2000

 0
 2000
 4000
 6000
 8000

 10000

-20 -15 -10 -5 0 5 10 15 20 0
 0.5

 1
 1.5

 2
-8000
-6000
-4000
-2000

 0
 2000
 4000
 6000
 8000

 10000

x**3+y**3

Figure D.12: Plots with (bottom) and
without (top) a “key”.

To turn it back on, you can use the following:

set key

replot

You can control the labels on the key by using the ´́ title´́ option of the

plot command. For example:

plot f(x,2) title "sigma=2",f(x,3) title "sigma=3"

We can also set a global title for the graph, as follows:

set title "some examples"

Axes can be labeled by using ´́ set xlabel´́ or ´́ set ylabel´́ :

set xlabel "This is the x axis"

set ylabel "This is the y axis"

replot

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5 0 5 10 15 20

T
h

is
 i
s
 t

h
e

 y
 a

x
is

This is the x axis

some examples

sigma=2
sigma=3

Figure D.13: A plot showing key titles, a
global title, xlabel, and ylabel.

chapter d. some notes about gnuplot 557

D.7. Linear and Logarithmic Scales:
Until now, we’ve only looked at linear scales. You might sometimes

want logarithmic scales, instead. The following command makes the Y

axis logarithmic:

set log y

replot

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

-20 -15 -10 -5 0 5 10 15 20

sigma=2
sigma=3

You can use ´́ unset log y´́ to go back to a linear scale. You can also set

log/linear scales on the X and Z axes.

unset log y

Grids are often useful for reading data off of graphs. Use the ´́ set grid´́

command to turn on a coarse-grained grid on your graph:

set grid

replot

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5 0 5 10 15 20

sigma=2
sigma=3

With logarithmic scales, these coarse-grained grid lines will often be

unsatisfactory:

set log y

replot

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

-20 -15 -10 -5 0 5 10 15 20

sigma=2
sigma=3

In this case, we may want to turn on ´́ minor´́ grid lines to. To do this

we use some of the available qualifiers for the ´́ set grid´́ command.

´́ ytics´́ here refers to the major tic marks on the Y axis. ´́ mytics´́ refers

to the minor tick marks. The command below tells gnuplot to make

grid lines for both major and minor tic marks.

set grid ytics mytics

replot

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

-20 -15 -10 -5 0 5 10 15 20

sigma=2
sigma=3

You can see that gnuplot doesn’t always choose reasonable ranges for

the axes, especially when the axis is logarithmic. We can make this look

better by explicitly setting the lower end of the range:

set yrange [.001:*]

replot

 0.001

 0.01

 0.1

 1

-20 -15 -10 -5 0 5 10 15 20

sigma=2
sigma=3

558 practical computing for science and engineering

D.8. Three-Dimensional Plots:
Now let’s look at some more 3-d plots. Let’s start by defining a function

3-d version of the f(x) we were using above:

f(x,y,s) = exp(-(x**2+y**2)/(2*s**2))

set xrange [-10:10]

set yrange [-10:10]

splot f(x,y,1)

-10
-5

 0
 5

 10-10
-5

 0
 5

 10
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

f(x,y,1)

-10
-5

 0
 5

 10-10
-5

 0
 5

 10
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

f(x,y,1)

Figure D.14: 3-d plots showing the effect
of samples and isosamples.The output is shown on the left-hand side of Figure D.14. The graph

looks confusing because gnuplot didn’t evaluate the function at very

many points, and didn’t draw many lines in the mesh that indicates

the location of the surface.

We can get a better plot by telling gnuplot explicitly how many points

to use when sampling the function, and how many lines to draw across

the surface. The first of these is controlled by gnuplot’s ´́ samples´́

setting, and the second by the ´́ isosamples´́ setting. As you can see

this makes the graph much better, as shown in the right-hand side of

Figure D.14.

set samples 100

set isosamples 100

replot

But why is the zero of the Z axis lifted up like that? This is so gnuplot

can display a contour map underneath, as we’ll see later. For now, if

we don’t like the Z offset we can eliminate it:

set xyplane 0

replot

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

f(x,y,1)

Figure D.15: The effect of setting
xyplane to zero.

chapter d. some notes about gnuplot 559

gnuplot provides other ways of displaying 3-d data. One of these is

called ´́ pm3d´́ . This style colorizes the surface based on the Z-value at

each point. Here’s an example:

splot f(x,y,1) with pm3d

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

f(x,y,1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Sometimes we just want the colorization, without the 3-d look. For this,

gnuplot provides the ´́ map´́ view. This displays the data in the X-Y

plane, with colors providing information about the Z values. Here’s an

example of that:

set view map

replot

f(x,y,1)

-10 -5 0 5 10

-10

-5

 0

 5

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

560 practical computing for science and engineering

D.9. Color Palettes:
The graphs above use a default palette of colors, but we can define our

own palette if we want to. Using the ´́ set palette´́ command, we can tie

certain colors to certain Z values. gnuplot will interpolate between the

colors we specify and generate a color for each Z value on the graph.

We can specify as many Z values as we want to in the ´́ set palette´́

command. In the example below, I specify the color for 0 and for 1,

and let gnuplot figure out the rest. We could specify the colors at other

locations by just adding more comma-separated pairs to our list:

set palette defined (0 "green", 1 "red")

replot

f(x,y,1)

-10 -5 0 5 10

-10

-5

 0

 5

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure D.16: A green-to-red palette.

You can reset the palette to the default values by just typing ´́ set

palette´́ by itself:

set palette #<-- reset

replot

If we wanted to display a grid on a plot like this, we’d need to be

careful about the color of the grid lines. By default, these lines are

black, and wouldn’t show up. We can specify the line color at the ´́ set

grid´́ line, though. Here’s an example where I set the grid line color to

white. Notice that I also use the ´́ front´́ qualifier, to make sure the grid

lines are displayed in front of the data. That’s important in this case,

because grid lines are normally displayed behind the data, and would

be obscured by the solid colors of our dataset.

set grid front xtics ytics lc rgb '#ffffff'

replot

f(x,y,1)

-10 -5 0 5 10

-10

-5

 0

 5

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure D.17: Overlaying a grid.

Here are some examples of other built-in color palettes:

set palette gray

replot

f(x,y,1)

-10 -5 0 5 10

-10

-5

 0

 5

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure D.18: A grayscale palette.

set palette color negative

replot

f(x,y,1)

-10 -5 0 5 10

-10

-5

 0

 5

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure D.19: An inverted-color palette.

chapter d. some notes about gnuplot 561

D.10. Setting the Viewing Angle:
As we noted before, when gnuplot is showing us a 3-d plot it allows

us to grab the plot and turn it around to view it from different angles.

We can also control the viewing angles from the command line, using

commands like the following. (These are actually the default values.

Unfortunately, gnuplot doesn’t provide us with a way to just ´́ set view

default´́ . We have to explicitly enter the values.)

set view 60, 30, 1, 1 #<-- rot_x, rot_z, scale, scale_z

splot f(x,y,1)

f(x,y,1)

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure D.20: A 3-d graph, rotated to
specific angles using set view.

D.11. Discontinuous Functions:
What if we want to plot a function that has a discontinuity? Say, a

step-function? gnuplot makes it easy to do that, too. The following

example shows one way to do it, using the ´́ ternary operator´́ (?:). If

you’re familiar with C or Perl, you probably already know how this

operator works. The syntax is ´́ test ? true : false´́ . If ´́ test´́ is true, then

the ´́ true´́ section is used. Otherwise, the ´́ false´́ section is used. It’s

like a compact if/else statement.

In this example, we say that the function l(x) has the value 100 if x is

greater than 0, or a value of 0 otherwise.

set yrange [-1:110]

l(x) = x>0 ? 100 : 0

plot l(x)

l(x)

 0

 20

 40

 60

 80

 100

-10 -5 0 5 10

What if we wanted to define a ´́ square pulse´́ , i.e., a function that only

has a non-zero value between x=x1 and x=x2? We could do that by first

defining a gneralized step function:

l(x,x0,a) = x<x0 ? 0 : a

In the function above, x0 is the x value at which the function changes

value, and a is the value it has when it’s non-zero. Now we can

construct a square pulse by taking the difference of two instances of

this function with different x0 values:

m(x) = l(x,1,10) - l(x,2,10)

set yrange [-1:11]

plot m(x)

m(x)

 0

 2

 4

 6

 8

 10

-10 -5 0 5 10

(Notice that the ´́ vertical´́ lines aren’t exactly vertical. That’s because

562 practical computing for science and engineering

gnuplot is just connecting a discrete set of data points it has generated

along the function. We could improve the plot by using ´́ set samples´́

to increase the number of data points.)

I think it’s clear that we can construct any arbitrarily complex disjoint

function by using similar mechanisms.

D.12. Hiding Regions:
Sometimes we want gnuplot to just display nothing in certain regions.

Perhaps the function is undefined there, or maybe we just want to

emphasize a certain region. Here’s a trick to make that happen. Can

you figure out how it works?

(Also notice that the example below uses ´́ filledcurves x1´́ to cause

some areas to be filled between the curve and the bottom of the graph.)

Other piecewise functions, using sqrt(-1) to make function disappear:

set samples 1000

set yrange [0:0.5]

f(x) = exp(-x*x/2)/sqrt(2*pi)

g(x) = x>=1 ? f(x) : sqrt(-1)

h(x) = x<=1 && x>=0 ? f(x) : sqrt(-1)

plot g(x) with filledcurves x1,h(x) with filledcurves x1, f(x) with lines

g(x)
h(x)
f(x)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -5 0 5 10

chapter d. some notes about gnuplot 563

D.13. Plotting Data:
OK, so we’ve seen how gnuplot works for plotting functions. How

about plotting data points? We can use the same tools we’ve seen

above for controlling the look of the graph, no matter whether we’re

plotting functions or data. We can also still use the ´́ plot´́ and ´́ splot´́

commands.

Here’s a simple example showing how to use gnuplot to plot data from

a text file. The file contains three columns of numbers, separated by

white space. In this example, the colums are, in order, X, Y and the

error in Y.

plot "gaussian-data.dat"

"gaussian-data.dat"

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

The command above just reads the the first two columns and plots the

data as X and Y values, placing a symbol at each point.

Note that the file name must always be enclosed in quotes.

We can tell gnuplot to make use of the ´́ error´́ column by adding ´́ with

errorbars´́ :

plot "gaussian-data.dat" with errorbars

gnuplot will assume that the third column in the file contains the error

values, unless we tell it otherwise.

564 practical computing for science and engineering

We can also explicitly tell gnuplot which columns to use for X, Y, error

values, and so forth. In the following example, we tell gnuplot to plot

data from a text file, and use column 2 as the X value and column 3 as

the Y value:

plot "h_200.dat" using 2:3

When plotting error bars, we can also specify a third column containing

those:

plot "h_200.dat" using 2:3:4 with errorbars

"h_200.dat" using 2:3:4

 0

 5

 10

 15

 20

 25

 70 80 90 100 110 120 130

Figure D.21: Plotting selected columns
with error bars.

We can also plot 3-dimensional data. Here’s another plot, showing

stopping positions of charged particles in a chunk of matter. The file

contains three columns, representing the X, Y and Z components of the

stopping position.

plot "stopping-positions.dat"

"stopping-positions.dat"

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

This is equivalent to ´́ using 1:2´́ .

For displaying all three dimensions we can use the same data file with

gnuplot’s splot command. The default order of the columns is X, Y, Z,

but we can reorder them if we want. Here’s a 3-d plot of the same data,

using column 3 as X, column 2 as Y and column 1 as Z:

splot "stopping-positions.dat" using 3:2:1

chapter d. some notes about gnuplot 565

"stopping-positions.dat" using 3:2:1

-10 -8 -6 -4 -2 0 2 4 6 8 10-8
-6-4-2 0 2 4 6 8 10

 8.4
 8.6
 8.8

 9
 9.2
 9.4
 9.6
 9.8
 10

"stopping-positions.dat" using 3:2:1

-10 -8 -6 -4 -2 0 2 4 6 8 10-8
-6-4-2 0 2 4 6 8 10

 8.4
 8.6
 8.8

 9
 9.2
 9.4
 9.6
 9.8
 10

 8.4
 8.6
 8.8
 9
 9.2
 9.4
 9.6
 9.8
 10

"stopping-positions.dat" using 3:2:1:3

-10 -8 -6 -4 -2 0 2 4 6 8 10-8
-6-4-2 0 2 4 6 8 10

 8.4
 8.6
 8.8

 9
 9.2
 9.4
 9.6
 9.8
 10

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8
 10

Figure D.22: Colorizing by Z-value (top)
or a specified column (bottom).

We can also tell gnuplot to colorize the points, using the option ´́ with

points palette´́ . (See Figure D.22.) By default, points are colorized

based on the value of Z.

splot "stopping-positions.dat" using 3:2:1 with points palette

If we want to, we can specify another column to use for colorizing the

points:

splot "stopping-positions.dat" using 3:2:1:3 with points palette

If we have data that we want to display in the style of a histogram (see

Figure D.23), we might use the option ´́ with boxes´́ :

plot "energy.dat" using 1:3 with boxes

"energy.dat" using 1:3

 0

 5000

 10000

 15000

 20000

 25000

-10 0 10 20 30 40 50 60 70

Figure D.23: Data displayed with boxes,
in the style of a histogram.

566 practical computing for science and engineering

Here’s another data set from these stopped particles. This one contains

two-dimensional histogram data, binned by X and Z, with the histogram

height being the amount of energy deposited in each X,Z bin. In this

case, let’s use the ´́ pm3d´́ style to colorize the graph based on the

energy value:

splot "xzde.dat" with pm3d

"xzde.dat"

 0 2 4 6 8 10 12 14 16-6
-4

-2
 0

 2
 4

 6

 0

 100

 200

 300

 400

 500

 600

 0
 100
 200
 300
 400
 500
 600

We can tell gnuplot to also display a color map on the bottom of the

graph. To make this visible, we’ll need to lift the surface up a little. The

additional ´́ at bs´́ tells the pm3d style to colorize both the surface (´́ s´́)

and the bottom (´́ b´́).

set xyplane 1

splot "xzde.dat" with pm3d at bs

"xzde.dat"

 0 2 4 6 8 10 12 14 16-6
-4

-2
 0

 2
 4

 6

 0
 100
 200
 300
 400
 500
 600

 0
 100
 200
 300
 400
 500
 600

Figure D.24: Projecting the data into a
color map on a plane beneath the
surface.

We could place the color map at the top, instead, by saying ´́ at st´́ , for

´́ surface´́ and ´́ top´́ . Note that the order matters, since it controls the

order in which the two maps will be drawn, and one map may obscure

the other if we do them in the wrong order (try it and see).

splot "xzde.dat" with pm3d at st

"xzde.dat"

 0 2 4 6 8 10 12 14 16-6
-4

-2
 0

 2
 4

 6

 0
 100
 200
 300
 400
 500
 600

 0
 100
 200
 300
 400
 500
 600

Figure D.25: Projecting the data into a
color map on a plane above the surface.

When plotting colorized graphs, we can control whether or not we

display the color key by typing ´́ unset colorbox´́ or ´́ set colorbox´́ :

unset colorbox

replot

"xzde.dat"

 0 2 4 6 8 10 12 14 16-6
-4

-2
 0

 2
 4

 6

 0
 100
 200
 300
 400
 500
 600

Figure D.26: The effect of unset
colorbox.

In the following example, we ask gnuplot to create a color map on the

bottom surface, and also to plot a wire-mesh (the default) surface above

this:

chapter d. some notes about gnuplot 567

splot "xzde.dat" with pm3d at b, "xzde.dat" with lines
"xzde.dat"
"xzde.dat"

 0 2 4 6 8 10 12 14 16-6
-4

-2
 0

 2
 4

 6

 0
 100
 200
 300
 400
 500
 600

 0
 100
 200
 300
 400
 500
 600

Figure D.27: A color map on the
bottom, and a wire mesh on top.

Sometimes we may just want to see the colormap. As we saw above,

we can get this by typing ´́ set view map´́ . The graph below is colorized

according to how much energy was deposited at each location. We can

see the particles coming in from the left, depositing more and more of

their energy as they slow down and stop.

set view map

splot "xzde.dat" with pm3d "xzde.dat"

 0 2 4 6 8 10 12 14 16

-6

-4

-2

 0

 2

 4

 6

 0

 100

 200

 300

 400

 500

 600

Figure D.28: The effect of set view

map.

I mentioned above that gnuplot doesn’t know about histograms, and

can’t automatically bin data for you. It’s pretty straightforward to

construct a simple histogram using gnuplot’s functions, though. Here’s

an example, using the X value of the particle stopping position data.

In the following, I define a function, ´́ bin(x)´́ , which just returns the

X value of the center of the bin into which a given data point would

fall. We then make use of an ability of gnuplot’s to plot the sum of all Y

values with the same X value.

As X values, we plot bin(x), and for each value we give gnuplot a fixed

Y value of 1. We mean by this, ´́ 1 particle stopped inside the bin on

the X axis´́ . We then tell gnuplot to use ´́ smooth freq´́ , which is a style

that causes gnuplot to sum all of the Y values at a given X value, and

display the result. We’ve created a histogram! (We’ll talk more about

the syntax of this ´́ using´́ statement later.)

"stopping-positions.dat" using (bin($1)):(1)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 84 86 88 90 92 94 96 98 100

Figure D.29: A sneaky histogram.

Here’s what it looks like:

A sneaky way to make histograms:

See also:

http://www.inference.phy.cam.ac.uk/teaching/comput/C++/examples/gnuplot/#four

binsize = 0.1

bin(x) = int(x/binsize + 0.5)

plot "stopping-positions.dat" using (bin($1)):(1) smooth freq with boxes

568 practical computing for science and engineering

D.14. Binary Data Files:
Up until now, we’ve read data from ASCII files. gnuplot can also read

binary files. We just need to tell gnuplot that the file is binary, and

what kind of numbers are in it. For example, the following command

reads a binary file containing floating-point data (type double in C

and gnuplot parlance). The file was created by a C program, which

wrote the numbers in binary format into the file. Below, we tell gnuplot

that the file contains a stream of ´́ doubles´́ . If the file were a different

format (say, alternating double and int), we could tell gnuplot how

to deal with it (say, format = "%double%int"). Type ´́ help plot

binary general´́ in gnuplot for more information.

binary data

plot "data.dat" binary format="%double"

D.15. Mathematical Combinations of Data:
As we saw in the histogramming example above, gnuplot lets us plot

functions of data columns. We specify what to plot with the ´́ using´́

qualifier. If we’re just plotting the unadorned contents of the column,

we just give the column’s number. But, if we want something more

complicated, we can supply a more complicated expression. These more

complicated expressions need to be enclosed in parentheses. Within

these parentheses we can use whatever arithmetic expressions and

functions we want, referring to data by column number. In this context,

the column numbers must be preceded by ´́ $´́ , to distingush them from

actual numbers that we might be using in the expressions.

Here’s a pair of examples (see Figure D.30):

plot "stopping-positions.dat" using 1:($2/100)

plot "stopping-positions.dat" using (sqrt($1**2+$2**2+$3**2))

"stopping-positions.dat" using 1:($2/100)

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

"stopping-positions.dat" using (sqrt($1**2+$2**2+$3**2))

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure D.30: Plots produced by the
“using” expressions in the two
examples at left.

Sometimes we want to use ´́ line number´́ as one of the things we plot.

For example, imagine we have a file containing many measurements

of position and time. Each line of the file just has two values, x and

t. If the lines in the file are in the same order in which we did the

measurements, we could think of the line number as a third value: the

´́ measurement number´́ . We can use the line number in our plots by

referring to (column(0)) or, equivalently, ($0). For example, to plot

position versus line number:

plot "mydata.dat" using ($0):1

chapter d. some notes about gnuplot 569

D.16. Multiple Data Sets in One File:
A data file may contain more than one data set. In the example below,

we plot data from a file called ´́ bessel2.dat´́ which contains five data

sets. Each data set is two columns containing x and jn(x), where jn

is the nth order Bessel function. The first data set is j0(x), the second

is j1(x) and so on. The data sets are just concatenated together, with

blank lines separating them.

Multple data sets in one file, with blank lines:

set xrange [0:20]

set yrange [*:*]

plot "bessel2.dat" with lines

"bessel2.dat"

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20D.17. Inset Graphs:
Sometimes we want to have a smaller graph inset into a larger one.

Here’s a long example that illustrates how to accomplish that in gnu-

plot. Within the ´́ multiplot´́ environment, we can specify the size and

location of each plot explicitly. In the example below, we create a large

graph by specifying ´́ origin 0.0,0.0´́ and ´́ size 1.0,1.0´́ . Multiplot’s co-

ordinate system (by default) begins at 0,0 in the lower left corner of the

screen and goes to 1,1 at the upper right. We then set the origin and

size of a second plot so as to place it in the upper right corner of the

first graph.

i(x) = 0.5*(1+erf(x/sqrt(2)))

unset key

unset label

unset xlabel

unset ylabel

unset title

set multiplot

set origin 0.0,0.0

set size 1.0,1.0

set yrange [0.001:]

set xrange [0:3]

set log y

set xtics

set ytics

set grid xtics ytics mxtics mytics

570 practical computing for science and engineering

plot 1-i(x), 0.5-(1-i(x))

set origin 0.7,0.7

set size 0.3,0.3

f(x) = exp(-x*x/2)/sqrt(2*pi)

g(x) = x>=1?f(x):sqrt(-1)

h(x) = x>=1&&x>=0?f(x):sqrt(-1)

set xrange [-3:3]

unset log y

unset grid

unset xtics

unset ytics

plot g(x) with filledcurves x1,h(x) with filledcurves x1, f(x) with lines

unset multiplot

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3

D.18. Writing Output Files:
When you start gnuplot and begin graphing, gnuplot chooses one of

several ways of displaying the data, depending on the abilities of

your computer’s display. Each way of displaying the data is called a

´́ terminal type´́ or ´́ term´́ in gnuplot. If you’re using gnuplot under

Linux, you’ll probably be using the x11 or the wxt term. You’ll see a

message when you start gnuplot that says something like ´́ Terminal

type set to ’wxt’´́ . Both of these terminal types are used for displaying

chapter d. some notes about gnuplot 571

graphs on your computer’s screen. You can see what the current

terminal is by typing ´́ show term´́ .

There are other terminal types that are intended for creating graphics

files. For example, you can use the ´́ png´́ terminal to create png files,

or the ´́ postscript´́ terminal to creat postscript files.

In the example below, we change the terminal type to ´́ postscript´́ using

the command ´́ set term postscript enhanced color´́ . The ´́ enhanced

color´́ part specifies some options available in the postscript terminal

type. If we tried plotting a graph at this point, we’d see postscript

commands printed on our screen. We don’t want that! The next

thing we need to do is to tell gnuplot where to write these postscript

commands. We do this by using the ´́ set output´́ command. Note that

the name of the output file must be enclosed in quotes. Anything we

subsequently plot will be written into this file as postscript data.

set term postscript enhanced color

set output "gnuplot/images/file.eps"

plot "energy.dat" using 1:3 with boxes

We can similarly send output into a png file:

set term png

set output "gnuplot/images/file.png"

replot

Many terminal types allow you to use special symbols (e.g., Greek

letters) in titles and labels. Unfortunately, the way to do this varies

greatly from one terminal type to another. For example, to produce a

lower-case Greek sigma with the postscript driver, you could insert the

string {/Symbol s} in your title. For the png terminal, you’d need to

insert a unicode symbol by typing an appropriate sequence of keys on

your keyboard. For one of the Latex terminal types, you’d need to use

Latex-style equations. A useful cheat-sheet for this kind of thing can be

found at http://mathewpeet.org/lists/symbols/.

D.19. Fitting functions to data:
gnuplot also allows us to fit model functions to data sets by searching

through parameter-space to find a set of parameters that minimize the

chi-squared value obtained by comparing the given model to the data

set.

http://mathewpeet.org/lists/symbols/

572 practical computing for science and engineering

For example, consider the following data set, which contains some data

that appears to be distributed in something like a Gaussian distribution.

set xrange [*:*]

set yrange [*:*]

plot 'h_200.dat' using 2:3:4 with errorbars

 0

 5

 10

 15

 20

 25

 70 80 90 100 110 120 130

We can define a function that represents a generalized Gaussian distri-

bution, characterized by three parameters: s (the standard deviation),

m (the mean) and a (an amplitude). We define such a function, g(x),

below. gnuplot is capable of adjusting the values of a, m and s in order

to find the best fit to a given data set. gnuplot isn’t particularly good

at guessing good initial values for these parameters, so we should set

them by hand to some approximate values before asking gnuplot to

adjust them. In the example below, we just read approximate values

from the graph, without too much care.

 0

 5

 10

 15

 20

 25

 70 80 90 100 110 120 130

Figure D.31: Data plotted along with a
best-fit curve.

Then, we use gnuplot’s fit command to adjust the parameters a,m and

s to find a minimum chi-squared.

g(x) = a*exp(-(x-m)**2/2/s**2) # Gaussian

a=25

m=100

s=15

fit g(x) 'h_200.dat' using 2:3:4 via a,m,s

The output of the fit command will look something like this:

After 5 iterations the fit converged.

final sum of squares of residuals : 11.2835

rel. change during last iteration : -4.51108e-07

degrees of freedom (FIT_NDF) : 22

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.716162

variance of residuals (reduced chisquare) = WSSR/ndf : 0.512888

Final set of parameters Asymptotic Standard Error

======================= ==========================

a = 16.3064 +/- 1.084 (6.645%)

m = 99.7578 +/- 0.5116 (0.5128%)

s = 9.36694 +/- 0.4236 (4.522%)

We can then ask gnuplot to draw the best-fit function (using the newly-

obtained parameter values), along with the data (see Figure D.31):

plot 'h_200.dat' using 2:3:4 with errorbars, g(x)

chapter d. some notes about gnuplot 573

D.20. Using text as axis labels:
It’s sometimes useful to be able to use text as axis labels. For example,

you might have a file like this:

Joe 1.00

Bob 2.45

Mary 3.14

Jane 0.76

You could plot these values with the names as labels by typing the

following in gnuplot:

plot "file.dat" using 2:xticlabels(1) with boxes

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Joe Bob Mary Jane

"file.dat" using 2:xticlabels(1)

Figure D.32: Using a text column to
label an axis.

If the labels are so long that they bump into each other, you can rotate

them by issuing the command:

set xtics rotate by -90

If you do this, you may also need to reduce the height of the graph to

leave vertical room for the labels. This can be done with a command

like:

set size ratio 0.7

D.21. Using dates and times in data sets:
Finally, gnuplot is capable of reading date and time data in data files,

and plotting them appropriately. For detailed information, type ´́ help

set xdata´́ and ´́ help set timefmt´́ inside gnuplot. One quick example is

shown below. In it, we tell gnuplot that the X values will be times, and

that their format in the data file will be abbreviated month names (like

´́ Jan´́ , ´́ Feb´́ , etc.) Then we tell gnuplot to mark the X axis with labels

in the same format. After that, we only need to tell gnuplot to plot the

data in the file.

set xdata time # Tell gnuplot that the X values will be times.

set timefmt "%b" # Tell gnuplot what format to expect in the data file.

See man strftime for codes.

set format x "%b" # How axis will be displayed.

plot "mail-stats.dat" using 1:2 with boxes

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

Nov Jan Mar May Jul Sep Nov Jan

Figure D.33: Using dates or times to
label an axis.

