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Introduction

A New Kind of Problem-Solving

It’s a lazy summer afternoon in 1450, and a tired monk is sitting at a
desk, staring at a blank sheet of vellum. He’s been given the task of
making twenty copies (twenty!) of a fifty-page book. He sighs, then
picks up a pen and begins to write, following the holes that have been
carefully pricked into the sheet as guides. He wonders if he’s being
punished. This will take forever!

As he works, his mind wanders into fantasies of being an Abbott or a
King, capable of commanding monks to do all the menial work. He'd
only have to command twenty copies of a book (or a thousand!) and
it would be done. Even better to be a Wizard, and not have to deal
with lazy monks! Swoosh! goes the magic wand, and a pile of books
appears!

The monk doesn’t know it, but his vision is becoming reality even as
he works. A few years earlier, Johannes Gutenberg had invented a
printing press that used moveable type. As it spread across Europe, this
new technology was changing the way people thought about problem-
solving.

For the monk in his scriptorium, each new page is a new problem
requiring an amount of time and effort similar to any previous page.
To copy fifty pages takes him about fifty times as long as a single page.
Even though he might begin the task by spending a little time thinking
about the style of the writing and the layout of the pages, the vast
majority of his time will be spent on the mindless, repetitive task of
producing individual pages, one at a time. If his mind wanders into
fantasies, a page could be ruined.

Figure 1: A monk copying a
manuscript.

Source: Wikimedia Commons

Figure 2: A printing press (1520).

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Escribano.jpg
https://commons.wikimedia.org/wiki/File:Press1520.png
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But consider the job of a printer a hundred years later. To him, the
problem of printing a page consists of setting the type. Once he’s done
that, he can create as many copies of the page as he likes, with relatively
little effort and in a short time.

* % %

Early 20" Century particle physicists used “cloud chambers” and, later,
“bubble chambers” to see the paths of subatomic particles. Collisions
and decays within these chambers produced visible tracks that could
be photographed. The chambers could take a new photograph every
few seconds. Each photograph was then analyzed by people called
“scanners”, who measured the tracks as the photographs were projected
onto a table. At their fastest these workers could analyze only about
five photographs per hour. Photographs taken during a few days of
running a bubble chamber could take years to analyze.

Bubble chambers have long been superseded by other kinds of detectors
that can be read out electronically and analyzed by computers. Because
of this, large experiments like the Compact Muon Solenoid at CERN
can record and analyze thousands of electronic “snapshots” per second.
There are no longer any “scanners”, just as monks no longer copy
manuscripts.

* % %

Since the earliest days of aeronautics, airplane designs have been tested
in wind tunnels. The Wright brothers themselves used a simple wind
tunnel in the development of the “Wright Flyer”. Whole airplanes,
parts of them, or models of them were placed into the wind tunnel
to study their behavior. The lift generated by one type of wing or
propeller might be measured and compared to measured values for
other designs. Many models were made and tested in the process of
designing an airplane.

Today, computer simulations have largely replaced wind tunnel tests.
Modern computational fluid dynamics can accurately model the flow
of air around complicated shapes, and we can change the shape by
clicking and dragging a mouse or changing some parameters, rather
than needing to manufacture a physical model, leaving the engineer
free to test odd shapes and explore possibilities as they occur to her.

* % %

Figure 3: Traces of charged particles in
a bubble chamber at Fermilab (1973).

Source: Wikimedia Commons

Figure 4: A “scanner” analyzes a
bubble chamber photograph.

Source: CERN

Figure 5: A model of the X-15 rocket
plane in a wind tunnel (1962).

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:HD.6B.235_(11069100644).jpg
http://images.iop.org/objects/ccr/cern/55/3/26/CCarc2_03_15.jpg
https://commons.wikimedia.org/wiki/File:X-15_Model_in_Supersonic_Tunnel_-_GPN-2000-001272.jpg

In 1913 Henry Norris Russell documented a relationship between the
color and brightness of stars. At that time, and indeed until the 1970s,
most graphs used in publications were drawn by hand. On the left-
hand side of the figure below you can see Russell’s graph of brightness
versus color (what we now call a Hertzsprung-Russell diagram). The
graph shows data for about 300 stars, collected by observers using
astronomical instruments and written down by hand. These data were
then plotted, using pen and ink, to show the results.

25
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On the right-hand side of the figure above we see a modern-day
Hertzsprung-Russell diagram. It was produced using data gathered
by the Hipparcos satellite, downloaded over the Web, analyzed by a
computer program, and plotted using gnuplot. It shows about 100,000
stars. It took the computer less than a second to produce this graph
from the data.

* % %

The computer revolution of the late 20" Century gave us a new kind
of problem-solving. As in the aftermath of the Gutenberg revolution,
we suddenly found that we no longer needed to focus on the mindless,
repetitive components of many tasks. Computers could now make
data analysis more-or-less effortless. Simulations done by computers

were now capable of eliminating the need for many real-world tests.

Visualizations that were once tedious to prepare could now be done
instantly, by anybody. The ease, accuracy, and speed with which
computers could perform repetitive tasks freed us up to explore in
ways that would have been unfeasible earlier.

To a poor monk in a scriptorium every page is a new problem that needs

INTRODUCTION 17

Figure 6: Russell’s original diagram, and
a modern Hertzsprung-Russell diagram
produced with gnuplot using data from
the Hipparcos satellite.

Source: Popular Astronomy. 22: 275-294, 1914


https://babel.hathitrust.org/shcgi/pt?id=chi.60263614;view=1up;seq=331

18 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

to be solved. To a printer, once the page is typeset the problem is solved
forever. A well-written computer program does the same. It tackles a
problem, and solves it forever. That’s a new kind of problem-solving.

About this Book

Today, if you intend to pursue a career in science or engineering you'll
need to know the basics of computation. This book aims to teach them
to you.

It introduces three core skills: analyzing data, simulating data, and
visualizing data. It assumes no prior programming experience or
knowledge about the inner workings of computers. It will concentrate
on using using computers to solve common problems you'll encounter
in science and engineering.

A Note About Choices

Which is the best tool: a hammer or a screwdriver? Most people would
say that the answer depends on the task. The same is true for computer
languages. There is no "best" programming language, any more than
there’s a best tool.

When designing this book, I needed to choose a programming language
that would suit its needs and yours. I settled on the C language for
several reasons.

First of all, C and its cousins (C++, Objective-C, efc cetera) are very
widely used. It’s likely that any program you’ve ever used on a desktop
computer was written in some variant of the C language. A 2016 study
by IEEE'ranked C as the most popular programming language, based
on its use in software repositories and appearance as a topic in various
online forums.

C has been around a long time, and many newer programming lan-
guages have adopted features from it. This means that once you've
learned C you’ll find it easier to learn those languages, too. Some of
these C-like languages include Java, PHP, Javascript, Perl, Go, and C#.

More than some languages, C lets you see the computer’s internal
workings. When learning C, you need to think about the way the
computer uses memory to store information, and how data is stored in

*IEEE Spectrum: The Top Programming
Languages 2016


 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

files. An understanding of these concepts will help you later on, even
if you move to higher-level programming languages that hide these
details.

C has a reputation for being fast. Other languages sometimes rely on
C to do their “heavy lifting”. For example, Google recently released
an artificial intelligence system named TensorFlow?, which appears
to be written in the Python programming language. If you download
TensorFlow and look at the source code, though, you'll find that about
80% of it is written in C. The Google developers said they wrote the

most compute-intensive parts of the code in C to make it run faster.

If you go into research or engineering, you'll often be working at the
cutting edge of technology. Having the skill to write C programs can
help you squeeze the best performance out of your software.

Finally C is available on a wider range of computers than any other
language, and the software needed to build C programs is available
for free. No matter what kind of computer you're using, or how small
your budget, It's almost certain that you'll be able to write and run C
programs.

Those are some of the reasons for choosing to use the C language in
this book. Every language has its strengths and weaknesses. After

you've learned C, I hope you go on to explore other languages too.

When you're a researcher or an engineer, here are some other things
you should think about when deciding which language to use for a
project:

e What are your skills? Sometimes its better to use a language you
already know.

* What are the skills of other programmers who are likely to work
on this project in the future? When you're collaborating with other
programmers, consider their skills, too.

e If there’s an existing code base, what language(s) does it use? When
adding features to existing software, it’s often a good idea to stick
to the same language the rest of the software uses, unless there’s a
compelling reason to introduce a new language.

¢ Are strengths of a given programming language a good match for
the project’s needs? Don't try to use a hammer to insert screws.
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2 https:/ /www.tensorflow.org /

Figure 7: Dennis Ritchie, the inventor of
the C language.

Source: Wikimedia Commons


https://www.tensorflow.org/
https://commons.wikimedia.org/wiki/File:Ken_n_dennis.jpg




1. Zero to Loops

1.1. What’s a Program?

Computers today do a lot of complicated things, from weather predic-
tion to playing music, movies and games.

You might be surprised to learn that computers have been around since
ancient times. One early computer was the “Antikythera Mechanism”,
found in a 2,000-year-old Greek shipwreck. This complicated machine
could be used to predict the future positions of astronomical bodies
and the phases of the moon.

The Antikythera Mechanism did many things, but unlike modern
computers it wasn’t possible to add new capabilities after the machine
was made. All of its capabilities were determined when it was built. If
someone needed to do something that it wasn’t built to do, they’d need
to buy or build a new device with different capabilities.

In the early 1800s, the English scientist and engineer Charles Babbage
proposed a new kind of computer that he called an “Analytical Engine”.
This would be a general-purpose computer. Its behavior was controlled
by punched cards (rectangular cards with a pattern of holes in them).
By creating an appropriate set of cards, the Analytical Engine could
be made to do any calculation. (Similar punched cards had previously
been used to control the patterns woven into fabric by looms.) The
mathematician Ada Lovelace, working with Babbage, created the first
sets of cards for this versatile early computer.

Most modern computers are designed to be versatile: a given computer
can be used to do many different things. We add new abilities to the

computer by installing “programs” into the computer.

We distinguish between the computer’s “hardware”, which is fixed

The Antikythera Mechanism.

Source: Wikimedia Commons

Ada Lovelace, the first computer
programmer.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:NAMA_Machine_d'Anticythère_1.jpg
https://en.wikipedia.org/wiki/File:Ada_Lovelace.jpg
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and unchangeable, and its “software”, which can be easily changed.
Computer programs are part of the computer’s software. Examples
of computer programs you're probably familiar with include Firefox,
Safari, Excel, Word, PowerPoint, PhotoShop, and many others.

1.2. Creating Programs

How can we create a program that tells a computer what we want it to
do?

If the computer were a chef, we could tell it how to make our favorite
dish by writing down a recipe. There’s a problem, though: the chef in
this case (the computer) doesn’t speak English.
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The computer’s brain is a “Central Processing Unit” (CPU), often just
called a “processor”. It only understands instructions that are expressed
in a language of binary numbers.

A binary number is a number written in base 2. All of the digits of
such a number are either zeros or ones, like this: 10110010. You can
think of a binary number as a line of switches that can be turned on or
off. (See Figure 1.2.)

Each digit of a binary number is called a “bit”.? We say that a bit is
either “on” or “off” (1 or 0). We usually group bits together in sets of
eight. A set of eight bits is called a “byte”.

Although it’s possible to create a computer program by writing long
streams of bits by hand, it’s really tedious and prone to error. Even a
moderately-sized program is millions of bytes long.

What we need is some kind of translator who can read a recipe in a
language that’s easy for us to write, and then translate it into the binary
language that the computer understands.

An Intel 80486 CPU. In general,
different brands and models of CPU
understand different sets of instructions,
but most processors used today share a
common set of core instructions that
they all understand.

Source: Wikimedia Commons

Figure 1.1: A program is just a recipe,
but it needs to be translated into a
language the computer can understand.

Source: Wikimedia Commons 1, 2

Figure 1.2: Bits as switches.

You can think of each bit in a binary
number as as switch. (In fact, program-
mers often talk about flipping bits on or
off.) We group bits together in groups
of eight because eight is a power of two
2%, making it convenient for binary
(base-2) arithmetic, just as 10, 100 or
1000 are convenient in base-10. The very
popular early Intel CPUs used data in
8-bit chunks, and this became a de facto
standard.

*Some people claim that “bit” is a
shortened form of “binary digit”, but
I'm skeptical.


https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg
https://commons.wikimedia.org/wiki/File:Cheese_Soup_Recipe.jpg
https://commons.wikimedia.org/wiki/File:William_Orpen_Le_Chef_de_l'Hôtel_Chatham,_Paris.jpg

“Hey Computer!
Please add 2.5 to
3.6 and tell me the
answer. kthxbye.”

01101010001
11001001001
~ 00101111110
Translator 01011011101

S “Gotcha covered,
bro!”

The kind of translator we’ll be using in this book is called a compiler. It

takes a readable description of what we want the computer to do (our
“recipe”) and translates it into binary instructions.

We can’t quite write our program’s “recipe” in a human language like
English, but there are many programming languages that have been
developed to be readable by humans but still express our wishes in
a clear, simple way that can easily be translated into the computer’s
native binary language.

One of the most widely used programming languages is called simply
“C”. That's the language we’ll be using in this book.> The vast majority
of the software you've used is written in C, or its cousin C++. You'd be
hard-pressed to name a piece of software on your computer, phone or
tablet that wasn’t written in C or one of its close relatives.

Think of the C language as a very terse version of English, with some
special characters to help make your meaning clear. You might compare
it to text messages or e-mails.

Program 1.1 is a simple program written in the C language:

Program 1.1: hello.cpp

#include <stdio.h>
int main () {
printf ( "Hello World!\n" );
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Figure 1.31 Source: Wikimedia Commons 1, 2, 3

*> There are hundreds of different
computer languages. Each has its own
strengths and weaknesses, and no
language is best for all tasks. When
choosing a language for a particular
project, programmers think about
whether the language’s strengths are a
good match for that project.


https://commons.wikimedia.org/wiki/File:Linus_Torvalds_talking.jpeg
https://commons.wikimedia.org/wiki/File:A_woman_working_on_a_call_centre.jpg
https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg
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This program just prints out the text “Hello World!”. Don’t worry about
understanding it right now. We'll explain how it works soon.3

At this point there are three obvious questions:

* Where do we type these instructions?

* How do we get a compiler to translate them into binary instructions
that the computer can use?

¢ How do we get the computer to run the program we’ve created?

Before we can answer these questions, there’s one more thing we need
to talk about: files!

1.3. Files

Before the compiler can translate your recipe, it needs to be written
down. Instead of using pencil and paper, you'll be writing your recipe
into a file that lives on the computer’s hard disk. A file is just a
named bunch of data. You can think of it as an index card with some
information scribbled on it, and a title (the file’s name) written at the
top.

Here’s how to create a program: First, we use a piece of software
called an editor (this is our “pencil”) to create a file that contains some
directions written in the C language (our “recipe”)*. Then we use a
piece of software called a C Compiler. The compiler reads the file we've

created and makes a binary version of our instructions in a new file>.

The new file is our program, and we can run it just like any other
program on the computer.

This binary file is a new piece of software that we’ve created. If we
were a software company like Microsoft, we could sell this binary file

to our customers, and they could put it onto their computers and use it.

hello.cpp hello

#include <stdio.h>

int main () { 01101010001110

printf ( "Hello World!\n" ); 01001001001011
: C

11110010110111
You write this.... ...and the compiler translates it into this.

0100101001011

C Compiler

3 On Wikipedia you'll find a long list
of “Hello World” programs written
in many different languages. Some of
them are truly bizarre.

4 This description is often called the

program’s “source code”
5 The binary file is often called an
“executable” or just a “binary”

Figure 1.4: The C compiler reads our
source code file and makes a binary file
that the computer can understand.

Source: Wikimedia Commons


https://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
https://commons.wikimedia.org/wiki/File:Notecard.jpg

1.4. Your First Program

Let’s look at the details of each of the steps in creating a program. In
the following exercise we’ll be creating the example program called
hello.cpp (Program 1.1) that we saw earlier.

Most of our work will be done from the command line, so the first thing
you’ll need to do is open an appropriate command window. A command
window is a box like the one shown in Figure 1.5. If you don’t know
how to open one, see Appendix B for instructions tailored to the kind
of computer you're using (Windows, Mac, or Linux). You can tell your

computer what to do by typing commands into this window.

Writing a Program

To write our program, we’ll use a piece of software called a text editor.

It lets you type in some text, and save the text into a file. The text editor

we'll be using is called nano.®

nano runs inside the command window. To create a file with nano, or

modify an existing file, just type “nano” followed by the file name.

Start it up now by typing “nano hello.cpp”. Figure 1.6 shows what
nano looks like while you're using it.

In nano, you can just type the text of your program. At the bottom of
the window, you'll see that nano gives you some hints about how to do
things. For example, you'll see that "X means “Exit”. Here, "X means
“hold down the Ctrl key while pressing the X key”.
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Figure 1.5: A command window. The
appearance will vary, depending on
what kind of computer you're using.

¢ You'll find instructions in Appendix

B for installing nano and the other
software you'll need for the exercises in
this book.
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Exercise 1: Creating a “Hello World” Pro-
gram

Start up nano and type the program “hello.cpp” that you saw
earlier (Program 1.1, above). When you’ve finished typing,
it should look like figure 1.6.

You should be careful to type the program exactly as it’s
written here. In particular, always remember that the C pro-
gramming language cares about whether letters are upper-
or lower-case. In C, the word “This” isn’t the same as “this”
or “THIS”.

Once you've finished typing your program, save it by press-
ing "X (hold down the CTRL key, and press the X key).
You'll be asked to confirm that you want to save your work
into a file (type “y” for yes), and asked what you want to call
the file. In response to this, type hello.cpp and then press
enter. This creates a file called “hello.cpp”, puts the things
you've typed into it, and closes nano.

You can see the new file you've created by typing the com-

mand “1s” (which is short for “list”). This will show a list
of your files. You should see a file named “hello.cpp”.

File:

GNU nano 2.0.9

Binclude <stdio.h>
int main () {
printf( "Hello world!vn™ J);

¥

Press Citrl-X to exit,
and optionally save
your program

[ Read 5 lines 1
Bt Get Help QU HriteOut @ Read File @f Prev Page gi{ Cut Text [ Cur Pos
B Exit Justlfg Bl Where Is ] Next Page fl UnCut Textj]l To Spell

For best results when writing your own
programs, stick to all lower-case unless
there’s a good reason to do otherwise.

hello.cpp

Your program.

Figure 1.6: The editor called “nano”.
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Compiling Your Program

Now we need to translate your program into binary instructions that

the computer can understand.” We use a compiler to do this. The 7 We call this “compiling the program”.
compiler we will use in this book is named g++. (This is pronounced

“g plus plus”.)

Exercise 2: Compiling “hello.cpp”

Use g++ to compile your program by typing the following
in your command window:

gt++ -Wall -o hello hello.cpp

This tells g++ to read the file hello. cpp and create a binary
version of the program in a new file, named hello. Here’s
what the parts of the command mean:

“-Wall” means “Warn me if you see anything wrong with
my program”

“~o0 hello” means “Write the output into a file named
hello”

If you see any error messages, check to make sure you've
typed the program correctly. In particular, look for missing
semicolons and brackets, or places where you might have
used parentheses instead of brackets. To look at your pro-
gram again and fix any errors, just type “nano hello.cpp”
again. When you're finished making changes, use "X as you
did before to save your changes and exit from nano. Then
try compiling your program again, as described above. Does
it work now?

As you saw in the previous exercise, you can use the 1s
command to see a list of your files. If you do this now, you'll
see that you've created a new file named hello.
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Running your program

You've created the file hello. cpp, containing a “recipe” for making
your program, and you’ve used g++ to translate this into binary instruc-
tions the computer can understand, and write these instructions into
the file hello. Now you're ready to run your program!

Exercise 3: Run it!

Tell the computer to run your program by typing the follow-
ing command:

./hello

You should see the words “Hello World!”. Congratulations!
You're a programmer.

Figure 1.7: Congratulations!

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Women_holding_parts_of_the_first_four_Army_computers.jpg

1.5. The Anatomy of a Program
What do the different parts of your simple C program do?

The main part #include <stdio.h>
of a C program : :
is enclosed in int I_naln( ) A
a framework = printf(“Hello World!\n”);
like this.
}
Here's where the
work gets done! Special Character (newline)

printf (“Hello World!\n");

\ J i
Y '

Function
End of statement

All but one line of this program is a framework that we’ll use for
most of the programs we write in this book. As you learn more you’ll
understand what each part of this framework does, but for now please
just accept it as it is.

The one line of the program that is of immediate interest is the one that
reads:

printf ( "Hello World!\n" );
This is a single statement in the C language, and it tells the computer to

write the text “Hello World!”. The “\n” at the end tells the computer
to go to the next line after it’s written this text.?

What would happen if we left out the “\n”? It would be easier to see
the effect of the “\n” if our program had two printf statements, like
this:

printf ( "Hello World!\n" );
printf ( "...and Dog!\n" );

A program like this, when compiled and run, would print out:
Hello World!

...and Dog!

But if we left off the “\n” in the first print f statement the program
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Figure 1.8: The anatomy of our “Hello
World” program.

8“\n” means “insert a newline”. As we
go along, you'll see other similar things
beginning with “\” and controlling how
the computer writes text.
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would print:

Hello World!...and Dog!
See the difference?

printf itself is called a function. Just as functions in algebra may have
arguments, so can C functions. In this case, we're giving the printf
function one argument: the text to be printed. We’ll see many more C
functions as we go along.

Finally, at the end of our printf statement we see a semicolon. Why is
it there? Because the C language allows us to write our statements on
multiple lines if we want to. We could, for example, have written our
printf statement like this:

printf (
"Hello World!\n"
)i

The semicolon at the end tells the C compiler that we’re done with
this statement now, and ready to go on to the next one. Think of the
semicolon as being like the period at the end of a sentence.?

But what about...?

Could we write something like this?

printf (
"Hello
World!\n"
)

No, it turns out that this won’t work. A broken chunk of quoted
text like this will confuse the C compiler and cause it to refuse to
compile our program.

If we really wanted to break the quoted text across two lines, we’d
need to insert a “\” after “Hello”, like this:

printf (
"Hello\
World!\n"
)i

The “\” means “continued on next line”. Note that there can’t be

9 Some other computer languages
actually do use a period to indicate the
end of a statement. (Cobol is one of
these.) C doesn’t use a period because it
has another use for that, which we’ll see
later, in Chapter 12.
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any spaces after the “\”, either.

This kind of thing is bad form, though, and shouldn’t be done in a
real program unless there’s a compelling reason to do so. It just
makes our program harder to read, and that’s usually a bad thing.

In fact, if we really wanted to make the program difficult to read,
we could use the “\” to break up other things:

prin\
tf(
"Hello\
World!\n"
bi

Now that’s hard to read! Don’t write programs this way. It’s icky!

1.6. Doing Math

Let’s try working with numbers now. Imagine I have $25.00 in my
wallet and $238.00 in the bank. How much money do I have in total?
Let’s ask the computer to do the math for us, like this:

printf ( "Total funds: %$1£f\n", 25.0+238.0 );

Notice that now we're giving print f two arguments. The first argu-
ment is some quoted text, as before. But now we’ve added a second
argument (separated from the first by a comma) that looks like an
arithmetic expression. To understand what all of this does, we'll first
need to know a little more about how printf works.

The first argument given to print £ will always be a chunk of quoted
text. Sometimes this will be the only argument. In our “Hello World!”
example, the only argument we gave to print f was the text that we
wanted it to print.

In general, though, you can think of the text in this first argument as a
fill-in form we give printf. (See Figure 1.9.) It can contain placehold-
ers that mark spots where we want printf to figure something out,
and fill in the blanks for us.

In the print £ example above, the three characters $1f (percent, 1 as
in “Lucy”, £ as in “Fred”) together form a placeholder, marking a spot
where the computer is supposed to insert a number. More specifically,
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Figure 1.9: The text we give printf is like
a fill-in form.

<

o
O
O

o

Total funds:

A
A number,
possibly
containing
decimals.

%$1f means “save a spot here for a number that may contain decimal
places”™®. We’ll encounter several other placeholders like this later, 1 We'll discuss what the letters 1£
each of them for a different kind of number (or some other kind of stand for a little later.

thing we’d like to print out).

In our example, the second argument tells print f what we want to
insert into the spot reserved by the placeholder. In this case, we give
it the mathematical expression 25+238. The printf function will do
the math for us, fill in the blank, and print out the result.

Let’s look at a slightly less trivial problem (see Figure 1.10). Imagine we
have a linear function, y = 2x + 3, and we want to know what the value
of y will be when x = 4.3. How could we write a simple C program to
tell us the answer?

Here’s one way to do it (notice that the symbol for multiplication in C
is an asterisk):

#include <stdio.h>
int main () {
printf ( "The answer is %$1f\n", 2.0 * 4.3 + 3.0 );

If you wrote this program, compiled it, and ran it, it would print out

“The answer 1is 11.6”, which is the correct value of y."* " Actually, you'll see that the program
prints out something like “The answer
is 11.600000”. We'll see how to
control how many decimal places are
printed later.



25
=2X+3

i y //
15('),':?
10 // ;
N i

-~ E,/x=4.3
0

0 2 4 6 8 10

printf evaluates the mathematical expression 2.0 ~ 4.3 + 3.0to
get the value 11.6, and then inserts this number in place of $1£.

Placeholders like $1£ are called format specifiers. They tell the computer
where to insert something and how it should be formatted. We can use
more than one format specifier to insert multiple numbers into the text.
For example:

#include <stdio.h>
int main () {
printf ( "At x=%1f the value of y is %1f\n",
4.3,
2.0 » 4.3 + 3.0 );

This program would print “At x=4.3 the value of y is 11.6".
The first $1f gets replaced with the first number, and the second $1f
gets replaced with the second number. (See Figure 1.11.)

1.7. Variables

When you look at the expression “2.0 % 4.3 + 3.0” do you remem-
ber what the numbers represent? Which is the line’s slope? Which
is the y-intercept? Which is the value of x? If we came back to this
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Figure 1.10: A line representing the
equation y(x) = 2x + 3.

Note that I've broken the line up
because it’s long. This is OK, as long
as I don’t insert a line break in the
middle of a word or a chunk of quoted
text without using a “\” continuation
character.
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Figure 1.11: The printf text can
contain more than one placeholder.

At x= the value of y 1is
A A
A number, A number,
possibly possibly
containing containing
decimals. decimals.

program later, we might not have any idea which number was which.
Let’s get organized!
Here’s another version of the program:

#include <stdio.h>

int main () {

Definitions
of Variables

double x;

double y;
double slope = 2.0;
double yint = 3.0;

4.3;
y = slope * x + yint;

printf ( "At x = %$1f the value of y is %1f\n", x, y );

Now our mathematical expression is “slope » x + yint”, which
should be much easier to understand.

We’ve defined four variables in this program: %, y, slope, and yint.



A variable is a named box into which we can put a value.’® Variables
in C are similar to variables in algebra, except that there are different
kinds of C variables for holding different kinds of data.

The four lines beginning with the word double define the four vari-
ables we're going to use. “Defining” the variable means telling the
computer what kind of values you'll assign to the variable. (In C, you
must define variables before you can use them.) While you're defining
the variable, you can optionally also give the variable an initial value.
You can see that we’ve done this with the slope and yint variables.

The word double means that these variables will hold “double-precision
floating-point numbers”. Don’t worry too much about what that means
right now. It’s enough to know that these variables will hold numbers
with decimal points in them. Programmers call numbers that contain

decimal places “floating-point numbers.” '3

Once you've defined a variable, you can use it in your program. For
example, you can assign a value to it using an equals sign, as in “x
= 4.3”. This statement means “set the value of x equal to 4.3”. The
statement “y = slope » x + yint” does the math on the right-
hand side of the equation and then sets the variable y equal to the
result.

We can use our new variables wherever we previously used numbers.
Going back to the “$1£” format specifier in our printf statements, I'll
now tell you that “$1£” means “insert a ‘"double” number here”. The
letters “1£” stand for “long float”, which is another way of saying
“double-precision floating-point number”.

Finally, notice that we’ve defined our variables near the top of our
program. Variables must be defined before you can use them, and
some C compilers require that you define all variables before you do
anything else in the program. Going back to our recipe analogy, you
might think of these variable definitions as the list of ingredients. After
we’ve listed the ingredients, then we can get down to the business of
describing how to combine them into a tasty dish.

ZERO TO LOOPS 35

2 Variables are stored in the computer’s
memory, which is a temporary storage
area that’s erased whenever you restart
the computer. This is unlike files,

which are permanently stored on the
computer’s hard drive.

3 In this book we’ll only use three or
four types of variables, although there
are a lot more than that available.

Later on, we'll learn how to ask the user
for numbers, so we’ll be able to ask the
user to enter a value for x, instead of
having the value written explicitly into
the program.

Figure 1.12: “La Tailleuse de Soupe”,
Frangois Barraud (1933).

Source: Wikimedia Commons
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1.8. A Note About Algebra

Let’s pause for a minute and look at the way math is done in C pro-
grams. In the example above, we wrote “y = slope » x + yint”.
This looks an awful lot like equations we’ve seen in algebra.

One obvious difference is that we tend to use longer variable names in C
programs than in algebra. When we’re doing algebra, we usually write
equations by hand, either on paper or on a blackboard, and we save
time and effort by using single-letter symbols for variables whenever
possible.

When typing a computer program, it doesn’t take much effort to use
longer, more descriptive names for our variables. This can help prevent
us from getting confused as we’re writing the program, and it makes
it easier for other people (or our future selves) to look at the program
and understand it.

A second, less obvious difference involves the actual meaning of an
expression like “y = slope » x + yint”. In algebra, this expres-
sion would mean something like “I promise you that the value of y is
equal to slope » x + yint.” On the other hand, in a C program,
this expression means “I command you to make y equal to slope » x
+ yint.”

The difference becomes apparent when you encounter an statement
like “x = x + 1”7 in a C program. This statement would make no
sense in algebra. There’s no value of x for which x = x + 1. Butin
C, it makes perfect sense: We're commanding the computer to give the
variable x the new value x + 1. If x is equal to 3 before this statement,
it should be equal to 4 after the statement.

If we could look inside a computer’s brain as it acts on the statement

x = x + 1”7 we'd see that it first calculates x + 1, saving the result
in a temporary location, then copies the result into the variable x.

In later chapters you'll find that it’s very important to remember that
the equal sign in statements like this means make the left-hand side
equal to the right-hand side.

In algebra the statements “y = 2x 4+ 3” and “2x + 3 = y” are equivalent,
but not in C. Remember that a C program is like a recipe: it’s a set
of instructions that should be followed in a particular order. “Pour
milk into a bowl” isn’t the same as “pour bowl into a milk”! The latter
doesn’t make any sense, just as the statement “2x + 3 = y” wouldn’t
make sense in a C program.

Figure 1.13: A blackboard used by
Albert Einstein.

Source: Wikimedia Commons

X "\\//

X

4

Figure 1.14: How the computer
interprets the statement “x = x + 1”.
Remember that a variable in a C
program is just a named storage
location in the computer’s memory. In
this example, there’s a variable named x

7z

that initially contains the value “3”.
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1.9. Using Loops

We could use the program above to tell us the value of y at one par-
ticular value of x, but what if we want to look at how y varies as we
change x? It would be nice if our program could print out, say, ten
different x values and the corresponding y values.

We could, of course, do something like this:

x = 1.0;

y = slope * x + yint;

printf ( "At x = %$1f the value of y is %$1f\n", x, v );
x = 2.0;

y = slope * x + yint;

printf ( "At x = %1f the value of y is %$1f\n", x, v );
x = 3.0;

y = slope * x + yint;

printf ( "At x = %1f the value of y is %$1f\n", x, v );

et cetera, but it would be really tedious to type all of this. It would also
be hard to change it later if we wanted a different set of x values, or if
we wanted to use a different function for y.

Fortunately, if there’s one thing computers are good at, it’s doing the
same thing over and over. That’s why computers were invented. The
C programming language lets us tell the computer to repeat a task a
given number of times, optionally making small changes each time.

One way to do this in C is by using a “for” statement. Take a look at
Program 1.2, named loop.cpp.

Program 1.2: loop.cpp

#include <stdio.h>

int main () {
int i;
for ( 1i=0; 1<10; i++ ) {

printf ( "%d\n", i );
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“"r

First notice that we’ve defined a variable named “1”. Instead of being
a double, like the variables we’ve used before, this new variable is an
int. That’s short for “integer”, which in the C language means the
variable can hold numbers without decimal places.™ Integers are the
numbers we use to count discrete things, like apples or cars. They’re the
counting numbers, like 1, 2, 3,... including zero and negative numbers
like -1. We're going to use the new variable to count how many times
we’ve repeated a part of our program.

Programmers call a repeated part of a program a “loop”. The computer
starts at the “top” of the loop, does a list of tasks that are included
in the loop, then goes back to the top of the loop and (optionally)
starts again.™> In principle, the computer could keep going around and
around the loop forever, but we’ll usually want to tell it to stop after it’s
gone around some number of times, or after some other requirement is
met.

You can create a loop in your program by using a “for” statement.

Figure 1.15 shows the anatomy of a for statement:

Initialize Are we done? Increment
rfor (1 = 0 ; 1 < 10 ; i++) {
printf(“%d\n”, i);
do this '}

again... |

%d is a placeholder for int variables.
$1£f is for double variables.

In the first line, inside the parentheses after the word “for”, we tell the
computer three things that control how it will travel through this loop
(see Figure 1.16). These are:

1. How to set things up before we start looping.

2. When to stop looping.

3. What changes to make each time we come to the bottom of the loop.

*You'll usually use double or int
for numbers in your programs. Use
double for any numbers that might
have a decimal point, and int for
integers.

> See the lyrics to “Helter Skelter” by
the Beatles.

Figure 1.15: The anatomy of a “for”
loop. The first line marks the top of the
loop. The bottom line marks the end of
the loop. Everything in between is done
repeatedly, some number of times.



In Program 1.2, when we say “ (1=0; 1<10; i++)” we mean:

1. Before you start looping, set i equal to zero.
2. Keep going around the loop as long as i is less than ten.

3. Whenever you get to the bottom of the loop, add 1 to the value of i.

Initialize:

Set i equal to zero

Test:

Is i greater than ten? (v

No

printf(“%sd\n”,1);
Increment: *

Make i greater by 1

Go around again

Done!

The mysterious-looking statement “i++” means “set i equal to 1 +
17. In C, “++” is the increment operator. (There’s also a decrement operator,
“"

——", that decreases a variable’s value.) The expression “i++" is just a
handy shortcut here. It’s exactly equivalent to saying “i = i + 1”.

In the example program, we just print out the value of i each time
we go around the loop. Notice that, instead of “$1£” in the printf
statement, we use “%d”. The “d” stands for “decimal integer”, and it’s
what printf uses as a placeholder for an integer value. int variables go
with “$d”, and double variables go with “$1£”. These are the only
kinds of numerical values we’ll use for most of the exercises in this
book.
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Figure 1.16: This diagram shows how a
“for” loop works. Notice that if we gave
i a value like 100 in the beginning, the
program would never do the printf.
Instead, it would just skip the loop
entirely. This is important, because later
on we’'ll encounter another kind of loop
that will always be acted on at least once.
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Exercise 4: Using Loops

As you did before with hello. cpp, create Program 1.2 by
typing it into nano. When you're done typing, press "X to
exit nano. When asked what to call the new program, say
“loop.cpp”. Then compile your new program by typing:

g+t+ -Wall -o loop loop.cpp

If you see any errors, use nano to correct them, and try
compiling again. When you’ve successfully compiled the
program, run it by typing “. /1loop”. What do you see? The
program should print out a list of numbers, from zero to
nine.

But what about...?

One more thing you should notice about Program 1.2: Look at
the way we’ve indented the lines. This isn’t necessary, but it’s a
good idea to keep your code neat and readable. Indenting the lines
inside a loop can help you see where the loop begins and ends.
When you write more complicated programs, you'll find that this
often makes it easier to catch mistakes.

Pay attention to the way all of the examples in this book are
formatted. Even if you don’t use the same “programming style”,
you’ll find it very useful to have a consistent style of some kind
when writing your programs.



1.10. Calculations Inside a Loop
Now let’s apply our knowledge of loops to the problem of finding the

value of y for several values of x. Program 1.3 shows one way to do it.

Program 1.3: line.cpp

#include <stdio.h>

int main () {

double x;

double vy;

double slope = 2.0;
double yint = 3.0;

int i;

x = 0.0;

for ( i=0; 1<10; i++ ) {

y = slope * x + yint;
printf ( "%1f $1f\n", x, y );
Xx =x + 1.0;

7

Before we start this program’s “for” loop, we set the value of x to be
zero. Then, each time we go around the loop we calculate the value
of y, using “slope”, “yint” and “x”, and we add 1.0 to the value of
x. The next time around, we use the new x value to calculate a new y

value. After we’ve done this ten times, we stop.

Exercise 5: Doing Math Inside a Loop

As you've done before with the programs hello.cpp and
loop.cpp, create the new program line.cpp using nano
and compile it by typing “g++ -Wall -o line line.cpp”.
(If you see any errors, use nano to correct them, and try com-
piling again.) Run the program by typing “./1line”. Do
you see what you expect? The program should print out a
list of X and Y values.
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But what about...?

Notice that we change the value of x by saying “x = x + 1.0”.
Could we have used C’s increment operator to do ths same thing,
by just saying “x++” on this line? In principle, yes, that would
work fine, but many programmers prefer not to use “++” with
numbers that have decimal places (“floating-point” numbers, as
programmers call them). As we’ll see later, we sometimes need to
keep in mind the limits of the computer’s abilities. A computer
can’t store all of the infinitely-many decimal places that a real
number actually has. Instead, the computer needs to truncate the
number to some manageable length. For example, instead of

3.14159265358979323846264338327950288419716939
9375105820974944592307816406286208998628034825
3421170679821480865132823066470938446095505822
3172535940812848111745028410270193852110555964
4622948954930381964428810975665933446128475648
2337867831652712019091... et cetera

the computer might approximate the number as 3.14159265358979.
Because of this limitation on the precision of real numbers, small
errors are introduced into the calculations done by the computer.
A result that should be (by our knowledge of arithmetic) equal
to 1.0000000..... will turn out to be (as seen by the computer)
1.0000000000001 OF 0.999999999999. This kind of thing makes com-
puter programmers cautious when incrementing, decrementing or
(especially) comparing floating-point numbers. Avoiding the use
of “++” with floating-point numbers helps us keep in mind that
they aren’t the same as counting numbers, where the computer
always has a well-defined, exact, “next number” to go to.



1.11. Graphing Our Results

Program 1.3 should print out a list of X and Y values, but how do we
know they’re the right ones? How do we know that our program is
doing the right thing? The formula for calculating the Y values was y
= slope x x + yint, which is the equation of a straight line. One
way to check our program’s output would be to see if the X,Y values it
generates fall on a straight line.

Exercise 6: Making Graphs

To do this, we can use a third command-line utility (in
addition to nano and g++, which we’ve already used) and
a particular command-line trick. The command-line trick is
this: Instead of just typing “./1ine” to run your program,

type:

./line > line.dat

You won't see anything printed on your screen. Instead, the
things that the program would otherwise have printed will
be saved in a new file named line.dat.

The new command-line utility we’ll use is gnuplot, which
will let us make graphs of data. To start it, just type “gnuplot”.
You'll see something like this:

GNUPLOT
Version 4.2 patchlevel 6

gnuplot>

The “gnuplot>" at the bottom means that gnuplot is waiting
for us to give it a command. Now type:

plot "line.dat"

This should show you a nice straight line of points, more or
less like the picture in Figure 1.17.

If we’d like to draw a line through the points, we could type:

plot "line.dat" with linespoints

(“with linespoints” means draw a symbol at each point,
and draw a line connecting them.)

When we're done with gnuplot, we can leave it by typing

”quit”.
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22
20
18
16
14
12
10

N A O

22

"ine.dat"

"ine.dat"

Figure 1.17: The result of typing plot
"line.dat" in gnuplot.

Figure 1.18: The result of typing plot
"line.dat" with linespointsin
gnuplot.



1.12. More About Variables

To understand how your programs use variables, you need to know a
little about the computer’s memory.

In computer terminology, memory is a temporary storage area that
programs can use. It’s a kind of scratch pad on which the program
can scribble some information that it will need while it’s working. The
computer’s memory consists of may bits that be turned on or off. (Think
of a long, long line of thousands of light switches.)

When you use a variable in a program, the computer reserves some of
those bits for storing whatever value you want to assign to that variable
(for example, the number “11.6”). How many bits are reserved, and
how they’re used, depends on the type of variable.

velocity i number

double int int

8 bytes 4 bytes 4 bytes

Figure 1.19 shows how the storage space for variables might be arranged
if you wrote a program with a double variable named “velocity”,
and two int variables named “i”, and “number”. (Remember that a
byte is just a group of eight bits.) Different types of variables are given
different amounts of space. Bad things can happen if you try to put the

wrong type of data into a variable.

For example, what would happen if you tried to stick a double value

into the variable named “1”, above? If you succeeded, the data would
spill over into the adjoining variable (“number”) and corrupt it.

The C compiler tries to prevent this sort of thing two ways:

e It warns you when try to stick the wrong type of data into a variable,
and

e It tries, when reasonable, to re-cast your data into a format that’s
appropriate for the variable into which you're putting it.

This re-casting can sometimes cause unexpected effects. For example, if
you try to set an integer variable equal to “3.1415”, the computer might
just automatically drop the decimal part and set the variable equal to
“3”. We'll look at this in more detail later.
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Figure 1.19: How a computer might
store three variables in memory.
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1.13. Fibonacci Numbers

Let’s use our new-found loopy powers to do a little more math. The
Fibonacci numbers are the sequence 0,1,1,2,3,5,8,13, ..., where each
term in the sequence is the sum of the preceding two terms. This
sequence pops up in all sorts of unlikely places in mathematics. It’s
named for the 13 Century mathematician Leonardo of Pisa (later
nicknamed “Fibonacci”), who used the sequence in describing the
month-by-month growth of a population of rabbits.

We might write a program to print the first few numbers of the sequence
like this:

Program 1.4: fib.cpp

#include <stdio.h>

int main () {
int a = 0; These variables will hold three succes-
int b = 1; sive terms of the sequence at a time.
int c; We’ll start with the numbers 0 and 1.
int 1i;

Print the first

two numbers.
printf( "%d\n", a ); 4—’//////’~—

printf ( "$d\n", b );

21x21

13x13

A spiral made from squares whose

sides are Fibonacci numbers.

Source: Wikimedia Commons

The next number is the sum

for ( i=0; i<10; i++ ) { .
, / of the preceding two numbers.
c =a + b;

printf( "%d\n", c );

a = b;
b = c; \ b and c become the new first
} and second numbers, then we

just keep repeating this process.

The program progresses by keeping track of three numbers at a time,
in the variables named a, b, and c. It starts with o and 1 in a and b,
respectively, then calculates the next number, ¢, by adding them. After
printing the value of ¢ the program “shifts” the numbers by one space,
giving a the value of b, and b the value of c. Then it goes around the
loop again, and comes up with a new value for ¢, the next number in
our sequence.

If you compile program 1.4 and run it, it should print the first ten



https://commons.wikimedia.org/wiki/File:FibonacciSpiral.svg
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Fibonacci numbers, like this:

a w N P PO

8

13
21
34
55
89

Great! Since that went so well, what would happen if we tried to print
more terms in this sequence? We could modify the “for” statement to
make it do 100 terms instead of ten:

for ( 1i=0; 1<100; i++ ) {

If we compiled this new version of the program and ran it, we’d see i N‘L\I?D'O‘\ Iﬁ‘TBON/\t ol

that things start off fine, but about halfway through something goes CINITIRD HETARIEY
wrong: o {‘;‘\l\m .

SRUORO Sl

165580141
267914296
433494437
701408733

1134903170 .

1836311903 A statue ofl Lgonardg/of Pisa, also
known as “Fibonacci”.

- l 3 2 3 7 5 2 2 2 3 Source: Wikimedia Commons

512559680
-811192543
-298632863

What's going on here? If you refer back to Figure 1.19 in the preceding
section, you might find a clue. Computers can’t store infinitely big
numbers. Each kind of variable has only a limited amount of space in
the computer’s memory. If the value keeps getting bigger and bigger,
eventually it will be too big for the computer to store in that variable,
and strange things will happen. But don’t despair! The “int” and
“double” variables we’ll be using for most of our programs will be
plenty big enough to hold the numbers we need, and later in the
book, in Chapter 13, we’ll see some techniques for storing humongous
numbers.


https://commons.wikimedia.org/wiki/File:Statua_di_leonardo_fibonacci,_matematico.JPG
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Practice Problems

1. Write a program like Program 1.1 (hello.cpp), but instead of
“Hello World!” make your program print your name. Call the
program myname . cpp.

2. Write a program like Program 1.1 (hello.cpp), but instead of
writing “Hello World!” make your program print the following
address:

Mr. Sherlock Holmes
Consulting Detective
221b Baker St.
London NW1l 6XE

The address should appear exactly as it’s written above. Remember
that you can use “\n” to move to the beginning of a new line. Call
your program sherlock.cpp.

3. Write a program that has a double variable named age. Give
the variable a value equal to your current age, in years. Have the
program write out the text “When I am twice my current age I will
be ... years old”, where “...” is replaced by twice your current age,
as calculated by the computer. Call the program myage . cpp.

Hint: Remember that print £ uses $1f as a placeholder for double
values, as shown in Section 1.6.

4. Repeat the previous problem, but this time have the program write
out the text “When I was half my current age I was ... years old”,
where “...” is replaced by half your current age, as calculated by the
computer. Call the program halfage.cpp. (Note that the symbol
for division in C is “/”.)

Hint: Remember that print f uses $1f as a placeholder for double
values, as shown in Section 1.6.

5. Using Program 1.2 (loop.cpp) as a model, write a program that
prints out the words “I'm a programmer!” ten times. Call the new
program cheers.cpp. (Check to make sure your program prints
the text the correct number of times.)

6. Using Program 1.2 (Loop. cpp) as a starting point, write a program
called countdown. cpp. Change just the printf line to make the
new program print the following:

10...9...8...7...6...5...4...3...2...1...

Hint 1: Remember that you can use an arithmetic expression in a
printf statement, as shown in Section 1.6.
Hint 2: Remember that you can add or remove \n in a printf

Here’s a picture of a “computer”. That
was Katherine Johnson'’s title when she
worked for NASA. She was one of
many mathematicians who did, by
hand, the tedious calculations required
to successfully navigate spacecraft into
orbit and back to earth. She worked on
the Apollo 11 mission to the moon, and
her calculations helped bring the
aborted Apollo 13 mission safely back
to earth. Even after electronic
computers came into use, human
computers like Katherine Johnson were
asked to check the results that came out
of their electronic counterparts.

Source: Wikimedia Commons

1881-1904

The Sherlock Holmes Museum at 221b
Baker Street.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Katherine-johnson.jpg
https://commons.wikimedia.org/wiki/File:Sign_at_Sherlock_Holmes_Museum_in_Baker_St_221b.jpg

statement to control whether it goes to the next line after printing
some text, as shown in Section 1.5.

. What if we wanted Program 1.2 (1oop . cpp) to start at 100 and count
to 1000 by hundreds (100,200,300,... up to 1000)? How could we do
that without changing the “for” line in this program? Write a new
program with these changes, and call it 1oop2. cpp.

. Using Program 1.2 (Loop.cpp) as a model, write a program that
prints out a list of all the numbers from zero to 999 and the cube of
each of these numbers. The format of the output should be lines like
this:

0
1
8
27
64

Sw D RO

where the second number in each line is the cube of the first number.
Hint: One way to cube a number in C is simply to multiply it by
itself twice, like this: 2+2+2. Call your program cubes . cpp.

You can use gnuplot to check the program’s results. First, send the
program’s output into a file, like this:

./cubes > cubes.dat

Then start gnuplot and give it the command:

plot "cubes.dat" with lines

The result should look like Figure 1.20.

. Using Program 1.3 (1ine.cpp) as an example, write a program
named curve. cpp that prints values of x between -50 and 50 (in
increments of 1), along with the value of y = 200 + x2/3 for each x
value. (Note that the symbol for division in C is “/”.)

Note that you won’t need the variables slope and yint from Pro-
gram 1.3. You'll also need a slightly different for statement, since
this loop will cover 100 values instead of only 10. You might find it
useful to know that one way to square a number in C is simply to
multiply it by itself, like “x+x".

The program should print the x and y values in two columns, like
this:

-50.000000 1033.333333
-49.000000 1000.333333
-48.000000 968.000000
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1e+09
9e+08
8e+08
7e+08
6e+08
5e+08
4e+08
3e+08
2e+08
1e+08

"cubes.dat"

0
0 100 200 300 400 500 600 700 800 900 1000

Figure 1.20: The output of your cubes
program plotted by gnuplot.
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10.

-47.000000 936.333333
-46.000000 905.333333

You can use gnuplot to check the program’s results. First, send the
program’s output into a file, like this:
./curve > curve.dat

Then start gnuplot and give it the command:

plot "curve.dat" with lines

The result should look like Figure 1.21.

Make a new program named pell.cpp. Start by copying Program
1.4 on Page 46. Then modify the program so that it:

(a) Startswitha = 2andb = 6,and

(b) Instead of adding the preceding two numbers, as Program 1.4
does, add the first number to twice the second number.

When you compile and run your program it should print a sequence
of numbers like 2, 6, 14, 34, 82, .... These are the “companion Pell

1677

numbers'”. They’re related to the Fibonacci numbers, and can be

used to find approximate values of the square root of 2.

1100
1000

' "pa‘rabolz‘a.dat"‘

-50 -40 -30 -20 -10 O 10 20 30 40 50

Figure 1.21: The output of your curve
program plotted by gnuplot.

16 See this Wikipedia article.


https://en.wikipedia.org/wiki/Pell_number
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Writing Pretty Programs

The C programming language gives you a lot of freedom in how you
write your programs. There aren’t any rules about how lines should be
indented, for example, and you can choose to write long statements as
one long line or break them up over multiple lines. Two programs that
do exactly the same thing can look very different. For instance, here’s
another way we could have written Program 1.3 (1ine.cpp):

#include <stdio.h>

int main () { double x; double y; double slope = 2.

double yint = 3.0; int i; x = 0.0;
for ( i=0; 1<10; i++ ) {y = slope * x + yint;
printf ( "$1f %1f\n", x, v ); x = x + 1.0;}}

I think you'll agree that this is harder to read than the earlier version.

Here are four rules for writing pretty programs:

Rule 1: Use Indentation

For making your programs pretty, the most important thing you should
remember is that programs are made out of parts that can hold other
parts inside them. When writing a program we use indentation to make
it clear that some parts are inside of others'”

In a C program, curly brackets tell the computer that something is
contained inside something else. For example, Program 1.3 consists of
a main program that has a for loop nested inside it. The statements
inside the for loop are almost like a little program that the main
program runs ten times:

Figure 1.22: The Cheyenne or Arapaho
woman named Pretty Nose was a war
chief who fought at the Battle of Little
Bighorn. Her grandson, Mark Soldier
Wolf, was a U.S. Marine who fought in
Korea. Pretty Nose was 101 years old
when he returned home, and greeted
him with a war song.

Source: Wikimedia Commons

7 You'll find lots of other tips for
writing pretty programs here:

https:/fwww2.cs.arizona.edu/ mccan-
n/indent_c.html.

#include <stdio.h> {Main Program{A for Loop}The Rest of the Main Program}



https://commons.wikimedia.org/wiki/File:Arapaho_woman_Pretty_Nose,_1879,_restored.jpg
https://www2.cs.arizona.edu/~mccann/indent_c.html
https://www2.cs.arizona.edu/~mccann/indent_c.html
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As you're writing your programs, when you see an opening bracket,
{, start indenting. When you see a closing bracket, }, stop indenting.
If you're in an already-indented section and you see another opening
curly bracket, add more indentation:

ude <stdio.h>

int main () {

double x;
double vy;
double slope = 2.0;
double yint = 3.0;

int i;

Figure 1.23: Curly brackets are also
called “braces”, a word that originally
x = 0.0; meant “arms”, as in “embrace”. The
curly brackets in our programs embrace
the statements they enclose.

for ( i=0; i<10; i++ ) { (Louise Elisabeth Vigée Le Brun,

y = slope * x + yint; Self-portrait with Her Daughter, Julie, c.
| N ! 1789).

pr intf (" $1f %$1f \ n" r X, Y ) ; Source: Wikimedia Commons

X =x + 1.0;

It doesn’t matter how much space you use for indentation. Some
people like to use a tab for each level of indentation. Other people
prefer something “shallower”, maybe only a couple of spaces. Either
way is OK. Just be consistent inside each program you write.

Rule 2: Group Variable Definitions

At this stage in your programming career, I recommend that you
define all variables at the top of your programs, right under the
“int main ()” statement. Later on you'll learn that C++ allows you
to define variables anywhere in a program, and there are advantages to
using that ability, but pure C compilers don’t allow this. If you want
your programs to be as portable as possible, stick to defining variables
at the top for now. This also gives you one handy place to look to see
your variable definitions.



https://commons.wikimedia.org/wiki/File:Elisabeth_Vigée-Lebrun_-_Self-Portrait_with_Her_Daughter,_Julie_-_WGA25083.jpg
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Rule 3: Use Comments

“Comments” are text that you put into your program to explain what
the program does, tell people who wrote the program, give advice
about how to run the program, warn about copyrights and patents,
or anything else you want to say. Comments are just ignored by the
compiler, so they don’t affect the way your program runs. As far as the
compiler is concerned, the comment isn’t even there.

The g++ compiler lets you add comments to your program in a couple
of ways. Here’s one of them:

#include <stdio.h>
int main() {
// This program was written by Bryan Wright.
int i;
for (1 =0 ; 1 < 10 ; i++) { // Start loop.
printf ("loop number %d\n", 1i);

Almost any text between a double slash (//) and the end of the line
is a comment. I say “almost” only because this doesn’t work inside
quotes, so that:

printf ("Hello World! // and some other stuff");
would print out “Hello World! //and some other stuff”.

The second way to add comments is an older one that will work in
any compiler that understands C or C++, and it has the advantage
that comments can extend over multiple lines. Look at the following
example:

#include <stdio.h>
int main() {
int i;
/* This program was written by Bryan Wright.
Copyright 2015.
All rights reserved.
Seriously. I'll call my lawyer.
Don't mess with me. */
for (i1 =0 ; 1 < 10 ; 1i++) {
printf ("loop number %d\n", 1i);

Figure 1.24: Source: Wikimedia Commons



https://commons.wikimedia.org/wiki/File:Visitors'_comments,_Kiasma,_Museet_for_Nutidskonst,_Helsingfors.jpg

Any text between /* and */ is a comment. One caveat is that you can’t
have a comment inside another comment, so something like:

/% Some words /x and some more words */and the end =*/

would cause the compiler to complain, and refuse to compile your
program.

Comments are a great way to make your program more readable, but

they’re also very useful for temporarily removing parts of your program.

If the program contains a line that we want to keep, but temporarily
disable, we can just puta “//” at the beginning of the line. You'll find
that this can help you find problems in your programs. If something
isn’t working right, you can selectively turn off parts of the program to
help you find the problem.

Rule 4: Look Around You*®

It’s possible that someday you'll join a research group or a business
where other people have already written lots of programs. When
you start contributing your own programs, it's important that your
programming style matches the stylistic conventions that are already in
use. If everybody uses tabs for indentation, you should probably do so,
too. This is especially important if you start modifying programs that

other people have written.
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¥ Not to be confused with the BBC
series of the same name, which you
should watch if at all possible:

https:/fwww.youtube.com/watch?v=gal6kBVyuoo

Figure 1.25: Now you’re programming
with style!

(Fred Astaire and his sister Adele cutting
a rug in 1921.)

Source: Wikimedia Commons


https://www.youtube.com/watch?v=gaI6kBVyu00
https://commons.wikimedia.org/wiki/File:AdeleFred1921.jpg

2. Random Numbers and

Simulations

2.1. Introduction

Some of the world’s most powerful computers and most sophisticated
software exist for the purpose of telling you whether you need to
carry an umbrella tomorrow. Weather predictions demand extreme
computing power. These predictions are made by simulating the earth’s
atmosphere. They begin with current weather conditions (temperature,
pressure, humidity, wind speed) at many locations around the world
and at different heights within the atmosphere. Then they approximate
the atmosphere by pretending it’s made of millions of discrete “cells”,
and the behavior of each of these cells is simulated as it changes over
time. Simulations like this allow us to find approximate answers to
problems that would be difficult or impossible to solve exactly.

Computer simulations often make use of random numbers. If you've
ever played a video game (or watched a movie with computer-generated
special effects) you've seen images made with the help of random
numbers. The trees in a video game forest probably aren’t drawn by
hand. They’re generated from a recipe that uses random numbers to
decide where to put the branches and leaves, how tall the tree is, and
its location in the forest.

Simulations can let us take random numbers, combine them with a few
simple rules that describe how neighboring components interact with
each other, and turn that into a prediction about the complex behavior
of a large system.

In this chapter we’ll learn how to create programs that use random
numbers to simulate processes in the real world.

A weather forecast.
Source: NOAA

Computer-generated trees.

Source: Wikimedia Commons

A computer simulation of twisted
magnetic fields in the Sun’s
atmosphere.

Source: Tim Sandstrom, NASA/Ames


http://www.noaa.gov
https://commons.wikimedia.org/wiki/File:Dragon_trees.jpg
http://www.nas.nasa.gov/SC14/demos/demo21.html
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2.2. The Code Development Dance

In the last chapter we saw how to create programs using an editor and
a compiler. The process of creating a program is usually a loop, like
the loops we created inside our programs. We start out by writing
some statements in the C language and saving them into a file, then we

compile the file and run the resulting binary version of the program.

If the program doesn’t do what we want it to do, we go back and edit
some more, then try again until we have a working program. I call this
process “The Code-Development Dance” (see Figure 2.1).

Edit the program. |

o

o Compile the program. |
2. gt+ -Wall -o hello hello.cpp

. Run the program. |
3. ./hello
Repeat! I

1. nano hello.cpp

No matter how far you go in programming, you'll still follow this same
process while developing programs.

In the exercises that follow, we’ll be working on two new programs. In
each case, we'll start out with a simple version of the program, then
make improvements. Each time we change something, we’ll go through
the process of editing our program, compiling it, and running it. Refer
back to Figure 2.1 if you need help.

2.3. Using the rand Function

Take a look at Program 2.1, named rand. cpp. This program is similar
to the loop programs we’ve written previously, but it introduces two
new things. First, at the top of the program there’s an extra #include
statement. Second, the program makes use of a new function, called

rand.

Dance in the Moonbeam by Theodor
Kittelsen.

Source: Wikimedia Commons

Figure 2.1: The Code-Development
Dance

Programmers often refer to the instruc-
tions in a computer program as “code”.
The C language statements you've
written are called “source code” and the
binary files created by the compiler are
called “binary code”


https://commons.wikimedia.org/wiki/File:Dans_i_Maaneglans.jpg
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Program 2.1: rand.cpp (Version 1)

#include <stdio.h>
#include <stdlib.h>
int main () {
int 1i;
for ( i=0; 1i<10; i++ ) {
printf ( "%d\n", rand() );

Exercise 7: Random Numbers

Write and compile Program 2.1, using nano and g++, then
run it to see what it does.

You should find that the program generates a list of seem-
ingly random numbers. That’s the whole purpose of the
rand function. Each time your program uses rand, it gives
you a different number.

Try running your program several times. Do you notice
anything surprising?

Before we can use rand, we need to add the extra #include statement
at the top of the program. This statement tells the C compiler some
necessary information about the rand function. The first #include
statement, which we’ve used in our earlier programs, provides the
compiler with information it needs in order to use the print £ function.
We'll learn more about these #include statements in later chapters.

2.4. Making it Better

If you run Program 2.1 several times, you should find that, although
the numbers look random, you get the same set of numbers each time
you run the program. That doesn’t seem very random, does it? Let’s
try to do better. Take a look at Program 2.2.

In Program 2.2 we’ve added two more lines. Before the “for” loop
there’s now a cryptic-looking statement involving two new functions,
srand and time. Then, at the top, we've added yet another #include
statement.

Notice that rand is a function, like
printf, butit’s a function that takes
no arguments. It just generates random
numbers out of nothing.

Here’s a useful tip: If you want to run
your program again without having

to type “./rand”, you can use the up
arrow key on the keyboard to bring
back commands you’ve used before.
Just keep pressing the up arrow until
you see the command that you want to
re-do, then press enter to repeat that
command. You can also use the left
and right arrow keys to move back and
forth in what you've typed and make
changes before you press enter.
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Program 2.2: rand.cpp (Version 2)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int 1i;

srand (time (NULL) ) ;

for ( i=0; 1<10; i++ ) {

printf ( "$d\n", rand() );

Exercise 8: More Random!

What do these changes do? Let’s try it. Remember that you
can modify your program by typing “nano rand.cpp”,
then make your changes, and press Ctrl-X to save your
changes and exit nano.

Edit your rand. cpp program, compile it again and then try
running it several times. (Wait at least one second between
tries.) You should now see that you get a different set of
numbers each time you run the program. That’s great, but
how did it happen?

2.5. Pseudo-Random Numbers

Let’s think about what we mean by “random”. If we roll a fair die, it
should be impossible to predict which number will come up. Even
if we roll the die many times, the outcome of the next roll should be
unpredictable and independent of all the previous rolls. If the numbers
are really random, it should be impossible to predict what the next
number will be.

It’s not possible to generate truly random numbers using only a com-

Rolling a fair six-sided die will give you
a truly random number between 1 and
and we can expect that the same set of mathematical operations will 6, inclusive.

puter program. A function like rand can ultimately only do math,
always give the same answer. The rand function starts with an initial Souree Wi Conmons
number (called a “seed”) and then just does some very roundabout

calculations that give us another number that has no obvious relation

to the preceding number. Thereafter, each time we use rand in our

program it builds on the number it had before.


https://commons.wikimedia.org/wiki/File:Seven_5732852.jpg

RANDOM NUMBERS AND SIMULATIONS 59

Our first program gave us a chain of seemingly random numbers, but
because the seed gets set to the same value each time we start the
program, the list of numbers was always the same. The second version
of the program sets the seed to a different value each time we run the
program. It does this by using the computer’s clock. Whenever we
run Program 2.2 the seed is set to the current time, expressed as the
number of seconds that have elapsed since January 1, 1970." That’s
what “srand (time (NULL) ) ” does. The srand function sets the seed
used by rand. The expression “time (NULL) ” gives us the time. The
extra #include statement tells the compiler what it needs to know in
order to use the t ime function.

Even with this change, it's important to know that if your program
generates millions or billions of numbers, rand will eventually start
repeating itself. (See Figure 2.2.)

Functions like rand are called “pseudo-random number generators”
(PRNGS). The numbers they generate aren’t really random, but they’re
good enough for many purposes. Some computers now include a
device called a “true random number generator” (TRNG). These devices
generate random numbers by observing real physical processes, such
as thermal noise. They effectively roll real miniature dice to generate
their random numbers. TRNGs are becoming more important because
good random numbers are essential to cryptography.

2.6. Random Numbers Between Zero and One

You've probably noticed that the numbers generated by rand are large
integers. That’s fine for some things, but programmers often want to
generate random real numbers that fall in the range between zero and
one (for reasons that will soon become apparent). How can we do this
using rand? Take a look at Program 2.3.

The rand function generates integers between zero and a large number
called RAND_MAX. RAND_MAX is one of the things defined when we say
#include < stdlib.h >.> If you're curious, you could print out the
value of RAND_MAX with a statement like:

printf( "%$d\n", RAND_MAX ).
Program 2.3 introduces a new variable, x. We’ll want x to be a random

number between zero and one, so this variable can’t be an integer.
Instead, we’ll make it a double.3 We calculate the value of x by

* This is why I told you to wait at least
one second between tries. Otherwise

you might run the program twice with
the same seed, and get the same set of
numbers.

Figure 2.2: These two images show the
output of a bad random number
generator (top) and a better generator
(bottom). The lines in the top image
indicate that the generator soon starts
repeating the same set of numbers. The
generator used for the bottom image
goes much longer without repeating.

2 The numerical value of RAND_MAX
may vary, depending on what version
of the C compiler you use.

3 See Chapter 1.
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Program 2.3: rand.cpp (Version 3)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
int i;
double x;
srand (time (NULL) ) ;
for ( i=0; 1i<10; i++ ) {
x = rand()/ (1.0 + RAND_ MAX);
printf ( "%$1f\n", x );

getting a random integer from rand and dividing that number by
1.0 + RAND_MAX. Since the numbers generated by rand are always
between zero and RAND_MAX, x should always be between zero and
something slightly less than one*.

Note that it’s important to say 1.0 + RAND_MAX here instead of
1 + RAND_MAX. To understand why, we have to think about the way C
does arithmetic with integers. RAND_MAX and the numbers generated
by the rand function are integers.

When C divides one integer by another, it assumes that you want the
result to be an integer, too. If the result were equal to 0.7, the computer
would drop everything after the decimal point and just leave zero. Since
RAND_MAX is an integer, C would see the expression 1 + RAND_MAX

as an integer, and rand () / (1 + RAND_MAX) would always be zero.

By just saying 1.0 instead of 1, we give C a clue that we want to keep
decimal places in our results.

Exercise 9: Making Real Numbers

Try modifying your program so that it looks like Program
2.3. Compile it, run it, and look at the results. You should
now see a list of numbers that are all between o and 1.

4+ Why don’t we want to go all the way
to one? We'll see the benefits of that in
a later chapter. For now, don’t worry
too much about it. Since RAND_MAX is a
very large number, the biggest numbers
we generate will be very close to one
(less than a billionth smaller).
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2.7. Random Integers Between Some Limits
Sometimes we want to generate a random integer between some mini-
mum and maximum values. For example, maybe we want to simulate
rolling a six-sided die, so we want to generate numbers between one
and six.

We can do this by starting with a random real number between zero
and one, as described in the preceding section. For example, we might
have a double variable named x in our program, and a line that says:

X = rand()/ (1.0 + RAND_MAX) ;

That would give x a random value between o and 0.9999999...5. We
could multiply this by six to get a number between o and 5.9999999. . ..
Let’s create a new double variable named y that does that:

v =6 % x;

C provides us with a way of chopping the decimal part off of a number.
All we need to do is put (int) in front of the value. Let’s modify our
program so that we have an integer variable named i instead of the
double variable named y:

i = (int) ( 6 » x );

Notice that we’ve put parentheses around 6 * x so that (int) ap-
plies to the whole thing. Otherwise, it would just apply to 6. Be-
fore the (int) is applied, we have a random number between o and
5.9999999. ... The (int) chops off the decimals and leaves us with a
number between o and 5.

If our goal is to generate a number between 1 and 6, we just need to do
one more thing: add 1 to the value of i.

i=1+ (int)( 6 * x );

What if we wanted numbers between 2 and 7 instead of 1 and 6? Then
we’d just need to change one thing:

i =2 + (int) ( 6 * X );

Notice that the multiplier, 6, didn’t change. This is because the our new
range still includes six possible values. Now they're 2, 3, 4, 5, 6, and 7.

In general, if we want integers between 1,,;, and 1y,,x, the number of
values will be 70y — nyin + 1.

5 It never quite gets to 1.0 because the
maximum value returned by rand is

RAND_MAX and we're dividing by 1.0
+ RAND_MAX.

Dice come in many shapes. Often
they’re shaped like one of the five
platonic solids. These are the only
regular convex polyhedra that are
possible in three dimensions. In four
dimensions there are six such shapes,
but in five and higher dimensions, there
are only three. See this excellent video
by Carlo Sequin for some fun with
higher-dimensional “polytopes”:

https:/ /www.youtube.com/watch?v=2s4TqVAbfz4.

Source: Wikimedia Commons


https://en.wikipedia.org/wiki/Platonic_solid
https://en.wikipedia.org/wiki/Polytope
https://www.youtube.com/watch?v=2s4TqVAbfz4
https://commons.wikimedia.org/wiki/File:Platonic_Solids_Transparent.svg
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So, if we want to get a random integer between min and max we can
do it like this:

nvals = max - min + 1;

i = min + (int) ( nvals * x );

Program 2.4 uses this strategy to generate a random number between 1
and 6.

Program 2.4: diceroll.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
double x;
int 1i;
int min = 1;
int max = 6;

int nvals;

nvals = max - min + 1;

srand (time (NULL) ) ;

x = rand()/ (1.0 + RAND_MAX) ;

min + (int) (nvals*x );

-
Il

printf ( "&d\n", 1 );

This program could be modified to generate a random integer in any
range you want, just by changing the values of min and max.

Exercise 10: Gonna Roll The Bones

Write a program based on Program 2.4 that rolls fwo six-
sided dice and prints (1) the number on each die and (2) the
sum of their two numbers. For example, if both dice roll six,
the sum would be twelve. Run the program several times to
see if you can roll a twelve!

Claus Meyer, 1886, Die Wiirfelspieler.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:ClausMeyer-Bild_2564.jpg
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2.8. Writing a Simulation Program

Imagine a rock in a gutter. In this place it rains once per day, and every
time it rains the rock slides some random distance, Ax, down the gutter.
Assume Ax is always between zero and 100 cm. Let’s try to simulate
this physical system with a computer program, and see how the rock
behaves.

Program 2.5: gutter.cpp (Version 1)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {
int i;
double delta_x;
double x;
srand (time (NULL) ) ;
x = 0.0;
for ( i=0; 1i<10; 1i++ ) {

For more on stones in gutters, see the
excellent short story “Fall of Pebble-
Stones” by R.A. Lafferty.

Figure 2.3: A rock, sliding along a gutter.

delta_x = 100.0 * rand()/ (1.0 + RAND_MAX) ;

X = X + delta_x;
printf ( "$1f\n", x );

You'll notice that Program 2.5 is very similar to Program 2.3. The main
differences are that (1) we set the variable x equal to 0.0 before starting
our loop, and (2) each time around the loop we add a random amount
to x. Also, instead of x as our random number, we’ve renamed this
variable delta_x.

As you saw in Chapter 1, when you
see an expression like x = x+dina C
program it means “Set the new value
of x equal to the old value plus d”.
Remember that this is a little different
from what you may be used to in
algebra. It might help if you keep in
mind that, in C, the statement x =

1 means “assign the value 1 to the
variable x”. In algebra, on the other
hand, the same statement would mean
“I promise you that x is equal to 1”.
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The variable x stores the rock’s current position, in centimeters. It starts
outat x = 0.0. Each time around the loop represents one rainstorm,
which washes the rock a random distance, Ax, down the gutter. We
want Ax to be a number between zero and 100 centimeters, so we
calculate it by taking a random number between zero and one (as we
did in Program 2.3) and multiplying that by 100. The new value of x
after the rainstorm is x + Ax. At the bottom of the loop we print out
the new value of x. The program simulates the movement of a rock as
it slides down the gutter over the course of ten days in this very rainy
location.

Exercise 11: First Gutter Program

Try writing Program 2.5, compiling it, and running it. Do
the values it prints out make sense? Run it several times
(waiting at least one second between tries). You should get
different, but still reasonable, results each time.

Each time you run it, the last number printed by the program
is the stone’s position at the end of day number ten. Do
these numbers seem reasonable? Keep in mind that if the
stone traveled exactly 50 cm each day (halfway between zero
and 100 cm), it would end up 500 cm from the origin at the
end of day ten.

But what about...?

In Program 2.5 we named one of the variables delta_x. What
kinds of names are allowed for variables in the C language?

Allowed Characters:

Variable names can only contain letters (upper- or lower-case),

“"o

numbers and the underscore character, “_”. Names must begin

with a letter or an underscore (not a number).

It's good practice to always use a letter as the first character in
variable names. Leading or trailing underscores are sometimes
used internally by the compiler. If you get into the habit of using
an underscore at the beginning of variable names, you may run
into confusion later in your programming career.

Remember that C is case-sensitive, so that a variable named
Velocity, with an upper-case “v”, is completeley different from
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a variable named velocity. Also, note in particular that spaces
aren’t allowed in variable names.

Maximum Length:

Different versions of the C compiler have different limits on the
maximum length of variable names. The compiler we're using, g++,
has no limit. In principle, you could give a variable a name that
was thousands of letters long, although this would obviously be
awkward to type! Some C compilers limit variable names to 2,048
characters, and others require that at least the first 31 characters
of each name be different from any other name in your program.
With all of that in mind, it would be a good idea to limit yourself
to variable names that are 31 characters or fewer.

It’s good practice to give your variables clear, concise names like
velocity, width, temperature, et cetera. This helps you re-
member what they’re for, and makes it easier for other people to
understand your program.

Reserved Words:

Some names are simply not allowed. For one thing, you can’t give
your variable a name that’s the same as any of the words that make
up the C language. You couldn’t, for example, name a variable
int, double or for. There are 32 words of this type. For the
record, they are:

auto break case char const continue default do double
else enum extern float for goto if int long register return
short signed sizeof static struct switch typedef union un-
signed void volatile while

You also can’t give your variable the same name as any function
your program knows about. It wouldn’t be allowable to name
a variable printf, for example, in any of the programs we’ve
written so far.

(Note that I'm being careful to say “any function your program
knows about”. You’ll understand what I mean later, when we talk
about libraries of functions.)

65
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2.9. Some New Arithmetic Operators

The C compiler understands many arithmetic operators. Besides +, —, *,
and / there are several “combination” operators that provide shortcuts
for doing common operations. Figure 2.4 shows some of these.

If we say, for example, d += 100, we mean “increment the value of d
by 100”. It’s exactly equivalent to writing d = d + 100, but a little

easier to type. I find that it also helps prevent typing errors, especially The += operator is similar to the ++ op-
erator we’ve been using in “for” loops.
The difference is that ++ increments the
value by 1, but += can increment by any
amount.

with long variable names. Consider the following for example:

somelongname = somelongnome + 10;

Did you catch the typo? If I'd written somelongname += 10 instead,
I'd have one less opportunity to misspell the variable name.

Arithmetic Operators:

C has many arithmetic operators. Here are some of them:

+ a+b Addition Sc_>me operators let you do
_ arithmetic while assigning
- a-b  Subtraction a value to a variable.
* a*b Multiplication
/- alb Division @
Operator Usage Equivalent to
+= a+=b a=atb
-= a-=>b a=a-b
*= a*=b a=a'b
/= al=b a=alb

— decrement a++ — a = a+l
++ and -- do this too: |ﬁ> decrement a-- — a = a-1

Figure 2.4: Some of C’s arithmetic
operators.
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2.10. Focusing on the Important Results

What if we're only interested in the total distance a stone has travelled
at the end of ten days? We can modify our program, as shown in
Program 2.6, so that instead of printing each new position, it only
prints out the final position. As you can see, this just requires us to
move the print f statement outside of the “for” loop.

Note that Program 2.6 also takes advantage of the += operator to make
one of the statements a little shorter. Remember that x += delta_x
does exactly the same thing as x = x + delta_x.

Program 2.6: gutter.cpp (Version 2)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {
int i;
double delta_x;
double x;
srand (time (NULL) ) ;
x = 0.0;
for ( i=0; 1i<10; i++ ) {
delta_x = 100.0 * rand()/ (1.0 + RAND_MAX) ;
x += delta_x;
}
printf ( "$1f\n", x );

Exercise 12: Let’s Race!

Modify your gutter program so that it looks like Program
2.6. Compile it, and then run it a few times. Each time you
run it, you should see a single number, and you should get a
different number each time (assuming you wait at least one
second between tries, as before). Try racing your stone with
your neighbors!

2.11. Tips for Using Loops

Almost all of the programs we write will use loops. Here are a few tips
that will help keep you out of trouble when using them:
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¢ Count starting with zero, not one. You could write a “for” loop
like this to count from 1 to ten:

for ( i=1; i<11l; i++ )

but you'll find later that it’s more natural in C to number items
starting with zero instead of one. So, in the programs we’ve been
writing we loop ten times by writing a “for” statement like this,
instead:

for ( i=0; 1i<10; i++ )

Doing it this way will make things much easier for you in the future.

* Don’t change the value of your counter variable inside the loop.
For example, what would this do?:

#include <stdio.h>
int main() {
int i;
for (i =0 ; 1 < 10 ; i++) {
i = 100%i;

printf ("loop number %d\n", 1i);

}
(Note the line that reads i = 100x1i.)

If you tried it, you'd see that the program only prints out two
numbers, instead of the ten numbers you might have expected. Why
is this? It's because you’'ve changed the value of i inside the loop.

The first time around the loop, the program prints “0”, and the
second time around the loop it prints “100”. So far, so good. But
then the program stops.

This happens because the value of i is now 100, so when we get
back to the top of the loop, the “for” statement sees that “i<10” is

no longer true, and the loop stops.® ¢ See the discussion about how “for”
loops work in Chapter 1.

¢ Finally, don’t assume that your counter variable has a useful value
any place outside its loop. After the loop is finished, does “1i”
contain the number of times around the loop, or something more or
less? (Or even something completely different?) The answer can get
complicated. It’s better to assume that you can only trust the value

of the counter variable when you're inside its loop.



RANDOM NUMBERS AND SIMULATIONS 69

2.12. Nested Loops

Let’s get back to our gutter program now. Imagine that we draw a
starting line and arrange a bunch of our rocks behind it, ready to
race each other down the gutter like racehorses in their starting gates.
After many rainstorms, the rocks would all be at different locations
somewhere lower down the gutter.

They’d be at different locations because each rock slides a different
random amount during each rainstorm. A few rocks will get lucky and
travel a long way. A few will travel unusually short distances. Most of
the rocks will end up somewhere between these extremes, mounded
up around some average distance.

Does the output of our program match this prediction? If we wanted
something really boring to do, we could run Program 2.6 once for each
rock, write down the results, and then graph them. Computers can
save us that effort, though, and they’re less likely to make the mistakes
we might make while doing the work ourselves.

We can modify our program so that it effectively runs the simulation

many times. To do this, we’ll need to add another loop. Take a look at The inner loop of Program 2.7 is nested

Program 2.7. inside the outer loop, like these Russian
Matryoshka dolls.

. Source: Wikimedia Commons
Program 2.7: gutter.cpp (Version 3)

#include <stdio.h>
#include <stdlib.h> Changes from
#include <time.h> Program 2.6 are

int main () { shown in bold.

int i;

int j;

double delta_x;

double x;
srand (time (NULL) ) ;

for ( j=0; 3j<10000; j++ ) {

¢

x = 0.0;

for ( 1i=0; i<10; i++ ) {
Nested delta_x = 100.0 % rand()/ (1.0 + RAND_MAX);
Loops x += delta_x;

}
printf ("$1f %d\n", x, 3J);



https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg
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The new loop wraps around the loop that was already there. (We say
that the old loop is “nested” inside the new loop.) Each time we go
around the new loop we’ll simulate another stone washing down the
gutter for ten days. The variable i counts the number of rainstorms and
j counts the number of stones. The program simulates 10,000 stones!
That would be a lot of work by hand, but it’s trivial for a modern
computer.

The program prints out two numbers” for each stone: The total distance
the stone travels, and the number of the stone’s “starting gate”. We
number these gates from zero to 9,999, and use these numbers to
keep track of which stone is which. We use the new variable j to
represent the starting gate number, and this is the counter variable for
the newly-introduced loop.

Each stone will start at the same place, so every time the program
starts a new stone, it resets x (which represents the stone’s position) to
zero. When a stone has been through ten rainstorms, its final position
and starting gate number are printed out, and then the program starts
working on another stone.

Exercise 13: Scattering Stones

Modify your “gutter” program so that it looks like Program
2.7. Compile it, but don’t run it like you've run the preceding
programs. Instead, use the trick we saw in Chapter 1 that
lets you send the program’s output into a file, like this:

./gutter > gutter.dat

Now plot your results using gnuplot. Type gnuplot, then enter
the following commands (can you guess what the xrange
command does?):

set xrange [0:]
plot "gutter.dat"

You should see something like Figure 2.5. The horizontal
axis shows how far each stone traveled. The vertical axis
shows which gate the stone started from. As you can see, a
“typical” stone travels about 500 cm, but some stones only
make it to about 200 cm, and some go over 8oo cm.

Does Figure 2.5 look the way we’d expect it to? Let’s think about it.
During each rainstorm, a stone travels a random distance between

7 Notice that our print f statement
here has two placeholders, “$1f %d”,
one for the stone’s final position, which
is a number containing decimal places,
and one for the stone’s starting gate,
which is an integer.



RANDOM NUMBERS AND SIMULATIONS 71

zero and 100 centimeters. We’d expect the average distance to be 50
centimeters. So, after ten rainstorms, we’d expect a typical stone would
travel 50 x 10 = 500 centimeters. This is the position of the densest part
of Figure 2.5. A maximally sticky stone wouldn’t move at all (travelling
zero centimeters), and a maximally slippery stone would zip through
a distance of 100 x 10 = 1,000 centimeters. We’'d expect our graph
to range from zero to 1,000 centimeters, with a peak at around 500
centimeters, and that’s indeed what it shows.

10000 T

8000 |

8000

7000 -

€000

5000

4000 +

Starting Gate Number

0 100 200 300 400 500 600 700 800 900
Tetal Distance after 10 Storms (cm)

But what about...?

Sometimes, you'll make a mistake that causes your program to
keep looping forever. What can you do to stop this?

You can tell the program to stop running by pressing Ctrl-C (hold
down the Ctrl key while pressing the “C” key).

Figure 2.5: A plot of the results from our
latest version of the “gutter” program.

Stopping a runaway program.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Arbuckle_Bros._(3093006195).jpg?fastcci_from=342503&c1=342503&d1=15&s=200&a=list
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2.13. Conclusion

Imagine that we continued to extend and improve our “gutter” program.
We could add the effects of friction, rainstorms of random duration
and strength, the slope of the gutter, and so forth. Eventually, we might
have a program that could realistically simulate erosion, an avalanche
or a mudslide.

For example, we could modify our program so that the range of random
distances was determined by the duration of the rainstorm, instead
of always being zero to 100 cm. Then we’d generate rainstorms of
random durations and see what happens. By adding more and more
refinements, we can make our simulation’s results similar enough to
reality to meet our needs.

Simulation programs like this allow us to handle large, complex prob-
lems by breaking them up into simple, understandable pieces. They
represent an important computing technique that you can apply to
many problems.

Erosion near Bern, Switzerland

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Erosion_Off-site_Wege013.jpg
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Practice Problems

1. As described in Section 2.6, write a program that prints out the value

of RAND_MAX. Call your program printrand.cpp.

. Write a program named epoch. cpp that prints the following:

Seconds since 1970:

Years since 1970:

Where the ...
years since 1970, based on the value returned by the t ime function,

is replaced by the current number of seconds and

as described in Section 2.5. Check your program by running it sev-
eral times to make sure that the number of seconds changes as time
passes.

Hint 1: The statement “t = time (NULL) ;” will store the number
of seconds in the variable t.

“Time keeps on slippin, slippin, slippin,
into the future....” Steve Miller in 1977.

Source: Wikimedia Commons

Hint 2: Assume that the number of seconds in a yearis 60x60+24%365.25.

Hint 3: You'll probably want to use $1£f as the placeholder when
printing the year. Otherwise, g++ might give you warnings or errors.

. Modify Program 2.4 so that it generates either a zero or a one. Then
modify your new program so that it uses a loop to do this ten times.
The resulting program does the equivalent of ten coin flips, with
zero or one representing heads or tails. Call your new program
coinflip.cpp.

. Modify Program 2.4 so that it prints out two random digits between
zero and nine. Make the program write the digits side-by-side, like
67 or 03. Call your new program percentile.cpp. If you've ever
played a roll-playing game like Dungeons and Dragons you've used
ten- or twenty-sided dice to generate pairs of digits like this. In these
games such a pair of dice are called percentile dice. The two digits
they give you are interpreted as a percentage between 00% and 99%.

. Each line printed by Program 2.2 shows a single random integer.
Using that program as an example, write a program that prints
out two random integers on each line, separated by a space. Make
the program print 10,000 pairs of integers. Let’s call this program
tworand. cpp. Use the trick you learned in Chapter 1 to send the
program’s output into a file named tworand.dat:

./tworand > tworand.dat

Check the program’s output by using gnuplot to plot the data in this
file. Start gnuplot and give it the command:

plot "tworand.dat"

A 20-sided die shaped like an
icosahedron. Two dice like this were
originally used in Dungeons and
Dragons for rolling percentiles. Later,
they were replaced by two ten-sided
dice. In this author’s opinion, ten-sided
dice are an abomination, since they
aren’t one of the five platonic solids!

5 e

0 5e+08

1e+09

Figure 2.6: The output of the tworand
program, plotted by gnuplot.


https://commons.wikimedia.org/wiki/File:Steve_Miller_in_1977.JPG

74

PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

This causes gnuplot to use the two numbers on each line as the x
and y coordinates of a point. You should see a graph that looks like
Figure 2.6.

The tworand program generates a set of random points in the x, y
plane. As we’ll see later (in Chapter 10) this can be very useful.

Our gutter programs have a lot of numbers written into them: 10
days, 100 cm, 10,000 trials. If we want to change to, say, 1,000 trials,
we need to find all of the places in the program where we currently
assume a value of 10,000, and change them.

It would be better if these numbers were more easily changed. Can
you rewrite Program 2.7 so that the number of days, the maximum
“slide” in cm, and the number of trials are given by variables defined
near the top of the program?

For example:

int ndays = 10;
double maxslide = 100.0; // in cm.
int ntrials = 1000;

Using a nested pair of loops, as described in Section 2.12, write a
program named grid.cpp that prints out the grid shown below:

4
4
4

4

Sw DO
DN

[ ]
[ ]
[ ]
[ ]
[ ]

4

Hint 1: Remember that you can leave off \n if you want printf to
keep printing things on the same line.

Hint 2: It's perfectly OK to use printf to print nothing but a
newline, like this: printf ("\n");

. Make a new program named bingo . cpp that is a modified version

of Program 2.4. The new program should be different from Program
2.4 in two ways: (1) The numbers it prints should be between 1 and
75, inclusive, and (2) instead of printing just one random number, it
should use a pair of nested loops® to print a grid of random numbers,
like a Bingo card. You could use this program to generate Bingo
cards! See the two hints in Problem 7 for advice about how to print
a nice-looking grid. Also, don’t try to make a “Free Space” in the
middle: Just put a number there, like all the other squares.

Imagine you have twelve 6-sided dice. Now roll all the dice at once
and add up the numbers they show. This should give you a sum

A grid like the one you produce in
Problem 7 might be used to identify the
squares on a Bingo card.

Source: publicdomainpictures.net

8See Program 2.7 for an example of
nested loops.


https://www.publicdomainpictures.net/en/view-image.php?image=268252&picture=one-bingo-card
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between 12 and 72. Write a program named 12dice. cpp that rolls
twelve dice and prints their sum. Have the program repeat this
10,000 times. Run the program like this to send its output into a file
named 12dice.dat:

./12dice > 12dice.dat

Now start gnuplot and give it the command plot "12dice.dat".

You should see a graph like Figure 2.7. Notice that the numbers
tend to cluster around a value of 42. You might expect this, since
the average value for rolling a single die is (6 +1)/2 = 3.5 and
12 x 3.5 = 42.

Hint: Use a variable named sum to hold the sum of the 12 dice. Each
time you start rolling the dice, remember to set sum to zero at the
beginning. Then just add the value of each die to sum until you've
added all twelve numbers. Print sum, then go on to the next roll.

Sum of Dice

20 . . 4 . . . . . L
0.0 1.0k 2.0k 3.0k 4.0k 5.0k 6.0k 7.0k 8.0k 9.0k 10.0k
Roll Number

Figure 2.7: The sum of twelve dice,
repeated 10,000 times. They cluster
toward the center due to something
mathematicians call the Central Limit
Theorem. We'll talk more about this in
Chapter 7.


https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem




3. Writing Flexible Programs

3.1. Introduction

The programs we’ve written so far have have all been designed to do one
predetermined thing. If you wanted to change the behavior of one of
these programs, you'd need to edit it and re-compile it. If you had to do
this often, it would be rather inconvenient, and if you were a software
vendor you almost certainly wouldn’t ask your customers to edit and
re-compile your program every time they needed to change a setting.
(A vendor might not even want to give customers the source code for
the program. Having the source code would allow the customers, or
other vendors, to write their own programs, eliminating demand for
your product!)

In this chapter, we’ll see how you can write flexible programs that
behave differently depending on input from the user.

3.2. Reading Input from the User

C provides a function called scanf that can read information typed
by the person running your program. The scanf function causes your
program to pause until the user has entered some information. After
the information has been supplied, it’s put into variables for later use,
as illustrated in Figure 3.1.

Take a look at Program 3.1. This is a pretty useless program, but it
illustrates how scanf works. When the program is run, it asks the
user to enter a number”’, and then just tells the user what number was
entered.

As you can see, the scanf function looks a lot like print f£. The biggest
difference is the ampersand (“&”) in front of the variable i. For now,

In some situations, recompiling the
program to change its settings isn’t an
option.

Source: Wikimedia Commons, Wikimedia Commions

! Remember that print f uses %d for
int variables and %1 £ for double
variables. You'll see that scanf does
the same.


https://commons.wikimedia.org/wiki/File:Cat_scan.jpg
https://commons.wikimedia.org/wiki/File:Defense.gov_News_Photo_110426-N-0569K-005_-_Seaman_Nathalie_G._Sanchez_operates_an_advanced_combat_direction_system_console_in_the_commanding_officer_s_tactical_plot_room_aboard_the_aircraft.jpg
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Figure 3.1: The scanf function acts like
a scribe. It takes the information you

give it and puts that information into

variables in your program. We can only
speculate about its internal

commentary...

Source:Die Gartenlaube (1875), Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Die_Gartenlaube_(1875)_b_213.jpg

Program 3.1: reader.cpp

#include <stdio.h>

int main () {
int 1i;
printf ("Enter an integer: ");

scanf ("%d", &i);

printf ("The number you entered was %d\n", 1);

you don’t need to understand why this ampersand is there, but you
need to use it whenever scanf reads a number. We'll come back to it
later and explain why.

Exercise 14: Using Scanf

Using nano and g++, create and compile Program 3.1. Be
extra careful not to leave out the ampersand! Try running the
program several times, giving it integers as input. Note that
you'll need to press “Enter” after you've typed the number.
Does the program work as expected?

What happens if you enter spaces or tabs before or after the
number? Does it make any difference?

Try giving the program a number with a decimal, like “1.5”.
What happens? What if you type extra text after the number,
like “5 and other things”?

What happens if you type a letter as the first character?

You can think of scanf as the opposite of printf. The printf
function writes things, and the scanf function reads things. The “f”
in both cases stands for “formatted”, and both functions take a “format
string” as their first argument. We’ve learned that the format string
tells print £ how to write its output. In the case of scanf, the format
string tells the function what it should expect its input to look like.

scanft reads whatever the user types, then sorts it out and puts it into
one or more variables. The format string we give scanf tells it what

kind of input to expect, and how to sort it into the variables we specify.

In Program 3.1 we're only reading data into one variable. If we wanted
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Refer to Chapter 1 if you don’t re-
member how to create and compile a
program.

15

scanf scans the text you type, looking
for numbers (or other things) in a given
format.

Source:Die Gartenlaube (1875), OpenClipart.org


https://openclipart.org/detail/208615/rampaging-robot
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to read the values of more variables, we could either add more scanf
statements to the program, or we could use a format string like the one
shown at the top of Figure 3.1, with more than one placeholder in it:

scanf ( "%d %1f", &age, &shoesize );

The number of placeholders in the format string must match the number
of variables we give scanft.

When you give Program 3.1 a number like “1.5”, you should see that
it gets truncated to “1”. This is because we told scanf to look for an
integer by giving it the format string “%$d”. scanf stops looking as
soon as it encounters something that doesn’t look like part of an integer.

If you enter “5 and other things”, you'll see that the program thinks
you typed “5”.

3.3. scanf and Extra Spaces

As you saw in the exercise above, scanf ignores any leading or trail-
ing spaces around placeholders. This is nice, because it makes your
program forgive any extra spaces that the user might type.

For example, consider Program 3.2, which is just a modified version
of Program 3.1. The new program asks the user to enter two integers.
The format specification given to scanf is "$d %d", meaning “look
for one integer followed by some space and then another integer”.
(Remember that %d is a placeholder for an integer.) After the user
enters the two numbers, they’re put into the variables i and j. Finally,
the program just prints the values stored in these variables to confirm
that the program really got the numbers we tried to give it.

Program 3.2: reader.cpp, with 2 variables

#include <stdio.h>

int main () {
int 1ij;
int J;
printf ("Enter two integers: ");

scanf ("%d %d",&i, &73);

printf ("The numbers you entered were %d and %d\n",

i,

3)i



Exercise 15: Space Patrol

Create, compile and run Program 3.2, then try some experi-
ments with it. The first time you run it, obediently give it
two integers separated by a space. Then run it again, putting
several spaces between the numbers. What happens if you
press the “enter” or “return” key between the numbers in-
stead of putting spaces? What about pressing “enter” or
“return” multiple times?

You should find that the program behaves the same no
matter which of these ways you choose to enter the numbers.
As far as scanf is concerned, spaces, tabs, and returns
are all the same thing, and it doesn’t matter how many of
them you enter. Programmers call these invisible characters
“white space”.

3.4. Un-initialized Variables

When you enter a letter instead of a number, Program 3.1 behaves
unexpectedly. Instead of a letter, the program might tell you that it saw
some big number. It might even show you a different number if you
do the same thing again. What’s going on here? The problem is that
scanf is looking for a number to put into the variable i, but it never
sees one, so it doesn’t change the value of i.

What value does i have if the program has never given it a value?
Remember that each variable’s value is stored in a chunk of the com-
puter’s memory?. When a program finishes, the computer can re-use
that chunk of memory for another program. When a new program
starts, the chunks of memory for all of its variables just contain whatever
data was left over by the last program that used that space.

That’s why Program 3.1 prints something unexpected if we enter a
letter instead of a number. scanf never sets the value of i so the
variable just has some leftover junk in it, which gets printed out by
our printf statement. If we wanted to make things a little neater, we
could change one line of the program so that it sets the value of i at
the beginning of the program. Instead of

int 1i;

we could say
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Roberta Leigh, producer of the 1960s
British TV series Space Patrol. The show
used puppets as its characters. The
intrepid Captain Larry Dart sits to the
left of Leigh.

*See Section 1.12 in Chapter 1.
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int 1=0;

Then, if the user enters something that’s not a number, the program
would always say that the number was zero. One lesson to learn from
this is that you shouldn’t assume that a variable has any value until
you give it one. This will come up a lot later, so keep it in mind.

Later on (in Chapter 8) we'll talk about reading text. Until then, we’ll
only be using scanf to read numbers.

But what about...?

What if we put text like “Hello World!” into the format string for
scanf? Or what if we put a \n at the end of the format string?

First, if our program said scanf ("my age is %d",&i); then
we’d need to type something like “my age is 54”, because the
program would be looking for the text “my age is” followed by a
number. Note that we wouldn’t be allowed to have any extra spaces
in front, either, since scanf only ignores extra spaces around
placeholders like $d.

In the second case, scanf doesn’t distinguish between space, tab,
or newline characters. These are all “white space”. When scanf
sees white space in a format specifier, it waits for the user to type in
any number of these characters, followed by at least one non-white-
space character. If we said scanf ("%$d\n", &1); the program
wouldn’t continue until we’d entered a number, followed by one
or more white space characters, followed by something that isn’t a
white space character.



3.5. Decisions, Decisions!

We’ve seen that computers are good at loops, but they're also good
at making comparisons and decisions, and doing those things very
rapidly.

Until now we’ve dealt with programs that follow a single predetermined
path from start to finish. Now we’ll look at ways to control the flow
of our programs, making them do different things under different
circumstances.

In C, you can use an “1f” statement to make decisions. “if” statements
check to see if some condition is true, then decide whether to take
some action. Program 3.3 shows a straightforward example. The
printf statement inside the curly brackets is only acted upon when
the condition in the “i£”’s parentheses is true. It’s easy to read this as

a sentence: “If i+j is greater than 10, print some stuff.”

Exercise 16: “if” Statements

Use nano to create Program 3.3, then compile it with g++
and try running the program a few times. Does it behave as
expected?
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Figure 3.2: “1£” statements are like
valves that control the flow of your
program.

Notice that Program 3.3 uses two
scanf statements to read two numbers
from the user.
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Program 3.3: checksum.cpp (Version 1)

#include <stdio.h>

int main () |
int 1i;
int j;
printf ("Enter an integer number: ");

scanf ("%d", &i) ;
printf ("Enter another integer number: ");

scanf ("%d", &7);

if (i+5 > 10 ) {
printf ("The sum is greater than 10\n");

The most general form for an “if” statement looks like this:

1f ( CONDITION ) {
1IST OF THINGS TO DO

The “condition” is some test that will determine whether or not the
following list of things should be done. We can check to see if two
things are equal, or if one is greater than the other, or any of several
other conditions. We can also combine several tests, and require (for
example) that they all be true. Maybe we want to check to see if
something isn’t true. We can do that, too.

The “list of things to do” can include any C statements we want to use.
This list is just a section of our program that will only be acted upon
when “1f” statement’s condition is met.



Here’s another example of an “1£” statement:

if (1> 10 ) |
printf ("i is greater than 10.\n");
printf ("The value of i1 is %d\n", 1i);

You can also nest “1f” statements, as in this example:

if (a <5 ) {
printf ("a is less than 5.\n");
if (b > 100 ) {
printf ("and b is greater than 100.\n");

In the nested example, the printf statement inside the second “if”
would only be acted upon if both b > 100 and a < 5 are true state-
ments.

3.6. True or False?

The computer looks to see whether the statement in parentheses after
“if” is true. Is a really less than five? Is b really greater than 100?

The C language provides several comparison operators that can be
used in “if” statements. We’ve already seen the “<” operator in the
loops we’ve written in earlier chapters, where it appears in expressions

‘" 7

like for (i=0;1i<10;1i++). In Program 3.3 above, we see the “>
operator.

Sometimes we want to combine multiple comparisons, like “this and
that” or “this or that”. Maybe we even want to require “this but not
that”. For these purposes, C provides a set of logical operators. The
“and” operator (“&&"”) can be used to say things like

if ( (a<6) && (b>3) ) |
printf ( "Do stuff.\n");

meaning “If a is less than 6 and b is greater than 3, do stuff”.3 The
“or” operator (“| | ”) can be used in expressions like “ (c<5) | | (d<5)”,
meaning “either c is less than 5 or d is less than 5”. An exclamation
point in front of an expression means “not”. For example, “! (a>10)”
means “a is not greater than 10”. Figure 3.3 shows C’s comparison and
logical operators.
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3 Note how we use parentheses here
to enclose each simple expression, and
then put the whole expression inside
the “1i£” statement’s “(CONDITION)”
parentheses.
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Comparison and Logical Operators:

Example:
Equality a==
Inequality al=b
Less than a<b
Greater than a>b
<= |Less or equal a<=b
>= |[Greater or equal a>=b

! Logical NOT. Invert |!a
a test or true/false

value
&& |Logical AND (a==b) && (c==d)
|| |Logical OR (a<=b) || (c>b)

3.7. Testing Equality

Note in particular the “==" operator in Figure 3.3. This is the source of
a lot of confusion. This operator compares two values to see if they're
equal. This is often confused with “=", which assigns a value to a
variable.

You can use the == operator in an “if” statement to compare two
values. For example:

if (1 == ) |
printf ("Do stuff.\n");

would mean “If i is equal to 5, do stuff”.

In C, if I say “a==2" I'm saying “compare the value in 'a’ with the
value "2” and tell me if they're the same.” On the other hand, if I say
“a=2" I'm telling the program to stick the value “2” into the variable
“a”. The most important thing to remember is that the “==" operator

doesn’t change the values of the variables, but the
This confusion results in many bugs.

operator does.

Figure 3.3: These operators are
particularly useful in “1£” statements.
They compare values, or do logical
operations like “and” or “or”. Pay
particular to ==, as described in the next
section.

Is a equal to b?

Make
a equal to b!!

Assignment

Figure 3.4: Use == to test equality, and
= to force equality.

Source: Wikimedia Commons 1, 2


https://commons.wikimedia.org/wiki/File:2011-09-10_Pensive_man.jpg
https://commons.wikimedia.org/wiki/File:Angry_woman.jpg

But what about...?

What would happen if you mistakenly used “i = 5” instead of

a2

i == 5”1in an “if” statement?

To answer that, we first need to think about how the computer in-
terprets these conditions. As it turns out, the the computer actually
converts everything inside an “1£” statement’s “(CONDITION)”
to a number. If the number is zero, the condition is false. If it’s not
zero, it’s true. This means that an expression like

if (1) |
printf ("Do Stuff.\n");

would cause “Do Stuff” to always be printed, since the number 1
is (and always will be) different from zero.

Sometimes programmers take advantage of this. We can have an
“1f” statement look at the value of a variable, and only act if the
variable has a non-zero value. The expression if ( width )
would only be acted upon if the variable “width” had a non-zero
value, and if ( !width ) would only be acted upon if “width”
was equal to zero.

Now back to the question at hand: What if we accidentally wrote
if ( 1i=5 ) instead of if ( i==5 )? Remember that “i=5"
means “assign the value 5 to the variable i1”. Would doing this
inside the “(CONDITION)” of an “if£” statement give a true or a
false result? Perhaps surprisingly, it depends on what value we
assignto i. If wesay if ( 1=0 ) the result will always be false.
If we use any other value (non-zero), the result will always be true.

That’s because, in C, the numerical “value” of “1 = 5” is just the
value of i. So, the expression i = 0 will always be false, but i =
(anything else) will be true.

If you find that your program is acting as though an “i£” condition
is always true or always false, even though you think it shouldn’t
be, check to make sure you haven’t used = where you should have
used ==. Even though g++ won’t complain if you use = in an “if”
condition, you should never use it there.
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Program 3.4: checksum.cpp (Version 2)

#include <stdio.h>

int main () |
int 1i;
int j;
printf ("Enter an integer number: ");

scanf ("%d", &i) ;
printf ("Enter another integer number: ");
scanf ("%d", &7);

if ( i+3 > 10 ) |
printf ("The sum is greater than 10\n");
} else {
printf ("The sum is NOT greater than 10\n");

3.8. Choosing Between Several Alternatives

Take a look at Program 3.4, which is just a slightly modified version of

BN Y

| X3

Program 3.3. As you can see, you can optionally add an “else” clause
to an “if” statement. If the condition in parentheses is false, the actions
in the “else” clause will be done.

Exercise 17: ...Or Else!

“Good banana, bad banana...” (Women
sorting bananas in Belize)

Modify your checksum.cpp program so that it looks like Souree: Wikimedin Commons
Program 3.4. Compile it, then run it several times. Make
sure you give it some pairs of numbers that add up to more
than ten, and some that have a sum smaller than ten. Does

your program behave as expected?

You can add as many other options as you want, using “else if”
clauses:

if ( i+3 > 100 ) |

printf ("The sum of these numbers (%d) is greater than 100\n", i+7]);
} else if ( i+j > 50 ) {

printf ("The sum of these numbers (%d) is greater than 50\n", i+7j);
} else if ( i+3j > 25 ) {

printf ("The sum of these numbers (%d) is greater than 25\n", i+7);
} else {

printf ("The sum of these numbers (%d) is less than 25\n", i+73);


https://commons.wikimedia.org/wiki/File:Banana_sorting.jpg

WRITING FLEXIBLE PROGRAMS 89

Each “else 1if” has some alternative condition that may be satisfied.
If nothing else is true, the statements in the final, “e1se”, clause are

acted upon. 4 + Notice that even these complicated
“if” statements can still be read as

. . . . sentences: “If this is true, do something.
Only the first true condition will be acted upon. Even if other later Otherwise, if that is true do a different

conditions are true too, they’ll be ignored. If you have a final “else” thing, ...”.
statement in the list, that will only be acted upon if none of the “i£”

or “else if” conditions are met. You don’t need to have an “else”

section. Without it, the “1£” statement will just do nothing when none

of the conditions are true.

if ( i+ > 100 ) ¢
printf("Greater than 100\n");
} else if ( i+j > 50 ) {
printf ("Greater than 50\n");
} else if ( i+j > 25 ) {

printf ("Greater than 25\n" ) ; Figure 3.5: Al’.l “1if” statement creates a
} else { set of alternative paths that the computer

- can follow when walking through your
printf("Less than or equal to 25\n"); program.

When the computer runs one of your programs, you might imagine
the computer starting at the top of the program and walking through
it, line by line, until it gets to the bottom. Up until now, the programs
we’ve written have only had one possible path. The “if” statement
gives the computer multiple alternative paths it can follow.

Exercise 18: More Choices

Once again modify your checksum.cpp program. This
time, add “else if” sections to your “if” statement so
that the program tells you whether the sum is greater than
100, greater than 50, greater than 25, or less than 25, as
shown in the examples above. Run the program several
times, giving it different pairs of numbers so that you test
each possible path through the “if” statement.
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3.9. “if/else if” versus multiple “if” state-

ments
It's important to realize that an “if” statement always says “Here are
some options. Do the first one that matches.” The “if”, “else if”,
and “else” lines in Figure 3.5 are all part of one unified statement
that defines the options and tells the computer how to choose between
them.

You might be tempted to use several independent “if” statements
instead of one big “1f/else 1if” statement, but you should remember
that these are different.

You can see this difference in the examples shown in Figures 3.6 and 3.7.
The first example shows a single “1f/else if” statement that chooses
between two options. The second example shows two independent
“if” statements.

if (i > 100 ) {

printf ("Greater than 100\n");
} else if (i > 50 ) {

printf ("Greater than 50\n");

if (1> 100 ) ¢
printf ("Greater than 100\n");

i

if (i > 50 )7
printf ("Greater than 50\n");

Keep this in mind when you're writing programs that need to choose
one option out of several possibilities.

Figure 3.6: If i=200, this statement will
print “Greater than 100” and nothing
else. Only the first matching option is
acted uponinan “if/else if”
statement.

Figure 3.7: Alternatively, this pair of “i£”
statements will print “Greater than 100”
followed by “Greater than 50”, since
both are true and the two “i£”
statements are independent.
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But what about...?

If you look at other people’s C programs you might see “if”
statements like this:

if (1 == )
printf ( "i is equal to 5\n" );

Notice that there are no curly brackets here. This is different from
the “i£” statements we looked at above.

The C language allows you to omit the curly brackets if there’s only
one line in the list of statements controlled by an “if” statement.
This can make your program shorter, but I don’t recommend that
you do this, because it can lead to confusion later.

Consider what would happen if you used a line like the one above,
and later modified the program by adding another line, like this:

if ( 1 == )
printf ( "i is equal to 5\n" );
printf ( "Do some other stuff\n");

You might mistakenly think that the new line is also part of the “1 £”
statement, but it’s not. The new printf statement will always be

executed, no matter what the value of 1 is.

This is exactly what led to a scary security bug (called the “Goto

Fail” bug) on Apple computers in 2014.

Figure 3.8: Sticking to a well-chosen
programming style can help prevent
errors in your programs.

Source: Wikimedia Commons
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https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://commons.wikimedia.org/wiki/File:Paris_Tuileries_Garden_Facepalm_statue.jpg
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3.10. Using “and” and “or”

Sometimes we want to check more than one thing in an “if” statement.
For example, imagine that you are enrolled in a class that has both a
written and an oral exam. To pass the course, you need to get a passing
grade on both exams. If the teacher wrote a program to tell her which
students passed, it might include an “i£” statement like this:

if ( written >= 70 && oral >= 55 ) {

printf ("Student passed! :-)\n");
} else {
printf ("Student failed. :—(\n");

The && in the “if" statement means “and”. This statement says that
the student passes the class if they get a score greater than or equal to
7o on their written exam and they get a score greater than or equal to
55 on the oral exam.

Alternatively, we could re-write the statement like this:

if ( written < 70 || oral < 55 ) {
printf ("Student failed. :-(\n");
} else {
printf ("Student passed! :-)\n");

Here we’re using | |, which means “or”. The statement now says that
if the student got a written score less than 70 or an oral score less than
55, they failed.

There’s an important principle in the mathematics of logic that’s called
de Morgan’s theorem. It says you can always rewrite a logical condition
by replacing “and” with “or” and flipping everything to its opposite.
That’s what we’ve done in going from the first example above to the
second. If you go on in programming, or into a field like digital circuit
design, you'll find de Morgan’s theorem very useful. Sometimes it can
make tangled logical expressions a lot simpler.

You might be wondering about the order of operations in these “if”
statements. There are a lot of things going in in an expression like Augustus de Morgan, one of the
“written >= 70 && oral >= 55”. Inwhatorder does the program founders of modern mathematical logic.

Source: Wikimedia Commons

do these things? Do we need to add parentheses?


https://commons.wikimedia.org/wiki/File:De_Morgan_Augustus.jpg

Expressions like this are evaluated in a well-defined order that’s an
extension of the “PEMDAS” rule you probably learned in school®.

Consider this expression:

if ( 2%x+5 < 10 && y*6-3 > 4 ) {

The PEMDAS rules would tell us to multiply 2+x first and then add
5. Similarly, we’d multiply y 6 and then subtract 3. In C, comparison
operators like < and > come after PEMDAS, so the next thing we’d do
is check to see if 2xx+5 is less than 5, and then check to see if yx6-3
is greater than 4. Finally, we’d deal with the logical operators like &&
and | |, so we'd check to see if 2xx+5 < 10 and y*x6-3 > 4.

To help you remember this, you might just tack a “CL” on the end
of PEMDAS, for “Comparison” and “Logic”, to make PEMDASCL

(thymes with “rascal”!)°.
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5 PEMDAS says to do things in this
order: Parentheses, Exponentiation,
Multiplication, Division, Addition,
Subtraction.

®You can find the full order of opera-
tions (called “operator precedence”) for

C here:

https://en.cppreference.com/w/c/language/operator_precedence

Figure 3.9: Future Tokyo University
students excited at having passed their
entrance exams.

Source: Wikimedia Commons


https://en.cppreference.com/w/c/language/operator_precedence
https://commons.wikimedia.org/wiki/File:Tokyo_University_Entrance_Exam_Results_4.JPG
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3.11. Writing a Math Quiz Program

Now let’s do something more practical. Take a look at Program 3.5.

Program 3.5: mathquiz.cpp (Version 1)

finclude <time.h>
#include <stdlib.h>
#include <stdio.h>

int main () {

int 1i;
int j;
int sum;

srand (time (NULL) ) ;

(int) ( 100.0 * rand()/ (1.0 + RAND_MAX) );
(int) ( 100.0 * rand()/ (1.0 + RAND_MAX) );

[
Il

.
Il

printf ("What is %d + %d ?: ", i, 3);
scanf ("%d", &sum) ;

if ( i+j == sum ) {
printf ("Right!\n");
} else {

Albert Anker, Midchen mit Schiefertafel

Source: Wikimedia Commons

printf ("Nope. The sum of these numbers is %d. Go back to school.\n",

i+3);

Program 3.5 is a simple math quiz program. It generates two random
integers between zero and 100, and asks the user to add them and enter
the sum. The program then checks to see if the user got it right.

Exercise 19: Making a Math Quiz

Create Program 3.5. Be careful of all the parentheses, and
make sure you have all of the necessary semicolons. Run
the program several times. Are you a math wizard?

Notice how we’ve written the statements with rand in them. We want
our random numbers to be an integers?, so this is a little different
from what we did in Chapter 2, where we wanted to generate random
distances that could contain decimals. In Program 3.5 we convert our

random numbers into integers by enclosing them in (int) (...)3

7 You'll see why later in this chapter,
when we talk about comparing floating-
point numbers.

8 Programmers call this kind of thing
“casting”. In this case, we're “casting
our number as an int”. Think of it

as casting an actor in a different role.
Here, we're taking a number that would
otherwise be a double and casting it as
an int.


https://commons.wikimedia.org/wiki/File:Albert_Anker_M%C3%A4dchen_mit_Schiefertafel.jpg
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The program uses the scanf function to read input from the user.
Then, in the program’s “if” statement we use the == operator to see if
the number entered by the user (sum) equals the actual sum of the two
random integers (i+7J). If the user gets it wrong, the program prints

out the real sum.

3.12. A Longer Math Practice Program

What if we wanted our program to keep asking us questions? We could
just add a loop to it.

. . 9If the user gets tired before answering
In Program 3.6 we take the integer addition program we made before, all of the questions, Ctrl-C can be used
and wrap it with a loop. The loop keeps the program asking questions to stop the program.
until we’ve answered ten of them.9

The only differences between Programs 3.5 and 3.6 are the new variable
nproblems, to count the number of questions asked, and the “for”
loop.

Program 3.6: loopquiz.cpp

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

int main () {
int i;
int 3; Hong Kong children demonstrating
int sum; their math skills.

Source: Wikimedia Commons

int nproblems;
srand (time (NULL)) ;

for ( nproblems = 0; nproblems < 10; nproblems++ ) {
i = (int) ( 100.0 * rand()/ (1.0 4+ RAND_MAX) );
J = (int) ( 100.0 % rand()/ (1.0 + RAND_MAX) );

printf ("What is %d + %d ?: ",1i,3);
scanf ("%d", &sum) ;

if ( i+j == sum ) {
printf ("Right!\n");
} else {

printf ("Nope. The sum is %d. Go back to school.\n", i+7]);

Think about how you might modify Program 3.6 to make it even better.
Could you make the program keep score, and print out the score at the
end? Could you use an “if” statement and random numbers to make
the program choose addition or subtraction at random?


https://commons.wikimedia.org/wiki/File:CFSC.JPG
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Exercise 20: A Better Quiz

So far, we’ve used the commands nano, gnuplot, g++, and Is
(for showing a list of files). Let’s use another command now.
The cp command makes a copy of a file. Use it to make a
copy of your mathquiz.cpp file by typing the following:

cp mathquiz.cpp loopquiz.cpp

The command above will make a new file called 1oopquiz.cpp
that’s a copy of your mathquiz.cpp file.

Now use nano to modify loopquiz.cpp so that it contains
the changes shown in Program 3.6. Compile the program
with g++ and run it. Does it behave as it should?

Figure 3.10: Albert Anker, Die Dorfschule
von 1848

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Anker_Die_Dorfschule_von_1848_1896.jpg

WRITING FLEXIBLE PROGRAMS 97

3.13. Comparing Floating-Point Numbers

In our math quiz programs we’ve used integer numbers. What if we
had used floating-point numbers instead? Consider Program 3.7, which
is just like Program 3.5, except that we’ve changed all of the integers

into floating-point numbers.*° © We changed int to double and
%d to $1f, and we omitted the
. . . . . . (int) (...) when generating our
If you tried using this program, you might be surprised by what it does. random numbers.

Here’s what it might look like:

What is 30.345296 + 60.080443 72: 90.425739
Nope. The sum of these numbers is 90.425739. Go back to school.

But we got the sum right, didn’t we? The program even tells us so!
Why doesn’t it work as expected?

Program 3.7: Why doesn’t this work?

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {

double 1i;

double j;

double sum;

srand (time (NULL) ) ;

= 100.0 * rand()/(1.0 + RAND MAX);
100.0 * rand()/ (1.0 + RAND_ MAX);

(S P
|

printf ("What is %$1f + %1f 2: ", i, Jj);
scanf ("$1£f", &sum) ;

if ( i+j == sum ) {
printf ("Right!\n");
} else {

printf ("Nope. The sum of these numbers is %$1f. Go back to school.\n",
i+3);

The reason has to do with the difference between floating-point num-
bers (which can have decimal places going on forever — think of 7, for
example) and integers, which always have a finite number of digits.
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When printf prints a floating-point number, it rounds the number off
after a few decimal places. When you use the $1f format to print out
a number, your program shows the first six decimal places, but inside
the program the number is actually much more precise.

If we tell printf to show us more decimal places, we’ll see what went
wrong above. We can do so by modifying the $1f placeholder in our
printf statement.

Instead of $1f, we can write an expression like $x.y1f, where x is a
number that tells the program how much space to reserve for printing
out the number, and y is a number that says how many digits to the
right of the decimal point should be printed. We can leave off either x
or y and printf will try to figure out what’s the best thing to do on
its own.

For example:

$20.101f

\ J

Y
“Show 20 characters, with 10 digits
to the right of the decimal point.”

If we had replaced $1f with $.101f in the last printf statement of
Program 3.7 (to print ten decimal places instead of the normal six) we
would have seen:

What is 30.345296 + 60.080443 ?2: 90.425739

Nope. The sum of these numbers is 90.4257384084. Go back to school.

As you can see, the number the computer was thinking of really didn’t
match the number we typed.

3.14. The Right Way to Do It

The right way to compare floating-point numbers is to ask whether they
differ by more than some small amount, which we’ll call “epsilon”.

In Program 3.8, we define epsilon to be something acceptably small
for our purposes, and then we use the “fabs” function™ to get the

“ We'll learn more about C’s math
functions in Chapter 4.
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absolute value of the difference between the actual sum and our guess.
If this difference is less than epsilon, we say we're close enough.

To use the fabs function, you'll need to add math.h at the top of your

program.u > Note that we could have done the
same thing without fabs by checking

. to see if the difference was somewhere
Program 3.8 The nght Way between —epsilon and epsilon.

#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
double 1;
double 7j;
double sum;
double epsilon = .000001;

srand (time (NULL) ) ;

-
Il

100.0 » rand()/ (1.0 + RAND_MAX) ;
100.0 » rand()/ (1.0 + RAND_MAX) ;

.
Il

printf ("What is %1f + %1f 2: ", i, J);

scanf ("$1f", &sum) ;

if ( fabs(i+j - sum) < epsilon ) {
printf ("Right!\n");
} else {
printf ("Nope. The sum of these numbers is %$1f. Go back to school.\n",
i+3);

This is the right way to compare floating-point numbers.

3.15. Conclusion

This chapter has covered a couple of tools you can use to allow users to
control your program. The scanf function lets your program get input
from the user, and “if” statements let you program make decisions.
Combine these new tools with the elements of C you've learned in
earlier chapters (loops, random numbers, et cetera, and you can already
create some pretty sophisticated programs.
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Practice Problems

1.

Using Program 3.1 as an example, write a program that asks you
for a circle’s radius and then tells you the area of the circle. Use
3.14 as the value of 71, and remember that the area of a circle is
7tr2. Make sure the program tells the user that this is the area (don’t
just print a number without anything else). Call your program
circlearea.cpp. Hint: You'll want to be able to enter numbers
like “1.5” as the radius, so you'll need to use a double variable, not
an int.

. If you throw a ball straight up into the air with an initial velocity o it

will reach a height of

02

2%
where ¢ = 9.8 m/s?, the acceleration of gravity near the earth’s
surface. Write a program named playball. cpp that asks the user
to enter the ball’s initial velocity (in meters per second), and tells you
how high the ball would go (in meters). Make sure your program
tells the user what units to use when entering the velocity, and what
units are used when reporting the height. (Hint: A ball thrown with
a velocity of 10.5 m/s should reach a height of about 5.6 meters. Use
this to check your program.)

Modify the looping version of the math quiz program (Program 3.6)
so that it asks the user how many math problems he/she wants to
answer. Use scanf to put this number into an integer variable, and
use that variable in the program’s “for” statement to control how
many times the program loops. Call the new program nloop.cpp.

Write a program named airflow. cpp that asks you for the length,
width, and height of a rectangular room, in feet. Inside the program,
calculate the volume of air in the room. Assume we’d like to replace
all of the air in the room ten times per hour. That would mean
we need to remove 1/6 of the room’s air every minute. Fans are
typically rated in terms of the number of cubic feet per minute that
they can move. Have your program tell us how many cubic feet per
minute we need to move in order to replace the room’s air ten times
per hour.

Write a program named checkage.cpp that asks the user for
his/her birth year (like “1998”) and the current year (like “2017”).
Use an “if” statement to tell the user if he/she is under 21 years
old, or not. (Ignore the birth month, and assume that everyone was
born on January 1. Include people who are exactly 21 in the “not
under 21” group.)

Source: Wikimedia Commons
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6. Write a phone menu program. Start by printing the following menu
and asking the user to enter one of the numbers:

For sales
For billing

W N R

For support
4 For a live human being

Use scanf to read the number entered by the user. Make an
“if” statement like the one on Page 88, using “else if”, and
have it print out an informative message for each of the possible
choices. (For example, “You have reached the sales department.”)
Use an else statement to give the user an informative message if
she/he enters a number that’s not on the menu. Call your program

phonemenu. cpp.

7. Modify the looping version of the math quiz program (Program 3.6)

so that it keeps score, and tells the user how well he/she did at the William Howard Taft, 27th President of
the United States.

Source: Wikimedia Commons

end. (That is, print out a message like “You got 8 out of 10 answers
right!”) Call your new program mathscore. cpp.

8. Modify Program 3.6 so that it randomly picks addition or subtraction
for each problem.

Hints:

* Look back at Program 2.3 in Chapter 2 to see how to generate a
random number between zero and one.

¢ Check to see whether this random number is greater than o.5. If
it is, choose addition. If it’s not, choose subtraction.

9. Hurricanes can hurl objects with tremendous force. Homeowners
sometimes nail sheets of plywood over windows in preparation for
a major storm. Studies done at Clemson University'3 have looked
at the effect of 2x4 pieces of lumber fired with various velocities at
plywood sheets. They found that the thickness of plywood required
to stop such a projectile was proportional to the projectile’s momen-
tum. In mathematical terms, they found that the thickness required

to stop the projectile was t = 0.00032xm x v, where t is measured in

meters, m is the mass of the projectile in kg, and v is the projectile’s

Velocity inm/s. A 2x4 dri'ven through a pal.m tree in
Puerto Rico by a 1928 hurricane.
Source: Wikimedia Commons

Write a program named 2x4.cpp that asks the user to enter a
velocity in meters per second. Have the program calculate { from
the equation above, using 9.45 kg for the mass of the projectile
(that’s approximately the mass of a ten-foot pressure-treated pine
2x4). Have the program tell the user what thickness, in meters, of 13 See https:/ /www.fema.gov /previous-

plywood they’ll need to protect their home from such a projectile missile-impact-tests-wood-sheathing


https://commons.wikimedia.org/wiki/File:Wm_H_Taft_smiling_1908.jpg
https://commons.wikimedia.org/wiki/File:Hurricane_winds_drive_a_10-foot_2X4_through_a_palm_tree.jpg
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing
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10.

11.

flying at this velocity. Also tell them what this thickness is in inches,
by mutiplying the thickness in meters times 39.37. Test your program
by telling it the velocity is 28 m/s (which is about 100 kilometers per
hour). It should tell you that the required thickness of plywood is
about 3 inches.

Write a program named ridecheck.cpp that checks to see if the
user is eligible to ride a roller coaster. The program should ask the
user for her height, in feet, and age, in years. Assume that the height
might have a decimal place (like 4.9) but assume that the age will
be an integer (like 21). If the user’s age is greater than 11 and her
height is greater than 4.5 feet, the program should say that she’s
allowed to ride. Otherwise, the program should say “Sorry, you're
not allowed to ride.”. Don’t use more than one “if” statement in
your program.

You're a physicist working at CERN, and your experiment uses the
apparatus shown below. In the middle there’s a cylindrical target, at
which you’ll be shooting a beam of particles. Some of the particles
entering the target will decay while inside, and emit other particles.
Each emitted particle will shoot out of the cylinder and go through
one of four rectangular detectors arranged around the target. The
detectors are named D1, D2, D3, and D4, and each one measures the
energy of particles passing through it. You want to check periodically

to see whether any of the four detectors saw a particle.

Write a program called 4signal.cpp that asks the user to enter
four energy values (numbers that might contain decimal points), one
for each of the four detectors. Use a single “if” statement to see if
any of the values was greater than 100. If so, the program should
print “Saw a particle.” Otherwise it should print “No particles this
time.”

Are you tall enough? (Illustration by
John Tenniel for Lewis Carroll’s Alice in
Wonderland.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_05.png
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A nano Cheat-Sheet

Here are a few tips and tricks that will make it easier for you to edit files with nano.

* Delete lines: To delete a line, move to beginning of line, then press Ctrl-k (hold down the CTRL key, and
press the K key). The “K” is for “Kut”.

¢ Cutting and Pasting: First, move to the beginning of the text you want to cut and press Ctrl-6. Then move
to end of the text you want and press Ctrl-K. This will “Kut” the text. Now move to the place where you
want to insert the text and press Ctrl-U (for “Uncut”). Your text will be inserted here. If you want to paste
the same text in another location, move there and press Ctrl-U again. You can do this as many times as
you want.

e Search: To search for text, press Ctrl-W (for “Where is...”). You'll be asked what to search for. Enter it,
then press the Enter or Return key. The cursor will jump forward to the first occurrance of the text you're
searching for. If there are no matches, you'll see a message at the bottom telling you that the thing you
searched for wasn’t found. To search for the same thing again, press Crtl-W again.

¢ Find and Replace: Press Alt-R (hold down the ALT key and press the R key). You'll be asked what to
search for. Enter it, then press the Enter or Return key. You'll be asked for replacement text. Enter this, and
press Return again. Finally, you'll be asked whether you want to replace just the first occurrence, or all
occurrences.

¢ Saving Your Work Without Exiting nano: To save your work at any time, press Ctrl-O (that’s the letter O,
not a zero).

* Displaying the Current Line Number: nano can optionally display the current line number (the number
of the line where the cursor currently is). This can be useful when g++ give you an error message like:

hello.cpp:3:27: error: 'prantf' was not declared in this scope

In the example above, g++ is telling us that our program has an error on line 3. (It also tells us that g++
thinks the error was around character number 27 on that line, but this number is often unreliable.) You can
ask nano to temporarily turn on line numbers by pressing Alt-C (meaning “Hold down the Alt key and
the C key simultaneously”). This will show line and column numbers near the bottom of nano’s window.
If you like, you can make nano always display line and column numbers by using nano to create a file
named /.nanorc and putting the following line into that file:

set const

The next time you start nano it should automatically display the line number at the bottom of the window.







4. Math and More Loops

4.1. Introduction

In 1965, Gordon Moore observed that the density of components in
integrated circuits (such as computer CPUs) was doubling every year
or two'. This observation came to be known as “Moore’s Law” and it
continued to be valid for several decades, although recently the rate
has slowed?. Similar “Moore’s Laws” have been observed for other
computer components, such as disk drives, memory, and displays.

As we saw in Chapter 2, modern computers can do thousands of cal-
culations in the blink of an eye. In the final version of our “gutter”
program (Program 2.7) we used nested “for” loops to simulate the be-
havior of ten thousand stones during ten rainstorms, and our program

ran in less time than it took you to read this sentence.

Computers are very good at doing things over and over again very
rapidly. Previously we’ve used “for” loops for this. In this chapter,
we’ll look at several other kinds of loops available in the C programming
language. We'll start out by using a “for” loop to test how fast your
computer is. Along the way, we'll find out about C’s math functions
and use them to give your computer something substantial to chew on.

4.2. Math Functions in C

C provides a rich set of math functions and some predefined math
constants such as the value of 7. Table 4.2 shows some of the most
commonly-used functions.
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Figure 4.1: An illustration of “Moore’s
Law” for CPUs. Note that the vertical
axis is logarithmic.

Source: Wikimedia Commons

*Moore, G. E. Electronics 38, 114-117
(1965).

> Nature 530, 144-147 (11 February
2016).

|

The first “PC”: The IBM PC 5150,
introduced in 1981.

Source: Wikimedia Commons

A modern supercomputer: NASA’s
Pleiades Cluster.

Source: Wikimedia Commons
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http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
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sgrt (x) Square Root

fabs (x) Absolute Value

cos, sin, tan,.. Trig Functions

acos, asin, atan,.. Inverse Trig

Functions

exp(xX)

eX

log(x) Natural Logarithm

pow(X,Y)

y

X

As we learned in Chapter 1, functions in C are a lot like the functions
you've used in math class. We give the function some number of
arguments, and the function gives us back a value. In C the expression
y = cos (x); means “make the variable y equal to the cosine of the
value in the variable x”. We'll learn a lot more about how C functions
work in Chapter 9. For now, it’s important to know that most of C’s
math functions require double values for their arguments, and these
functions also give back a double value.

To use these functions in your programs, you’ll need to add another
“#include” statement at the top of your program, like this:

#include <math.h>

But what about...?

What do these #include statements do, anyway? The answer is
that they insert chunks of text from other files into your program.

Somewhere on your computer there’s a file called math.h that
contains information about how math functions like sqrt are

Figure 4.2: Some of C’s commonly-used
math functions.
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supposed to be used. The information in this file allows g++
to check that you're using sqrt correctly: Are you giving the
function the right number of arguments? Are you putting the
value returned by sqrt into the right kind of variable?

For example, sqrt takes one double number as an argument,
and it returns a double number. Take a look at Figure 4.3. It
shows a couple of incorrect ways to use the sgrt function.

In the first case, the programmer puts the output of sqrt into
an integer variable. Since sqrt returns a double number, this
means that the decimal part of the number will be chopped off.
The g++ compiler will warn you about this, but it will go ahead
and compile the program.

In the second case, the programmer has made a worse mistake.
The sgrt function takes only one argument, but it’s been given
two. The g++ compiler doesn’t know what the programmer wants
it to do, so it emits an error message and refuses to compile the
program.

g++ will give a warning.
double qg; -—q_____________J

g++ will give an error, and
refuse to do this.

int i;

1 = sqrt(10.);
qg = sqrt(10.,2.);

Figure 4.3: Wrong ways to use the sqrt
The math.h file also defines values for some common constants. function.

For example, if you need the value of 7t in your program, you can
just write M_PI, and for the base of natural logarithms (¢), you can
write M_E.

4.3. How Fast is Your Computer?

Let’s use one of these math functions to test how fast your computer is.
Take a look at Program 4.1. This program uses the sqrt function, and
sums up the square roots of a billion numbers!

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Stopwatch2.jpg
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The program uses C’s “exponential notation”, which makes it easier
to write large numbers. Instead of writing 1000000000 we can write
le+9, meaning “1x10°”. Here are some more examples:

2.5e+3 = 2,500
6.02e+23 = 6.02 x 10% (~ Avogadro’s number)
5e-11 = 5x1071

Notice that 10° is just 1e+3 (“one times ten to the third power”), not
10e+3. Here the e means “times ten to the ...”.

Program 4.1 begins by recording the current time3 in the variable
tstart. After summing up all of the numbers, the program looks at
the new time, and prints out how long, in seconds, the program ran.

Notice that the sgrt function, like all of the math functions we’ll be
using, takes double arguments and returns a double value. Because
the variable 1 is an integer, we need to “cast” it as a double by saying
(double) in front of it. If we didn’t do this g++ would complain.

Why do we set sum equal to zero before we start the program’s loop?
Won't it just be zero automatically? No, not necessarily. You shouldn’t
assume that a variable has any particular value before you explicitly
give it one. Remember that variables are temporary boxes in the
computer’s memory. After the program is done with them, the same
chunk of memory can be re-used by other programs. In some cases,
if you don’t explicitly give a variable a value, it will contain whatever
random data happens to be at that memory location, leftover from the
last program that used it.#

Program 4.1: timer.cpp (Version 1)

#include <stdio.h>
#include <time.h>
#include <math.h>
int main () {

int 1i;

int tstart;

int delay;

double sum = 0.0;

tstart = time (NULL);

for ( i=0; 1i<le+9; 1i++ ) {
sum = sum + sqrt( (double)i );

}

delay time (NULL) - tstart;
printf ("Sum is %1f\n", sum );
printf ("Total time %d sec.\n", delay );

3in terms of the number of seconds
since January 1, 1970. You might
remember the time function from
Chapter 2, where we used it to pick a
“seed” for our pseudo-random number
generator.

4 Some compilers will automatically set
all variables to zero at the beginning of
a program, but it’s best not to assume
this.



This is important for a variable like sum in Program 4.1. Notice the
line in bold. Each time around the loop, this sets the new value of sum
equal to the old value plus V/i. If we didn’t explicitly set sum = 0.0
before we began adding things up, then the “old value” of sum would
be undefined (and possibly some bizarre, unexpected number) the first
time we went through the loop.

Exercise 21: How Fast is Your Computer?

Create, compile and run Program 4.1. On a typical computer,
it should take no more than a minute or two to run. If you
find that it takes longer, press Ctrl-C to stop it, and try
reducing the number of loops by a factor of ten. How many
square roots per second can your computer do?

4.4. Progress Reports

While your timer program was running, you may have worried that it
wasn’t actually doing anything. It’s often useful to make your program
print out reports periodically, so you can see its progress. Let’s modify
Program 4.1 and make it do this. We'll use a new mathematical operator
to help us.

The “modulo” (or “modulus”) operator, “%”, does one peculiar but
useful thing: it tells us the remainder left over after we do division. For
example, “10 % 5” would be equal to zero, since the remainder after
dividing ten by five is zero. Here are some other examples:

10%7 gives 3
1001 £ 10 gives 1
25%7 gives 4

Program 4.2 uses the modulo operator to print out the elapsed time,
and the number of square roots that have been summed so far, every
million times around the loop. It does this by looking at 1 $ 1000000
(we can read this as “i modulo one million”). When this quantity is
zero, it means that 1 is a multiple of 1,000,000.

Exercise 22: Speed Test with Progress
Report
Create, compile, and run Program 4.2. Does it behave as

expected? Is it more entertaining to see evidence that the
program is doing something?
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Another kind of progress: A Russian
Progress cargo spacecraft departing from
the International Space Station. The
computers that control the ISS aren’t
particularly new or fast. They're
tried-and-true technology chosen for its
reliability. The “Vehicle Management
Computers”, for example, are many
redundant computers each powered by
an Intel 3865X CPU running at 32 MHz.
This is 100 times slower than the CPUs
in most modern laptop and desktop
computers.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:ISS_Progress_cargo_spacecraft.jpg
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Program 4.2: timer.cpp (Version 2)

#include <stdio.h>
#include <time.h>
#include <math.h>
int main () {

int 1i;

int tstart;

int delay;

double sum = 0.0;

tstart = time (NULL) ;

for ( i=0; i<le+9; i++ ) {
sum = sum + sgrt( (double)i );
if ( 1%1000000 == 0 ) {
delay = time (NULL) - tstart;
printf ("Time after %d terms: %d sec.\n", i, delay );

}
}
delay = time (NULL) - tstart;
printf ("Sum is %1f\n", sum );

printf ("Total time %d sec.\n", delay );

But what about...?

What does “modulo” mean anyway? Where does that word come
from?

Take a look at the two clocks in Figure 4.4. Can you tell how much
time has passed? Not necessarily, because clocks count to twelve,
and then they start over again. This is what mathematicians call
“modular arithmetic”. In the case of the clocks, we could say that
they have a “modulus” of twelve.

For example, if we start at midnight and wait 28 hours, the little
hand on the clock will be pointing to 28 % 12 (“28 modulo 12”),
which is 4.

In modular arithmetic, two numbers that have the same remainder
when divided by the modulus are said to be “congruent”. A Figure 4.4: Have two hours passed, or
mathematician would say that 2 AM and 2 PM are congruent in 14 hours? Or even a 26 hours? We can't

the clock’s modular arithmetic. tell. soure: Openciprtorg


https://openclipart.org/detail/217065/3-oclock

4.5. Trigonometric Functions

The advantages you young people have! Take a look at Figure 4.5.

Back in the days before pocket calculators, if your ancestors needed
to find the sine or cosine of an angle they looked up the values in
“trig tables” like this one. Think about the hours of work that went
into constructing these tables. The numbers had to be computed by
hand, using tedious mathematical techniques to find the value of each
function at given angles. One of the first tasks given to early computers
like ENIAC (1945-1947, Figure 4.6) was the creation of mathematical
tables, particularly those needed for aiming artillery shells.

Modern computers make this much easier for us. Let’s write a program
that uses C’s math functions to generate a table of values for cos(6)
and sin (@) for various values of 6. Before we start, it might be good to
remind ourselves what sine and cosine are. Take a look at Figure 4.7. If
you imagine a point travelling along the circumference of a circle with
a radius of 1, then cos(0) and sin(0) are just the x and y coordinates of
the point when it’s at the angle 6. Let’s start out with 6 = 0 and move
around the circle in 100 steps, until we get back to where we started.

Ay

sin @

cos 8

Remember that there are two different systems for measuring angles:

degrees and radians. When you go all the way around a circle, you've
turned by 360°. This is equivalent to 27t radians. C’s trigonometric
functions all use radians, so our program will need to divide 277 radians
into 100 steps, and calculate the sine and cosine for each.

That’s what we do in Program 4.3. Notice that we’re careful to set
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Figure 4.5: Math tables were once
widely used to find values for
trigonometric functions, logarithms,
and other functions. source: Wikinedia Commons

For a good overview of the techniques
used in constructing such tables, see
this Wikipedia article

Figure 4.6: Betty Jennings and Frances
Bilas operating ENIAC.

Source: Wikimedia Commons

Figure 4.7: The definition of sine and
cosine.

Source: Wikimedia Commons
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Program 4.3: trig.cpp

#include <stdio.h>
#include <math.h>
int main () {
double theta = 0.0;
double step = 2.0 » M_PI / 100.0;

int 1i;

for ( i=0; 1i<100; i++ ) {

printf ( "$1f $1f %1f\n", theta, cos(theta), sin(theta) );

theta += step;

theta equal to zero at the beginning, just as we did with sum in
Program 4.1. Each time around the loop, we add a little bit to theta
until we’ve worked our way completely around the circle. The size of
each step is 271/100, since the whole circle is 27t radians and we want
to divide it up into 100 steps.

Also notice that we use the symbol M_P1I that’s conveniently provided
for us by math.h.

Exercise 23: Making a Trig Table

Create, compile, and run Program 4.3. It should make three
columns of text, containing values for 6, cos(6) and sin(6).
Now run it again, like this, to write the table into a file:

./trig > trig.dat
It's hard to see whether your program is doing the right
thing by just looking at the numbers. Let’s try graphing

them. Start up gnuplot by typing its name, and then give it
this command:

plot "trig.dat"
You should see something that looks like the top graph in
Figure 4.8. Now try giving gnuplot this command:

plot "trig.dat" using 1:3
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Figure 4.8: Plots of 6 versus cos (@), 6
versus sin(0), and cos(0) versus sin(6).



You should see something like the middle graph in Figure
4.8. Next try this gnuplot command:

plot "trig.dat" using 1:2, "trig.dat" using 1:3

The result should be the first two graphs laid on top of each
other. Finally, try this:

plot "trig.dat" using 2:3

You should see something like the bottom graph in Figure
4.8.

What did gnuplot do? The first command told gnuplot to plot the
contents of the file trig.dat, but how did it know which columns to
use? The file contains three columns of data: 6, cos(6), and sin(6). As it
turns out, gnuplot assumes that the first two columns in a file represent
the x and y coordinates of a set of points to be plotted. If the file only
contains one column, gnuplot uses the line number as x, and the value
on each line as y.

If your file contains more than two columns, you can tell gnuplot which
ones to use as x and y with the “using” qualifier. If you say “using
1:3”, that means “column 1 is x and column 3 is y”. We can ask gnuplot
to superimpose multiple graphs by giving it a comma-separated list of
things to plot, as we did in the next-to-last “plot” command in the
exercise above.

As you can see from the bottom graph in Figure 4.8, our values for
cos(0) and sin(0) really do correspond to the x and y values of a point
at various angles, as they should. (The circle looks flattened because
the vertical and horizontal scales are different. By default, gnuplot fits
its graphs into a rectangular window that’s wider than it is tall. You
can fix this by telling gnuplot “set size square”.)

4.6. Using “while” Loops

Until now we’ve used just one of the kinds of loops that the C pro-
gramming language provides. The “for” loop that we’ve been using is
what programmers call a “counted” loop, because we tell the computer
how many times to go around the loop. Another kind of loop is called
a “conditional” loop. We can create one of these using C’s “while”
statement, which looks like this:
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Hipparchus of Nicea (180-125 BCE) is
credited with creating the first
trigonometric tables. He’s the bearded
gentleman shown holding the blue
celestial sphere in this detail from The
School of Athens, by Raffaello Sanzio
(1509). Source: Wikimedia Commons

n

Before computers and calculators
became widely available, the slide rule
was widely used for calculations
involving logarithms or trigonometric
functions.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:La_scuola_di_Atene.jpg
https://commons.wikimedia.org/wiki/File:Frank_Whittle_CH_011867.jpg
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while (CONDITION) {
BLOCK OF STATEMENTS

The statements inside the loop will be acted upon again and again, as
long as the “CONDITION” is true. You might notice that this looks a
lot like an “i£” statement, where a block of statements is only executed
if some condition is met. With “i£”, the block of statements is only
acted upon once, but with while they’re done over and over, for as
long as the condition continues to be met. Here’s an example:

int 1 = 0;

while ( 1 < 10 ) {
printf ( "%d\n", 1 );
i++;

The code in this example would print out the integers from zero to nine.
This is the same kind of thing we’ve done with “for” loops, but done
in a different way. Consider the following example, though:

int 1 = 0;
while ( 1 < 1000000 ) {
i = rand();
printf ( "&d\n", 1 );

The second example will continue printing random numbers until it
finds one that’s greater than 1,000,000, and then it will stop. We don’t
know in advance how many times the computer will go around the
loop. The number of loops just depends on the condition we set in the
while statement. That's why this kind of loop is called a “conditional”
loop.

4.7. Writing a Game

Program 4.4 also uses a while loop. In this case, we're playing a game
like Blackjack. Blackjack (also know as Twenty-One) is a card game
where each player is dealt cards, one card at a time. Each card has a

How many loops are in this roller
coaster?

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Vekomaboomerang.jpg

numerical value from one to thirteen. The object of the game is to get
the sum of all your cards as close to twenty-one as possible, without
going over. Each time Program 4.4 goes through its while loop, it
picks a random number from one to thirteen, then adds this number to
the sum so far. It keeps doing this for as long as the sum is less than
twenty-one.

Program 4.4: addem.cpp (Version 1)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int sum = 0;

int card;

Do you see how this makes

srand(time (NULL) ) ; a number between 1 and 13?
while ( sum < 21 ) {
card = (int) ( 1 4+ 13.0xrand()/ (1.0 + RAND_MAX) );

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum );

Exercise 24: Add "Em Up!

Create, compile and run Program 4.4. Does it work as
expected? Run it several times to see if you can hit exactly
twenty-one.

We could improve on Program 4.4 by telling it to congratulate us when
we win. To do this we might modify the while loop to make it look
like this:

while ( sum < 21 ) {
card = (int) ( 1 + 13.0*rand()/ (1,0 + RAND_MAX) );
sum += card;
printf ("Got %d. Sum is now %d\n", card, sum );
if ( sum == 21 ) {
printf ("You WIN!\n");
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Traditional playing cards have either
numbers or faces on them. The values
of the numbers are self-explanatory. For
the faces, we count Jack, Queen and
King as 11, 12 and 13, respectively.

Source: Wikimedia Commons

The card-player, by Aba Novak.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Playing_cards_collage.jpg
https://commons.wikimedia.org/wiki/File:Aba-Novák_The_card-player.jpg
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4.8. Stopping or Short-Circuiting Loops
The problem with our game so far is that there’s no skill involved in
playing it. It’s purely random whether you win or lose.

In the real game of Blackjack, after each card is dealt the player is asked
whether he/she wants another. If the player is very close to twenty-one
already, he or she may choose not to get any more cards, hoping that all
of the other players will either go over twenty-one, or not get as close.
(Whichever player gets closest to twenty-one, without going over, wins.)
Let’s modify our program to allow for this. Take a look at Program 4.5.

Program 4.5: addem.cpp (Version 2)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
int sum = 0;
int card;
int ans;

srand (time (NULL) ) ;
while ( sum < 21 ) {

card = (int) ( 1 + 13.0xrand()/ (1.0 + RAND_MAX) );

sum += card;
printf ("Got %d. Sum is now %d\n", card, sum );

The Card Players by Catherine Ann
Dorset. (Note that one of the players
seems to be a Great Auk, which sadly
became extinct in the mid nineteenth
Century.)

Source: Wikimedia Commons

if ( sum == 21 ) {
printf ("You WIN!\n");
} else 1if ( sum > 21 ) {
printf ("You lose!\n");
} else {
printf ("Enter 1 to continue or 0 to quit while you're ahead: ");
scanf ("%d", &ans);
if ( ans != 1) {
printf ("Your final score was %d\n",sum);
break;

}

As you can see, we've added an “i£” statement to deal with the various
possible outcomes. If the sum is exactly twenty-one, we tell the player
he or she has won. If it's over twenty-one, we identify the player as
a loser. If the sum is under twenty-one, we give the player a choice:
continue or quit? If the player chooses to continue, we go around the
loop again.


https://commons.wikimedia.org/wiki/File:The_Card_Players.jpg

But what if the player chooses to quit? How can we make the loop stop
right now, without waiting for the sum to get greater than twenty-one?
To do this, we use the C language’s “break” statement. A break
statement causes the loop it’s in to stop immediately.

Exercise 25: Playing a Card Game

Create, compile and run Program 4.5. Try running it several
times, making sure you sometimes tell it to continue, and
sometimes tell it to quit. Does it behave as expected?

Figure 4.9 shows another program that uses the break statement. The
program in the figure does a countdown, from ten toward zero, but
before it reaches zero the countdown is stopped by using break.

#include <stdio.h>
int main ()
{
int n;
for (n=10; n>0; n--) {
printf(“%d, ", n);

if (n==3) {
printf ("\nCountdown aborted!\n");
break;

}

}

printf (“Done!\n");

Output:
10, 9, 8, 7, 6, 5, 4, 3,
Countdown aborted!

Done!

}

C’s break statements are often useful when your program is searching
for something. Imagine you're looking through a big stack of books,
trying to find one with a particular title. You start from the top and
look at the books one at a time until you find the one you want. Then
you stop. You don’t keep looking through the rest of the stack.

You can use break to do something similar in a C program. When we
find the thing we’re looking for, we can immediately stop looping and
go on with the rest of the program.
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Figure 4.9: Using break to stop a loop.
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But what about...?

What if you use break inside two or more nested loops, like this?:

for ( i=0; i<nrocks; i++ ) {
for ( j=0; j<nstorms; Jj++ ) {
break;

This is similar to the nested loops in Program 2.7, which tracked
each of many rocks as they were washed down a gutter by some
number of rainstorms.

The break statement only halts the innermost loop containing it.
In the example above, the break would stop the nstorms loop,
and the computer would go back to the top of the nrocks loop. If
there were more rocks left to do, it would continue with the next
rock, and start the nstorms loop again for the new rock.

Compare that with the following example:

for ( 1i=0; i<nrocks; 1i++ ) {
for ( j=0; j<nstorms; Jj++ ) {

break;

In the second example, the break statement would stop the outer,
nrocks, loop, and the computer would continue without doing
anything else with either of these loops.

What if you wanted to skip the rest of this trip around a loop, but not
stop looping? You can do that, too, using C’s “continue” statement.



Consider the following example:

for ( 1i=0; i<10; i++ ) {
printf ("Loop number %d\n", 1i);
if (1 >= 5 ) {
continue;

}

printf ("This number is below 5.\n");

If we ran a program containing this code, it would print:

Loop number 0
This number is below 5.
Loop number 1
This number is below 5.
Loop number 2
This number is below 5.
Loop number 3
This number is below 5.
Loop number 4
This number is below 5.
Loop number 5
Loop number
Loop number
Loop number

O 0 J O

Loop number

When the continue statement is acted upon, the computer skips
everything else in this trip around the loop and goes directly back to
the top, to start the next trip. Just like break, continue only affects
the innermost loop containing it.

Figure 4.10 shows another countdown example. This time, for some
reason, Mission Control has decided to omit some numbers from the
countdown. (Maybe they’re superstitious?)

As with the other countdown example, we can imagine an analogy
between this and searching for something in the real world. Imagine
that you have a stack of books, some of which are paperback and
some of which are hardback. You're looking for a particular title, and
you remember that it’s a hardback book. You’ll go through the stack
quickly, discarding the paperbacks without even looking at them, and
proceeding down the stack.
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We can use a continue statement to do this kind of thing in a loop.

The continue causes the current trip around the loop to stop, and the

computer goes immediately back up to the top of the loop and starts
the next trip.

#include <stdio.h>
int main ()
{

int n;
for (n=10; n>0; n--) {/)
if (n==5 || n==6) {
continue;

}
printf(“%d, ”, n);

14

} Note missing
}prlntf("GO!\n“); - numbers
Output:
10, 9, 8, 7, 4, 3, 2, 1, GO!

Figure 4.10: Using “continue” to
short-circuit a loop.



4.9. Writing a Two-Player Game
Let’s use use our new knowledge of while loops to write another
game. This time, we’ll write a two-player game in which the user plays

against the computer. It will be a version of an ancient game called
IINimII.

In this version of Nim, twelve coins are placed on a table, as in Figure
4.11. The players take turns picking up 1, 2, or 3 coins at a time (the
player is free to choose how many coins to take). The player who picks
up the last coin wins.

Program 4.6 plays this game. It starts out with 12 coins on the table by
setting the variable coins equal to 12. After telling the user the rules

(using some printf statements) the program begins a while loop.

Each time around the loop one of the players (user or computer) takes
some number of coins, and this number is subtracted from coins. The
while loop keeps going as long as the value of coins is greater than

zZero.

If you try playing this game, you'll find that the computer always wins!

By employing a simple strategy, the computer can always win the game.

Can you understand how it works?>

Notice that the program uses a cont inue statement to keep users from
cheating. If the user picks a number other than 1, 2, or 3, the program
sends the user back to the top of the loop to try again.
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There are more complicated versions of
Nim. Often it’s played by laying out a
pyramid of objects (such as the
matchsticks shown here), and only
allowing players to remove objects from
a single row during each turn.

Source: Wikimedia Commons

Figure 4.11: Are you ready for a game of
“12-coin Nim”?

Source: Wikimedia Commons (1, 2, 3)

5 There’s an excellent Wikipedia ar-
ticle about the game of Nim and the
mathematics behind it. You'll also be
amused by Matt Parker’s explanation
of the game on his YouTube channel,
“Standup Maths”. Take a look if you
can’t figure out how the computer’s
strategy works.


https://commons.wikimedia.org/wiki/File:NimGame.svg
https://commons.wikimedia.org/wiki/File:Denier_à_l'effigie_de_Didia_Clara.jpg
https://commons.wikimedia.org/wiki/File:Denier_frappé_par_les_Lingons.jpg
https://commons.wikimedia.org/wiki/File:Didrachme_de_l'ile_de_Paros_à_l'effigie_de_Déméter.jpg
https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=9KABcmczPdg

122 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

Also notice how the program switches between “Player 0” and “Player
1”. After each player’s turn, the variable nextplayer is set to a value
that indicates who the next player should be.

Program 4.6: nim.cpp

#include <stdio.h>
int main () {
int coins = 12;
int take;
int nextplayer = 0; // Player O=user, l=computer
int currentplayer;

printf ("There are %d coins.\n", coins);
printf ("You may take 1, 2, or 3 of them.\n");

(
(

printf ("Whoever gets the last coin wins.\n");
(

printf ("You are player 0, the computer is player 1.\n");
Keep looping until
while ( coins > 0 ) {« all coins are gone

currentplayer = nextplayer;

printf ("-——————- Player %d's Turn ———————-— \n", currentplayer);
if ( currentplayer == ) o
( printf ("How many coins will you take?: ");
scanf ("%d", &take);
if ( take > 3 || take < 1 ) {
Player o P printf ("You must take 1, 2, or 3. Try again\n");
continue;
} The computer’s
nextplayer = 1; winning strategy
} else {
take = 4 - take;]
Player 1 printf ("I will take %d of them.\n", take );

nextplayer = 0;

coins = coins - take;
printf ("There are now %d coins left.\n", coins );

printf ("Player %d Wins!\n", currentplayer);
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4.10. One More Kind of Loop

Programmers say that for loops and while loops are both “pre-test
loops”. Take a look at the partial program below, containing a for loop
and a while loop:

int nloops = 0;

int 1i;

for ( i=0; i<nloops; i++ ) {
printf ( "$d\n", 1 );

}

while ( nloops > 0 ) {
printf ( "%d\n", 1 );

Neither of these loops will print out anything, because their conditions
are never satisfied. In the first loop, nloops is zero, and i will never
be less than zero, and the second loop does nothing for a similar reason.
The statements in these loops will never be acted upon, not even once.

The C language offers a third kind of loop that’s a “post-test loop”.
This is the “do” loop (also known as the “do-while” loop). Consider
this example:

do {
printf ( "$d\n", 1 );
} while (1 < 0 );

If we ran the example above, it would always print out something, no
matter what the value of i is. The statements inside a do-while loop
will always be acted upon at least once. After each trip through the
loop, the do-while statement’s condition is examined to see whether
it’s satisfied, determining whether to go around the loop again. A
do-while loop is sort of an upside-down while loop.

The important difference is that statements inside a do-while loop
will always be acted upon at least once, but there’s no guarantee that
statements inside a while loop will ever be acted upon. do-while
loops can be useful in cases where initial values are undetermined
before the loop starts.
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The general form of a do—while loop is this:

do {
BLOCK OF STATEMENTS
} while (CONDITION) ;

4.11. Estimating the Value of 7

Take a look at Program 4.7. This program estimates the value of 7
by using an approximation discovered in the 14th-Century by Indian
mathematician Madhava of Sangamagrama. He found that 7t was given
by the sum of the terms of an infinite series:

1 1 1
R VR(1- st s rE )

Notice that the size of term number 7 inside the parentheses is:

1
(1+2n) - 3"

and that the sign of the terms bounces back and forth between positive
and negative. The terms get smaller and smaller as the series goes on.

Program 4.7 starts calculating the terms in this series and adding them
up. It keeps going until it comes to a term that’s smaller than 10~ (we
chose this value arbitrarily, deciding that we could ignore corrections
smaller than that). The program uses a do-while loop to do the
work. Notice that we use C’s pow function to get the value of 3" when
calculating each term, and the fabs function to find the absolute value
of the term.® The alternating signs of the terms is taken care of by the
multiplier variable, which alternates between 1 and —1 (can you
see why?).

After each trip through the loop, the computer checks the absolute value
(since the terms alternate between positive and negative) of the current
term to see if it’s less than our cutoff value of 10~ !1. A do-while loop

Amn ple Source: Wikimedia Commons

¢ See Figure 4.2.


https://commons.wikimedia.org/wiki/File:Pi_pie2.jpg

is more convenient than a while loop in this case, since we don’t know
what the value of the first term will be until we’ve gone through the
loop once.

At the end of the program, we print out our estimate of 7t and compare
it to the “actual” value as given by M_PI. Notice that we have to
multiply our sum by /12 to get 7t (see Madhava’s series, above). The
program’s output looks like this:

Pi = 3.141592653595635 after 21 terms.
Actual = 3.141592653589793
_10° =
o -2 m
= 10 .
o 10 =
- | ]
g 10° -
o 108 n
Q -10 | ]
£10 u
-12 n
10
0 5 10 15 20

Term Number

Program 4.7: findpi.cpp

#include <stdio.h>
#include <math.h>
int main () {
double sum = 0.0;
double term;
double multiplier = 1.0;
double small = 1.0e-11;

int nterms = 0;

do {
term =
sum += term;
nterms++;
multiplier = —multiplier;

} while ( fabs(term) >= small );

printf ("Pi %

printf ("Actual = %.151f\n", M_PI);
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Figure 4.12: The difference betwen our
estimate of 7t and the actual value, as we
add more terms to the sum. Note that
the vertical scale is logarithmic.

multiplier / (( 1.0 + 2.0*nterms ) * pow(3.0,nterms));

.151f after %d terms.\n", sumxsqrt(12.0), nterms );
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4.12. Conclusion

C provides a rich set of math functions and a versatile toolkit of loop
structures. Together, these allow us to write computer programs that
accomplish in seconds tasks that once took many hours of human labor.

To summarize some of the things we’ve talked about in this chapter:

¢ To use C’s math functions, you need to add #include <math.h>
to the top of your program.

* The math functions take arguments of type double, and return
double values.

* Several constants are defined in math.h, including M_PI and M_E.

* “for” loops are good for situations where you know in advance
how many times you want to go around the loop.

* while loops are good when you want to keep going until some
condition is met.

* do-while loops are good when you want to do a test after going
through the loop the first time.
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Practice Problems

1. Create a modified version of Program 4.1 (the first version of the
timer.cpp program) that tells you how many square roots per sec-
ond your computer can do. Call the new program speedtest . cpp.

2. Write a program named clocktime.cpp that uses only addition
and just one modulo operator (see the example in Program 4.2) to
calculate what number the hour hand of a clock would be pointing
to after a given number of hours have passed. The program should
ask the user for the current hour, and then ask how many hours in
the future. For example, if the user says that the hour is currently 3,
and wants to know what the hour will be after 15 hours have passed,
the program should say “6”. Hint: It's OK if your program prints
zero when the answer should really be 12.

3. Write a new program called square. cpp. The new program should
be like Program 4.3, except that:

(a) instead of 6, sin(6) and cos(6), the new program should print out

two columns: 6 and /0

(b) instead of going from zero to 27, do it for 100 steps between zero
and ten.

4. Like trig tables, tables of logarithms were also very important to
scientists and engineers before calculators and computers were avail-

able”. One of the first tasks assigned to early computers was the 7 This Numberphile video
generation of these tables. Write a program named log.cpp that by Roger Browley shows
. . . how log tables were used:
uses a while loop to generate a list of numbers from 1 to 10, in https:/ /www.youtube.com/watch?v=VRzH4xBoGdM.

steps of 0.01, along with the natural logarithm of each number, as
given by C’s 1og function (see Figure 4.2). Make the program write
two columns, separated by a space: The first column should be the
number, and the second column should be its log.

Hints: Define two double variables, x and deltax. Set deltax =
0.01 and initially set x = 1. Then use a while loop to print x and
log (x). Then, before going around the loop again, add deltax to
x. Make the loop stop when x is no longer less than ten.

5. Imagine that a very generous bank offers you a nominal annual
interest rate of 100% on your investments. If you deposit $1,000 at
the beginning of the year and the bank adds 100% at the end of the
year, you'd end up with $2,000! Sweet!

But what if, instead of adding all the interest at the end of the year,
the bank gave you 50% interest after six months and another 50% Portrait of Jacob Bernoulli (1654-1705).

Source: Wikimedia Commons


https://www.youtube.com/watch?v=VRzH4xB0GdM
https://commons.wikimedia.org/wiki/File:Jakob_Bernoulli.jpg
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after another six months? (A banker would say that the interest
was “compounded” two times per year.) In the middle of the year
you’d have $1,500. Adding another 50% to that at the end of the year
would give you a total of $2,250. Even better! And if the bank paid
us 25% four times per year we’d end up with $2,441, an even larger
amount. Compounding the interest more often apparently gives us
more money at the end of the year.

In the 17" Century, Jacob Bernoulli realized that you can find out
how much money you’ll have at the end of the year by multiplying
your original investment by:

1 n
(14’5)

where 71 is the number of times per year that the interest is com-
pounded. He discovered that there’s a limit to how much money
you can make, even if you let n go to infinity. In this limit, the
expression above approaches a value of about 2.718. Today we know
this number as Euler’s Constant, ¢, the base of natural logarithmss.
So, the most we’d have at the end of the year would be about $2,718,
no matter how often the interest is compounded.

Write a program named interest.cpp that uses the pow function
(see Figure 4.2) to evaluate the mathematical expression above. For
each value of n from 1 to 100 print n and the expression’s value.
(The program’s output should be two columns of numbers.) Check
your program by making sure that the value approaches about 2.718

as n increases.

2.8
27
2.6 "’
25

24
23
22
21 H

1.9

n

Figure 4.13: This is what a graph of
your interest.cpp program’s output
should look like. Notice that the value
rises rapidly at first, then levels of to a
value approaching e.

8¢ is perhaps the second most
important mathematical constant,
after 7r. If we think of 7t as the “circle
constant”, we might think of e as

the “growth constant”. It appears

in equations describing growth

and decay in every area of science.
For more information, see this
Numberphile video by James Grime:

https:/ /www.youtube.com/watch?v=AuA2EAgAegE

You can also graph your results by typing . /interest > interest.dat

and then using gnuplot to graph the data. To do this, start gnuplot
and type plot "interest.dat" with linespoints. The re-
sult should look something like Figure 4.13.

. Write a program (call it baselpi.cpp) that uses a “do-while”
loop to sum up the terms of the series:

101 11
STEtatETet

Notice that the terms keep getting smaller and smaller. Keep adding
terms until you come to a term that’s less than 10° (include this


https://www.youtube.com/watch?v=AuA2EAgAegE

term in your sum). Print out the sum and the number of terms,
clearly identifying which is which. Your program should also use
this sum to print an estimate of the value of 7r. How can it do this?
Read on!

This is a famous problem in the history of mathematics, known as
the “Basel Problem?”. Leonhard Euler was the first to solve this
problem, finding that the sum of this series approaches the value
7% /6. This provides a way to check your program: Multiply the
sum by 6 and take the square root. You should get a number that is
approximately equal to 7.

Hint: When C divides one integer by another, it assumes that you
want the answer to be an integer, too. So, if you type 1/1i, where 1
is an integer, C will chop off any decimal places in the answer. If
you want to preserve those decimal places, type 1.0/ 1 instead. This
gives C a hint that you want to save things after the decimal place.

. Many people think that everything in mathematics is boring, and
that there aren’t any mathematical discoveries remaining to be made.
Nothing could be farther from the truth. Just as there are still plenty
of unanswered questions in physics (for example: What is dark
matter?) there are also lots of unanswered questions in math. One
unsolved mathematical mystery is called the Collatz conjecture®,
named after German mathematician Lothar Collatz. Let’s write
a program that illustrates the property of numbers that Collatz
observed.

Make a program named collatz.cpp that asks the user to enter a
starting number that’s an integer greater than 1. After the number
has been entered, the program should have a “while” loop that
does the following:

¢ If the number is even, divide it by 2.

¢ If the number is odd, multiply by 3 and add 1.

The loop should keep doing this for as long as the result is not
equal to 1. Each time around the loop, print the current result. For
example, if the user enters the number 5, the program should print:

6

= N s 0o

Hint: You can find out whether a number is even by using the
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Portrait of Leonhard Euler (1707-1783).
Source: Wikimedia Commons

9 See Wikipedia for much more informa-
tion.

 See

https:/ /www.youtube.com/watch?v=5mFpVDpKX7o
and

https:/ /en.wikipedia.org/wiki/Collatz_conjecture.

Lothar Collatz (1910-1990)

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg
https://en.wikipedia.org/wiki/Basel_problem
https://www.youtube.com/watch?v=5mFpVDpKX70
https://en.wikipedia.org/wiki/Collatz_conjecture
https://commons.wikimedia.org/wiki/File:Lothar_Collatz.jpg
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modulo operator (%). For example, if 1%2 is zero, then i is even.

You should find that any number you enter will generate a sequence
that ends in 1. Collatz speculated that this was always true for all
starting numbers, but nobody has ever been able to prove it. The
Collatz conjecture has been tested by computers for all numbers up
through 10%° and found to be true for each of them, but there might
be some huge number out there somewhere that doesn’t obey this
rule. Nobody knows.

008 000-60-060-000000000
-0-80-000-8

8. Imagine that your algebra teacher has asked you to simplify the

expression 12x 4 438. You suspect that there’s some common factor

of 12 and 438 that you could pull out, but how can you find it?

Fortunately, the ancient Greek mathematician Euclid provided us

with a simple recipe for finding the greatest common factor of two
numbers®®. Let’s call the two numbers 11 and n,. Euclid’s method
works like this:

1) Divide n; by ny and find the remainder.
2) Now make n; equal to 17, and make 1, equal to the remainder.

3) keep repeating steps 1 and 2 until you get to a remainder of zero.
At this point, the value of 177 will be the greatest common factor

of the original numbers.

Write a program named gcf . cpp that uses a “do-while” loop to

find the greatest common factor of two numbers by using Euclid’s

method. The program should start by asking the user for two

integers. When you run the program, it should look something like
this:

Enter first number: 12

Enter second number: 438
GCF is ©

Hint 1: Remember that the % operator gives you the remainder after
division.
Hint 2: If the remainder is rem, your loop should continue for as

long as rem != 0.

This graph shows the path taken by

each of the integers up to 1,000 as they
9. Write a program named findtwo.cpp that uses a do-while loop work their way through the Collatz
process on their way to 1. As you can
see, the paths form a pretty shape, like
coral.

to sum up the terms of the series:

Source: Wikimedia Commons

" This is also sometimes called the
“greatest common divisor” or “greatest
common denominator”.


https://commons.wikimedia.org/wiki/File:Collatz_orbits_of_the_all_integers_up_to_1000.svg

s
1 2 4 8 16 32

Notice that the denominators of the terms start with 1, and each de-
nominator is two times as large as the preceding one. Your program
should keep adding terms until it comes to one that’s smaller than
1077 (include this term in your sum).

The program should print the sum and the number of terms it added
up. If we could add up an infinite number of such terms the sum
would be exactly 2. Since each term in the series is substantially
smaller than the preceding term, your program should show a sum
that’s approximately 2.

As we saw in Chapter 3 it’s possible to tell C how many decimal
places we want to show when printing a number. Inside your
program’s do-while loop, put a statement like this that prints the
value of each term and the current sum after adding that term:

printf ("%$.201f %.201f\n", term, sum);

The “.20” between % and 1f tells the program to print twenty digits
after the decimal point. By watching how the terms change, we can
see them get smaller and smaller, and we can see the sum get closer
and closer to 2.

Hint: To prevent your program from chopping off numbers after
the decimal point, use double variables to hold the values of the
denominators, the terms in the series, and the sum.
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Figure 4.14: In the findtwo.cpp
program, as we add more terms, each
term becomes smaller and their sum
converges toward 2.







5. Reading and Writing Files

5.1. Introduction

CERN'’s Large Hadron Collider produces mountains of data: about
a gigabyte (10° bytes) per second. That’s enough to fill a couple of
hundred laptop-sized disks per day! This data is saved in files, and
these files are distributed around the world for analysis.

Early computers read data from punched cards, or from paper tape with
holes punched into it. The pattern of holes on each card was a code that
represented numbers or letters. “Keypunch operator” was a job much-
advertised in the help-wanted section of the newspaper. A keypunch
machine was similar to a typewriter. As the operator typed, holes
were punched in the appropriate places on the card. Some keypunch
machines also typed the words onto the card, so you could look at it
and easily see what was encoded on it (although many programmers
became quite adept at reading the holes themselves).

Each punched card could store about eighty bytes of information. If
digital cameras had existed at that time, storing a single photo would
have required tens of thousands of cards. As computers became faster
and capable of dealing with larger data sets, new storage technologies
had to be developed. One of these was magnetic media, first in the form
of tapes and later disks. Early reel-to-reel tapes of the type introduced
by IBM in the 1960s could hold several tens of megabytes: enough
for a few photographs from a modern camera. Removable “diskettes”
(also called “floppy disks”) were developed in the 1970s and 8os. These
couldn’t hold as much data as tapes, but they were were convenient
for storing a few spreadsheets or word-processing documents. “Hard
disks”, of the type still in use today, can hold several terabytes (10
bytes) of data. That’s enough to hold hundreds of thousands of digital
photos.
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A part of the CMS detector, at CERN'’s
Large Hadron Collider.

Source: Wikimedia Commons

A keypunch machine in the basement
of the UNC Physics building. As late as
the 1980s, undergraduates would flock
there nightly to punch cards for
programming projects.

Source: UNC-Chapel Hill Computing History photo collection
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A magnetic tape library at the National
Oceanographic Data Center.

Source: Wikimedia Commons
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As we've learned in earlier chapters, computers store data in the form
of ones and zeros. A “file” on a disk is just a collection of ones and
zeros, with a name attached to it so we can find it when we need it. In
this chapter, we’ll learn how to write data to files and read data from
files.

5.2. Writing Files

Until now, we’ve used the printf function to send output to the
computer’s screen. If we want to write things into a file instead, we can
use another function named fprintf (for “file print £”). Before we
can do that, though, we have to do a little preliminary work.

Writing to a file isn’t quite as simple as writing to the screen. For one
thing, we can usually assume that there’s a screen to send our output
to, but the file might not exist. If it doesn’t exist, do we want to create
it, or just give the user an error message? If the file exists already, do
we want to replace its contents with something new, or do we want to
add content after the end of whatever’s already there?

We can control all of these options with the fopen function. The fopen
function “opens” a file and makes it ready for reading or writing.

A companion to fopen is the fclose function. This makes sure that
all data has completely been written to a file. Although programs will
usually do this for you automatically when they finish running, it’s
good practice to explicitly use the fclose function to “close” a file
when you're done with it.

The fopen function returns a value that can be used to identify the file
you've opened. This identifier is called a “file handle”, since it’s like a
handle by which you can grab the file when you need it.* As you'll see,
there’s a new kind of variable that we use just for storing file handles.

When you use the fprint f function to print something into a file, you
tell fprint £ which file to use by giving it a file handle.

Program 5.1 is a very simple example showing how to open a file, write
something into it, and then close it. The program writes the words
“Hello File!” into a file named hello.txt.

A very famous broken file cabinet. This
is the cabinet that was broken into in
the Watergate Hotel, at the behest of the
Nixon administration. It now resides in
the Smithsonian’s National Museum of

American History.

Source: Wikimedia Commons

* This identifier is sometimes referred to
as a “file descriptor” or “file pointer”.
These are all the same thing.


https://commons.wikimedia.org/wiki/File:WatergateFC.jpg
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Program 5.1: hellofile.cpp

#include <stdio.h>
int main () {
FILE xoutput;
output = fopen ("hello.txt","w");

fprintf ( output, "Hello File!\n");

fclose ( output );

Even though Program 5.1 is short, there’s a lot going on in it. Let’s
look at some of the parts individually. First, let’s look a the fopen
statement:

We'll use this variable
to hold a “file handle”.

New Variable Variable

Type Name
A A

\ [/ \
Vi 1
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FILE *output;
output = fopen("hello.txt","w");

\. /

Writing

Figure 5.1: Structure of an fopen
As you can see from Figure 5.1, fopen takes two arguments: the name statement.

of the file to be opened, and a second argument that specifies how
we're going to use the file. For example, we can say that we want to
read ("r"), write ("w") or append ("a") to the file. There are also other
options. See Figure 5.2 for some of them. Usually, you'll only need "r"
or "w".
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Open the file for reading only. Give an error message if
the file doesn't exist.

Open the file for reading or writing. Give an error
message if the file doesn't exist.

Open the file for writing only. If a file with this name
already exists, erase it and create a new file.

Open a file for reading or writing. If a file with this name
already exists, erase it and create a new file.

Open a file for appending (writing at end of file). Create
the file if it doesn't exist, but don't erase an existing file.

Open the file for appending and reading. Create the file
if it doesn't exist. For existing files, start reading from the
top of the file, but write at the bottom.

Figure 5.2: Various ways that fopen can
open a file.
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The fopen function returns a file handle, which we can capture in a
variable for later use. In Program 5.1 we name this variable “output”,
but it can have any name you want to give it. This is a new kind
of variable, unlike the int and double variables we’ve been using
to store numbers. It’s a special type of variable just for storing file
handles. Just as we might define an integer variable by saying “int
i”, we define this new variable by saying “FILE xoutput”. Note the
asterisk here is part of the file type. The type of this variable isn’t int
or double, it’'s “FILE «”.

The Writing Master, by Thomas Eakins.

Source: Wikimedia Commons

Once we’ve stored the file handle in a variable, we can use it to read
from a file or write to a file. The fprintf function is like printf,
except that it takes one extra argument: a file handle. In Program 5.1
we use the fprint £ function to write the text “Hello File!” into the
file hello.txt, which we’ve previously opened with fopen. We've
specified this file by giving fprintf the file handle “output”. If we
wanted to, we could open several different files and write different
things into each of them. In that case, we’d pick which file we wanted
to use by giving the appropriate file handle to the fprintf function.

Format
File Handle Specification
AN

fprintf ( loutput‘, "Hello File!\n\')" ) ;

Could put other things
here, just like printf.

. . . Figure 5.3: Structure of an fprintf
Finally, Program 5.1 uses the fclose function to make sure everything statement.

has been written to the file before the program finishes.

Exercise 26: Hello File!

Create, compile and run Program 5.1. When you run the
program, you shouldn’t see any output since it’s being sent
into a file instead of to the screen. How can you tell if the
program did the right thing?


https://commons.wikimedia.org/wiki/File:The_writing_master_thomas_eakins.jpeg
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First of all, look to see if there’s a new file. The 1s command
will show you a list of your files. Do you see a file called
hello.txt?

Next, take a look inside the file by typing nano hello.txt.
Does it contain the text “Hello File!” as it should?

But what about...?

In earlier chapters, we’ve seen that we can redirect the output of

our programs into a file by appending > followed by a file name The word “hello” wasn’t commonly

when we run the program (as we did when plotting the output of used until the invention of the
our gutter program in Chapter 2). You can alternatively use » to telephone. There was initially some
L. . disagreement about the proper form of
append some output at the end of an existing file. For example, greeting on the new device. Alexander
you could do the following: Graham Bell favored “Ahoy!”, and
some people advocated the jauntier
./gutter > gutter.dat variant “Hoy, Hoy!”. Eventually, we

settled on “Hello!”, and it was so much
identified with the device that early
./gutter >> gutter.dat telephone operators were referred to as
“Hello Girls”.

Source: Wikimedia Commons

./gutter >> gutter.dat

The first command would create a new file called gutter.dat
and write the program’s output into it. The next command would
run the program again, and append the output onto the end of the
existing file. The last command appends even more output onto
the file.

Be careful when using > to send a

If we can use > or » to redirect a program’s output into a file, why program’s output into a file. If you

would we want to make our C programs write files in any other type the wrong file name, you could
way? There are at least a couple of reasons: accidentally write over a file you want
to keep!

* Sometimes we want to send some output to the screen and some
to a file. Think about a program that asks the user for some
input, and then writes out some data. Text that says “Please
enter your age” should go to the screen, but we might want the
rest of what the program writes to go into a file.

* Sometimes a program needs to write more than one file. Think
about a program that sorts data into several categories, and
writes each category to a different file. Imagine the program
that Santa uses to sort kids into naughty.dat and nice.dat.


https://commons.wikimedia.org/wiki/File:A_Telephone_Operator.png
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5.3. Some Useful Commands for Managing Files
In the exercise above we saw the 1s command, and we’ve been using
the commands nano, g++, and gnuplot for a while now. Figure 5.4

summarizes some commands that you might find useful when working
with files.

Prompt Command Results

a v

[~/dem0]$ 1S o— | A

clus.pdf data-for-everybody.l.dat phase2
cluster.pdf ForYourEyesOnly.dat readme. txt
cpuinfo.dat phasel ReadMe. txt

[~/demo]$ nano hello.cpp
[~/demo]$ cp hello.cpp new.cpp
[~/demo]$ mv new.cpp hello_new.cpp

The prompt means “Hello human! I'm
ready to receive another command”.

Some useful commands:
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nano Edit a file.

mv Move (rename, relocate or both) a file.

g++ Compile a C (or C++) program.

Figure 5.4: Some useful commands for

As we saw in the exercise above, you can use the 1s command to show managing files.
us a list of our files.> The cp (“copy”) command can be very useful Source: Openclipartorg
in cases where you want to write a new program that’s similar to one 2157 is just an abbreviation for “list”.
you've written in the past. You can make a copy of the old program, As we've seen before, programmers are
with a new name, and then modify the copy as needed. sometimes lazy typists.

When entering commands at the command line, notice that the com-
puter will usually put a “prompt” at the beginning of each new line.
This is some text that might tell you what folder you're working in, or
what the computer’s name is. The text will vary depending on the type
of computer and its configuration. In any case, think of the prompt as
the computer’s way of saying “OK, I'm ready for you to give me a new


https://openclipart.org/detail/177846/old-wizard
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command now.”

Although the commands in Figure 5.4 have strange names, you might
think of them as wizardly incantations like Harry Potter’s “lumos!”. By
invoking these arcane spells you can cause the computer to do useful
things for you.

5.4. Infinite Loops
Sometimes a program doesn’t know how much data you're going to
give it. Consider Program 5.2 for example.

Program 5.2: input.cpp

#include <stdio.h>
int main () {

int nsiblings;

int nperson = O;

FILE *output;
output = fopen("siblings.txt","w");

printf ("Enter the number of siblings, or -1 to quit.\n");

while (1 ) {

printf ( "Number of siblings for person %d: ", nperson
scanf ( "%d", &nsiblings );
if ( nsiblings < 0 ) {
break;
}

fprintf ( output, "%d %d\n", nperson, nsiblings );
nperson++;
bi

printf ("Thank you!\n");

fclose ( output );

Imagine you're collecting data about how many siblings your classmates
have. Program 5.2 prompts you to enter the number of siblings each



individual has, and saves the data into a file called siblings.txt.

Notice how the program uses the “while” loop. As we saw in Chapter
4, a “while” loop keeps going for as long as the condition in paren-
theses is true. Here, the value in parenthesis is just “1”. Is that true or
false?

When a C program comes to a condition statement after an “i£” or
“while”, the computer converts the condition into a number. If the
condition statement is false, the number is zero. Any other number
means the statement is true. The “if” or “while” then uses this
number to decide what to do. If we use the number 1 as the condition,
it will always be true, so the “while” statement in Program 5.2 will
keep looping forever unless we somehow tell it to stop. This is called
an “infinite loop”.

Program 5.2 uses an infinite loop because it doesn’t know beforehand
how many people you're going to survey. It just keeps asking for more
data until you explicitly tell it you're done. When you've collected all of
your data, you signify this by giving -1 as the number of siblings. This
causes the break statement to be acted upon, and the loop terminates.

Infinite loops like this are often used when a program needs to keep
doing something until the user tells it to stop. For example, there’s an
infinite loop underneath the operating system on your computer. It
waits for mouse clicks, keystrokes, and other interesting events, and
examines them to find out what you're asking it to do. At some point,
you may tell the computer to shut down, causing the operating system
to clean things up and break the loop.

Exercise 27: Collecting Data

Create, compile and run Program 5.2. Enter some data from
your friends and neighbors, or just make something up.
Enter at least ten numbers. When you're done, enter “-1” to
stop the program.

Now use nano to look at the program’s output file: Type
“nano siblings.txt”. Does it look like what you ex-
pected?

Exit from nano, then start up gnuplot. Plot the data you've
collected by giving gnuplot the command:
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The address of Apple’s corporate
headquarters is “1 Infinite Loop”.

Source: Wikimedia Commons

Our program assumes that nobody
really has a negative number of siblings.
How could that even happen?
Antimatter??

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Infiniteloop.jpg
https://commons.wikimedia.org/wiki/File:Attribué_à_Pierre_Gobert,_Louise-Élisabeth_de_France_et_sa_soeur_jumelle_Henriette_de_France_(vers_1737).jpg
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plot "siblings.txt" with boxes

The result should look something like Figure 5.5. The phrase
“with boxes” tells gnuplot to draw boxes instead of just
plotting points.

Depending on how many points you entered, you may find
that gnuplot chops off part of the first box. You can fix this
by explicitly telling gnuplot where you want the x axis to
start. To do this, type:

set xrange [-1:]

and then type “replot”.

5.5. Producing Data Files

Sometimes programs write data, and sometimes they read data. It’s
often the case that data written by one program will be read by a
different program. Think about the experiments at CERN. During an
experiment, programs collect the data from particle detectors and write
the data into files. Later, perhaps at a university elsewhere, someone
uses a different program to read the data files and analyze them.

Let’s create a pair of programs that produce and consume data. The
first one will write some data into a file, and the second will read the
data and do something useful with it. The data will involve a simple
physics problem, but don’t worry if you don’t understand the physics.

Imagine that you fire a gun straight up into the air. The bullet leaves
the gun’s muzzle at approximately 700 meters per second. As it rises,
gravity slows it until eventually it stops rising and begins to fall. As-
suming a constant deceleration due to gravity, the velocity of the bullet
at any time after it’s fired would be:

V=V-—-gt

where ¢ is the elapsed time in seconds, Vj is the bullet’s initial velocity,
in meters per second, and g is the acceleration due to gravity near the
earth’s surface, which is about 9.8 m/s?. Because of the minus sign,
the bullet’s velocity gets smaller and smaller as time passes, until it

25

20

Number of Siblings

Person Number

Figure 5.5: Example sibling data,
plotted with gnuplot.

Figure 5.6: The scenario behind
Program 5.3



eventually reaches zero, and then it becomes negative (meaning that
the bullet has started falling back to earth).

The height of the bullet at any time will be:
L 2

if we assume that the bullet starts from a height of zero.

Program 5.3 calculates the bullet’s velocity and height once per second
during the first one hundred seconds of its flight, and writes those
values into a file for later analysis.

Program 5.3: bullet.cpp

#include <stdio.h>
#include <math.h>
int main () {

int 1i;

double t = 0.0;

double v;

double h;

double v0; // meters per second.
double delta_t = 1.0; // seconds.
double g = 9.8; // meters/second.
FILE xoutput;

printf ( "Enter initial velocity (m/s): " );
scanf ( "%1f", &vO0 );

output = fopen ("bullet.txt","w");

for ( i=0; 1<100; 1i++ ) {
v = v0 - gxt;
h = vOxt - 0.5xgxpow(t,2);
fprintf( output, "%1f %1f %1f\n", t, v, h );
t += delta_t;
bi

fclose( output );

Notice that we’ve added some comments beside the definitions of our
variables to remind us what units we’re using. Comments like this can
be very helpful if someone else needs to understand your program.
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We assume that the acceleration of

gravity is a constant, which is
approximately true if we don’t get too
far from the surface of the earth. In
Georges Melies” 1902 film Le Voyage
dans la Lune six men are fired to the
moon inside a large artillery shell.
Needless to say, our approximation
would not hold true in this situation.

Source: Wikimedia Commons
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Figure 5.7: A bullet’s height and
velocity as a function of time, for a
starting velocity of 700 m/s.
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Exercise 28: Fire At Will!

Create, compile and run Program 5.3. It should ask you
for an initial velocity. Use 700 m/s. After the program
finishes, use the “1s” command to check that the output file,
bullet.txt, has been created. Take a look inside the file
with nano by typing “nano bullet.txt”. There should
be three columns of data, for time, velocity, and height.

Now exit from nano and use gnuplot to plot the bullet’s
height versus elapsed time, by giving gnuplot this command:

plot "bullet.txt" using 1:3

You should see a graph that looks like top graph in Figure
5.7. Try to identify the bullet’s maximum height, and the
time at which it reaches this height.

If you have time, you can also graph the bullet’s velocity as
a function of time by giving gnuplot this command:

plot "bullet.txt" using 1:2

But what about...?

Notice that Program 5.3 only tracks the bullet for one hundred
seconds. The bullet may not reach the ground during that time.
What if we wanted the program to track the bullet for as long as
it’s in the air, and stop when it hits the ground? We could modify
the program by replacing the “for” loop with a “do-while” loop,
like this:

do {
v = v0 - gxt;
h = vOxt — 0.5xgxpow (t,2);
fprintf ( output, "%1f %1f $1f\n", t, v, h );
t += delta_t;
} while ( h >= 0.0 );

5.6. Analyzing a Data File

In the exercise above, you might have found that it was hard to tell
exactly where the bullet reached its maximum height by looking at the
graph of our data. Analyzing data by hand is tedious and imprecise.



Imagine how much harder it is to analyze the data from a huge experi-
ment like the ones at CERN, where billions of data points are recorded
per second!

Even for small experiments, it's often necessary to write computer
programs to help us analyze data. Let’s write a program that can read
the bullet program’s output file and find the maximum height for us.

Take a look at Program 5.4 on Page 147. This program does several new
things. First of all, it opens the file for reading, instead of writing, by

n_n

giving an "r" to the fopen function.

Next, notice that Program 5.4 uses an infinite loop (see the “while
(1)”) to read data from the file. This allows the program to read a file
of any length. If we modified our bullet program so that it produced
more or fewer lines of data, Program 5.4 would still be able to read the
output file.3

Each time Program 5.4 goes around its loop, it reads a line from the
bullet.txt data file. To do the reading, we use a new function:
fscanf. The fscanf function is like scanf, except that it reads data
from a file instead of from the keyboard. The first argument we give
fscanf is a file handle. This tells £scanf which file we want to read
from. In principle, we could open up several different files and choose
which one we want to read by giving the appropriate file handle to
fscanft. Figure 5.8 shows the structure of a typical £scanf statement.
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3 This would be very important if we
changed the loop in our bullet program
to a “do-while” loop, as in shown

in the box above. In that case, we’d
never know how many lines of data the
program would generate.

File Format List of
Handle Specification Variables

fscanf('input; h%dM, &1 );

Just like scanf, you should always put an ampersand (&) in front of
the variable names whenever you read numbers with £scanf, and you
should avoid “\n” in the format specification you give fscanf.4

Since the program uses an infinite loop, we have to do some sort of
test inside the loop to see if we're done yet. In this case, we let fscanf
tell us when there’s nothing left to read. Each time we call fscanf
it returns an integer value that indicates its “status”. For example,
the returned value may indicate that some error has occurred. One
of the values that can be returned is “End Of File”. The #include

Figure 5.8: Structure of an fscanf
statement.

4 See Chapter 3.
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file stdio.h defines a special symbol for this: EOF.> When fscanf
returns the value EOF, that means that we’ve read all the way to the end
of the file and there’s nothing left to read. Program 5.4 keeps reading
lines until fscanf says that it’s reached the end of the data file.

Now that we understand the mechanics of reading a file, how do we
find the maximum height in our bullet data? First, we create variable
called hmax, in which we’ll store the maximum height. After opening
our data file, we read it, one line at a time. Each line of the file contains
three numbers: the elapsed time since the bullet was shot, the current
velocity, and the current height. We initially set hmax equal to the first
height value in the file, then each time we read another line from the
data file, we look to see if its height is greater than hmax. If it is, we
make this height the new value of hmax. When we’re done looking at
all of the data, hmax should contain the maximum height value.

The program also finds the time at which the maximum height is
reached. Whenever the program sets a new hmax value, it also sets the
variable tmax equal to the time value that appears on the same line of
the data file. When the program finishes, tmax should contain the time
at which the maximum height was reached.

Exercise 29: Finding the Maximum

Create, compile and run Program 5.4. Does it give you
results that match your expectations?

Now try running your earlier bullet program again, this
time giving it a different initial velocity, say 600 m/s instead
of the 700 m/s you used earlier. Run your readbullet
program again to find the new maximum height.

If you pick an initial velocity much higher than 700 m/s,
you'll find that your readbullet program will always tell
you that the time at maximum height is 100 seconds. This is
because our bullet program only tracks the bullet for 100
seconds, and if its initial velocity is too large the bullet will
still be rising at the end of this time.

If you have time, look at the new bullet.txt file with
gnuplot, as you did before, to see if the maximum height
looks like it matches the output of readbullet.

5 The status returned by fscanf is
really just an integer, but stdio.h defines
EOF because that’s easier to remember.
There’s no guarantee that different C
compilers will return the same number,
but they’ll all have a stdio.h that defines
EOF appropriately for that particular
compiler.

Another group of intrepid adventurers
who journeyed to the Moon inside an
artillery shell. These are from Jules
Verne’s From the Earth to the Moon, as
illustrated by Henri de Montaut.

Source: Wikimedia Commons
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Program 5.4: readbullet.cpp

#include <stdio.h>
int main () {
double t;
double v;
double h;

double hmax;
double tmax;

int initialized = 0;

FILE xinput;

input = fopen("bullet.txt","r");

Read

lines

from
the file

initialized = 1;

READING AND WRITING FILES

Have we initialized hmax?l

Open the file for
reading, using "r"

Stop when we get to
the end of the file

while ( fscanf( input, "%$1f %$1f %1f", &t, &v, &h ) != EOF ) ({
if ( 'initialized || h > hmax ) {
hmax = h; \ Have we found a greater
4 tmax = t; height? (Or do we need

to initialize hmax?)

hmax has now been initialized. I

printf ( "Maximum altitude of $1f after %$1f seconds\n", hmax, tmax );

fclose( input );

147
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5.7. The Perils of Excessive open/close

We saw in Chapter 4 that modern computers are very fast. Adding up
the square roots of a billion numbers takes only seconds. But some
things take longer than others. In particular, it takes a computer a
relatively long time to open or close a file.

We can test this with a program like Program 5.5. Here we have a
loop that opens and closes a file a million times. Each time around the
loop, the program opens the file, writes some text into it, and closes
the file. Before the loop starts, the program saves the current time in
the variable tstart. After the loop finishes, we calculate how much
time has passed since tstart. The program prints the total time, in
seconds, and also prints the time per open/close.

If your computer has an old-fashioned spinning disk this program
might take a few minutes to run, with each open/close taking about a
millisecond. On a modern solid-state disk each open/close might only
take a tenth of a millisecond, but the program will still take several
seconds to run. If we increased nt imes to a billion, the program would
take a thousand times longer (several hours at least). Compare that
with the few seconds it took our earlier test program (Program 4.1) to
add up the square roots of a billion numbers. You can see that opening
and closing files is much slower than just doing math.

Program 5.5: openclose.cpp

#include <stdio.h>
#include <time.h>
int main () {
int 1i;
int ntimes = 100000;
int tstart;
double delay;
FILE * output;

tstart = time (NULL) ;
for ( i1i=0; i<ntimes; i++ ) {
output = fopen( "openclose.dat", "w" );

fprintf ( output, "Testing...\n" );
fclose( output );

delay = time (NULL) - tstart;

printf ("Time to open/close %d times: %$1f seconds\n",
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Source: Wikimedia Commons

ntimes, delay );

printf ("Time per open/close: %$1f seconds\n", delay/ntimes );



https://commons.wikimedia.org/wiki/File:Perilsofpauline.jpg

Exercise 30: Open for Business?

Create, compile and run Program 5.5. How fast is your
computer’s disk? Remember that on slower disks it can take
several minutes for the program to run. If you get tired of
waiting, you can stop the program by pressing Ctrl-C.

The lesson we should learn from this is that it’s a good idea to avoid
unnecessarily opening or closing files. If you write a simulation pro-
gram like gutter.cpp in Chapter 2 and make the program write its
output into a file, it’s best to open the output file once, before starting
any loops, and then close the file after all the loops are finished. Even
though, in principle, you could open the file each time you want to
write a new number, that would make your program much, much
slower.

Notice that in Program 5.5 we opened the file for writing by giving
a "w" as the second argument to fopen. Remember that this wipes
out any already-existing file that has the same name. That’s why only
one small file, containing just the text “Testing”, is created when the
program is run. The program actually creates and overwrites this file a
million times.

Accidentally overwiting an output file is a common programming error.
Consider Program 5.6.

Program 5.6: overwrite-test.cpp

#include <stdio.h>

int main () {
FILE *output;
int 1i;
for ( i=0; 1i<10; i++ ) {
output = fopen("overwrite-test.dat","w");

fprintf ( output, "%d\n", 1i);
fclose ( output );

This program has a loop that sets i to each value from o to 9 and writes
that value into the output file. If the programmer ran this program
he or she might be surprised to find that the output file ends up with
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only a single number in it: “9”. That happened because the fopen and
fclose statements are inside the loop, and because we gave fopen
"w" (for “write”) as its second argument instead of "a" (for “append”).
We could fix the program by just moving fopen and fclose outside
the loop, like this:

Program 5.7: overwrite-test.cpp, Fixed!

#include <stdio.h>

int main () {
FILE =*output;
int 1i;

output = fopen("overwrite-test.dat","w");
for ( 1=0; 1i<10; 1i++ ) { Come in, we're open!

fprint f ( output , " %d\ n " , l ) ; Source: Wikimedia Commons
}

fclose( output );

Now the program’s output file will look like this:

O 0 J o U b W N - O

which is probably what the programmer intended.

Closing a file before the program is done with it is another common
programming error. If the program above had left fclose inside the
loop, then the output file would be closed after the first number was
written to it. The next time the program tried writing into the file we’d
get lots of ugly errors like this:

Error in " ./overwrite-test': double free or corruption

This isn’t very informative, but the computer is trying to tell us that
we’re attempting to write into a file that is no longer open.


https://commons.wikimedia.org/wiki/File:Neon_Internet_Cafe_open_24_hours.jpg

5.8. Analyzing Other People’s Data

Imagine that you're an astronomer, and you've been given the task of
analyzing some data about the stars in our local neighborhood. In 1957
astronomer Wilhelm Gliese published the first edition of his list (or
“catalog”) of nearby stars. It contained entries for about goo stars. By
“nearby”, he meant stars within about 65 light-years of Earth. Several
editions later, the Gliese catalog now contains about 3,800 stars. The
catalog contains information about each star’s position, brightness, and
color, among other things.

These stars might seem special because they’re our closest neighbors. If
we were ever to venture into interstellar space, these are the first places
we’d visit. You've probably heard of some of them. Sirius, the “Dog
Star”, is the brightest star in our sky. Tau Ceti and Epsilon Eridani are
two nearby Sun-like stars that figure prominently in Science Fiction.

But how close is the nearest star (other than the Sun) to us? Let’s write
a program to analyze some data about nearby stars and find out.

Program 5.8 reads a file containing x, y, and z coordinates (measured
in parsecs®) for the position in space of each star. In our readbullet
program, we analyzed some data to find the maximum value. Here we
want to find the minumum value: the star that’s closest to earth.

In this data’s coordinate system, our Sun is at the origin. If we're given
the coordinates of another star, we can find its distance from the Sun
like this:

r=/x24y? + 22

where r is the distance.

Program 5.8 reads a star’s coordinates from the data file stars.dat,
then calculates the distance to that star. If that distance is less than the
smallest distance we’ve encountered so far, the program uses it as the
new value for the variable rmin. Compare this program with Program
5.4, which found a maximum.

READING AND WRITING FILES 151

¢ One parsec equals approximately 3.26
light years.

Figure 5.9: Calculating the distance
from the sun to another star.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:3D_Cartesian.svg
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Figure 5.10: The stars in our immediate
neighborhood.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Nearby_Stars_(14ly_Radius).svg

READING AND WRITING FILES 153

Program 5.8: stars.cpp

#include <stdio.h>
#include <math.h>
int main () {

double x;

double vy;

double z;

double r;

double rmin;

int initialized = 0;

FILE *input;
input = fopen("stars.dat","r");

// Read coordinates for the stars:

while ( fscanf( input, "%$1f %1f $1f", &x, &y, &z ) != EOF ) {
r = sqrt( x*x + y*xy + z*xz );
if ( !'initialized || r < rmin ) {
rmin = r;
initialized = 1;
}
}
printf ( "Minimum distance is %1f parsecs\n", rmin );

fclose( input );

Exercise 31: Seeing Stars

For this exercise you'll need a copy of the data file named
stars.dat. You can find instructions for obtaining it in
Appendix C.1 on page 541. After you have the data file,
create, compile and run Program 5.8. What's the distance
to the closest star in this data set? Its name is Proxima
Centauri.

If you have time, start up gnuplot and give it the following
commands (note that the last command is splot, not plot): Figure 5.11: Some local stars, plotted
with gnuplot.

set xrange [-5:5]
set yrange [-5:5]
set zrange [-5:5]

splot "stars.dat"

This should show you a 3-dimensional view of the stars
within about 15 light years from earth. Depending on the
version of gnuplot you're using, you may be able to grab this
plot with the mouse and drag it around to rotate it.
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5.9. Combining Files
Sometimes it’s useful to be able to combine data from two or more files
into one. Here are a few techniques for doing that.

Appending:

Imagine you're a teacher. You begin the semester by creating a file
named grades.dat that will hold your students’ grades. The format
of the file will be one line per student, with the student’s ID number
at the beginning of the line, followed by a list of homework grades

separated by spaces. The file might look like Figure 5.12. 195.089.5100.0
p Y sp & gure 5 2 79.5 88.0 90.0
3 82.5 87.5 95.5

After you've created this file, you find that your class is very popular 4.99.0 100.0 97.5
. , 5 88.0 89.0 91.5
but the classroom is small. You'll have to teach two groups of students 6 92.0 93.5 96.0

at different times. To accommodate the second group of students, you 7 100.0 99.0 95.5
create a new file grades?2.dat with the same format as the first file. 8 90.0 92.0 95.0
9 88.5 92.5 95.0

10 100.0 96.5 90.0

As the semester goes along, you realize that you'd really like to have one
Figure 5.12: Your grades.dat file

might look like this. Each line begins
This is a programming class, so you know how to write a program for with the student’s ID number. After
that comes a list of that student’s
homework grades.

file that contains all the grades for both sets of students. No problem!
combining the two files.
You decide that you just want to append the data from grades2.dat

onto the bottom of grades . dat, and then ignore grades2.dat from
now on. To accomplish this, you write Program 5.9.

Program 5.9: append.cpp

#include <stdio.h>
int main () {
FILE *xfilel;

FILE xfile2; Open grades.dat
int id; for appending by
double hl,h2,h3; specifying "a".

filel = fopen("grades.dat","a");
file2

fopen ("grades2.dat", "r");
P g Read from file2

ﬁ (grades2.dat).

while ( fscanf( file2 , "%d %$1f %$1f %1f", &id, &hl, &h2, &h3 ) != EOF ) {
fprintf ( f£ilel , "&%d %1f %$1f %1f\n", id, hl, h2, h3 );

Write to filel

fclose ( filel );
(grades.dat).

fclose ( file2 );
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Program 5.9 reads each line of grades2.dat and writes it at the end
of grades.dat. It’s written at the end because we told fopen to open
the file for appending, by specifying "a". After running this program,
all of the grades would be in grades.dat.

This program shows that you can have more than one file open at a
time. When we read or write, we specify which file to use by giving
the appropriate file handle to fscanf or fprintf.

Concatenating;:

Thinking about your class a little more, it might occur to you that it
would be better to leave both grades.dat and grades2.dat as they
are (since these are important student records!) and create a third,
new file named homework.dat that combines the data from both the
original files. You could write another program (Program 5.10) to do
that.

Program 5.10: concat.cpp

#include <stdio.h>

int main () {
FILE xfilel; Open the new file
FILE *file2; homework .dat for
FILE xhomework; writing by specifying "w".
int id;

double hl,h2,h3;

Read data from grades.dat

homework = fopen ("homework.dat", "w"); L
and write it to homework.dat.

( filel = fopen("grades.dat","r");

while ( fscanf( filel, "%d $1f %1f $1f", &id, &hl, &h2, &h3 ) != EOF ) ({
grades.dat|4 fprintf ( homework, "$d $1f %1f $1f\n", id, hl, h2, h3 );
}

| fclose ( filel ); Now read data from grades2.dat
/ and write it to homework.dat.

[ file2 = fopen("grades2.dat", "r");

while ( fscanf( file2, "%d %1f %1f %1f", &id, &hl, &h2, &h3 ) != EOF ) {

gradesz.dat|4 fprintf ( homework, "%d %1f %1f %1f\n", id, hl, h2, h3 );
}
fclose ( file2 );

fclose ( homework );
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As you can see, Program 5.10 creates a new file named homework.dat
by giving fopen a "w". The program then has two sections: first it

reads data from grades . dat and writes that data into homework .dat.

Then it does the same for grades2.dat.

Merging:

All is well until the end of the semester. You've graded all of the home-
work assignments and put the grades into homework.dat. You've
also graded some quizzes and put those grades into quizzes.dat.
There were three homework assignments and two quizzes (it was a
short course). Each student has one line in each file. Figure 5.13 shows
what the quizzes.dat file might look like.

Hmmm. It would be really nice if we could combine homework.dat
and quizzes.dat and create a new file that had all of each student’s
grades, homework and quizzes, on a single line. To do that, you could
write something like Program 5.11.

Program 5.11 creates a new file named allgrades.dat that will con-
tain one line per student, with all of that student’s grades (homework
and quizzes). Each line begins with the student” ID number. The new
file might look like Figure 5.14.

Notice that the program reads one line from each input file each time
it goes around the while loop. The fscanf statements for reading
homework.dat and quizzes.dat are different, because the files have
different formats. Both begin with the student ID number, but there are
three homework grades and only two quizzes.

The loop stops (by using the break statement) when it reaches the end
of either input file. It's important to check both files, to help us deal
with mistakes we might have made when we entered the grades. What
if we’ve left a student out of one of the files? In that case the input files
wouldn’t both be the same length.

Similarly, we put the student ID number into idl when we read it
from homework.dat and we put the number into id2 when we read
it from quizzes.dat. If we haven't made any mistakes in creating the
input files, these two ID numbers should always match. If they don't,
the program gives us an error message telling us so.

Finally, once the program has successfully read a line of homework

1 100.0 96.5
2 88.5 92.5
3 90.0 92.0
4 100.0 99.0
5 92.0 93.5
6 88.0 89.0
7 99.0 100.0
8 82.5 87.5
9 79.5 88.0
10 95.0 89.5

Figure 5.13: The quizzes.dat file
might look like this, with each line
containing a student’s ID number and
two quiz grades.

1 95.0 89.5 100.0 100.0 96.5
2 79.5 88.0 90.0 88.5 92.5
3 82.5 87.5 95.5 90.0 92.0
4 99.0 100.0 97.5 100.0 99.0
5 88.0 89.0 91.5 92.0 93.5
6 92.0 93.5 96.0 88.0 89.0
7 100.0 99.0 95.5 99.0 100.0
8 90.0 92.0 95.0 82.5 87.5
9 88.5 92.5 95.0 79.5 88.0
10 100.0 96.5 90.0 95.0 89.5

Figure 5.14: The file allgrades.dat,
produced by Program 5.11, might look
like this. Each line has the students ID
number, followed by three homework
grades and two quiz grades.
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data and a line of quiz data, it writes all of the data out on a single
line of the output file. Notice that the first fprintf statement doesn’t
end with a “\n”. Instead, it ends with a space. The next fprintf
statement picks up where the first one left off, adding more stuff to the
end of the same line, and then finishing with a “\n”.

Program 5.11: merge.cpp

#include <stdio.h>

int main
FILE *xfilel;
FILE *xfile2;
FILE xcombined;

int idl

14

(OIS

id2;

double hl,h2,h3;
double gl,qg2;

combined

filel
file2 =

= fopen("allgrades.dat", "w");

Output file

Input files

fopen ("homework.dat","r");
fopen("quizzes.dat", "r");

while (1) {

fscanf ( filel, "%d %1f %$1f %$1f", &idl, &hl, &h2, &h3 ) == EOF ) ({

Stop when we reach the
end of either input file.

fscanf ( file2, "&%d %$1f %1f", &id2, &gl, &g2 ) == EOF ) {

Read if |
home- break;
work }
if
Read e
X break;
quizzes }

/ IDs from both files match.
if ( idl == id2 ) {

Check to make sure the student

fprintf ( combined, "$d %1f %1f $1f ", idl, hl, h2, h3 );} Write homework and

fprintf ( combined, "%1f %$1f\n", gl, g2);

} else {

printf ( "Error!

fclose
fclose

fclose (

(
(

filel );
file2 );

combined );

quiz data on one line.

IDs don't match: %d and %d\n", idl, id2);
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5.10. Conclusion

In this chapter we’ve covered the basics of reading from files and writing
to files. These same techniques can be used for any numerical data
that’s stored in the form of multi-column, readable numbers. Programs
like gnuplot read data files in a way very similar to this. Multi-column
numerical data is very commonly used for small-to-moderate sized
data sets, although sometimes the columns are separated by commas,
colons or other characters besides spaces.”

7 Large data sets are generally stored
differently, in formats not readable by
humans but which allow the files to

be smaller, faster to read, and easier to
search. We'll take a look at reading and
writing this kind of files later on.

Figure 5.15: In the days before files were
stored on disks, students delivered
stacks of punched cards to counters like
this one in the the basement of the UNC
Physics building. Computer operators
loaded the stacks into readers, and the
program’s output was printed
(sometimes hours later) and dropped by
the operator into a bin, until the student
came by to pick it up.

Source: UNC-Chapel Hill Computing History photo collection


http://www.ibiblio.org/comphist/node/60
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Practice Problems

1. Write the following two programs:

(a) Modify Program 5.3 (the bullet.cpp program) so that it writes
comma-separated columns into its output file, instead of space-
separated columns. Run the program to generate a new bullet .txt
output file.

(b) Modify Program 5.4 (the readbullet.cpp program) so that it
will read the new comma-separated data file.

2. Using nano, create a data file called numbers.dat that contains a
column of at least ten integers (positive or negative), like this:

27 1

-3 Figure 5.16: Eastern Comma butterfly
189 (Polygonia comma).

4 3 Source: Wikimedia Commons

-1280

7

-16

9

Write a program called readnum. cpp that uses a “while” loop to
read the numbers from numbers.dat. Make the program print out
the sum of all of the numbers, the value of the largest number, and
the value of the smallest number, like this:

Sum is -1024
Largest is 189
Smallest is -1280

Make sure your program does the right thing even if all the numbers
are negative.

3. Using nano, create a file named budget .dat that contains three
equal-length columns of numbers, like this:

-462.13 486.47 973.79
755.42 843.04 -963.67
442.58 -843.02 -462.86

-233.93 -821.67 399.59

-379.65 -=556.37 837.46

55.18 -144.93 -93.15
533.73 804.64 -66.25

-922.12 914.68 -264.67

-600.27 -838.59 747.02

-962.97 49.96 -677.79


https://commons.wikimedia.org/wiki/File:Eastern_Comma_(15320319450).jpg
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Now write a program named budget . cpp that reads this file and
adds up the numbers in each column. The program’s output should
look like this:

Column sums are: —-1774.16 -105.79 429.47

Note that you can limit the number of decimal places you print by
using %.21f instead of just $1£. This tells printf to print only two
numbers after the decimal point.

4. Using nano, create the file grades.dat shown in Figure 5.12 on
Page 154. Now write a program named meangrade . cpp that reads
grades.dat and prints out a list of student IDs along with each
student’s average grade. Determine the average by adding up the
student’s grades for the three homework assignments and dividing
the result by 3. The program should print "Student ID" and
"Mean Grade" at the top of the output, to tell the user what the
numbers mean. Doing homework.

Source: Wikimedia Commons

5. Using nano, create the file grades.dat shown in Figure 5.12 on
Page 154. Now write a program named lowgrade. cpp that reads
grades.dat and prints the lowest grade for the first homework
assignment, and the ID number of the student who got this grade.
Make sure your program tells the user what these numbers mean.
(If there’s more than one student with the lowest grade, just print
the first student ID that has this grade.) Don’t assume the grades

will always be between zero and 100. (What if the program were
2.5e+09

given a file full of SAT scores, for example?)
2e+09

6. Write a program named oddeven . cpp that generates 10,000 random
integers and sorts them into two files. Put the odd integers into e

odd.dat and the even integers into even.dat. Here are a few 1e+09
hints to help you:

5e+08

* You can generate a random number with the rand function, as 0 0 1000 2000 3000 4000 5000 6000
we did in Chap ter 2. For examp le: Figure 5.17: This is how the data in
_ . odd.dat and even.dat might look if
number = rand(); plotted with gnuplot.
* You can use the modulo operator, %, to check whether a number is
positive or negative. If number % 2 is zero, then number is even.
Otherwise it’s odd. (Look back at Chapter 4 for more information

about the modulo operator.)

You might find it interesting to look at odd . dat and even.dat with
gnuplot. For example, if you start gnuplot and give it the command:

plot "odd.dat", "even.dat"


https://commons.wikimedia.org/wiki/File:The_hygiene_of_the_schoolroom_(1911)_(14784071055).jpg

you should see a rectangle filled with dots of two different colors,
one color for odd numbers and the other for even (see Figure 5.17).
The extent of the rectangle horiontally will show you how many
numbers there are of each type. About half of the numbers you
generated should fall into each category, so the rectangle should go
up to about 5,000. The vertical axis shows the actual numbers you
generated. The height of the rectangle will depend on what kind of
C compiler and computer you're using, but it should go up to some
very big numbers.

. Modify Program 5.3 (the “bullet” program) so that it uses a
“do-while” loop to track the bullet until it reaches the ground.
(See the gray box after bullet program for information about
how to do this.) Make the program write out how long (in sec-
onds) it takes the bullet to reach the ground. Call the new program
bullettimer.cpp.
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6. Using Arrays

6.1. Introduction

Scientists often make groups of similar measurements under different
conditions. We might measure the temperature of a metal bar at several
different points along its length for example, or measure the velocity of
a dropped ball at several times during its fall. A modern high-energy
physics experiment might record the amount of energy deposited in
each of hundreds of detectors every time an interesting event is seen.

Programs that analyze data need to store such measurements in vari-
ables. We could define one variable for each measurement, giving them
names like £ 1, £2, £ 3 and so forth, but that would be awkward if there
were hundreds of measurements. For example, imagine adding them
all up: we’d need to write an expression like t1 + t2 + t3 + ...,
and we’d need to remember to change it if we added or removed any
measurements the next time we used the program.

C provides us with an easier way of storing a group of related values.
An “array” is a numbered list of boxes in the computer’s memory.
The array as a whole has a single name, and individual boxes can be
referred to by number. In this chapter we’ll see how to create and use
arrays.

6.2. A Coal Train

Imagine that you're in charge of a rail system carrying coal. Each train
has some number of coal cars, and each car can carry some amount of
coal up to a maximum capacity. You’d like to keep track of how much
coal is in each car, but you're also interested in the total amount of coal
that the train is hauling. How might you store all of those numbers in
a program?

Galileo used his pulse to measure how
long it took a ball to reach several
marked locations while rolling down a
ramp. This experiment established that
the distance traveled is proportional to
the square of the elapsed time, no
matter how much the ball weighs.

Source: Wikimedia Commons

This detector assembly consists of 240
cesium jodide crystals. Each of them
measures the energy of particles that
pass through the crystal.

Source: PiBeta Collaboration

A coal train in eastern Wyoming.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Galileo_by_leoni.jpg
http://pibeta.phys.virginia.edu/
https://commons.wikimedia.org/wiki/File:Coal_train_in_eastern_Wyoming,_2006.jpg
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Program 6.1 uses an array to store the weight of coal in each car. The
array is defined by the statement:

double carweight[100];

This statement defines an array of one hundred elements’, each capable
of storing a floating-point number. The elements are numbered from
zero to 99.

We can refer to a particular element of the array by giving its number.
For example, if we wanted to print out the value in element number
27 of the array, we could write printf ("$1£f", carweight [27]) ;.
It's very important to remember that the last element in the array is
carweight [99], not carweight [100]. When we define the array,
we say how many elements are in it, but the elements are numbered
starting with zero, so the last element will always have a number that’s
one less than the total number of elements.?

*Each “element” of an array is just a
storage box for holding something.

2 Programmers often refer to an ele-
ment’s number as its “index”. Array
indices are like the subscripts we use
in mathematics when we write an ex-

pression like X;. The index must be an
integer, since it just counts the number
of elements.

The first loop in Program 6.1 puts a random weight of coal into each of
the cars. The weights vary between 50 and 100 tons. In a real-world
program, these weights probably wouldn’t be random. They might
be read out of a file, or they might be read from some kind of device
that measures each car’s weight as it goes by. This is just an example,
though, so we’ll use random numbers.3 Notice that we can set the
value of one of the array’s elements by referring to it by number.

The program’s second loop just prints out the weight of each car in a
nice, readable format. Notice that the value of 7 in both loops runs from
zero to 99, since the loop starts at zero and continues for as long as i is
less than 100 (1<100).

Program 6.1 also tells us the total amount of coal the train is carrying.
The variable sum starts with a value of zero, then has the weight of

Figure 6.1: The first element of an array
is number zero.

Source: Openclipart.org

3 Since we don’t use the srand function
to change the random number genera-
tor’s seed, the program will always give
us the same set of “random” numbers.
(See Chapter 2.)


https://openclipart.org/detail/202273/coal-wagon

each car added to it. At the end of the program, the total weight of all
cars is printed.

Program 6.1: coal.cpp

#include <stdio.h>
#include <stdlib.h>
int main () {

double carweight[100];

double w;
double sum = 0.0;
int 1i;
for ( 1i=0; 1<100; 1i++ ) {
w = 50.0 + 50.0  rand()/ (1.0 + RAND_MAX) ;
carweight[i] = w;
}
for ( 1=0; 1<100; 1i++ ) {
printf ( "Car %d carries %$1f tons\n", i, carweight[i] );

sum += carweight[i];

printf( "The total weight of coal is %1f tons.\n", sum );

Exercise 32: “I think I can...”

Create, compile and run Program 6.1. Notice that the car
numbers (the array indices) start at zero and end at 99.

Think about how you’d need to change the program to
accommodate 200 cars instead of 100. What would be the
index of the last car then?

6.3. How Arrays Are Stored

In our programs, a variable is just a temporary storage location in the
computer’s memory that has a name attached to it. The size of this
storage location depends on the type of data we want to put into it. Just
as a violin case is different from a trombone case, the box of memory
reserved for an int variable will be different from the box reserved for
a double variable.
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Figure 6.2 shows how a group of variables might be placed in the
computer’s memory. Note that int and double variables require
different-sized storage boxes. The data inside these boxes is also or-
ganized differently. Because of this, even though int data would fit
into the space reserved for a double, the data would appear garbled
when your program tried to read it, because the program would try to
interpret these bits as a floating-point number. You might be able to
squeeze a violin into a trombone case, but imagine trying to play the
violin by blowing into it like a trombone!

size of box

stored value

variable definition

Inti; } 4 bytes

Int ndays; }4 bytes
sum, 456.89 ' 8 bytes
height; 25382.97 ' 8 bytes

5 X 4 bytes

int marbles[5];

Figure 6.2 also shows how an array is stored. In the figure, a five-
element int array named marbles is defined. Imagine that it records
the number of marbles in each of five bags. As you can see, this array
takes up the same amount of storage space as five regular int variables.

It’s important to remember that each element of an array takes up just
as much memory as a separate variable of that type. So, if we define a
large array with thousands of elements, we may run into the limits of
the computer’s memory.

The great jazz violinist Stephane
Grappelli.

Source: Wikimedia Commons

“Trombone Shorty” (aka Troy Andrews)
began playing the trombone before the
age of six, when he was so small he had
to use his feet to reach the low notes.

Source: Wikimedia Commons

Figure 6.2: How a group of variables
might be arranged in the computer’s
memory. The actual size of double or
int variables may differ depending on
the type of computer, operating system,
or C compiler. The values shown here
are typical, though.


https://commons.wikimedia.org/wiki/File:Django%26Grappelli_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Jazzfest_2010_Troy_'Trombone_Shorty'_Andrews_playing_with_Glen_David_Andrews,_Julius_McKee_and_Amanda_Shaw.jpg
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The elements of an array are always stored one after another in the
computer’s memory. You could think of them as a stack of shoe boxes.
In fact, when you ask the computer to find, say, marbles [3] it finds
the memory address of the first element of marbles and then just
skips forward by a distance equal to three times the size of a single int

variable. If you have a small array, you might
find it useful to set the initial values of

. the elements when you define the array.
All of the elements of an array must have the same type, but this can be For the marbles array, for example,

int, double, or any other type that C provides. In our train example, we could define and initialize the

array by saying int marbles[5]

= {3,42,21,7,10}); The list of

6.2 we define an array of int elements called marbles. numbers in curly brackets will be put
into elements zero through five of the
array.

we defined an array of double elements called carweight. In Figure

But what about...?

Is there a way to find out how much storage space is needed for a type of variable? Yes! You can use the
sizeof function to find the size of a type, or of a particular variable.

Take a look at this example:

#include <stdio.h>
int main () {
int i;

double x;

printf ("Size of int is %d bytes.\n", (int)sizeof( int ) );
printf ("Size of double is %d bytes.\n", (int)sizeof( double ) );
printf ("Size of 1 is %d bytes.\n", (int)sizeof( i ) );

printf ("Size of x is %d bytes.\n", (int)sizeof( x ) );

If you ran this program, the output would look something like this:

Size of int is 4 bytes.
Size of double is 8 bytes.
Size of i is 4 bytes.

Size of x is 8 bytes.

The sizes may be different on your computer, but you can always use sizeof to find them if you need
them. (Note that we force the value of sizeof to be an int by putting “ (int) ” in front of it. This is
necessary on some computers because the value returned by sizeof isn't strictly an int.)
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6.4. Selecting Array Elements

Let’s get back to work on our coal-hauling business. As our train is
travelling across the country, we might want to look up the weight of a
particular car. Maybe we have a customer in Schenectady who wants at
least 85 tons of coal. Will the last car in the train be full enough, or do
we need to pick another one?

Program 6.2 adds another section to our earlier program. Now, after
the program has listed the weights of all the cars and told us the total
weight, it begins waiting for us to enter a car number, and will tell us
how much coal is in that particular car.

Program 6.2: coal.cpp, Version 2

#include <stdio.h>
#include <stdlib.h>
int main () {
double carweight[100];
double w;
double sum = 0.0;
int 1i;
int carno;

for ( 1i=0; 1<100; i++ ) {
w =50.0 + 50.0 * rand()/ (1.0 + RAND_MAX) ;

carweight [1] = w;
}
for ( 1=0; 1<100; i++ ) {
printf ( "Car %d carries %1f tons\n", i, carweight[i] );

sum += carweight[i];

printf ("The total weight of coal is %1f tons.\n", sum );

while (1) {
printf ( "Enter car number (-1 to quit): " );
scanf ( "%d", &carno );
if ( carno < 0 ) {
break;
}

printf ( "Car number %d carries %1f tons.\n", carno, carweight[carno] );




Exercise 33: Runaway Train!

Create, compile and run Program 6.2. Try entering some
numbers between zero and ninety-nine. Enter —1 to stop.
Do the results look reasonable?

Now try entering 1000 and 1000000. These values are
clearly beyond the end of the train. What does the program
do?

6.5. Checking Array Index Values

Many programs can run simultaneously on a modern computer. To
keep programs from interfering with each other, the computer assigns a
separate chunk of memory to each program. A program is only allowed
to use the memory that belongs to it.

When your coal train program starts running, the computer reserves
enough memory space to hold all of the variables you've defined,
including the 100 elements of the carweight array.* However, as
demonstrated in the exercise above, the computer doesn’t check your
array indices to make sure they stay within the bounds of the array. This
can cause problems if you're not careful when writing your program.

Take a look again at Figure 6.2. If we asked the program to print out
the value of marbles[14] the computer would happily skip forward
14 x 4 bytes from the beggining of the marbles array, and try to read
whatever was at that memory location.

If that part of memory is in the chunk belonging to our program, then
the program will be able to successfully read whatever unpredictable
value happens to be stored there (see Figure 6.3a). If this part of the
computer’s memory doesn’t belong to our program, then the program
will crash (see Figure 6.3b). Usually, a crash like this generates an error
message that says “Segmentation fault”. This means that the program
has tried to do something in a segment of the computer’s memory that
doesn’t belong to it.

This might be an even worse problem if we tried to change the value
of marbles[14]. In that case, if the program didn’t crash, we’d be
unexpectedly modifying the value of some completely different variable
in our program.
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Look out! Arrays give us a lot of new
abilities, but they also introduce a
whole trainload of potential pitfalls to
beware of.

Source: Wikimedia Commons

4 The memory reserved in this way is
called “the stack”, because it’s like a
stack of storage boxes, as illustrated in
Figure 6.2.

If Jesse James were alive today he might
have robbed computers instead of
trains. Don’t give Bad Guys a break!
Check to make sure your array indices
don’t stray outside your arrays.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Train_wreck_at_Montparnasse_1895.jpg
https://commons.wikimedia.org/wiki/File:Jesse_james_portrait.jpg
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be nonsense.
Figure 6.3: Reading past the end of an

array will give unexpected results.



It’s up to the programmer to prevent these problems. In Program 6.2
for example, we could add an “if” statement to check to see if the
number entered is between zero and ninety-nine, and tell the user to
pick another number if it’s not.

Reading or writing past the end of an array is one of the most common
programming mistakes. It has led to many bugs in many programs,
including some serious security bugs. Imagine what could happen if
a banking program accidentally allowed users to change the value of
any variable by entering, say, a very large account number! Bad Guys
routinely look for bugs like this, and try to exploit them.

Let’s move away from the hot, dirty coal industry for a little while now,
and visit the cool, clean world of mathematics.

6.6. The Sieve of Eratosthenes

Prime numbers have fascinated mathematicians since ancient times.
You'll recall that a prime number is a whole number that can only be
divided evenly by itself and one. The first five prime numbers are 2, 3,
5,7 and 11. (the number 1 isn’t considered to be a prime.) Numbers
that aren’t prime are called composite numbers.

Early on, the Greek mathematician Euclid proved that there are in-
finitely many prime numbers. There doesn’t, however, seem to be any
simple rule for predicting them all. You just have to find them by
searching.

Another Greek mathematician, Eratosthenes, described a straightfor-
ward procedure for searching for prime numbers. Today we call his
technique “the Sieve of Eratosthenes”. It finds primes by a process of
elimination. First, write down all numbers in a range, and then mark
out the ones that aren’t prime. Anything left over (the “holes” in the
sieve) is prime. But how to you know which numbers to eliminate?

Here’s how it works: Write down all of the numbers from one to N,
where N is the highest number you want to test. Then mark out all
the multiples of 2 (4, 6, 8, ...). We know that none of these numbers
can possibly be prime, since they can be divided evenly by 2. After
that, mark out all of the multiples of 3 for the same reason, and so on.
When you’ve gone through all of the numbers, anything that hasn’t
been marked out isn’t a multiple of anything but 1 and itself, so it’s a
prime number. Figure 6.4 shows what it might look like after you’d
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Euclid, who lived around 300 BCE, is
best known as the father of geometry.

Source: Wikimedia Commons

Eratosthenes, born around 276 BCE, is
perhaps best remembered for his
remarkably accurate determination of
the radius of the earth. (No, the ancient
Greeks didn’t think the earth was flat!)

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Euclid._Line_engraving._Wellcome_V0001797.jpg
https://commons.wikimedia.org/wiki/File:Eratosthene.01.png
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done this for the numbers 1 to 100.

Figure 6.4: White squares show the
prime numbers between 1 and 100. Gray
squares are numbers that have been
marked out by the sieve process.

Program 6.3 uses Eratosthenes’ technique to find all of the prime
numbers smaller than 100,000. In terms of the description above,
the program sets N equal to 100,000. It begins by defining an N + 1
element array named isprime that will hold the “prime status” of
each number. If the number i is prime, then isprime [i] will be equal
to 1. Otherwise, this value will be zero.

Why does the array need N + 1 elements? Remember that the last
element of a 100-element array is number 99, not 100, since the first
element is number zero. If we want the last element of i sprime to be
number N, then the array needs to have N + 1 elements.

Notice that, instead of writing “int isprime[100001];” we've de-
fined a variable, N, that says how many elements are in our array. The
size of an array can’t be changed once it’s defined, though, so it’s a
good idea to mark a variable used this way as a “constant”. By putting
the word const in front of a variable definition, you tell the compiler
that the value of this variable will never change.> If you try to change 5 “constant variable?” Isn’t that an
the variable’s value somewhere later in the program, the compiler will oxymoron?

give you an error message and refuse to compile the program.

Program 6.3 assumes that all of the numbers are prime unless proven
otherwise. The first “for” loop initializes all of the elements of
isprime to a value of 1.

The next “for” loop begins with 2, and goes through all of the multiples
of 2 that are smaller than N. For each of these multiples, the program



sets the corresponding element of isprime to a value of zero, thus
flagging this number as a non-prime. The program then works its way
through multiples of other numbers, up to N.

When it’s done, anything that still has an isprime value of 1 is really
a prime. The program prints out these numbers, and a count of how
many primes were found.

You can probably think of some shortcuts we could have taken to
make our program run faster. For one thing, if you've worked partway
through the list and come to, say, 31, you know without going any
farther that 31 is prime, since only smaller numbers could possibly be
its factors. For another thing, it turns out that you only need to look for
multiples of prime numbers. All the multiples of 4, for example, will
already have been marked out, since they’re also multiples of 2, and all
multiples of 6 are also multiples of 2 and 3, which have already been
marked out. Finally, we only need to test multiples of numbers smaller
than v/N. Any larger, non-prime numbers smaller than N must be a
multiple of one of these.

To keep the program simple, Program 6.3 doesn’t use these shortcuts. It
trades speed for simplicity. This is a choice you’ll often have to make as
a programmer. Is a simple program fast enough? If I make the program
more complicated in order to gain some speed, will I be more likely to
do something wrong?

Exercise 34: Prime Time

Create, compile and run Program 6.3. How many primes
does it find? Think about what problems you might run into
if you tried to use this program to find even larger prime
numbers.
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The study of integers is an important
part of the branch of mathematics called
“number theory”. Mathematician
Leopold Kronecker famously said “God
made the integers, all else is the work of

”

man.

Source: Wikimedia Commons
N Number of Primes
10 4
100 25
1,000 168
10,000 1,229
100,000 9,592
1,000,000 78,498
10,000,000 664,579
100,000,000 5,761,455
1,000,000,000 50,847,534
10,000,000,000 455,052,511
100,000,000,000 4,118,054,813
1,000,000,000,000 37,607,912,018
10,000,000,000,000 346,065,536,839

Figure 6.5: The number of primes less
than N, for various values of N.

Source: https://primes.utm.edu/howmany.html


https://en.wikipedia.org/wiki/File:Leopold_Kronecker_1865.jpg
https://primes.utm.edu/howmany.html
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Program 6.3: sieve.cpp

#include <stdio.h>
int main () {
const int N = le+5;
int isprime[N+1]; // Why N+1? Number of elements, INCLUDING ZERO!
int i;
int multiple;

int nprimes = 0;

// Start by assuming everything is prime:
for ( i=0; 1i<=N; i++ ) {

isprime[i] = 1;

// Mark the non-primes:
for ( i=2; i<=N; i++ ) { // Don't want to include multiples of 1!
multiple = i+i; // First multiple of i
while ( multiple <= N ) {
isprime[multiple] = O;
multiple += 1i;

// Print out what's left:
for ( i=2; i<=N; i++ ) { // Why 2? Zero and 1 aren't prime by definition.

if ( isprime[i] == 1 ) {
printf ( "%d\n", 1 );
nprimes++;

printf ( "Total number of primes below %d is %d\n", N, nprimes );




6.7. Reading Array Elements

Because C doesn’t prevent us from going past the end of an array (see
Section 6.5 above) we need to be careful when we read data from a
user or from a file and put it into an array. Take a look at Program 6.4,
for example. This program defines a 5-element array named marbles,
and asks the user to enter numbers into it, one element at a time. The
numbers are then printed out in reverse order.

Notice that the program uses “for” loops that systematically go
through the array’s indices, from zero to 4. (Remember that the last
element of a 5-element array is numbered 4, since the first element’s
number is zero.) Also notice that we put the array element into the
scanf statement in just the same way that we’d put a non-array vari-
able. In particular, we still need to put an ampersand in front of it.

After reading the numbers, the program prints them out in reverse
order. It does this by starting with the last array element and working
backwards through the array. We could have done this by saying
“for ( i=4; i>=0; i-- )", but we've chosen to do it a different
way. The program uses the same kind of “for” loop that it used when
reading the numbers, but instead of printing marbles[i] it prints
marbles[4-1]. Since i starts at zero and goes to 4, the value of 4-1
starts at 4 and goes to zero.

Program 6.4: reverse.cpp

#include <stdio.h>
int main () {
int marbles([5];

int 1i;

for ( i=0; i<5; i++ ) {
printf ( "Enter a number: " );

scanf ( "%d", &marbles[i] );

printf ( "Numbers in reverse order:\n" );
for ( i=0; i<5; i++ ) {
printf ( "%d\n", marbles[4-i] );

Exercise 35: Doing Flips

Create, compile and run Program 6.4. Does it work as
expected?
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Figure 6.6: The airplane image on this
1918 “Inverted Jenny” stamp was
accidentally printed upside-down. Only
100 such stamps are known to have
been printed, making them very
valuable to collectors. In 2007 one of
these stamps was sold for almost
$1,000,000.

Source: Wikimedia Commons

If you run Program 6.4 it might look
like this:

./reverse

Enter a number:
Enter number:
Enter number:

Enter

oo 9N

a
a
a number:
a

Enter number: 9
Numbers in reverse order:

9

N 9 o

Array indices give us a way to uniquely
identify each element of an array, but
they can also provide information about
relationships between elements. For
example, they tell us the order of the
cars in our coal train, or the order of the
numbers we entered in Program 6.4.


https://commons.wikimedia.org/wiki/File:US_Airmail_inverted_Jenny_24c_1918_issue.jpg
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6.8. Sorting the Elements of an Array

We sometimes want to sort the elements of an array based on the values
they contain. In our coal train example, for instance, we might want
to put the heaviest cars at the back of the train, and the lightest at the
front.

One of the simplest (but, unfortunately, slowest) ways to sort things is
called a “bubble sort”. Let’s write a program that uses a bubble sort to
arrange the cars of our train from lightest to heaviest.

A bubble sort works by comparing the values in two neighboring
elements of an array. If the two values are in the proper order already
(light car in front of heavy car, in our train example), they’re left alone.
Otherwise the two values are swapped to put them into the right order.
We go through each pair of elements in the array, from first to last,
swapping values when necessary. Then we do this again and again,
until no more values need to be swapped. At that point, the array has
been completely sorted. Figure 6.7 shows what the first pass might do
to the values in our marbles array.

S N
~ <+
<«fwap

To write a program that does this, we’ll first need to think about how
to swap the values of two elements of an array. We can’t just copy, say,
marbles[1] intomarbles[2]. If we did, we’d have two copies of the
value in marbles [1], and would have lost the value of marbles[2]

completely! To swap values in a program, we’ll generally need to have
a temporary storage place to put one of the values while we’re moving
things around. This is illustrated in Figure 6.8.

Once we know how to swap the values in two elements, we're ready to
write our bubble sort program. Program 6.5 is the result. The middle
of the program is two nested loops.

f

swap

R

Figure 6.7: A bubble sort works its way
through this array from bottom to top,
comparing neighboring numbers and
swapping them where necessary. When
we get to the top of the array, we see that
the largest number has “bubbled up”.
We could then start back at the bottom
and repeat this procedure until all of the
numbers had been sorted.



temp

temp
tir £ ?

The inner loop is a “for” loop. This loop goes through each pair of
array elements, starting with elements zero and one, then going to one
and two, two and three, and so forth. The last pair will be 98 and 99,
since the last element is number 99. The loop’s counter variable, i,
identifies the first member of each pair. The second member is i+1.
The loop stops when i is equal to 98 and i+1 is equal to 99 (the last
element of the array).

The variable temp is a temporary storage location for use while swap-
ping values, as shown in Figure 6.8. The variable nswapped keeps
track of how many pairs needed to be swapped. before we begin each
pass through the elements, nswapped is reset to zero.

The outer “do-while” loop repeats the inner loop until there are
no more pairs that need swapping, indicated by a value of zero for
nswapped.

A bubble sort is a simple sorting algorithm. An “algorithm” is just a
recipe for doing something. Bubble sorts are easy to write, but there
are much faster sorting algorithms. We'll look at one of these called
“gsort” in a later chapter.
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Figure 6.8: Swapping two values usually
requires a temporary storage location.
This illustration shows to swap the
values in two adjacent elements of the
marbles array. We use a variable called
temp as a place to park one of the values
while we’re moving things around.

“A little later, remembering man’s earthly
origin, ‘dust thou art and to dust thou shalt
return,’ they liked to fancy themselves
bubbles of earth. When alone in the fields,
with no one to see them, they would hop,
skip and jump, touching the ground as
lightly as possible and crying "We are
bubbles of earth! Bubbles of earth! Bubbles
of earth!”” —Flora Thompson, in Lark
Rise (1939)

Source: ©Basher Eyre and licensed for reuse under this Creative

Commons license


http://www.geograph.org.uk/reuse.php?id=3843447
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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Program 6.5: bubble.cpp

#include <stdio.h>
#include <stdlib.h>

int main () {
double carweight [100];
double w;
int 1i;

double temp;
int nswapped;

for ( i=0; 1<100; 1i++ ) {
w = 50.0 + 50.0 * rand()/ (1.0 + RAND_MAX) ;
carweight [i] = w;

do {
nswapped = 0;
for ( i=0; i<99; i++ ) { // Note: omit last element!
if ( carweight[i] > carweight[i+1] ) {

temp = carweight[i];
carweight[i] = carweight[i+1];
carweight[i+1] = temp;
nswapped++;

}
} while (nswapped > 0);

for ( i=0; 1<100; i++ ) {

printf ("Car %d carries %1f tons.\n", i, carweight[i] );




But what about...?

Where does the word “algorithm” come from anyway? Surpris-
ingly, it has nothing to do with Al Gore. Instead, it’s a variation on
the name of Muhammed ibn Musa al-Kwarizmi. al-Kwarizmi was
an 8"-Century Persian mathematician who adopted a revolution-
ary new Indian method for writing numbers: the decimal number
system we still use today. Before decimal numbers, arithmetic was
a tedious process only known to specialists. Decimal numbers
suddenly made arithmetic accessible to the masses.

al-Kwarizmi’s writings, translated into Latin, brought the new
number system to Europe, along with other insights into mathe-
matics. The word “algebra” comes from the Arabic word al-jabr,
meaning “make whole”, used in the title of one of al-Kwarizmi’s
books: al-Kitab al-mukhtasar fi hisab al-jabr wal-mugabala (The Com-
pendious Book on Calculation by Completion and Balancing).

al-Kwarizmi’s mathematical writings were so influential that his
name, transmogrified into “algorithm”, became a shorthand for
calculation in general.

6.9. Fun with Metronomes

A metronome is a device that clicks in a regular rhythm. Music students

sometimes use them while practicing. These devices have a straight,

weighted arm that swings back and forth. Imagine that you have
several metronomes sitting at various widely-separated places in a
room. The metronomes are all ticking at the same rate, but the arm of
each metronome has been set in motion at a different time. It might
look like the top half of Figure 6.9. At any given time, the arms of the
metronomes are in different places. We say that the metronomes are
"out of phase", and they would stay that way for as long as we could
tolerate their maddening ticking!

Now imagine we take the metronomes and put them side-by-side on a
wobbly table®. Again, we start their arms moving at different times, so
they’re out of phase. But now we’d find that, over time, the metronomes
begin to synchronize, until they are eventually "in phase"” with each
other, with all the arms at the same position at any given time, like the
bottom half of Figure 6.9.
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A page from one of al-Kwarizmi’s
books.

Source: Wikimedia Commons

© This example was inspired by

Matt Parker’s video on this topic:
https:/ /www.youtube.com /watch?v=]4PO7NbdKXg


https://commons.wikimedia.org/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg
https://www.youtube.com/watch?v=J4PO7NbdKXg
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Starting

Positions
(all different)

Later

Positions
(all the same)

What's happening here is that the wobbly table lets the metronomes
jiggle each other a little bit. We say that they're now "coupled", whereas
they were "uncoupled" when they were spread out around the room.
Over time, the coupling between the metronomes tends to bring them
into phase with one another.

In the 1970s Yoshiki Kuramoto developed a simple mathematical
model” that describes how the metronomes’ motion evolves from out-
of-phase to in-phase. Let’s write a program that uses Kuramoto’s model
to simulate the behavior of a set of metronomes on a wobbly table.

We’re going to need to keep track of each metronome’s arm as it
oscillates back and forth. Figure 6.10 shows the motion of a single
metronome. The vertical axis shows the position of its arm, where 1
means all the way to the right, and -1 means all the way to the left. As
time passes, the arm oscillates between these two extremes in a sine
wave.

Figure 6.11 shows the motion of four uncoupled metronomes. They
move in sine waves with the same frequency, but they're shifted relative
to each other because the arms were started at different times.

When dealing with oscillating things, it’s natural to measure time in
terms of multiples of the oscillating period. We could say that the
mentronome has gone through one cycle, two cycles, three cycles... The
vertical axis (arm position) on our graph is the sine of an angle, and
the horizontal axis (time) is an angle telling us how far "around" the

Figure 6.9: Even though the metronomes’
arms might start out in different places,
they can influence each other over time.

7 http://go.owu.edu/ physics/StudentRe-
search/2005/BryanDaniels/kuramoto_paper.pdf
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Figure 6.10: The motion of a single
metronome arm.
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Figure 6.11: The motion of four
"uncoupled" metronome arms.


http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf

cycle we’ve gone so far. (Note that it’s perfecly OK to go around twice,
or three times, or as many times as we want.) One complete cycle is
equivalent to an angle of 277 radians.

The time to go through one complete cycle is the metronome’s period.
After some amount of time, t, the "angle" the metronome has traveled
through in its cycle is 8 = 27t/ period. Note that this is different from
the physical angle the metronome’s arm makes. 6 here is an abstract
thing that just tells us what stage we’re at in the metronome’s cycle. If
different metronomes are started at different times, that’s just equivalent
to shifting 6 by some amount that we’ll call each metronome’s "phase
angle". When the metronomes jiggle each other, they gradually change
each other’s phase angles until all they’re all the same.

For coupled metronomes, the Kuromoto model tells us that each
metronome is jiggled by each other metronome by an anount that’s
proportional to the difference in their phase angles. Mathematically, we
could say that the change in phase angle of metronome i is:
. constant  N=l
correction; = —— = X X%) (phase; — phase;)
]:

where N is the number of metronomes and j is a label for each
metronome, starting with zero. Over time, after many such small
corrections, this would cause the phases of the metronomes to converge,
as in Figure 6.12.

Program 6.6 tracks the motion of four metronomes that can jiggle
each other. It initially gives the metronomes different phase angles
spread evenly between zero and 71/2 radians (1/4 of the way through a
cycle). Then the program starts a loop that goes through four complete
metronome cycles in 100 steps. During each step, the program loops
through all the metronomes, and for each metronome it calculates the
correction due to all the other metronomes. It then does a second loop
and applies those corrections by modifying each metronome’s phase
angle. During each step, the program prints out the current value of
f and the position of each metronome arm (given by sin (theta +
phase[il]).

At the top of the program we define two arrays, phase and correction,
that will hold the current phase angle of each metronome and the cor-
rection to be applied to that phase angle before beginning the next
step. We can’t just change the numbers in phase because we still need
those values until we're finished calculating the correction to each of
the metronomes. That’s why we store the corrections in a separate
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Position

Figure 6.12: The motion of four
metronomes that are "coupled" because
they’re sitting together on a wobbly
table.



182 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

array until we're ready to apply them.

When you run the program it will print five columns of numbers: 0,
which represents time, and the position of each of the four metronome
arms. If you want to simulate more metronomes, just change the value

of nmetronomes in the program

Program 6.6: metronome.cpp

#include <stdio.h>
#include <math.h>
int main () {
const int nmetronome
double nsteps 100;
double phase[nmetronome];
double correction[nmetronome];
double coupling_strength 0.03;
double thetamax 8.0+xM_PI;
double diff,diffsum;
double theta,thetastep;
int istep;
int i, 3;

4;

diff 0.5+*M_PI/nmetronome;

for ( i1i=0; i<nmetronome; i++ ) {
phase[i] diff«i;

Set initial values. I

}

thetastep
theta 0;
for ( istep=0;

thetamax/nsteps;

istep<nsteps; istept++ ) {

printf( "%$1f ", sin(theta + phasel[i]) );

diffsum 0;

Loop through
all metronomes.

printf( "$1f ", theta );
for ( i=0; i<nmetronome; i++ ) { ‘////+Pﬁntarn1poﬂﬁon.

Add up the

for ( j=0; j<nmetronome; Jj++ ) {=

Loop
through
time

diffsum += phase[]]
}

correction[i]

- phasel[i];

A

}

phase differences.

coupling_strengthxdiffsum/nmetronome;

}

theta += thetastep;

printf ("\n"); ¢////%<Appblconfcﬁon&
for ( i=0; i<nmetronome; i++ ) {
phase[i] = phase[i] + correction[i];




6.10. Multi-Dimensional Arrays

Each array we’ve seen so far can be visualized as a long, one-dimensional

chain of elements, one after another. Arrays don’t have to be one-

dimensional, though. For example, the program below shows an array

called mat rix with two indices. We could think of this as representing

a two-dimensional (20 x 30, in this case) matrix of values.

int main () {
int matrix[20] [30];

int i, 3;

for (i=0; 1i<20; i++) {
for (3=0; 3<30; J++) |
matrix[i][3] = 1 * 7;
}
}

A two-dimensional array might store the barometric pressure at loca-

tions on a map grid, or the number of grains of wheat on each square

of a chess board.
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The Karl G. Jansky Very Large Array
(VLA) is an array of radio telescopes
near Socorro, New Mexico. The
antennas can turn to follow celestial

targets as the Earth rotates. Their
motion is usually so slow as to be
almost imperceptible, but they
periodically need to “unwind” to avoid
tangling cables. Astronomers describe
the eerie scene when, in the middle of
the night, a plain full of antennas
suddenly begins twisting in unison, as
though they’ve come to life.

Source: Wikimedia Commons

Figure 6.13: An 8 x 8 two-dimensional
array, with the indices i and j.

The Chess Game (1555), by Sofonisba
Anguissola

Source: Wikimedia Commons

There’s a legend, of uncertain origin,
that goes something like this: The
inventor of chess presented the new
game to his ruler, who was so pleased
that he offered the inventor any prize
he wanted. The apparently modest
inventor asked only for some grains

of wheat (or rice, in some versions).
One grain was to be placed on the first
square of the chessboard, two on the
second, four on the third, and so forth,
doubling the number of grains each
time, until the last square was reached.
“Certainly!” said the ruler, but he found
that he couldn’t honor his offer. To
reach the last square would require over
293 grains of wheat, more than all of the
wheat in the world!


https://commons.wikimedia.org/wiki/File:VLA_4893505508.jpg
https://commons.wikimedia.org/wiki/File:The_Chess_Game_-_Sofonisba_Anguissola.jpg
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Arrays in C can have as many indices as you like. A three-dimensional
array might hold data about a grid of points in space, or a four-
dimensional array might be useful for problems in General Relativity,
where space and time are combined into a four-dimensional continuum.

Each index of a multi-dimensional array starts with zero, just like arrays
with a single index. In the example above, the first index of matrix
goes from zero to 19, and the second index goes from zero to 29.

6.11. Working with 2-dimensional Arrays

You're an artillery sergeant in the Union Army during the American
Civil War. The rebel forces are trying to float a barge full of coal down
the Missisippi river to supply fuel for their new ironclad warship. Your
job is to make sure that barge doesn’t reach its destination. You set up
camp on the side of the river and wait for the barge to come through.
But wait! Suddenly a thick fog descends, blocking your view of the
river! You'll have to fire blind, and listen for the sound of crackling
wood to tell you whether you've hit the barge.

Quickly you sketch out a diagram of the river to help you keep track of
hits and misses (see Figure 6.14).

0 1 2 3 4 5 6 7 8 9

; L 4

Hmmm. This sounds like it would make an exciting game! Fortunately,
you learned C programming in Boot Camp, so after completing your
mission you can return home and write Program 6.7.

These are the rules of the game: A coal barge occupies a line of four
consecutive elements in a 2-dimensional array (the map). The barge is

Figure 6.14: A coal barge floats down the
Mississippi. The front of the barge is at
[5] [1], and the vessel occupies the
four elements to the right of that
position. An artillery shell has hit the
barge at position [6] [1], but another
shell at [2] [3] has missed.



oriented horizontally, along the flow of the river, and placed at some
random location on the map. The barge must be completely on the
map, it can’t hang off the edge.

In order to win the game, the player must hit each of the four array
elements that contain the barge. The player fires an artillery shell by
giving the two indices, [1] [j], of an array element. The program tells
the player whether the shell hits the barge.

The program uses a 2-dimensional array named grid to store a map
of the river and the barge’s position. Most of this array contains zeros,
but the four elements occupied by the barge are initially marked with
ones. When a player hits one of the barge elements its value is changed
to -1. The variable nhits keeps track of the total number of hits. The
program keeps running as long as nhits is less than four.
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In 1863 Union forces built this dummy
ironclad out of an old coal barge, and
used it to frighten Confederates. The
smokestacks were made of pork barrels
and contained smudge pots to make
smoke.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Admiral_Porter's_Second_Dummy_Frightening_the_Rebels.jpg
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Program 6.7: coalbarge.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {

int gridf[10][5]; 0 1 2 3 4 5 6 7 8 9
int nhits = 0; 0
int i, j, iprow, Jjprow; 1

for ( i=0; 1i<10; i++ ) {
for ( j=0; 3J<5; j++ ) {
grid(i][j] = 0;

3

4

} The front (“prow”) of the barge must
} be in the shaded section to prevent the

back end from hanging off the map.
srand( time (NULL) );

iprow = (int) ( 7.0*rand()/ (1.0 + RAND_MAX) );
jprow = (int) ( 5.0*rand()/ (1.0 + RAND_MAX) );
for ( i=0; i<4; i++ ) {
grid[iprow+i] [jprow] = 1;
}
do {
printf ("Enter x coordinate: ");
scanf ( "&%d", &i );
printf ("Enter y coordinate: ");
scanf ( "sd", &3j );
if (1> 10 |1 1 <0 ] J>5113<0) {
printf ("Bad coordinates. Try again.\n");
continue;
}
if ( grid[i][]] == ) |
printf ("Hit!\n");
grid[i] [J] = -1;
nhits++;
} else if ( grid[i][j] == -1 ) {
printf ("Already hit! Try again.\n");
} else {
printf ("Miss! Try again.\n");

}
} while ( nhits < 4 );

printf ("You sunk my coal barge!\n");




6.12. Solving a Heat Problem

Let’s use a two-dimensional matrix to help us solve a problem. Imagine
that you have a square metal plate. One edge of the plate is connected
to something very hot, like the engine of a locomotive. The other three
edges are connected to a cooling system that keeps them cold. But
what are the temperatures of the other parts of the plate?

COLD COLD

COLD

We might assume that points near each other on the plate would have
similar temperatures. Points near the hot edge would tend to be hotter
than points near the cold edges. In fact, it wouldn’t be surprising if
the temperature at any given point were close to the average of the
temperatures at the points around it.

Let’s write a program that tries to estimate the temperature at various
points on the plate. Assume that the very hot edge of the plate has a
temperature of 500 celsius, and that the cold sides are kept at a chilly
zero celsius by our highly efficient cooling system.

We'll start by dividing the plate into a 100 x 100 grid of points.
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A steam locomotive.

Source: Wikimedia Commons

Figure 6.15: A metal plate, hot on one
edge and cold on the others.


https://commons.wikimedia.org/wiki/File:Locomotive_engineering_-_a_practical_journal_of_railway_motive_power_and_rolling_stock_(1900)_(14573293108).jpg
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Hmmm. .. Sounds like a 2-dimensional array might be useful here. We
could define the array like this:

double temp[100][1007;

The array named temp will hold the temperature values of the points
on our grid. We already know the temperatures of some of these points.
The points along the hot edge of our plate have a temperature of 500
celsius, and those along the cold edges are at 0. These are the “boundary
conditions” of our problem. We need to determine the temperatures of
the other, interior, points though.

We'll start by just setting these interior temperatures arbitrarily to zero.
This probably isn’t a good guess for their temperature, especially for
those points near the hot edge, but we can improve our estimate by
using the approximation we mentioned above: We're going to assume
that the temperature at any point is approximately the average of the
temperatures of the neighboring points.

It turns out that this type of problem is a common one in physics and
engineering. To arrive at the solution mathematically, we’d need to solve
what's called “Laplace’s Equation” for this system.? Fortunately, there’s
an easy way to find an approximate solution to Laplace’s equation with
a computer program. The technique is called “relaxation”. You'll see
why soon.

After setting the temperatures, let’s go through all of the interior points,
changing each point’s temperature to the average of its neighbors’
temperatures. After doing this, we might expect that the temperatures
are a now a little more realistic. How far off was our original estimate?
We might look at how much difference there is between our original

guess and the new estimate. What's the biggest difference?

If we did this averaging process again, we’'d get an even better ap-
proximation for the temperatures, and we’d see that the maximum
temperature change is smaller than it was the first time. If we keep
averaging, again and again, the temperature values will eventually
settle into stable values that don’t change much each time we average.
At some point, we decide that this approximation is good enough, and
stop averaging.

Our approximation started out very far from the true temperatures.

Pierre-Simon, marquis de Laplace made
important contributions to many areas
of mathematics.

Source: Wikimedia Commons

8 In the language of math, Laplace’s
equation is expressed as V2¢ = 0.

A soap film stretching between two
hoops.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Laplace,_Pierre-Simon,_marquis_de.jpg
https://commons.wikimedia.org/wiki/File:Bulle_caténoïde.png

You could think of this original approximation as being a rubber sheet
that’s stretched out into some unnatural shape. Each time we do the
averaging process, the sheet “relaxes” a little, until it falls into whatever
natural shape fits the boundary conditions we’ve imposed. That’s why
this technique is called “relaxation”. It can be used for temperature
problems like this, but also for a real rubber sheet, or for a soap film
on a wire frame. All of these are instances of a system controlled by
Laplace’s equation.

Program 6.8 follows the strategy we’ve described above and uses it to

find approximate temperatures for interior points on our metal plate.

First, it sets temperatures to some initial values, then repeatedly loops
through all of the interior points, averaging temperatures. Every time
it changes a temperature, it looks to at the size of the change and
keeps track of the biggest change. When the changes get small enough
(smaller than smalldiff), the program prints the final temperatures.

Notice that Program 6.8 uses some magic to make sure each element of
the temp and told arrays contains a value of zero when the program
starts. That’s what the special value { {0} } means when defining a
2-dimensional array.

500
400 300
300 200
200 100
100 0

We can put the program’s output into a file by writing . /relax >
relax.dat, then we can graph the results with gnuplot. Figure 6.1y
shows the result of the following gnuplot command:

splot
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[i103-1]

=101 [2][9] ] s

[1103+11

Figure 6.16: Program 6.8 sets the new
value of temp [i] [J] equal to the
average temperature of the four array
elements surrounding it. As we saw in
Section 6.7, the array indices can be
used to tell us something about the
relationships between array elements.
In this case, the indices give us
information about which elements are
near each other.

Figure 6.17: Temperatures at various
points on the metal plate, as estimated
by Program 6.8.

"relax.dat" with pm3d
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The command splot9does a “surface plot”. The qualifier “with
pm3d” tells gnuplot to use a style of plotting called “palette-mapped
3-d”. This color-codes values based on their height. The color scale
shows which color corresponds to which value.

To enable gnuplot to read the data file, Program 6.8 wrote it in a particu-
lar format. If you look inside the data file (relax.dat) you'll see that
it contains a single column of numbers. If you scroll down in the file
a little, you'll see that there’s an empty line after every 100 numbers.
The numbers represent the temperature values along a row of our grid
points on the metal plate. Each extra blank line indicates the beginning
of the next row.
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By choosing different “boundary conditions” (the unchanging tempera-
tures at the plate’s edges) we can simulate other interesting situations.
For example, Figure 6.19 shows the temperature distribution on the
plate when there are two hot spots at the top and one hot spot at the

bottom.

500
400
300
200
100

snisja) ‘ainjesadwia |

9 Note that it’s splot, not plot.

Figure 6.18: Another view of the
temperature distribution, as seen from
above the plate.

Figure 6.19: These graphs show the
temperature distribution when there are
two hot spots at the top of the plate and
one hot spot at the bottom.



Program 6.8: relax.cpp

#include <stdio.h>
#include <math.h>
int main () {
int i, 3;
double diff, maxdiff,
double temp[100][100]
double told[100][100]

// Set elements along
for (i=0;1i<100;1i++){

temp[i] [0] = 500.0;
}

smalldiff=1.0e-3;
{{0}}; // Current temps.
= {{0}}; // Previous temps.

hot edge to 500 celsius:

// Keep averaging until maxdiff is small:

[ do {

}
}

maxdiff = 0;

// interior points:

4 for (i=1;i<99;i++){

}

}
} while

// Write out results:
for (i=0;1i<100;i++) {

for (3=0;3<100; j++) {

for (1i=0;1i<100;1i++) {
for (3=0;3<100; j++) {
told[i][J] = templ[i]lI[]j];

for (3=1;3<99; j++) {
temp[i] [j] = 0.25 % (told[i-1][j] + told[i+1l]1[j] +

// These two nested loops go through all of the

See Figure 6.16 on Page 189

told[i] [j-1]1 + told[i] [j+11);

diff = fabs(temp[i] [j]-told[i][3]);
if ( diff > maxdiff) {
maxdiff = diff;

( maxdiff > smalldiff );

printf ("$1f\n", temp[i][]j]);

}
printf ("\n");
}

Keep this |[01[0] | [11[0] | [2][0] | [3][O]
edge hot:

Keep the other
edges cool:
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(01011 | [11011 | 21011 | [31(1]

[0](2] | [1](2] | [21[2] | [3][2]

[01(3] | [11(3] | [21(3] | [31[3]

Estimate the temperature
of the interior points.

El o

Initial values

Final values
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But what about...?

Let’s look more closely at the trick we used in Program 6.8 when
defining the temp and told arrays. If a statement like:

double temp[l00][100] = {{0}};

gives each of the array’s elements a value of zero, could we do this:

double temp[100] [100] = {{100}};
to set all of the elements to 100?

Unfortunately, no, but the real result might suprise you. If you
printed the values stored in an array defined like this, you'd find
that element [0] [0] had the value 100, as expected, but all of the
other elements would be set to zero.

Let’s back up a little and see how these curly brackets work when
we use them in an array definition. As we noted back on Page 167,
we can initialize the elements of an array by explicitly giving a list
of values in curly brackets, like this:

int marbles([5] = {7,9,3,15,8};

But what if the list contains fewer values than the number of array
elements, like this?:

int marbles[5] = {7,9};

In that case, the first two elements would be set to 7 and 9, and
the rest would be set to zero. Whenever there are too few values,

the computer assumes that we want to set the rest of the values to
Zero.

As we’ve noted before (see Chapter 4), variables are just named
sections of the computer’s memory, and we can’t assume that they
contain any particular value before we explicitly give the variable
a value. If we want all of an array’s elements to be zero, we need
to set them to zero. We could do this by saying:

int marbles([5] = {0,0,0,0,0};

or, as we’ve just seen, we could say:

int marbles[5] = {0};



causing the computer to set the first element to zero, and setting
all of the other elements to zero by default, since we didn’t say
what we wanted them to be.

Some compilers will even let us say “int marbles[5] = {}”,
but that doesn’t work with all of them, so it’s best to always give
at least one value.

So what about the double brackets we used in Program 6.8? That’s
because these are 2-dimensional arrays. With a 2-d array, we can
initialize values like this:

double x[20][20] = {{7,9},{4,3}};
setting the first two elements of the first row to 7 and 9, and the

first two elements of the second row to 4 and 3. All of the other
elements would be set to zero. And, if we said:

double x[20] [20] = {{0}};

all of the array’s elements would be set to zero. This is the trick
we used in Program 6.8.
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Figure 6.20: A collection of marbles
within the permanent collection of The
Children’s Museum of Indianapolis.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:The_Childrens_Museum_of_Indianapolis_-_Marbles.jpg
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6.13. Conclusion

Arrays are useful whenever your program needs to store several related
values. Array indices uniquely identify each array element, and they
may also say something about relationships between array elements.
(They can indicate the spatial or time ordering of measurements, for
example.)

Some important things to remember about arrays are:

* The elements of an array can be of any type (but all elements of a
given array must be of the same type).

e When defining an array, the number in square brackets says how
many elements are in the array.

¢ It’s important to remember that an N-element array’s indices start
with zero, and end at N-1.

* Arrays take up memory. It's easy to write “double x[1000]”, but
remember that this takes as much memory as a thousand single
variables. Keep this in mind when defining large arrays.

¢ Array elements can be referred to by their indices.
* The index must be an integer.
¢ The index uniquely identifies a single array element.

¢ Arrays can optionally be initialized when they’re defined.

You load sixteen tons
and what do you get?
Another day older
and deeper in debt. 4 0.
C




Practice Problems

1.

On page 171 it was suggested that adding an “if” statement to
Program 6.2 could make it safer. Add an “if/else” statement to
Program 6.2 (without changing anything else!) to check whether the
number is too big or too small. If it is, ignore the number and give
the user a helpful message. Call your program coal . cpp.

Create, compile and run Program 6.8. Use the “1s” command to
make sure that the program created the file relax.dat.

Use the gnuplot command described above to plot the data using
ghuplot’s “pm3d” plotting style. If your version of gnuplot allows it,
grab the figure with your mouse and rotate it around. Does it look

like what you’d expect?

Imagine you have a very short coal train, containing only five cars.
Each of the cars is to be sent to one of your customers. Each customer
is identified by an integer “Valued Customer ID Number” (VCID)
like “37654".

(a) Using nano, create a data file named orders.dat that contains
five rows of numbers, one row for each car in your train. Each
row of the file will have two numbers: the weight of coal in that
car (which might be a number with decimal places), and the ID of
the customer it belongs to (which will always be an integer). The
file might look like this:

63.4 5487
52.1 30978
77.8 8765
89.0 435
95.3 789

(b) Now write a program named orders. cpp that will read orders
All of the weights should go into a 5-element array of doubles
named carweight and all of the customer IDs should go into
a 5-element array of ints named vcid, so that carweight [0]
and vcid[0] are the weight and customer ID for the first car,
and so forth. After the program reads the data, have it ask the
user for a car number (a number between zero and four) and print
out the weight and customer ID for that car. Make sure you check
the car number to see if it’s in the range zero to four, and tell the
user if it’s not. Also make sure the program tells the user which
number is which.

Hints: See Program 6.4 for something similar, and look at Chapter
5 for advice about reading things from files.
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John Coltrane. Because “Coal Train”.

Source: Wikimedia Commons

.dat.


https://commons.wikimedia.org/wiki/File:John_Coltrane_1963.jpg
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Problem 3 uses two “parallel arrays”, carweight and vcid, to store
two pieces of information about each car. If we wanted to add more
information (maybe the car’s age, so we know when to replace it?)
we could add more arrays. We’ll see a different way to do this sort
of thing later, in Chapter 12.

4. In mathematics, a matrix is an array of numbers. Matrices are impor-
tant in many fields of science, engineering and mathematics.

Using nano, create a file named matrix.dat that contains a 3x3
matrix like this:

8 4
5 7
10

w U1 =

8 4 1
5 7 5
1 0 3

Figure 6.21: The trace of a matrix is
defined as the sum of its diagonal
elements. In the example above, the

Write a program named mat rix. cpp that reads data frommatrix.dat trace is equal to 8 + 7 + 3.

and puts the numbers into 2-dimensional array, double m[3] [3].
To do this, use nested pair of for loops that repeatedly uses fscanf
to read the array’s elements, one at a time. The fscanf statement
might look like this:

fscanf ( input, "$1f", &m[col][row] );

where col and row are the column and row numbers.

Make the program do the following:

(a) First, print out the elements of the matrix, so you can make sure
they match the data in matrix.dat.

(b) Second, compute and print out the trace of the matrix. The trace is
defined as the sum of the matrix’s diagonal elements. (See Figure
6.21.) (Hint: The diagonal elements are the ones where the row
and column numbers are the same, like m[0] [0] and m[1] [1].)

(c) Third, compute and print out the determinant of the matrix. The
determinant for a 3x 3 matrix is:

det =

m[0][0]*( m[1][1
m{O][1]+( m[1][2]»m[2][0O]
miO0][2]+( m[1][0]»m[2][1]

You'll obviously need to be careful when typing this into your
program, but looking at the way the numbers in the statement
line up vertically can help you avoid mistakes.

If you make your matrix.dat file look like the example above, you
should find that the matrix has a trace of 18 and a determinant of
121. Use these values to check your work.

We can think of each row of the matrix
as the coordinates of a point in
three-dimensional space. In the picture
above, we call these points r1, r2, and
3. The determinant of the matrix is just
the volume of the parallelepiped
defined by these three points (the
shaded volume above).

Source: Wikimedia Commons


https://en.wikipedia.org/wiki/File:Determinant_parallelepiped.svg
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5. Write a program named fibarray.cpp that fills an array with the
first 20 terms of the Fibonacci sequence. The first two numbers in
the Fibonacci sequence are 1, 1, and each subsequent number is the
sum of the preceding two numbers. Your program should have a
20-element int array named term. The program should start out by
setting term[0]=1 and term[1]=1. Then the program should have
a “for” loop that finds the value of each of the remaining 18 terms.
Inside the loop you’ll want to have a statement like term[i+2] =
term[i]+term[i+1]. After this loop is done, add another loop
that prints out all the elements of term. The program’s output
should look like this:

112 358 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

6. In the Fibonacci sequence each term is the sum of the two preceding
terms. There’s also a “Tribonacci sequence”, in which each term is
the sum of the three preceding terms. It starts out with the numbers
0, 0, 1. Referring to the instructions in Problem 5, write a program
named tribarray.cpp, but with the Tribonacci numbers instead
of the Fibonacci numbers. The program’s output should look like:

0011247 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513






7. Statistics

7.1. Introduction

In the 17th century, English authors John Graunt and William Petty
began writing about a new science called “Political Arithmetic”, which
tried to understand social, economic, and public health problems
through the collection and analysis of numerical data. In the 18th
century, authors such as Germany’s Gottfried Achenwall began writing
about another new field of study called “Statistik” which aimed at dis-
covering the general principles by which a state could be successfully
run.

Statistik soon began using the techniques of Political Arithmetic. The
success of a state might depend on the amount of wheat or milk it
produces, or the number of skilled craftsman. A spreading plague
might be detected by systematically collecting data about deaths. These
studies were the beginning of what we call “statistics” today.

The modern science of statistics attempts to see inaccessible underlying
truths by sampling the superficial things that are visible to us. By
surveying a limited number of households, we arrive at an estimate
of the total number of families living in poverty. By observing a few
thousand particle decays, we estimate the probability that such decays
will happen. In the language of Antoine de St. Exupery’s Little Prince,
statistics tries to see the elephant that lies hidden inside the boa (see

Figure 7.3).

The available data is often incomplete, and shows us only a blurry
outline of what’s underneath, so statistics also tries to measure the
uncertainty in its estimates. These measures of uncertainty help us
judge how much we should trust our statistical conclusions.

Figure 7.1: Der Sommer, by Abel
Grimmer (565-1630).

Source: Wikimedia Commons
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Figure 7.2: John Graunt’s Observations
on the Bills of Mortality (1662) studied
mortality data in an effort to
understand the spread of Bubonic
Plague.

Source: Wikimedia Commons

Figure 7.3: A boa who’s swallowed an
elephant, from Antoine de St.
Exupery’s The Little Prince.


https://commons.wikimedia.org/wiki/File:Abel_Grimmer_002.jpg
https://commons.wikimedia.org/wiki/File:Graunt_Observations.jpg
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7.2. Summarizing Data with Histograms

It can be hard to see the patterns in a bunch of raw numbers, but
a graph often makes the data snap into focus. In this section, we’ll
look at a new kind of graph called a “histogram”. The histogram was
introduced in 1891 by Karl Pearson, one of the founders of modern
statistics. It summarizes an arbitrarily large amount of data by reducing
it to a smaller, fixed, number of data points that represent how often
certain values appear in the original data.

Let’s look at an example. Particle physicists often use “scintillation
detectors” to measure the energy of subatomic particles. A “scintillator”
is a material such as Thallium-doped Sodium Iodide which produces a
flash of light when an energetic particle passes through it. By measuring
this flash of light, we can find out how much energy is deposited as a

particle passes through. More light means more energy.

Electrical
Incoming 4 tone!
particle Sodium
lodide
Scintillator Photomultiplier
.\ Tube
Light
Photon

The output of such a detector is just a bunch of numbers, each of which
corresponds to the energy deposited by a detected particle.’ These
energies are measured in “electron Volts” (eV), and a million electron
volts is called an MeV. The data we collect might look like Figure 7.6.

It's hard to see patterns in a stream of numbers like this, but let’s
imagine that we’ve looked at the data and noticed that all of the
numbers lie between o and 20 MeV. It would be interesting to know how
the numbers are distributed in this range. Are they spread uniformly?
Do they bunch up in some places?

If we were rather bad at programming but good with tools, we might
construct a set of bins like those in Figure 7.7 to satisfy our curiosity.
Each bin represents a 4 Mev-wide range of energies. Whenever we see
a particle with an energy in that range, we could drop a marble into
the corresponding bin. After going through all of the data we could
look at our bins and easily see which energies were the most common,
because they’d contain the most marbles.

Figure 7.4: British mathematician Karl
Pearson (1857-1936).

Source: Wikimedia Commons

Figure 7.5: A scintillation detector
produces a flash of light whenever an
energetic particle passes through it. The
amount of light is proportional to the
energy that the particle deposits in the
detector. The flash of light is converted
into an electrical signal by a
“photomultiplier tube”, and the electrical
signal is measured and recorded.

* The size of the electrical signals com-
ing out of the detector is proportional
to the energy. For our example, we’ll
just assume that we can read the energy
values directly.

15.130490
16.942571
16.627112
10.780935
14.569799
15.192141

6.489004
12.386759
17.793823

4.181682
19.381618

Figure 7.6: Some data from our detector,
representing energies measured in MeV.
It’s hard to make sense of a stream of
numbers.


https://commons.wikimedia.org/wiki/File:Portrait_of_Karl_Pearson.jpg
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The pattern of high and low marble stacks that we’ve produced is
called a histogram. It tells us how frequently a measurement falls
within a given range. For this reason, histograms are sometimes called
“frequency plots”.

If we wanted to save our histogram (maybe we want to re-use the
lumber for another project?) we could just write down the number of
marbles in each bin. But if a histogram is just equivalent to a list of
numbers, that means we could use an array in a C program to store it.

Program 7.1 reads energies from a file and produces a histogram,
represented by an array of bin counts. The program reads a list of
numbers from the file energy.dat. The numbers represent energies
from a scintillation counter, ranging between approximately o and 50
MeV. For each number, the program adds a virtual marble to one of 50
bins. The bins are the elements of the array named bin.

To find out which bin to put the marble into, the program divides
each energy value by the bin width, and rounds the result down to the
nearest integer. The result is the bin number. For example, take a look
at Figure 7.7 again. In this figure, an energy of 9 MeV would go into
bin number 2, since the bin width is 4 MeV, and 9/4 = 2.25.
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Figure 7.7: Binning the detector data
produces a histogram.
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Figure 7.8: A histogram can also
represent a spectrum. The most intense
places on this fluorescent light spectrum
are just those where photons are most
frequent. In the graph, we’ve marked
only the top of each of 700 “columns of
marbles”.

Spectrum taken by Finian Wright, using a DIY spectrometer.


https://www.youtube.com/watch?v=IA5BTD-aelo
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In Program 7.1, for simplicity, we’ve made the bin width 1 MeV, so
we can just look at the bin number to see the approximate energy it
represents.

Program 7.1: hist.cpp

#include <stdio.h>

int main () {
int i, binno, overunderflow = 0;
double energy, binwidth = 1.0;
int bin[50];
FILE *input;

for ( i=0; 1<50; 1i++ ) {

bin[i] = 0; // Reset all bins to =zero.

input = fopen( "energy.dat", "r" );
while ( fscanf( input, "%1f", &energy ) != EOF ) {
binno = energy/binwidth; // Find which bin.

// Is it too small or too big?

Read lines
from file.

if ( binno < 0 || binno >= 50 ) {
overunderflow++;

continue; // Skip this value and jump to the next.

bin[binnol++; // Add a marble to this bin.
}

fclose (input) ;

\

for ( i=0; 1<50; i++ ) {
printf ("%d %d\n", i, bin[i]);
}

printf ("# Saw %d over/underflows\n", overunderflow);

At the end of the program, it prints out each bin number and the
number of virtual marbles that bin contains.

As we saw in Chapter 6, it's important to check our array indices to
make sure we're not going past the end of the array. What if the file
energy.dat contains some unexpected energies that would fall into
bins beyond the last element of our bin array? What if a negative



number somehow found its way into the file? We’d want to know
about these things, but we wouldn’t want our program to crash.

Underflow

To record these unexpected values, Program 7.1 has a variable called
overunderflow that counts the number of overflows (energies that
are too low) and overflows (energies that are too high). The program
checks the energy with an “if” statement like this:

if ( binno < 0 || binno >= 50 )

2

The condition in the “if” statement checks to see if either of two
conditions are true by using the “or” operator, | |. (We say >= 50

because the highest bin number is 49.)

If an overflow or underflow is found, the program increments the value
of overunderflow and then immediately skips to the next energy
value in energy.dat. It accomplishes this by using a “continue”
statement. In Chapter 4 we saw that it was possible to stop a loop by
using a break statement. The continue statement is similar, except
that instead of stopping the loop, it causes the program to skip the rest
of the current trip through the loop and immediately start the next trip.

When the program finishes, it prints out the number of overflows and
underflows that were seen. Notice that it prints a hash symbol (#) in
front of the message about over/underflows. This is so the message
won’t confuse gnuplot if we want to plot the results. Gnuplot ignores
any lines that begin with #.
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Figure 7.9: In Program 7.1,
overunderflow counts the number of
overflows and underflows.

Figure 7.10: Legend has it that the
Greek philosopher Archimedes proved
the value of noticing overflows. He'd
been given the task of measuring the
density of a crown to determine
whether it was made of pure gold. This
required measuring the crown’s volume,
but he couldn’t figure out how to do
that. Getting into his bath one day, he
noticed that his body displaced an
equal volume of water, and it was easy
to measure the volume of water. He
jumped from the tub, shouted “Eureka!”,
meaning “I've found it!” and ran naked
through the streets of Syracuse.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Archimede_bain.jpg
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. . ] 35.130490
Exercise 36: Making a Histogram 36.942571
36.627112

For this exercise you'll need a copy of the data file energy . dat. 40.780935
You can find instructions for obtaining it in Appendix C.2 on ié igizii
page 542. Take a look inside this file using nano. You should 36.489004
32.386759

see a single column of numbers, representing simulated
energy measurements of 100,000 particles.

Figure 7.11: Some of the data in the file
Try graphing this file by starting gnuplot and typing: energy.dat.

plot "energy.dat"

The result should look something like Figure 7.12.

Exit from gnuplot and then create, compile and run Program
7.1. The program’s output should be two columns of num-
bers (a bin number and the number of “virtual marbles” in
that bin), followed by a message about overflows and under-

flows. By looking at the columns of numbers, you should

20
0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04 7e+04 8e+04 9e+04 1e+05
Particle Number

already be able to see a pattern emerging.
Figure 7.12: The data in energy.dat,

Now run the program again, redirecting its output into a plotted with gnuplot.
file, like this:
16000
./hist > hist.dat “£14000
312000
) (310000
Start gnuplot and plot the data by using the command: © 8000
S 6000
plot "hist.dat™ with impulses S 4000
O 2000
. . 0 1 '}
“with impulses” causes gnuplot to draw a vertical line for 0 10 20 30 40 50
each point. The result should look something like Figure Energy Bin
7.13. Where do most of the energy values lie? Figure 7.13: The output of Program 7.1,

plotted with gnuplot.

Even though the data file we're analyzing (energy.dat) contains
100,000 lines, the output of Program 7.1 is just two 50-line columns. We
could give Program 7.1 a million times more data to analyze, and the
program’s output would still be only fifty lines, although the numbers
on those lines would be larger. This is one reason histograms are useful:
they can summarize large data sets very efficiently. In the exercise
above, the program turns 100,000 numbers into a 50-number summary.



7.3. Resolution and Range of Histograms

We could improve Program 7.1 by making a few changes that allow us
to adjust the resolution of the histogram (the width of its bins) and its
range (the lowest and highest energy values it can display). Let’s also
make the program more general, so it’s clear we can use it for other
kinds of data besides energy values.

Controlling the Resolution of a Histogram:

In Program 7.1 we set the bin width to 1 MeV for convenience, so we
could see the energy values by just looking at the bin number. Bin
number 35 corresponded to 35 MeV. What if we wanted a finer- or
coarser-grained histogram, though? We might want a bin width of 0.5
MeV or 2 MeV, for example. In that case, we might want the program
to print the energy value of each bin instead of the bin number.

But do we want to print the energy at the left side of the bin, the right
side, or the middle? These are all different. Let’s just print all of them,
and then we can decide which value we want to use when we graph
the data.

We can make this happen by modifying just a few lines of our program.
Instead of saying this:

printf ("%d %d\n", i, bin[i]);

we can say this:

elow = binwidthx*i;

emid = binwidthx* (0.5+1i);

ehi = binwidthx (i+l);

printf ("$1f $1f $1f $d\n", elow, emid, ehi, bin[i]);

The first three lines calculate the energy value at the left, center, and
right of the bin (to get the center, we add 0.5 to the bin number). Then,
instead of printing the bin number, we print all three energy values.
This will mean that our output has four columns: the three energy
values and the number of “marbles” in the corresponding histogram
bin.
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Figure 7.14: Finer-grained resolution
sometimes shows us features of our
data that are invisible at lower
resolutions. (Photo of Werner
Heisenberg.)

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg_crop.jpg
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Controlling the Range of a Histogram:

Program 7.1 also assumes that the energy range we’re interested in
starts at zero. Sometimes this won’t be the case. Maybe we want to
focus on the range between 30 and 40 MeV, for example. Or, if we're
measuring something other than energy, we might even have negative
values. Maybe we’re measuring distance, and we want to look at values
between -10 meters and 10 meters, where zero is the origin of our
coordinate system.

To accommodate that we’ll need to make a few more changes to our
program. First, let’s define the lower bound of our energy range with a
new variable:

double emin = 20.0; //MeV.

Here we’ve set it to 20 MeV, but we could set it to whatever we want.

Now we’ll need to use this value when we calculate the bin number
(binno) and when we calculate the energy of each bin at the end of the
program. Our new calculation of binno would look like this:

binno = (energy-emin)/binwidth;

Instead of just energy, we're using energy-emin to determine which
bin we should use. When energy is equal to emin, the bin number is
zero. At the end of the program, when calculating the left, center, and
right energy values of the bin we can say:

emin + binwidth«*i;
emin + binwidth=* (0.5+1);
ehi = emin + binwidth* (i+1);

elow

emid

We've added emin because the lowest bins correspond to that energy.

Calculating binwidth Instead of Specifying It:

It’s often convenient to specify the limits of a histogram’s range and
the number of bins, and then let the program calculate the value of
binwidth. We might, for example, want 100 bins covering the range
from 20 MeV to 45 MeV. That would tell us that each bin has a width of
(45 —20)/100 = 0.25 MeV.

We'll need to rearrange a few things to make that happen. Let’s start
by adding a new variable to specify the upper end of our range:

double emax = 45.0; //MeV.

-
-
b .

v

Figure 7.15: Two images with the same
resolution (both are 348 x348), but the
bottom image zooms in on a small
region near the center of the upper
image. If we have a fixed number of
histogram bins, we should try not to
waste them on regions where there’s no
interesting data. (Image of a “gnat ogre’
— a robber fly of the genus Holcocephala —
taken by the author.)

’



Now let’s define a variable that specifies the number of bins, to make it
easy to adjust this value later:

const int nbins = 50;
int bin[nbins];

As we mentioned in Chapter 6, the word const tells the C compiler
that this value should never change. (See Page 172.) Next, we need to
add a line to calculate the value of binwidth:

binwidth = (emax—emin)/nbins;

Finally, we need to replace 50 with nbins wherever the program has
previously assumed there were 50 bins.

Putting It All Together:

Okay, now let’s see what the finished program looks like after we’ve
made all of these changes. Notice that Program 7.2 uses x, xmin
and xmax in place of energy, emin and emax, since we can use this
program for any kind of data. There are also some new printf
statements at the bottom of the program that remind the user about the
program’s settings.
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Figure 7.16: Output of Program 7.2,
plotted with the gnuplot comand
plot "hist.dat" using 2:4
with impulses.
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Program 7.2: hist.cpp, Improved

#include <stdio.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 20.0;
double xmax = 45.0;
const int nbins = 100;
int bin[nbins];
FILE *input;

binwidth = (xmax—-xmin)/nbins;
for ( i1i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%1f", &x ) != EOF ) {
binno = (x—-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.
}
bin[binno]++; // Increment the appropriate bin.

}
fclose (input) ;

for ( 1=0; i<nbins; i++ ) {

xlow = xmin + binwidthx*i;

xmid = xmin + binwidthx (0.5+i);

xhi = xmin + binwidth* (i+l1);

printf ("$1f %$1f $1f %d\n", xlow, xmid, xhi, bin[il]);
}
printf

("# Xmin %$1f\n", xmin);
printf ("# Xmax $1f\n", xmax);
printf ("# Binwidth = %1f\n", binwidth);
("#
("#

Nbins = %d\n", nbins);

Saw %d over/underflows\n", overunderflow);

printf
printf




7.4. Two-Dimensional Histograms

Imagine that you're a school principal whose students have just finished
taking reading and math tests. You could make a histogram of all the
reading scores or all the math scores, but you'd like to see how reading
scores and math scores are related to each other. Do students with high
math scores also have high reading scores, or do students excel in only
one area? What can we do? Let’s stroll down the hall and talk to the
Shop teacher. He’s a clever guy. Maybe he’ll have a suggestion.

You begin by telling him about the wooden bin you constructed for
sorting marbles in the preceding section. He thinks about the problem
for a moment, then says, “Well, all you need to do is make a crate that
lets you sort marbles out in two directions: one direction for reading
scores and the other for math. Give me a few minutes and I'll make one
for you.” Sure enough, after a few minutes of sawing and hammering,
he’s produced a crate like the one shown in Figure 7.17.

“Great!” you say. “Each marble represents a student. I just need to drop
the marble into the bin that corresponds to that student’s reading and
math scores. In the end, the number of marbles in a bin will tell me
how many students had that particular combination of reading and
math scores.”

0-25 26-50 51-75 76-100
Reading Score

Our crate full of marbles can be thought of as a two-dimensional his-
togram?. As with the one-dimensional version we saw in the preceding
section, we can save our histogram by just writing down the number of
marbles in each bin. In Program 7.1 we used a one-dimensional array
(bin[50]) to hold the values in our one-dimensional energy histogram.
For a two-dimensional histogram, we’ll need a two-dimensional array.
We might store the number of marbles in each bin of Figure 7.17 in a
3 X4 array of integers, defined like this: int bin[3][4];
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Figure 7.17: Binning marbles in two
directions produces a two-dimensional
histogram. In this example, math scores
range from zero to 9o and reading scores
range from zero to 100. We’ve divided
the math scores into bins with a width of
30, and the reading scores into bins with
a width of 25.

> Two-dimensional histograms are some-
times called “bivariate” histograms,
because they show data from two vari-
ables (reading score and math score in
this example).
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Take a look again at Program 7.1 (hist.cpp). If we wanted to modify
this program so that it makes a two-dimensional histogram, we’d need
to change bin into a 2-d array, and we’d need to modify the way we
fill this array.

For example, assume we have a data file that has two numbers on each
line: a math score and a reading score. Instead of the single bin number
(binno) that we calculate in Program 7.1, we now need to calculate
two bin numbers, one for math and one for reading. We might do that
like this:

mbin = math/mbinwidth;

rbin = reading/rbinwidth;
if ( rbin < 0 || rbin >= nrbins ||
mbin < 0 || mbin >= nmbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

bin[mbin] [rbin]++; // Increment the appropriate bin.

where reading and math are the reading and math scores, mbin and
rbin are the calculated bin numbers for math and reading, mbinwidth
and rbinwidth are the widths of the math and reading bins, and
nmbins and nrbins are the number of math and reading bins.

Figure 7.18 shows two ways of representing a 2-dimensional histogram
of reading and math scores. Here the reading and math scores both

range between zero and 100, and we’ve split each range into ten bins.

In the top picture, we use a vertical bar to represent the height of each
bin’s stack of marbles. In the bottom picture we look down on the top

of these stacks, and we’ve color-coded each stack to indicate its height.

Two-dimensional histograms are useful when we want to see how
two measured quantities interact with each other. In Figure 7.18, we
can easily see that students with high math scores also tend to have
high reading scores. This wouldn’t be obvious if we just looked at the
numbers, or graphed math or reading scores by themselves.

Number of Students

3 &

o
IS

Number of Students

0
0 10 20 30 40 50 60 70 80 90 100
Math

Figure 7.18: Two ways we might
represent the data in a two-dimensional
histogram.



7.5. Finding the Mean

Looking at the one-dimensional histogram in Figure 7.13 we can see
that the energies tend to cluster around approximately 35 MeV, but they
trail off to the left and right in a bell-shaped curve. If all of the particles
actually had the same energy, and all of their energy was deposited in
the detector, we might expect all of the numbers in energy.dat to be
exactly the same. In practice, though, our measurements will always
have some random variation no matter how careful we are. This is
partly because of imperfections in our instruments, but there may also
be physical limits to the precision of our measurements

[ <— Truth(?) |

Distribution of all
3 possible
measurements.

Reality

A

Parent Population

Data we observe. ——

Sample Population

If we made an infinite number of measurements, we might see that
they’re spread out like the middle graph in Figure 7.19. In reality, we
make a finite number of measurements that are just a small sample of
all of the possible measurements, like the right-hand graph. If we only
take a few measurements, it’s not too unlikely that all of them may
happen to lie on the left or right side of the true value. As we make
more measurements, our data will begin to look more and more like
the middle graph.3

Once we’ve taken enough measurements to approximate the middle
graph, what’s our best guess for the true value in the left-hand graph?
Some of our measurements are higher than the true value and some
are lower, but we expect that the true value lies somewhere between
the extremes, at some “average” value.
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Figure 7.19: We are always at two
removes from the “underlying truths”
that we're trying to measure.
Statisticians call the right-hand graph the

“sample population”, and the middle

graph the “parent population”, from
which the sample is drawn at random.

3 In statistics, this is called “The Law of
Large Numbers”.
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In everyday speech, we use the word “average” to mean “typical”. The
“average guy” is a typical person. How do we measure this, though?
How can we objectively decide what's “typical”?

In science, we often use a quantity called the “arithmetic mean” (often
just called the “mean”) to represent what’s “average” or “typical”.
You've probably used this before. The mean of a set of values is the
sum of all the values, divided by the number of values. Mathematically,
we could write it like this:

(7.1)

>
[
Z|=
L=
25

where N is the number of values, X; are the values themselves, and X
is the mean.

If we slice a cake into several pieces, the mean size of a piece is the sum
of the size of all the pieces (which is just the total size of the cake),
divided by the number of pieces. The mean is the size that each piece

would have if the cake were sliced up into perfectly equal parts.

We often assume that the mean value of our measurements is the best
guess at the true, underlying value that we're trying to measure. If
we make enough measurements, we expect that the mean value will
approximate the mean value of all possible measurements, and we
expect that the mean of all possible measurements will approximate
the true, underlying value, which may never be directly accessible to
us.

Program 7.3 reads the energy values from energy.dat and finds their
arithmetic mean. In the program, the variable named sum is intially
set equal to zero. Each time a new number is read, it’s added to sum.
After reading all of the numbers, the program calculates the mean by
dividing the sum by the number of energy values.

Figure 7.20: The Tempting Cake, by
Albert Rosenboom

Source: Wikimedia Commons

Figure 7.21: On the left, an unfairly
sliced cake. On the right, a cake sliced
into equal pieces. The size of each
right-hand slice is equal to the mean size
of the left-hand slices.


https://commons.wikimedia.org/wiki/File:Albert_Roosenboom_The_tempting_cake.jpg

Program 7.3: mean.cpp

#include <stdio.h>
int main () {
double energy;
double sum = 0.0;
int nvalues = 0;
double mean;
FILE *input;

input = fopen("energy.dat","r");
while ( fscanf( input, "%$1f", &energy ) != EOF ) {

sum += energy;
nvalues++;

mean = sum/nvalues;

printf ("Number of values is: %d\n", nvalues );
printf ("Mean value is: %$1f\n", mean );

fclose (input);

We could also modify our histogram program (Program 7.1) so that it
tells us the mean energy. Program 7.4 is a new version of hist.cpp
that adds up the energy values as they’re read, and prints out the mean
when it’s done. Again, we put a # on the front, so gnuplot will ignore
this line.

Notice that we want to include all of the energy values, even the
underflows and overflows. We want the arithmetic mean of all values.

Exercise 37: You Big Meanie!

Modify your earlier hist . cpp program so that it looks like
Program 7.4. Compile and run it. Does the value given by
the program look consistent with what you saw when you
plotted a histogram of the data (Figure 7.13)?
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Figure 7.22: In the 1968 Beatles movie
The Yellow Submarine, the Blue Meanies
hated music.

Source: unigami, at Deviant Art


http://unigami.deviantart.com/art/Chief-Blue-Meanie-from-Yellow-Submarine-280821413
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Program 7.4: hist.cpp, Version 2

#include <stdio.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
double sum = 0.0;
int nvalues = 0;
const int nbins = 50;

int bin[nbins];
FILE xinput;

binwidth = (xmax—-xmin)/nbins;
for ( 1i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "energy.dat", "r" );
while ( fscanf( input, "$1f", &x ) !=

EOF ) {

sum += x; 4/—{ Add each value to the sum. I
nvalues++;4—_‘___% Countﬂuenunﬁmrofvahms.l

binno
if |

binno < 0

(x—xmin) /binwidth;
| | binno >= nbins ) {

overunderflow++;

continue;

}

bin[binno]++;

}

fclose (input) ;

for (
xlow
xmid
xhi
print
}
printf
printf
printf
printf
printf
printf
printf

f

i=0;

i<nbins; i++ ) {
xmin + binwidth»*i;
xmin + binwidth=* (0.5+1);

xmin + binwidth=* (i+1);

// Skip this value and Jjump to the next.

// Increment the appropriate bin.

This version of the program prints the
average energy value. Changes from
Program 7.1 are shown in bold.

("$1f %1f %$1f %d\n", xlow, xmid, xhi, bin[il);
# Xmin = %$1f\n", =xmin);

# Xmax = %$1f\n", =xmax);

# Binwidth = %$1f\n", binwidth);

# Nbins = %d\n", nbins);

# Saw %d over/underflows\n", overunderflow);

# Mean value is %1f\n", sum/nvalues );

# Nvalues = %d\n", nvalues );




7.6. Standard Deviation

Figure 7.13 shows that the energy values in energy.dat tend to bunch
up in one spot, forming a peak. If you were describing this shape to
someone, you could start by telling them that “the mean energy value is
35 MeV”. This says where the peak is, but it doesn’t tell them anything
about how wide it is. How can we measure the width of a peak like
this?

If the peak is wide, we might expect that a lot of data points would
be far from the mean value. In the terms used in Equation 7.1, we
might think about going through all of the points and adding up the
values of X; — X. Unfortunately, we’d find that this sum is always zero,
since some points are to the left of the mean and some to the right. It’s
possible to prove mathematically that the sum of all of these positive
and negative distances will always add up to zero.

What we really want is just the distance from the mean, without worry-
ing about whether it’s positive or negative. Since the square of a real
number is always positive, we might think about adding up the squares
of the X; — X values. Statisticians define a quantity called the “sample
variance” that does just this. It’s defined this way*:

N J—
=7 2 (X —X)? (7:2)

where s? is the variance. For the example we’ve been working on, the
units of the variance would be MeV? (energy squared). The square root
of the variance is called the “standard deviation”.> In our example, this
has units of MeV, and it can be used to describe the width of the peak
in Figure 7.13. The standard deviation tells us the “typical” distance
between a data point and the mean value.

Figure 7.24 shows some data along with its arithmetic mean (X) and
standard deviation (s). The data we observe is just a sample of all
the possible values we might see if we did an infinite number of
measurements. Our data is called the “sample” and the collection of
all possible values is called the “parent”. Underneath it all, like the
elephant inside the boa, is the true value that we're trying to estimate.

There’s a practical problem with using Equation 7.2 in a computer
program, though. Since it uses X (the mean value of the energy), we’d
have to first loop through all of the energy values to calculate their
mean, and then loop through them all again to calculate the variance.
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Figure 7.23: A comparison of
histograms made from two samples,
one with a small standard deviation
and one with a large standard deviation.
Both samples have the same mean value
and contain the same number of data
points.

Source: Wikimedia Commons

+Why do we divide by N — 1 instead
of N? A simple explanation is that the
variance is undefined if you have only
one data point.

5 This is another term that was intro-
duced in the 189os by Karl Pearson.


https://commons.wikimedia.org/wiki/File:Comparison_standard_deviations.svg
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Sample
Distribution

Parent
Distribution

Fortunately, clever mathematicians have provided us with a shortcut to
make things easier. It turns out that Equation 7.2 can be rewritten like
this:

2 1T [ 1.0
=N ;Xi _N(;Xz’) (7.3)

The right-hand sum in Equation 7.3 is the same one we're already using
in Program 7.4. To find the variance we also need the left-hand sum,
which is the sum of the squares of the values. Our program just needs
to do one loop, and keep two sums: the sum of the values and the sum
of their squares.

That’s what Program 7.5 does with our energy.dat data. The pro-
gram includes math.h at the top, since it uses the sqrt and pow
functions. We’ve also added a new variable sum?2 to store the sum of
the squares, from Equation 7.3. At the end of the program, we calculate
the standard deviation and print it out.

Figure 7.24: Sample distribution, parent
distribution (the set of all possible
measurements), and true value. X is the
mean of the sample, and s is its standard
deviation.
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Program 7.5: stddev.cpp

#include <stdio.h>
#include <math.h>

int main () {
double energy; This program is an improved version
double mean; of mean. cpp (Program 7.3) that prints

out the standard deviation of the energy
values. Changes from Program 7.3 are

double stddev;

double sum = 0.0; shown in bold.
double sum2 = 0.0;
int nvalues = 0;

FILE xinput;

input = fopen("energy.dat","r");
while ( fscanf( input, "%$1f", &energy ) != EOF ) {

sum += energy;
sum2 += pow( energy, 2 );
nvalues++;

mean = sum/nvalues;

stddev = sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) );
printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %1f\n", mean );

printf ("Std. Dev is: %$1f\n", stddev );

fclose (input);

We can apply the same technique to our ever-improving hist.cpp
program, giving it the ability to print out the standard deviation as well
as the mean value. That’s what we do in Program 7.6.

Exercise 38: Finding the Standard Devi-
ation

Create, compile, and run Program 7.6, a new version of
hist.cpp that now prints the standard deviation. How
large is this value in comparison with the width of the peak
in Figure 7.137
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Program 7.6: hist.cpp, Version 3

#include

#include

int main
int i,
double
double
double
double
double
int nva
const 1
int bin
FILE *1

binwidt

for ( 1
bin[i

}

input
while (

sum +
sum2
nvalu

binno
if |
ove
con
}
bin[b
}

fclose (

for ( 1

xlow =

xmid

xhi

print
}
printf
printf
printf
printf
printf
printf
printf

printf

<stdio.h>

<math.h><*‘ Needed for sqrt and pow. I

() |
binno, overunderflow = 0;

x, xlow, xmid, xhi, binwidth;
xmin 0.0;

xmax 50.0;

sum 0.0;

sum2 0.0;

lues 0;
nt nbins
[nbins];
nput;

50;

h

(xmax—xmin) /nbins;

i<nbins; i++ ) {

0;

] =

"r" );
&x )

fopen (
fscanf ( input,

"energy.dat",
ll%lf",

= X;

// Reset all bins to zero.

'= EOF ) |

This is an updated version Program 7.4.
Changes from Program 7.4 are shown
in bold.

+= pow( x,

2) ;4\{ Add square of each value to sum2.

es++;
= (x-xmin) /binwidth;
binno < 0 ||
runderflow++;
tinue;

inno] ++;
input) ;

=0; i<nbins; i++ ) {
xmin + binwidth=*i;
= xmin + binwidth=* (0.5+1);
xmin + binwidth=* (i+1);
("%$1f %$1f %$1f %d\n",

f xlow,

$1f\n",
$1f\n",
Binwidth $1f\n",
Nbins $d\n", nbins);

Saw %d over/underflows\n",
Mean value is %1f\n",
std. dev. is %1f\n",

xmin) ;
xmax) ;

Xmin
Xmax

binno >= nbins ) {

xmid,

sum/nvalues

// Skip this value and jump to the next.

// Increment the appropriate bin.

xhi,

binwidth) ;

overunderflow) ;

)i

bin[i]);

sgrt ( (sum2 - sumxsum/nvalues)/(nvalues-1) ) );

nvalues

("# Nvalues = %d\n", ) ;




7.7. The “Normal” or “Gaussian” Distribution

The peak in Figure 7.13 is a bell-shaped curve. Curves like this occur
very frequently in data. In fact, they occur so frequently that this
shape is called the “Normal Curve”. The German mathematician Carl
Friedrich Gauss (1777-1855) was perhaps the first to appreciate the
significance of it, so it’s sometimes called a “Gaussian Curve”.

The ubiquity of this curve was a source of amazement to early statisti-
cians, who saw it popping up everywhere: astronomical data, actuarial
tables, agricultural data.

Why does this curve appear so often? Because of the “Central Limit
Theorem”, which says that any linear sum of random variables tends
toward a Normal distribution, no matter what the distribution of the
individual variables looks like.®

The Central Limit Theorem is so important that it’s called the “second
fundamental theorem of probability”. (The first is the Law of Large
Numbers.)

The Normal curve can be expressed mathematically by the following
equation:

(x—%)?

P(X) — Ae_ 252 (7.4)

The curve reaches its maximum at %, the mean value of x. The curve’s
width is controlled by s, the standard deviation. The height of the curve
at its maximum is A.

If we look at data that’s bunched together in a Normal distribution, the
standard deviation of the data gives us some quantitative information
about the way the data is distributed. We know, for example, that about
68% of Normally-distributed data lies within one standard deviation
away from the mean value. (See Figure 7.28.)

If Program 7.6 tells us that the standard deviation of our energy data
is 2.5 MeV and the mean is 35 MeV, that implies that 68% of our
energy values fall between 32.5 MeV and 37.5 MeV. If we were telling
someone about our measurements, we might say that the energy value
we observed was 35 + 2.5 MeV.
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Figure 7.25: Gauss is pictured on this
German banknote. If you look closely
you'll see a small picture of the Normal
curve at the left.

Source: Wikimedia Commons

¢ Note that this means you can construct
a pretty good Normal distribution just
by adding together sufficiently many
numbers pulled from any random
distribution. For example, roll six dice
and add their numbers together. Keep
doing this and recording the sum each
time. A histogram of the sums will look
very similar to the Normal distribution.

-10 -5 0 5 10

Figure 7.26: Three Normal curves with
standard deviations of 3 (the widest), 2
and 1.

B
Standard Deviation

Figure 7.27: The standard deviation of a
Normal curve is the horizontal distance
from the midline to one of the points
where the curvature changes from
positive to negative.


https://commons.wikimedia.org/wiki/File:10_DM_Serie4_Vorderseite.jpg
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We also know that about 95% of the data lie within 2 standard deviations
from the mean, and about 99.7% of the data are within 3 standard
deviations.

A

68% of Data
are within = s
from the mean

99.7% of Data

are within + 3s
from the mean

95% of Data

are within = 2s
from the mean

rd

X-S X X+s

Figure 7.28: If data are distributed
If you look at a Normal curve, you can find its standard deviation by Normally, 68% of the values fall within
one standard deviation from the mean.

i ) . 95% of values are within two standard
up) to negative (concave down). Mathematically, these points (called deviations, and 99.7% are within three

locating the places where the curvature changes from positive (concave

“points of inflection”) are where the 2" derivative of the function is standard deviations.
zero. The standard deviation is the horizontal distance from the mean
to either of these two points. (See Figure 7.27.)

Exercise 39: It's Only Fitting

We’ve seen that gnuplot can plot data, but it can also plot
functions. Several functions, like sin(x), cos(x), and exp(x)
are built into gnuplot, but you can also define your own
functions. Try starting up gnuplot and typing the following:

p(x) = axexp(-0.5% (x—m) *x*2/s5**2)
s=2.5

m=35

a=10000

plot "hist.dat" with impulses, p(x)

The first line defines a new function p (x) that’s just the



Normal curve given in Equation 7.4 above. The next three
lines set the parameters: s is the standard deviation, m is the
mean (X), and a is the height of the peak.

The last line plots your histogram data from the file hist .dat
and overlays a Normal curve on top of it. You can see that
the shapes are similar, but the curve doesn’t exactly match
the data.

We could try adjusting the values of s, m, and a by hand
to make the curve fit better, but gnuplot can do this for us
automatically.

Type the following gnuplot commands:

fit p(x) "hist.dat" via s,m,a
replot

The first command tells gnuplot to adjust the parameters s,
m, and a to make p (x) match the data in hist .dat. When
it’s done, it prints out a lot of information including the
new values of the parameters. The second command tells
gnuplot to re-do our last graph, which will now draw p (x)
using the new parameters. Does it fit better now?

But what about...?

In the data we’ve been looking at, each data point is some distance,
d (positive or negative) from the mean value. The sample standard
deviation, s, tells us how far a “typical” data point strays from
the mean, but there are other ways we could choose to quantify
a “typical” deviation. For example, we could look at the average
absolute value of d.

The standard deviation has some nice properties, though. In par-
ticular, it has a natural relationship to the Normal distribution. As
we saw above, 2s is the distance between the “points of inflection”
(the places where the curvature goes from positive to negative) of

the Normal distribution.

More importantly, statisticians tell us that the sample standard
deviation is usually the best estimate of the standard deviation
of the infinitely many data points we could possibly collect (the
“parent population”).
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Figure 7.29
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: A Normal curve

superimposed on our hist.dat data.
The top graph shows a curve that
doesn’t quite match. The bottom graph
shows the curve after we’ve asked
gnuplot to adjust the parameters for the

best fit.
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7.8. Exploring The Central Limit Theorem

In Chapter 2 we learned how to simulate rolling dice. For example,
Program 2.4 generates a random number between 1 and 6, just like
rolling a 6-sided die. Program 7.7, below, is an updated version that
rolls a 6-sided die 1,000 times. If we used gnuplot to plot this program'’s
output, we would see something like Figure 7.30.

Notice that we see about the same number of rolls landing on each
number, which is what we’d expect from a fair die (or a good random-
number generator!). If we made a histogram of the values obtained
from rolling a single 6-sided die, it might look like Figure 7.31. As you
can see, each value has an equal probability of turning up.

Program 7.7: singledie.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {

int roll;

int min = 1;

int max = 6;

int nvals;

int 1i;
double x;
nvals = max - min + 1;

srand (time (NULL) ) ;

for ( roll=0; roll<1l000; roll++ ) {*=*
rand()/ (1.0 + RAND_ MAX);

min + (int) (nvals*x );
printf( "%d\n", i );

X

i

Some dice games require you to roll two or more dice at once, and add
up their numbers. Let’s modify Program 7.7 so that it rolls twelve dice
at once, instead of just rolling one die. We'll need to add an extra loop
and a couple of variables to do that. The result is Program 7.8.

6 T o e e
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Figure 7.30: The output of
singledie.cpp plotted using the
gnuplot command plot
"singledie.dat"
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Figure 7.31: A histogram of the values
obtained by rolling a single 6-sided die
1,000 times.




Program 7.8: multidice.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main

0 A

int roll, die;

int min

int max

= 1;
= 6;

int nvals;

int 1, sum;
double x;

nvals =

max — min + 1;

srand (time (NULL) ) ;

for ( roll=0; roll<1000; roll++

sum =
for (
x =
=
sum

}

0;

die=0; die<l1l2; die++ ) {
rand()/ (1.0 + RAND_MAX) ;
min + (int) (nvals*x );

+= i;

printf ( "%d\n", sum );

If we plotted the output of Program 7.8 we’d see something like the
upper graph in Figure 7.32. Notice that now the values aren’t spread
evenly any more. When we roll twelve dice and add them up, their sum
is most likely to be somewhere around 42. This is even more apparent
in the bottom graph of Figure 7.32, where we’ve increased the number

of rolls to 10,000.

To get a better sense of the distrubution of the values, let’s make a
histogram of them. We can do that by combining Program 7.8 with
Program 7.2. The result is Program 7.9 below. (Notice that we’ve set
the number of dice rolls to 10,000 now.) If we ran this program and
plotted its output using the gnuplot command

plot "dicehist.dat" using 1:4 with impulses"

we’d see something like Figure 7.33.
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Figure 7.32: The upper figure shows the
output of Program 7.8 plotted using
gnuplot. The bottom figure shows what
it would look like if we increased the
number of rolls from 1,000 to 10,000.
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Figure 7.33: A histogram of our dice
roll sums, created by Program 7.9, using
the following gnuplot command:

plot "dicehist.dat" using 1:4
with impulses
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Program 7.9: dicehist.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main () {
int roll, die;
int min = 1;
int max = 6;

int nvals;

int i, sum;

double x;

const int nbins = 100;

int bin[nbins];

int binno, overunderflow = 0;
double xlow, xmid, xhi, binwidth;
double xmin = 0.0;

double xmax = 100.0;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.
}

nvals = max - min + 1;
srand (time (NULL) ) ;

for ( roll=0; roll<10000; roll++ ) {
sum = 0;

for ( die=0; die<l1l2; die++ ) {
x = rand()/ (1.0 + RAND_MAX) ;

i = min + (int) (nvals*x );

sum += 1i;

}

binno = (sum-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue; // Skip this value and jump to the next.
}

bin[binno]++; // Increment the appropriate bin.

}

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidthx*i;
xmid = xmin + binwidthx (0.5+i);
xhi = xmin + binwidth* (i+l1);
printf ("%$1f %1f %1f %d\n", xlow, xmid, xhi, bin[i]);
}
printf $1£f\n", xmin);
printf Xmax = %1f\n", xmax);

("# Xmin
("#

printf ("# Binwidth = %1f\n", binwidth);
("#
("#

printf Nbins = %d\n", nbins);
printf Saw %d over/underflows\n", overunderflow);




Figure 7.33 shows that a value of 42 appears almost 700 times when
we sum up our twelve dice. The farther away from 42 we get, the less
likely we are to see a given sum. The distribution of values looks like
a Gaussian or Normal distribution, as described in Section 7.7. As
we noted in that section, this effect is known as the “Central Limit
Theorem”. It tells us that the sum of several random variables tends to
take on a Normal distribution.

Even though the distribution of numbers we get from each die is flat, as
shown in Figures 7.30 and 7.31, the sum of these numbers approaches
a Normal distribution (see Figures 7.32 and 7.33).

The fact that our observed values are centered around 42 makes sense
too. Each 6-sided die gives a value between 1 and 6, so the average
value we should get from a single roll of a die is (14 6)/2 = 3.5. That
means that the average value for the sum of twelve dice should be
12x3.5 = 42.
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Figure 7.34: Beans bounce off of pegs as
they roll down a “Galton Board”. At the
bottom they fall into bins, like histogram
bins. The sum of all the random left and
right bounces experienced by the beans
results in an approximately Normal
distribution.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Galton_board.png
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7.9. Analyzing Multi-Column Data

Statistics began as a study of demographic data (numerical data about
populations), so let’s take a look at some “people data” before we finish.
The US constitution mandates that a census be taken every ten years,
and the task of collecting and analyzing data falls on the US Census
Bureau.

Census takers collect a lot of data for each household they visit. They
might record the number of children, the number of bedrooms in the
house, the amount paid monthly in rent, and so forth. We might store
the data for each household in a row, with a column for each quantity
that was recorded. The result would look something like this:

0 1 3 10700 2 2 0
0 1 4 7800 2 40 0
0 1 3 64200 2 130 0
0 1 3 -1 2400 210 0
0 0 1 -1 2 10 780
0 1 3 44600 2 90 1905

In the following sections, we’ll be constructing a program that can read
a data file from the US Census Bureau that contains information about
1,285,588 households. The file has seven columns of integers for each
household. Each column represents a different measurement:

Column Description

Number of related children in household
Lot size

Number of bedrooms

Family income

Annual fuel cost

Monthly gas cost

Monthly rent

coUw kW N R O

The file we’ve been analyzing, energy . dat, contains only one column
of data. Only one measurement (the amount of energy deposited) was
recorded for each particle that passed through the detector. The census
taker, on the other hand, takes several measurements for each family.
Let’s look at how we might modify our earlier programs to allow them
to read such multi-column data.

One way to do it would be to replace our single variable (energy, in
the earlier programs) with an array. The number of elements in the
array will need to match the number of columns in the data file.

Figure 7.35: The US Census Bureau is
charged with conducting a decennial
census.

Source: Wikimedia Commons

Figure 7.36: Taking the census could be
a dangerous job. Consider the plight of
a census taker asked to survey these
denizen’s of an 1890 New York
“Bandit’s Roost”. This picture was taken
by Jacob Riis, who prowled New York’s
tenements accompanied by
then-Police-Commissioner Theodore
Roosevelt, documenting “How the
Other Half Lives” (the title of Riis’s
best-known book).

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Seal_of_the_United_States_Census_Bureau.svg
https://commons.wikimedia.org/wiki/File:Bandit's_Roost_by_Jacob_Riis.jpeg

Program 7.10 uses this strategy to analyze data from a seven-column
data file. In order to read each row, it loops through the seven elements
of the array data. The new variable £ield specifies which column of
the data we want to analyze, and the new program gives the variable
x the value of data[field]. (Program 7.10 sets field to o, but it
could be set to any value from o to 6.) The new program also changes
the name of the data file from energy.dat to census.dat.

Because Program 7.10 uses a “for” loop to read multiple items from
each line, we can no longer use a simple break when we reach the
end of the file, as we did when reading energy.dat. Remember from
Chapter 4 that the break statement only stops the loop it’s in. If we
used a break inside the “for” loop of Program 7.10 when we get to the
end of the file, the break would only stop the “for” loop. It wouldn't
stop the outer, enclosing “while” loop, so the program would keep
trying (and failing) to read lines forever.

There are several ways we could handle this. One of them is to use C’s
“goto” statement. A goto statement jumps immediately to another
location in your program. You might think that this could be a highly
dangerous thing to do, and you’d be right. There’s a superstition
among programmers that says goto should never be used, but experts
agree” that goto is sometimes the best solution in one specific case:
when your program needs to break out of nested loops like the ones
we have in Program 7.10.

Notice the line in Program 7.10 that just says “done: ;7. This is called
a “label”. A label can be any word, followed by a colon®, on a line by
itself. Labels don’t do anything. They just mark a spot in your program.
Think of them as bookmarks. When we say goto done; we're telling
the program to jump to the label named “done”. When Program 7.10
gets to the end of the file it’s reading, the goto statement jumps out of
the nested loops and continues below the done:; label.

Used in this way, goto statements can be a safe and efficient way to
break out of nested loops. If you think of goto as a kind of “super-
break” it’s quite unlikely that you'll be eaten by a velociraptor?... but
remain vigilant.
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7 See the “exception” under
ES.76 in the CPP Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines.

8 Notice that this is a colon, not a
semicolon. In the examples in this
book we'll also put a semicolon after
the label, just as we do with other C
statements.

9 See https:/ /xkcd.com/292.

Figure 7.37: Skull of Velociraptor
mongoliensis.

Source: Wikimedia Commons


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-goto
https://xkcd.com/292/
https://commons.wikimedia.org/wiki/File:Velociraptor_mongoliensis_type_skull_and_jaws.jpg

Read
lines
from file
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Program 7.10: census.cpp

#include <stdio.h>

#include <math.h>

int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;

const int nbins = 50;

int bin[nbins];

double sum 0.0;

double sum2 = 0.0;

int nvalues 0;

FILE *input;

int field=0; // Select column 0 from data.
double data[7]; // Add "data" array.

binwidth = (xmax—-xmin)/nbins;
for ( 1=0; i<nbins; 1i++ ) {
bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "census.dat", "r" );
[ while (1) {
G for ( i=0; i<7; i++ ) {
Tet7 if ( fscanf( input, "%1f", &data[i] ) ==
[tems goto done;
from }
each line }
x = data[field]; // Choose which column.

sum += X;

A sum2 += pow( x, 2 );
nvalues++;
binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue;
}
bin[binno] ++;
L }
done:;

fclose (input) ;

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth=*i;

xmid = xmin + binwidth=* (0.5+1);

xhi = xmin + binwidth= (i+1);

printf ("$1f %1f $1f %d\n", xlow, xmid, xhi, bin[il]);
}
printf ("# Field number %d\n", field);
printf ("# Xmin = $1f\n", xmin);
printf ("# Xmax = %$1f\n", xmax);
printf ("# Binwidth = %1f\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %$1f\n", sum/nvalues );
printf ("# Std. dev. is %1f\n",

sqgrt ( (sum2 - sumxsum/nvalues)/ (nvalues-1) ) );

printf ("# Nvalues = %d\n", nvalues );

EOF ) {

Jump out of nested
for and while
loops when we reach
the end of the file




7.10. Filtering Data

Census takers can’t always collect all measurements from every house-
hold. Sometimes a measurement just doesn’t apply. What’s the monthly
rent on a house that’s not being rented? What’s the annual household
income for an unoccupied house? Our data sets will sometimes contain
special values that indicate “Not Applicable”. We might not want to
include these values in our averages, or show them on our histograms.
We could think of this a “filtering” our data.

In the census data we’re going to look at, these special values are
indicated by zeros or negative numbers. By making a couple of changes,
we can cause our program to ignore such values. First, we want to look
for special values whenever we read a line from our data file. When we
find one, we want to skip that line and just go on to the next. We can
accomplish this by adding the following section before the “sum +="
in Program 7.10:

if ((x <=0 ) {

continue; // Ignore zeros and negatives.

We’ll probably want to know how many values were ignored (or, equiv-
alently, how many weren’t). It would be a good idea to add a line like
the following at the end of the program, along with the other numbers
we print out:

printf ("# Saw %d data values\n", nvalues);

The variable nvalues tells us how many data points we really ana-
lyzed, not counting those we filtered out.

We can modify our data analysis program to filter our data any way
we like. We might even look at the other columns on each line when
deciding whether or not to use the data on that line. For example,
maybe we’re interested in the number of children per household, but
only want to look at families paying more than $500 per month in rent.

7.11. Setting Analysis Parameters

Program 7.10 explicitly chooses a particular column to analyze by
setting the field variable. It would be nice if the program asked
us which column we wanted to use. We can easily add a section
somewhere before our while loop to do this:

printf ( "Pick a column [0-6]: " );
scanf ( "%d", &field );
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35364z

Figure 7.38: The planck spacecraft
examined the microwave radition
leftover from the Big Bang. The figure
above shows analyses of planck’s data
with several different filters applied.

Source: Planck Mission, European Space Agency


http://www.cosmos.esa.int/web/planck/picture-gallery
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If we pick a different column, we might also want to use a different bin
width. (This is the width of the bins into which we drop our “virtual
marbles” while making a histogram.) A bin width of 1 is fine if we're
looking at the number of children per household, but we might want
a width of 10,000 if we're looking at annual household income. An
income difference of $1 isn’t very interesting, but $10,000 would be. We
could add another section to our program for setting the bin width:

printf ( "Enter bin width: " );
scanf ( "%$1f", &binwidth );

If we specify binwidth, we can calculate the value of xmax (the maxi-
mum value we're interested in) like this:

xmax = binwidth*nbins + xmin;

Let’s leave the lower end of our range (xmin) at zero, since the data in
each colum of our data set includes some small values.

We could add any number of similar sections to the beginning of a data
analysis program, to allow us to set any parameters we need. Maybe
we want to analyze only data for households with annual incomes
in a given range (say, between $20,000 and $30,000). In that case, the
program could ask for minincome and maxincome, and use those

variables when filtering the data.

Figure 7.39: Some members of the
author’s family, circa 1939.
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7.12. Using stderr

If our program asks the user for parameters, we introduce another
complication: some of the program’s output (the request to “Enter
bin width”, for example) needs to go to the computer’s display, so
the user can see it, but other output (the histogram data) needs to
be written into a file so we can plot it with gnuplot. If we just type
./census > output.dat then the user won't see the requests for
entering parameters, and the program will just sit forever waiting for
them.

There are several ways to solve this problem. For one, we could use
fprintf to write the histogram into a file instead of sending it to the
display, as we saw in Chapter 5.

Let’s look at another way of doing it, though. As we saw in Chapter 5,
we can open a file with fopen like this:

FILE *output;
output = fopen ("output.dat","w");

The variable output is a “file handle” that we can use later with
fprintf. We can open as many files as we want, and choose which
file handle to use when we want to print something into one of them.

It turns out that three file handles are automatically created whenever
you run your program. These are named stdout, stderr, and stdin.
The stdout file handle doesn’t point to a real file. Instead, it points to
your display. The printf statement uses this file handle whenever it
prints something. The statement printf ("Hi!"); is just equivalent
to fprintf (stdout, "Hi!") ;.

“

When you type a command like “. /census > output.dat” the
computer disconnects stdout from your display and connects it to
the file output.dat instead. This makes the output of any printf

statements go into the file instead of to your screen.

The stdin file handle points to your keyboard. The statement scanf ("%d",
&i); is the same as fscanf (stdin, "%$d", &i);.

The third predefined file handle, stderr, also points to your display,
but it’s intended to be used for errors and warnings. Imagine, for
example, that you've typed “./census > output.dat” but your
program crashes with a Segmentation Fault error. The error message
should be sent to your display, not to the file. Error messages like this
are sent to stderr, which is still connected to your display.
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stderr connected
to screen.

stderr
T

Jcensus > output.dat —

T -

o 0100101
1110010

“Connect stdout to stdout |
the file output.dat”

1100001

We can use stderr for our own purposes, too. We want our “Enter
bin width” message to go to the display even if we’ve redirected the
program’s output into a file. All we need to do is send those messages
to stderr instead of stdout. We can do that by modifying a couple

of print f statements:

fprintf ( stderr, "Pick a column [0-6]: " );
scanf ( "%d", &field );

fprintf ( stderr, "Enter bin width: " );
scanf ( "%$1f", &binwidth );

Instead of print £, we use fprint £ to send these messages to stderr.

But what about...?

Are there other ways we could split the program’s output between
display and file? Why yes, I'm glad you asked!

One way involves the third predefined file handle, stdin. This nor-
mally points to your keyboard, and it’s used by scanf whenever it
reads some input. However, just like stdout, you can disconnect
stdin from the keyboard and connect it to a file instead. If you
did that, you could cause your program to read stored answers
from a file, rather than having to type them in at the keyboard.
Figure 7.41 shows how to do this, using the “<” symbol on the
command line. If we did it this way, the program would expect to
find two numbers in the file input .dat: the column number we
want to analyze, and the bin width.

output.dat

Figure 7.40: The predefined file handles
stdout and stderr both start out
pointing at your display, but they can be
redirected elsewhere.



“Connect stdin to “Connect stdout to
the file input.dat.” the file output.dat.”

Jcensus < input.dat > output.dat
A stdout

| stdin

5 0100101 5 0100101
1110010 1110010
, 1100110 , 1100110
1101101 1101101
1100001 1100001

input.dat output.dat

7.13. Improved Analysis Program

Program 7.11 is an improved analysis program that incorporates all of
the improvements we’ve talked about in the preceding sections. When
we run the program it asks us which column (o through 6) we want to
analyze, then it asks us what bin width we want to use. The histogram
data is sent to the display, unless we redirect it to a file.

Figure 7.42 shows some results from the program. To plot the income
graph, for example, we did this:

./census > income.dat

and then answered the questions:

Pick a column [0-6]: 3
Enter bin width: 10000

The output file was graphed with gnuplot as with our earlier histograms.

Notice that the data here aren’t bunched into Normal distributions like
the energy data. In the energy case, we were making many measure-
ments of the same value (the energy of some kind of particle striking
our detector). The only variations in these measurements were due to
random factors.

The census data, on the other hand, is inherently different from one
household to another. The distribution of values could give us some real
information about people’s lives. Nonetheless, we can still calculate the
mean values of things like income, and calculate the standard deviation
of our data sample. The standard deviation still tells us something
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Figure 7.41: We could redirect both
stdout and stdin if we wanted to. The

“<” on the command line means “Read

input from this file”, just as the “>”
means “Write output to this file”. If the
program asks us some questions, we can
save our answers in the file input .dat.
The program will read them from there,
instead of waiting for us to type them.
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about the width of the distribution, as it did with the energy data, even
though the income distribution is far from Normally-distributed.

Exercise 4o0: Little Pink Houses

For this exercise you'll need a copy of the file census.dat.
You'll find instructions for obtaining it in Appendix C.3 on

page 544.

First, examine census.dat with gnuplot. Start gnuplot and
type the command:

plot "census.dat" using 4

ghuplot numbers columns starting with 1, so this should
display a graph of household income similar to Figure 7.43.
Note the bar of negative values representing special cases
that our analysis program will ignore.

Now exit from gnuplot and compile Program 7.11 (the new
census. cpp, on Page 236). Run the program like this:

20 2 w0 % 40 45w
# of Bedrooms
Figure 7.42: Some results from Program
7.11, plotted with gnuplot. Bin width was
set to 10,000 for the income graph, 100
for the rent graph, and 1 for the
bedrooms and children graphs.

1.40+06

126406

16406
800000
600000 |
400000

200000 f

Annual Income, in Dollars
-

200000 I
0

5000 10000 15000 20000 25000 30000 35000 40000 45000

Household #

Figure 7.43: The output of the gnuplot
command
plot "census.dat" using 4.



./census > income.dat

Select the income by choosing column number 3 (the pro-
gram starts numbering the columns with o). Use a bin width
of ten thousand.

Now start up gnuplot again and ask it to plot the results of
your analysis:

plot "income.dat" using 1:4 with boxes

By saying “using 1:4” we tell gnuplot to use column 1
(the smallest value in each bin) as the value on the x axis,
and column 4 (the number of “virtual marbles” in each bin)
as the y value. The graph shows us how many households
are in each income range.

If you have time, try plotting other columns from the census.dat

file and analyzing them.
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Figure 7.44: The income histogram
produced by our analysis program.
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Program 7.11: census.cpp, Version 2

#include <stdio.h>
#include <math.h>
int main () {
int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0;
double xmax;
const int nbins = 50;
int bin[nbins];
double sum = 0.0;
double sum2 = 0.0;
O .

int nvalues
FILE *input;
int field=0;
double datal[7]; // Add "data" array.

4

fprintf ( stderr, "Pick a column [0-6]: " );
scanf ( "%d", &field );

fprintf ( stderr, "Enter binwidth: " );
scanf ( "%1f", &binwidth );

xmax = binwidthxnbins + xmin; // Calculate xmax from xmin and binwidth.

for ( 1=0; i<nbins; 1i++ ) {
bin[i] = 0; // Reset all bins to zero.
}
input = fopen( "census.dat", "r" );
while ( 1 ) |
for ( i=0; 1i<7; i++ ) {
if ( fscanf( input, "%1f", &datali] ) == EOF ) {

goto done;

x = datal[field]; // Choose which column.
if ((x <= 0 ) {

continue; // Ignore zeros and negatives, since they're special.

sum += X;
sum2 += pow( x, 2 );
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nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {
overunderflow++;
continue; // Skip this value and Jjump to the next.
}
bin[binno]++; // Increment the appropriate bin.
}
done:;
fclose (input) ;

for ( 1i=0; i<nbins; i++ ) {
xlow = xmin + binwidth=*i;
xmid = xmin + binwidth=* (0.5+1);
xhi = xmin + binwidth* (i+1);

printf ("$1f $1f %1f %d\n", xlow, xmid, xhi, bin[i]);
}

printf ("# Field number %d\n", field);
printf ("# Xmin = %$1f\n", xmin);

printf ("# Xmax = %$1f\n", xmax);

printf ("# Binwidth = %1f\n", binwidth);

(
(
(
(
printf ("# Nbins = %d\n", nbins);
(
(
(

printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %$1f\n", sum/nvalues );
printf ("# Std. dev. is $1f\n",

sgrt ( (sum2 - sumxsum/nvalues)/ (nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

237
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7.14. Conclusion

In this chapter we’ve looked at some basic techniques for doing sta-
tistical analysis of data with computer programs. Histograms and
calculations of the mean and standard deviation are primary tools for
data analysis in the sciences.

The details can vary greatly, but the outline of most data analysis
programs will look much like Figure 7.45. We’ve discussed each of
these steps as we developed and improved our census analysis program.

Figure 7.45: The figure above shows an

o G et Param ete rS ;?é}gii\: n?.f a typical data analysis
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Practice Problems

1. Write a small program named listmean.cpp that finds the mean
value of a list of numbers. Start out with an array of numbers, like
this:

double x[10] = {0,1,2,3,4,5,6,7,8,9};

Use a “for” loop to go through the elements of the array, adding
them up. At the end of the program, print out the mean value of
these numbers.

2. The “mean” that we’ve talked about in this chapter is the “arithmetic
mean”. There are other kinds of mean value that we could calculate.
One of them is called the “geometric mean”. To find the geometric
mean of a set of numbers, multiply them together and take the n-th
root of their product, where n is how many numbers are in the set.
For example, if we have the numbers 4, 5, and 6, their geometric
mean would be:

V4x5x6 or, alternatively  (4x5x6)'/3

Write a program named geomean . cpp that calculates the geometric
mean of these nine numbers:

double x[9] = {1,2,3,4,5,6,7,8,9};
Hints:

* You can use the pow function to find the n-th root. For example,
the 4th root of 38 would be pow ( 38, 1.0/4 ). Note that it’s
important to say 1.0/4 instead of 1/4, because the latter would
tell the computer that you wanted to trim the decimal places off
of the result.

¢ When summing up a bunch of numbers we start with sum = 0.0
and add each number by saying sum += x. When multiplying a
bunch of numbers, you might start by saying product = 1.0,
then multiply by each number by saying product *= x.

3. Using Program 7.5 as a starting point, create a program called
stats.cpp that prompts the user to enter numbers, one at a time,
and then prints out the mean value and standard deviation of the
numbers entered.Make sure the program can accept numbers that
have decimal places.

You'll need to think about how the user can let the program know
that he/she is finished entering numbers. If you only allow positive
numbers, you could ask the user to enter “~1" to stop the program.
There’s a better way to do it, though. It turns out that you can mimic
an “EOF” by typing Ctrl-D (that is, holding down the Ctrl key while
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pressing the D key). When a program sees Ctrl-D when reading
from the keyboard, it’s the same as seeing an “End Of File” when
reading from a file. Use this trick in your program. Hint: You won't
need to open or close any files, and you can use scanf instead of
fscanf.

4. Imagine an inebriated person standing beside a lamppost. He wants
to get home, so he starts walking, but each time he takes a step it’s
in a different, random, direction. How far away from the lamppost

will he be, on average, after 100 steps? 25

This is a well-known problem in mathematics called “the drunkard’s
walk”. As you can see from Figure 7.46, the distance travelled by the
drunkard can vary a lot from one trial to the next. If he walked in
a straight line, he’d end up 100 steps away from the lamppost, but
most of these random paths leave him much closer.

Write a program named drunkard.cpp that simulates 1,000 of
these 100-step paths and prints out the average final distance from
the lamppost. (Measure all distances in “steps”, which we assume

to be of equal length.) Make sure you use srand (time (NULL)) to

choose a different “seed” for the random number generator each Figure 7.46: The paths of 20 drunken

time you run your program. people, each shown in a different color.
) The lamppost is at the origin. The
Here are a few hints to help you: distance units are “steps”, which we
assume to be of equal length. Each
* You'll need a pair of nested loops: An outer loop for each path, person has taken 100 steps.

and an inner one for each step.

¢ Keep track of the person’s position with a couple of variables,
xpos and ypos. Remember to set them both back to zero at the
beginning of each path.

¢ Every time the person takes a step, generate a random angle like
this:
angle = 2.0xM_PIxrand()/ (1.0+RAND_MAX) ;
then add cos (angle) to xpos and sin (angle) to ypos to get

the person’s new position.

¢ At the end of each path, calculate the final distance from the origin
like this:

distance = sqgrt( Xpos*xpos + ypoOsS*ypos );

and add that to a sum of all of the distances, for use later when
you compute the mean distance.

¢ To check your work: your program should find that the average
final distance is about 8.86 steps. This is 0.886 x the square root
of the number of steps.



This kind of random motion is common in nature, making the
drunkard’s walk an important problem in science. In physics, for
example, it describes the random motions of molecules in a gas, or
the motion of impurities jumping across a surface. In chemistry it
describes the shapes of polymers. In economics, random walks can
even explain some of the variation in stock prices.

. Modify Program 7.11 so that it asks the user for two new parameters:
maxincome and minincome (maximum and minimum income) as
described on Page 230. Use these in the filter section of the program
(the section where we currently check to see if x is less than or equal
to zero). Skip the current row of data if the following is true:

data[3] < minincome || data[3] > maxincome

. The following program tests how fast your computer can create files.

The program repeatedly opens a file ("jittertest.dat"), writes into it,
then closes it. As it’s doing this it keeps track of how long each
open/write/close cycle takes (in microseconds).

Program 7.12: jitter.cpp

#include <stdio.h>
#include <sys/time.h>
#include <math.h>
long epoch;
void startclock () {
struct timeval t;
gettimeofday (&t, NULL);
epoch = t.tv_sec » (int)le6 + t.tv_usec;
}
int microtime () {
struct timeval t;
gettimeofday (&t, NULL);

return( (int) (t.tv_sec * (int)le6 +
t.tv_usec - epoch) );
}
int main () {
int 1i;

int tstart, delay;
FILE *x output;

startclock () ;

for ( i=0; 1<1000; 1i++ ) {
tstart = microtime();
output = fopen( "Jjittertest.dat", "w" );
fprintf ( output, "Testing...\n" );
fclose ( output );
delay = microtime() - tstart;
printf ( "%d\n", delay );
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Figure 7.47: Photons generated in the
center of the sun follow a “drunkard’s

walk” path as they make their way to
the sun’s surface. This twisty path can
include trillions of steps and take as
much as a million years to complete.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Sun920607.jpg
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The top part of the program (everything above int main ()) is just
some magic that lets us measure time to microsecond accuracy. Some
of this will become clear in Chapters g9 and 12, but for now, don’t
worry about how it works.

The program’s “for” loop opens, writes, and closes a file 1,000
times. Before opening the file, the program saves the current time (in
microseconds) in the variable t start. After the file is closed, the
program looks at the new time and calculates how long it took to
open, write, and close the file. This time (again in microseconds) is
stored in the variable named delay and printed with printf.

Copy this program, compile it and run it. You should see a string
of mostly 3-digit numbers. Now modify the program so that it
calculates the mean and standard deviation of delay and prints
those values at the end of the program.

The mean value will tell you how long, on average, it takes your
computer to open a file, write a little text into it, and close the file.

20000

18000

16000

14000

12000

10000

8000

6000

1Lt
WL, i

S R 1|

0 100 200 300 400 500 600 700 800 900 1000
Trial Number

Open/Close Time (us)

Figure 7.48: If you graphed the
numbers from the jitter program,
they might look like this. As you can
see, sometimes an open/close takes a
lot longer than usual.
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Figure 7.49: If you made a histogram
from the numbers, it might look like
this. Note that most of the data are
clustered around 300 microseconds
here, but there are some measurements
that go all the way up to thousands of
microseconds. (This graph throws away
anything bigger than 2,000 ys.)



8. Character Strings

8.1. Introduction

Until now we’ve avoided reading or writing text in our programs, and
have worked exclusively with numbers. Even though we use a lot of
numbers in science and engineering, we still need to work with words
sometimes. Wouldn't it be convenient to have a header at the top of
each column of numbers in a data file, saying what that column means?
We might also want to use text for data values themselves, like “on”
or “of £” instead of zero or one, to make our data easier for humans
to read. Even if we have a glossary of numerical values and their
meanings, like “32 = Virginia, 33 = Maryland”, it’s handy to be able
to just look at the data in a file and see its meaning directly, without
having to go look up the meaning of each number.

Early writing systems used written symbols to represent the sounds of
speech. Learning to read requires that you learn a sort of glossary of
these symbols and their speech equivalents. Computers can only store
data in the form of binary numbers, so somewhere there’s going to
need to be a glossary that matches up text with numerical equivalents.

In this chapter we're going to see how computers store text, and how to
read, write and compare text in a C program. Although you might not
expect it, introducing text also introduces a lot of potential problems
for the programmer.

8.2. Character Variables

As we've seen, there are several different types of variables in C. We've
used “int” for integers and “double” for floating-point numbers.
Now we're going to introduce another type of variable: “char”. A
char variable can hold one character (letter, number, punctuation, etc.)

Figure 8.1: Some very early text: The
Epic of Gilgamesh, first written down
around 2,000 BCE. It tells the story of
King Gilgamesh and his friend Enkidu
and their epic journey to visit the wise
man Utnapishtim, who was a survivor
of the Deluge. New fragments of the
Epic were discovered in an Iraqi
museum in 2015.

Source: Wikimedia Commons
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Figure 8.2: The Phoenician alphabet.
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Here’s a C statement that defines a char variable named letter and
gives it the initial value " A’ :

char letter = 'A';

Notice that we use single-quotes (apostrophes) around the letter. This
tells the computer that A isn’t the name of a variable, it’s literally just
the letter A. Program 8.1 shows how you might use char variables.

Program 8.1: checkyn.cpp

#include <stdio.h>
int main () {

char answer;

printf ("Can you ride a bike? (y or n): " );
scanf ("%c¢", &answer);
if ( answer == 'y' ) {

printf ("Yay! Biking is fun.\n");
} else if ( answer == 'n' ) {

printf ("Awww. You should learn.\n");
} else {

printf ("Might ride a bike, but can't follow instructions.\n");

Along with the new variable type, we need a new type of placeholder
for our printf and scanf statement. Just as we use “$d” for int and

“%1f” for double, we use “$c” for char. When we say “%c” we mean
“insert a single character here”.

8.3. Character Strings

We can use an array of char elements to hold a chunk of text. We call
such an array a “character string” (see Figure 8.4). We'll use the terms

V7

“character array”, “character string”, and “string” interchangeably.

As we saw in Chapter 6, C lets us put numbers into an array when we
define it (although this is only practical for small arrays). For example,
we could define a small array of integers and print them out like this:

Figure 8.3: Three Men on Wheels (1900,
aka Three Men on the Bummel) by Jerome
K. Jerome is a sequel to Three Men in a
Boat (to Say Nothing of the Dog) (1889). It
follows Jerome, George, and Carl on a
bicycle trip through Germany.
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int array[5] = {1,2,3,4,5};
int ij;
for ( i=0; 1i<5; i++ ) {

printf ( "$d\n", arrayl[i] );

We could do something similar with an array of characters if we wanted

to:

char string([20] = {'t','h','1','s"," ',
'i','S',' ',|a|,' ',
ltl,!eV’lS',!t',l.'};

int 1i;

for ( i=0; 1i<20; i++ ) |
printf ( "%c", stringl[i] );

Since we’ve omitted the \n all of the characters will be printed on
the same line, and the output will say “this is a test.” That'sa
really tedious way to define a chunk of text and print it out. Fortunately,
C provides with a couple of shortcuts to make it easier.

First of all, there’s a special way of setting the inital value of character

strings. Instead of using curly brackets and a list of single-quoted
Figure 8.4: Think of a character string

characters, we can just enclose the text in double-quotes: as being like a string of letter beads.

char motto[10] = "Science!";

Second, there’s a special placeholder, “%$s”, for printing character
strings all at once, instead of one character at a time:

printf ( "%s\n", motto );

Notice that we don’t have to use all of the elements of a character array.
In the example above, the text “Science!” is only eight characters long,
but we’ve defined motto to have ten elements. In fact, if we don’t
plan on ever putting more text into a character string, we can ask the
compiler to figure out its length automatically, by just leaving the length
blank:

char motto[] = "Science!";



246 PRACTICAL COMPUTING FOR SCIENCE AND ENGINEERING

Of Course, we'll run into trouble if we try to stuff more characters
into a character array than it will hold. This would create the same
problems we saw in Chapter 6 with other kinds of arrays.

In the following we’re going to look at several tiny programs that
illustrate some of the problems you might run into when you use
character strings in your programs. In each case, we’ll show you the
“right” way to do it

8.4. How Strings Are Stored

Prior to the 1960s, the most widespread way of communicating data
electronically was morse code (see Figure 8.5). When a telegram was
sent, its text was encoded in morse code and transmitted through air
or a wire to its destination, where it was decoded back into text.

Morse code was fine for human telegraphers, but it was clumsy for
computers. In the 1960s the “American Standards Association” pub-
lished a new, more computer-friendly way of transmitting text. This
was called the American Standard Code for Information Interchange
(ASCII).

In ASCII, each character is represented by 8 bits of information (1
byte). When you store text in a file on disk, the text is stored as ASCII
characters. (Actually, other encodings like UTF-8 may be used these
days because they allow multi-national characters, but the principle is
the same. For simplicity, let’s just assume everything is ASCIL.)

8.5. The Length of Strings

Take a look at Figure 8.7, where we define a 10-element character array
called name and put the word “Fred” into it. If we wanted to print the
text stored in name we might write a C statement like this:
printf ( "%$s\n", name );

That looks straightforward enough, but it leads to a puzzle: The char-
acter array name has ten elements, but we're only using four of them.
How does the printf function know when it gets to the end of the

text? In fact, as we noted in Chapter 6, C doesn’t prevent us from

International Morse Code

1. The length of a dot is one unit.

2. A dash is three units

3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.
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Figure 8.5: Morse Code replaces letters
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with patterns of dots and dashes.

Source: Wikimedia Commons

American Standard Code for
Information Interchange (ASCII)

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100

00000000

HnNn X OWOoOZRHEXRNgHIOQOQHMEOOQWW

01010101
01010110
01010111
01011000
01011001
01011010

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001

...etc.

u NUL 144

Figure 8.6: ASCII code replaces letters
with zeros and ones.
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https://commons.wikimedia.org/wiki/File:International_Morse_Code.svg
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reading or writing past the end of an array. Shouldn’t we have to tell
printf how many characters are in our text, or at least tell it how many
elements are in the name array? With other types of array, we haven’t
been able to just say “print the array”, so why are we able to do so with
character arrays?

char name[10] = “Fred”;

name

|
10 bytes

Figure 8.7: The end of a string is
indicated by a special non-printable

. . . haracter, the “NUL” charact hich
The answer is that the end of the text in a character array is marked by sveaizgrizenteby o' th:r(z(e:eelgi;;rizcs 6)

a special ASCII character, the “NUL” character, which has the ASCII Its ASCII representation is “00000000”.
code 00000000. When we define a character string as in Figure 8.7 we

need to be sure to leave room for the longest text it will ever contain

plus one extra element to hold the trailing NUL character. d ay

01010100

Without the NUL character, print £ would just keep on printing bytes

until it happened to find a NUL somewhere in memory or caused the

01110101

program to crash, since it wouldn’t know where the character array

ended. In C programs, we represent the NUL character by \ 0.

01100101

01110011

Each character of a string is stored in memory as ones and zeros,

according to the ASCII code. Figure 8.8 shows an example of what you

01100100

might find in memory if your program contained the statement “char

O 0O n 0O S H

day[] = "Tuesday";”

01100001
Whenever you use nano to create a text file (one of the cpp files you've 1111 1
been writing, for example), the things you type are stored as ASCII- Y 0 00

encoded characters in a file on the computer’s disk. If you could see
the actual bits, and you understood ASCII, you could read the file’s \ O 0 0 O O O 0 O O

contents.
Figure 8.8: This is how the word

“Tuesday” would be represented as
ones and zeros in memory, stored in an
eight-element character array named
day.
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8.6. The strlen Function

Can we get our program to tell us the length of a character string? Sure
thing! We can use the strlen function for this. For example:

char name[20] = "Bryan";

int length;

length = strlen (name);

printf ( "This name is %d characters long.\n", length );

Some versions of the C compiler might give you an error message if you
try to use strlen directly as an argument to a function like print £
or in comparison with an integer in an “if” statement. That’s because
strlen doesn’t really return an int value. Instead of an int, strlen
uses a special data type named size_t.

If we tried to write a program containing a statement like this:

printf ( "This name is %d characters long.\n", strlen(name) );

the C compiler would complain that we’ve told printf to expect an
int (by using a %d), but strlen returns a size_t. The complaint would
look something like this:

)

program.cpp:6:62: warning: format '$d' expects argument of type 'int',
but argument 2 has type 'size_t {aka long unsigned int}' [-Wformat=]
printf ( "This name is %d characters long.\n", strlen (name) );

The cure for this is to either use a variable like 1ength, as we did in
the first example above, or to explicitly tell the C compiler to convert
strlen’s value into an int. We could do that like this:

printf ( "This name is %d characters long.\n", (int)strlen(name) );

We’ve talked about this kind of re-casting of values in Chapter 2 and
Chapter 3.



8.7. Comparing Strings

Imagine that we have two character strings, and we want to compare
them to see if they’re the same. We might try something like the
following:

Program 8.2: scomp.cpp (Why doesn’t this work?)

#include <stdio.h>

int main () {
char s[] = "Jjunk";
char t[] = "Jjunk";
if ( s == ) |
printf ("They match.\n");
} else {

printf ("They don't match.\n");

“_

Why doesn’t this work? Because “s” and “t” are arrays. Think about
it: if we had two int variables, x and y, we could compare their
values with “if (x==y)”. Similarly, if we had two arrays of int
elements , a[10] and b[10], we could compare two of their elements
with “if (a[l] == b[1])”. But what would we mean if we typed

“if (a==b)"?

It turns out that, in C, if you type just the name of an array, you get the

“w_r

memory address of the beginning of the array”. Since “s” and “t” in
the example above are two different arrays, each of which has its own

allocated section of memory, each of them will have a different address.

So, “if (s==t)” will never be true.

If you compile and run Program 8.2 you'll see that it always says “They
don’t match.” This is obviously not the right way to compare two
strings.

One way to solve the problem would be to write a “for” loop and
compare each character in the two strings, one by one. This would be
inconvenient though, especially if we had to do it often. Fortunately, C
provides us with a function that can compare strings for us. It’s called
“strcmp” (for “string compare”).

CHARACTER STRINGS
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If we have two character strings, s and t, and give them to strcmp
like this:

result = strcmp( s, t );

the value of the result will tell us whether the two strings are the same.
There are three possiblities:

result =0 The two strings are identical.
result >0 s is “greater” than t
result <o s is “less” than t

In this context “greater than” and “less than” refer to the dictonary
order of the two strings. If s would come before t in a dictionary,
strcmp says that s is less than t. According to st rcmp, “aardvark” is
less than “zebra”.

Program 8.3 shows the right way to compare two strings.

Program 8.3: scomp.cpp (Doing it the right way.)

#include <stdio.h>

#include <string.h>

int main () {
char s[] = "junk";
char t[] = "Jjunk";
if ( stremp( s, t ) == ) |

printf ("They match.\n");
} else {
printf ("They don't match.\n");

Notice that we need to add a new #include line before we can use
the st rcmp function.

Instead of saying “strcmp (s,t) == 0” in our “if” statement, we
could have saved some typing by saying “!strcmp (s, t)”. When we
say “if (CONDITION)”, the CONDITION is true if it has a non-zero
value, and false otherwise. Because st rcmp returns o if the strings are
equal, we need to use a ! (read “not”) to logically invert this into a true
value. You might read such an “if” statement as “if strcmp doesn’t
return a non-zero value...”.



Exercise 41: Comparing Strings

Create, compile, and run Program 8.3. Does it do the right
thing?

Try changing one of the strings, recompiling, and running
again. Does the program properly tell you that the two
strings are different now?

8.8. Reading Strings

We’ve used scanf and fscanf to read numbers. Now we’d like to
use these functions to read text. Can we do it?

There are some complications, and to understand them we’ll need to
know a little more about how scanf and fscanf work. Until now,
we’ve taken it on faith that we needed to put an ampersand (&) in front
of variable names when reading numbers with these functions. The rea-
son that’s true is because scanf and fscanf want the memory address
of a variable.? If I have a variable named height, then “sheight” will
be the address of the chunk of memory that the computer has assigned
to that variable.

As we saw in our bad string comparison example, the name of an array
is actually just the memory address of the beginning of the array. This
means we can leave off the “&” when we read a character array with
scanf.

There are still other complications, though, which we can illustrate with
Program 8.4. This program asks you to enter some text, and then just
tells you what you entered.

Program 8.4: sread.cpp (Not quite getting it right.)

#include <stdio.h>
int main () {
char string[10];
printf ("Enter some text: ");
scanf ( "%s", string );
printf( "You said %$s\n", string );

The program defines a character array named string, and then uses
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> We'll learn why this is so when we
study functions in Chapter 9.
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scanf with the %$s format specifier to read some text into this array.
Notice that the program omits the ampersand we’d use in scanf if we
were reading a number.

If you try giving this program a word like “Hello”, it seems to work
fine. In fact, any short, single word will work. But what if we give
it something longer, like “abcdefghijklmnopgrstuvwxyz”? Then
you’ll find that the program crashes with a “Segmentation Fault” error.
That’s because we’ve tried to go past the end of the string character
array, which only has room for ten characters. This is the same kind of
problem we had with numerical arrays in Chapter 6.

We can fix our program by just adding one letter: change “%s” to
“\%9s” in the scanf statement. This tells scanf to read no more than
nine characters. Why nine instead of ten? Because we need to leave room
for a NUL character at the end, to mark the end of the string. Now,
if we type “abcdefghijklmnoprstuvwxyz” the program will print
“abcdefghi” (just the first nine characters of the text we entered).

Program 8.5: sread.cpp (OK for some things.)

#include <stdio.h>
int main () {
char string[10];
printf ("Enter some text: ");
scanf ( "%9s", string );
printf( "You said %s\n", string );

Note that everything we’ve said about scanf applies to fscanf as
well.

Exercise 42: Safe String Reading

Create, compile and run Program 8.5. Try giving the pro-
gram some words without spaces, and then try giving it
sentences with spaces in them. Does it behave as expected?
What if you type a tab character instead of a space?

There’s still one problem left, though. Even the improved version of
the program has trouble when we enter text with spaces in it. If we
enter “this is a test”, the program says we typed “this”.

That happens because scanf stops reading text (3s) when it sees a



“white space” character (a space or a tab). This may not be what you
want your program to do. If you need to read strings containing spaces,
a better choice is “fgets”. The fgets function reads a specified
number of characters from a file. Even though we’re reading from the
keyboard, not a file, we can still use fgets.

Remember that we saw in Chapter 7 that three “files” are automatically
opened whenever we run a program: stdout, stderr, and stdin.
The first two usually point to your display, and the third (stdin)
usually points to your keyboard. We can use fgets in our program by
telling it to read from stdin. That’s what Program 8.6 does.

Program 8.6: sread.cpp (Better, but see next section...)

#include <stdio.h>

int main () {
char string[10];
printf ("Enter some text: ");
fgets( string, 10, stdin );

printf ("You said %$s\n",string);

The fgets function takes three arguments: The name of a character
string variable in which to store what we read, the size of that character
string, and a file handle pointing to an open file to read things from.
fgets will read, at most, one less than the size of the character string,
automatically leaving space for the trailing NUL character.

But what about...?

So why does “%s” stop at white spaces? It's so we can do things
like this:

char name[10];
int year;
printf ( "Enter your last name and birth year: ");

scanf ("$9s %d", name, &year);

or like this:

char firstname[10], lastname[10];
scanf ("%$9s %9s", firstname, lastname);

If scanf didn’t stop at white spaces, the first example would try to
stick things like "Wright 1961" into "name". It would never know

CHARACTER STRINGS
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when you were done typing the first word, and had started typing
something else.

If you want the things you enter to be broken up into words, scanf
is a good choice. If you want everything to be put into one variable,
fgets is the thing to use.

8.9. Line Endings

There’s still a potential problem with Program 8.6 though, and it’s a
subtle one. To illustrate it, let’s make a small change to the program
and try running it again. The new version is Program 8.7.

Program 8.7: sread.cpp (Watch what happens now...)

#include <stdio.h>
int main () {
char string[10];
printf ("Enter some text: ");
fgets( string, 10, stdin );
printf ("You said %s. You really did.\n",string);

If we ran Program 8.7 and entered the text hello, we’d see something
like the following;:

Enter some text: hello
You said hello

You really did.

What's going on here? Shouldn’t the program have written “You said
hello. You really did.”, all on one line? The difference is due to the fact
that fgets interprets the “enter” key as an ASCII “newline” character,
and it puts that newline into st ring just like the other characters you
typed. In some circumstances that might be OK, but we’ll often want
to get rid of the extra newline.

Dealing with line endings can be especially tricky if your program
reads text from a file. For historical reasons, each of the three most
popular operating systems (Windows, OS X, and Linux) uses a different
way of indicating the end of a line in an ASCII file. OS X, for example,
uses the ASCII “CR” (“Carriage Return”) character, which we can write
as “\r” in C programs. Linux, on the other hand, uses the ASCII “LF”



(“Line Feed”) character, which we can write as “\n”. Windows uses
both, putting “\r\n” at the end of each line.

To make our programs as portable as possible, it would be nice if they
could deal with any of these.

To eliminate such spurious characters we first have to find them. Let’s
start by looking at a handy C function for finding particular characters
in a string. Consider Program 8.8.

Program 8.8: findchar.cpp

#include <stdio.h>

#include <string.h>

int main () {
char welcome[] = "Testing, testing. Are you there?";
int 1i;
i = strcspn( welcome, ".,?" );
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printf ("The first punctuation is character number %d\n", 1i);

The strcspn function has a name that’s hard to remember3, but what
it does is simple. You give strcspn a string and a list of characters
you're interested in, then it steps through the string, one character at a
time, until it finds an interesting one. When it finds the first interesting
character it tells you its location.

Program 8.8 defines a character string named welcome. The program
uses st rcspn to find the location of the first punctuation character in
this string. Remember that a character string is just an array of char
variables, and that array indices begin with zero. If you start with
zero and count characters, you'll find that the “,” (the first punctuation
mark) is element number 7 of welcome, and that’s what Program 8.8

would tell you if you compiled and ran it.

In principle, we could use the strcspn to find \r and \n characters.

Once we've found them, we need to know how to get rid of them. That
turns out to be easy.

31t’s an abbreviation for “string com-
plementary span”, but that’s no more
memorable.
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Remember again that a character string is just an array of characters.
Once we know which array element holds a letter we want to change,
all we need to do is put a different character into that element.

Let’s get back to the most recent version of our sread program now
(Program 8.7). Take a look at Figure 8.9. At the top we see the contents
of string as Program 8.7 would see it right after the user types “hello”
and presses the enter key.

NUL marks the
end of the string.

string
hle 11 o\ o [N
0 1 2 3 4 5 6 7 8 9

string[0] = 'j'; |
T

string is a 10-element character array. The next-to-last character is
“newline”, which we represent in C programs as \n. Following the
newline is an ASCII NUL character, represented by \ 0, which marks
the end of the string, as described in Section 8.5 above.

If we wanted to change “hello” into “jello”, we could say:
string[O0] = '3"';

making the first letter (element number zero) of string a “j” instead
of an “h”, as shown at the bottom of Figure 8.9.

Now take a look at Figure 8.10. If we wanted to get rid of the newline
in string, we could replace character number 5. But what should
we replace it with? What if we put in another \0, as in the bottom
of Figure 8.10? Now the newline is gone, and the newly inserted \0
marks the new end of the string. (The second \0 is ignored.) We've
chopped the troublesome newline off the end of the string!

So, our two-part strategy for removing trailing \r and \n characters is
(1) use strcspn to locate them and (2) write an ASCII NUL character

Figure 8.9: Changing one character in a
string.
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Now the string
ends here!

in their place. Program 8.9 shows a final version of our sread program
that implements this strategy. As you can see, we only need to add two
lines to the program.

Exercise 43: Space, The Final Frontier

Now modify Program 8.5 so that it looks like Program 8.9.
Try it again with input that includes spaces or tabs. How
does it behave differently?

Program 8.9: sread.cpp (Now deals with spaces and line endings)

#include <stdio.h>

#include <string.h>

int main () {
char string[10];
printf ("Enter some text: ");
fgets(string, 10, stdin);
string[ strespn( string, "\r\n" ) ] = '\0’';
printf ("You said %s. You really did.\n",string);

If we ran Program 8.9 and typed “hello”, the result would look like
this, as the user would expect:

Enter some text: hello
You said hello. You really did.
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Figure 8.10: Replacing a newline with a
NUL.
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The strcspn function gives the location of the first \r or \n, then the
program puts a \0 at that spot. This would be safe even if the string
didn’t contain any \r or \n characters. In that case, strcspn returns
the location of the \ 0 that’s already at the end of the string, and the
program wouldn’t end up changing anything.

It’s generally a good idea to use strcspn in this way to trim off any
extra \r or \n characters. I recommend you do this whenever you use
fgets.

8.10. Assigning Values to Strings

Since strings are arrays, we also need to take care when assigning values
to them in our programs. Take a look at Program 8.10 for example. This
looks pretty straightforward. We have two character string variables, s
and t, and we want to set t equal to s, just like we’ve been doing with
numerical variables.

Program 8.10: sassign.cpp (This won’t work)

#include <stdio.h>

int main () {
char s[10] = "Testing";
char t[10];

t = s;
printf( "%s\n", t);

You'll find that g++ refuses to compile this program though. If you try,
you’ll probably see an error message like this:

sassign.cpp: In function 'int main() ':

sassign.cpp:6: error: invalid array assignment

Why does this happen? Remember that t and s are arrays, not single
values. The C compiler is telling you that it can’t figure out what you
want to do here.

What we’d like to do is make each element of the t array be the same
as the corresponding element of the s array. We could write a “for”
loop to go through all of the array elements and do that, but there’s an
easier way to do it with character arrays.

We can use the “spnrint£” function to “print” the value of one string
into another string. This is what we do in Program 8.11.

Note that in Program 8.9 we could
have done things in two explicit steps,
by defining an integer variable i and
saying:

i = strcspn( string, "\r\n" );
string[i] = '\0';

Either way is fine. Feel free to do it this
way if you find it easier to understand.



Program 8.11: sassign.cpp (The right way.)

#include <stdio.h>

int main () {
char s[10] = "Testing";
char t[10];

snprintf( t, 10, "%s", s);
printf( "%$s\n", t);

The snprintf function is like print £, but it takes two extra argu-
ments: the name of a string, and the number of characters. In Program
8.11 snprintf will write a maximum of ten characters into the char-
acter string named t. It’s important that snprintf lets us specify the
maximum number of characters, so we don’t write past the end of t.

We could also to things like this:

snprintf (t, 10, "Hello world!\n");

which would put the text "Hello world!" into t.

Internally, snprint £ just does the same thing as looping through all
of the characters in the arrays, one by one, and setting their values.

Exercise 44: For Internal Use Only

Create, compile and run Program 8.11. Try modifying the
program by replacing “Testing” with something longer that
includes spaces. (You may need to increase the size of the s
and t character arrays.) Recompile the program and make
sure it does what you expect.

8.11. Summary of Good String Usage

In the preceding sections we’ve gone through a bunch of best practices
for using character strings. Let’s summarize what we’ve learned:

Comparing Strings

We can’t compare strings the same way we compare numbers. If we
try to do so, we’ll always be misled into thinking that the strings are
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Figure 8.11: Unfortunately, String
Theory has nothing to do with character
strings, but this Calabi-Yau manifold is
too attractive to leave out.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:CalabiYau5.jpg
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different, even if they’re not. To do it right, use strcmp to compare
strings. (You'll need to add #include <string.h> to use strcmp.)
Remember that st rcmp returns zero if the strings are equal. Here’s a
usage example:

if ( strcmp( s, t ) == 0 ) {
printf( "They're the same!\n" );

Reading Strings from the User

C provides us with a special format placeholder, $s, for reading strings.
Since a character string is an array, we need to take care not to go past
the end of the array. There are two good ways to read strings: one for
when you want each “word” (separated by spaces) to go into its own
variable, and another for when you want everything the user types
(including spaces) to go into a single variable.

¢ If you want to split the input wherever there’s a space, use scanft.
Always specify the number of characters by putting a number be-
tween % and s. The number should be one less than the length
of the character string array, to leave room for a NUL character at
the end. Here’s a usage example, suitable for reading text into a
10-character-long string:

scanf ( "%9s", string );

¢ If you want to put all of the input, spaces and everything, into one
variable, use the fgets function. Be sure that the size you give
it matches the actual size of the character string variable. fgets
will automatically leave room for the trailing NUL character. Also,
use strcspn to trim off trailing newlines. Here’s a usage example
suitable for a 10-character long string:

fgets ( string, 10, stdin );
string[ strcspn( string, "\r\n" ) ]

Assigning Values to Strings

We can’t just assign values to character string variables the same way
we do with numerical variables. Instead, use snprintf to “print” text
into the variable. Here’s a usage example that would copy the contents
of the variable s into the 10-character-long variable t:

snprintf( t, 10, "%s", s);

I\Ol;



Writing past the end of a string array is a very common programming

bug. It often leads to crashes, and is responsible for many security flaws.

Sticking to the methods above will help you avoid these problems in
your programs.

8.12. Reading a Gradebook

Let’s look at a practical program that uses the string techniques we’ve
been talking about. In this example we’ll be reading students” names
and grades from a gradebook file and calculating grade averages.

Take a look a Program 8.12. It reads names and columns of grades from
a file like this:
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Fitzgerald

The first column is the student’s last name, and the other columns are
grades for each of six homework assignments.

Program 8.12 uses £scanf to read the students name and store it in
the 20-character-long string variable named lastname. To make sure
it doesn’t go past the end of lastname, the program tells £scanf to
use the format “%$19s”, limiting the number of characters to 19 at most,
and leaving at least one space to store the terminating NUL character
marking the end of the string.

This program uses a technique similar to the one used in our census
program in Chapter 7 for reading the multi-column data in the file
grades.dat. A “for” loop reads ngrades numbers from each line
of the file. Unlike the census program, we don’t read the numbers into
an array, since this program doesn’t care which number was in which
column. We only want to add them up, so we can calculate the mean.

The last line of Program 8.12 prints out each student’s name and mean
grade. Notice that we tell printf to print only the first two decimal
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Figure 8.12: Albert Gleizes, Composition
pour Jazz (1915)

Source: Wikimedia Commons


https://en.wikipedia.org/wiki/File:Albert_Gleizes,_1915,_Composition_pour_Jazz,_oil_on_cardboard,_73_x_73_cm,_Solomon_R._Guggenheim_Museum,_New_York_DSC00542.jpg
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Program 8.12: grades.cpp

#include <stdio.h>
int main () |
int ngrades=6;
char lastname[20];
double sum, grade;
int i;
FILE *gradebook;

gradebook = fopen("grades.dat","r");
while ( fscanf( gradebook, "%19s", lastname ) != EOF ) {
sum = 0.0;

Read Get all for ( i=0; i<ngrades; i++ ) {
e? gmmhs fscanf (gradebook, "$1f", &grade);
all lines |
) from sum += grade;
from file .
each line }
printf ( "%$s %.21f\n", lastname, sum/ngrades );

places of the numbers by using “%.21£”. As we saw in Chapter 3, a
format like “$n.m1£f” means “show m characters with n to the right
of the decimal place.” (We can omit the n if we just want to specify the
number of decimal places.)

If we ran Program 8.12 we’d see something like this:

Davis 9.52
Gillespie 8.80
Monk 9.40
Vaughan 9.48
Coltrane 9.20
Mingus 9.47
Parker 9.42
Holliday 9.27
Armstrong 8.78
Ellington 9.77
Fitzgerald 9.50

The program seems to be doing its job, but the output could be more
readable. It would be nice if things lined up in straight columns. If
we change the last print £ statement we could make things a little
prettier:
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printf ( "%20s %.21f\n", lastname, sum/ngrades );

We’ve changed %s into $20s. If we ran the modified program, the
result would look like this:

Davis 9.52
Gillespie 8.80
Monk 9.40
Vaughan 9.48
Coltrane 9.20
Mingus 9.47
Parker 9.42
Holliday 9.27
Armstrong 8.78
Ellington 9.77
Fitzgerald 9.50

What happened? When we say $20s we mean “make the output string
exactly 20 characters long, padding it on the front with spaces if there’s
not enough text to fill the full 20 characters.”

If we don't like this right-justified style, we can move the text over to
the left by changing $20s into $-20s:

Davis 9.52
Gillespie 8.80
Monk 9.40
Vaughan 9.48
Coltrane 9.20
Mingus 9.47
Parker 9.42
Holliday 9.27
Armstrong 8.78
Ellington 9.77
Fitzgerald 9.50

Exercise 45: Reading and Writing Text

Here’s a challenge for you. Write a program named classes.cpp
that asks the user how many classes he or she has on each

day of the week. After collecting the data, the program
should write the name of each weekday and the number of
classes on that day into a data file named classes.dat
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The program should have a loop that asks the user to enter
the name of the day of the week and the number of classes
on that day. If the user enters “quit” as the day, the loop
should stop.

The program should start out something like this:

#include <stdio.h>
#include <string.h>
int main () {
char day[10];
int classes;
FILE *output;
output = fopen( "classes.dat", "w" );

It would be a good idea to use two separate scanf state-
ments to read the day name and the number of classes,
instead of trying to read both with the same scanf. (Can
you think of a reason why this is so?)

Here are some hints:

* Remember that you don’t need a & in front of the variable
name when you read a character string with scanf (but
you do when you read a number).

* You can test to see if a day contains the text “quit” like
this:

if ( strcmp( day, "quit" ) == 0 )

* You can write things into a file using fprintf, like this:

fprintf ( output, "%s %d\n", day, classes

Compile and run your program. The file it creates (classes.dat)
should look like this:

Monday 4
Tuesday 2
Wednesday 3
Thursday 2
Friday 3
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This is similar to the data files we’ve graphed with gnuplot in
the past, except that one of the columns contains text. Start
up gnuplot and type the following to cause it to use the days
of the week as labels on the X axis:

set xrange [-1.5:5.5]
set yrange [0:6]
plot "classes.dat" using 2:xticlabels(l) with boxes

The first two commands set the range of the X and Y axes so

=)

that the data will fit nicely on the graph. The third command

)

tells gnuplot to plot the second column of the data, and use

IS

the first colum as the labels on the X axis. The result should

look something like Figure 8.13.

Number of Classes
~ ©

Sometimes you might want the X axis labels to be verti-

cal. You can do this by giving gnuplot the command “set .

. " ” . Monday Tuesday Wednesday Thursday ~ Friday
xtics rotate by 907, and then typing “replot”. Give Day of Week
it a try. What happens if you use -90 instead of 907 Figure 8.13: Your class schedule might

look something like this.

8.13. Reading Column Headers

It would be nice if the columns of our gradebook file had headers,
telling the name of each column’s assignment. Maybe something like
this:
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Figure 8.14: Adi Holzer, Satchmo (Louis
- c ¢ ) ] Armstrong) (2002)
In addition to the things our previous program did, this new program Source: Wikinmedia Commons

Program 8.13 on page 267 is designed to read this modified data file.

also calculates a class average for each assignment. To do this, it needs
to sum up the numbers in each column and divide the sum by the
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number of students. The sum for each column is stored in an element
of the new array named class_sum?. As the file is read, the students
are counted by the variable nstudents.

But what about the column headers? Just as we have a class sum for
each column, we have a header for each column, and we’d like to save
those headers in an array so we can print them out later. But remember
that a character string is already an array char variables, so we’re in
need of an array of arrays.

That’s what the variable named assignment is for. It's a six-element
array of 10-character strings. Once we’ve read the column headers into
it, we might imagine the array looking like Figure 8.15.

JHIW LT T
“'H W 2\0
“THW 3 \0
HW 4\0
- HW 5/\0
-~ HW 6/\0

Since the column headers are in the first line of the file, they’'re read
first. Program 8.13 uses a “for” loop to read the headers into elements
of the assigment array.

The program then proceeds more or less like Program 8.12, except that
the new program also keeps a running sum of each column, in the
class_sum array, and counts the number of students.

At the end, a new loop goes through all of the assignments, printing
out the column header and mean grade for each.

+Why do we use const when defining
ngrades here? Look back at page 172
in Chapter 6.

Figure 8.15: An array of character strings
holding the column headers from our
gradebook file.
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Program 8.13: grades.cpp, Now With Headers!

#include <stdio.h>
int main () {
const int ngrades=6;
char lastname[20];
double sum, grade;
int 1i;
double class_sum[ngrades];
char assignment [ngrades] [10];
int nstudents = 0;
FILE xgradebook;

gradebook = fopen("grades-with-headers.dat","z");

for ( i=0; i<ngrades; i++ ) {
fscanf ( gradebook, "%9s", assignment[i] );

class_sum[i] = 0.0;

}

while ( fscanf( gradebook, "%19s", lastname ) != EOF ) {
sum = 0.0;
for ( i=0; i<ngrades; i++ ) {

fscanf (gradebook, "$1f", &grade);
sum += grade;
class_sum[i] += grade;

}

printf ( "%-20s %.21f\n", lastname, sum/ngrades );
nstudents++;

printf( "\nClass averages:\n" );
for ( i=0; i<ngrades; i++ ) {
printf ( "%10s %.21f\n", assignment[i], class_sum[i]/nstudents );
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8.14. Handling Errors

Up until now, we’ve been assuming that the files our programs want to
read really exist. But mistakes sometimes happen in the real world. We
might accidentally rename or delete a data file, or we might mis-type
the file’s name when we write it into a program. What happens if a
program tries to open a file that doesn’t exist? Let’s try it and see. Take
a look at Program 8.14.

Program 8.14: filecheck.cpp

#include <stdio.h>
int main () {
FILE xinput;

input = fopen( "nosuchfile.dat", "r" );
// Do some stuff, then close the file...
fclose ( input );

If nosuchfile.dat doesn’t exist, the program will give us an error
message saying “Segmentation fault”>. That’s not very helpful,
and it might take us a while to figure out that we’d typed the file’s
name wrong, or put the file in the wrong place.

We can do better. Take a look at Program 8.15. This version of the
program checks to see if an error has occurred and prints out a more
informative error message. This program does several new things, so
let’s look at them one by one.

Program 8.15: filecheck.cpp, with error messages

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
int main () {

FILE *input;

input = fopen( "nosuchfile.dat", "r" );
if ( !'input ) {
fprintf ( stderr, "Error opening file:
exit (1);

// Do stuff, then close the file...
fclose ( input );

5 This error is generated when fclose
tries to close input, which was never
really set because the file couldn’t be
opened.

%$s\n", strerror (errno) );
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First of all, there are many kinds of errors that a function like fopen
might encounter. For example:

* Maybe the file you're asking for doesn’t exist.

* Maybe you don’t have permission to read or create the file.

e If you're trying to create a new file, there might be no more room
left on the disk.

In order to tell us what happened, the function identifies each of
these conditions with an “error number”. Notice that we’ve added
“errno.h” to the list of # include statements at the top of the program.
Among other things, this defines a new variable named errno that
will always contain a number identifying the most recent error.

Having an error number is a step in the right direction, but words
would be even better. That’s what the st rerror function does. It tells
us, in plain English, what a particular error number means. strerror
returns a character string that our program can print out to describe
the error. In order to use strerror we need to add “#include
<string.h>".

Finally, we need to have some way to stop the program when we see an
error. There’s often no point in continuing after something goes wrong,
and doing so could even be dangerous. To stop a program immediately,
we can use the exit function. It takes a single argument (an integer)
that’s passed along to the operating system to indicate whether the
program finished successfully or died because of an error. A value of

zero indicates success, and anything else means failure®. exit requires ¢ We won’t make use of these exit

stdlib.h. values in this book, but they can be
handy when writing “scripts” that run
programs for you.

If we ran our improved program (with nosuchfile.dat still missing),
it would say:

Error opening file: No such file or directory
That’s much more informative than “Segmentation fault”! When

writing programs, think about what might go wrong and try to deal
with these situations gracefully.
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8.15. Converting Characters to Numbers

As we noted in Section 8.4, the computer stores everything as ones and
zeros, and it uses ASCII codes to store characters. For example, the
ASCII code for an upper-case 'A'is 01000001. If we interpreted this as
a binary number, it would be equal to the decimal number 65.

There’s an ASCII code for each character on your keyboard, including
all the numbers. The ASCII code for the digit '1'is 00110001. Inter-
preted as a binary number, this would be equivalent to the decimal
number 49. Take a look back at Figure 8.6 to see the ASCII codes for
some other digits.

On the other hand, computers store integer numbers as a binary repre-
sentation of the number. For example, the number 1 would be stored as
00000001. Maybe you can see how this could create some confusion.
As far as the computer is concerned, character '1' is completely different
from the number 1.

Sometimes we’ll need to convert a character that represents a digit into
an actual number. How can we do that? The first clue is to notice that
the ASCII codes for all of the digits in Figure 8.6 are sequential. If we
converted these binary numbers into decimal, we’d see that '0', '1', '2',
and '3’ are represented by the numbers 48, 49, 50, and 51.

The second clue is provided by a feature of C that we haven’t mentioned
before: C is perfectly happy to do math with char variables. It just
treats the character variable as though it had a value equivalent to the
decimal representation of its ASCII code. So, the computer would see
"1'+'2" as 49+50, giving a value of 99.

Using these two clues we can do a little math and determine the
numerical value of a character. Take a look at the figure below.

'7'-'0' = 55-48 =7

lOllll l2l l3l I4l l5l l6l l7l I8l l9l

48 49 50 51 52 53 54 55 56 57

L
ASCII
number
(decimal)

Figure 8.16: We all make mistakes. In
1890, palaeontologist Othniel Marsh
humiliated his rival Edward Cope by
pointing out that Cope had
reconstructed the skeleton of
Elasmosaurus with the head on the wrong
end!

Source: Wikimedia Commons

Figure 8.17: Luigi Pirandello was the
author of the 1921 play Six Characters in
Search of an Author. I remember the 1976
PBS production, starring John
Houseman and Andy Griffith(!).

Source: Wikimedia Commons


https://en.wikipedia.org/wiki/File:Cope_Elasmosaurus.jpg
https://commons.wikimedia.org/wiki/File:Luigi_Pirandello_1934b.jpg

If we want to find the numerical value of the character '7' we just
need to subtract the character '0' from it. In a program, that might
look like this:

int n;

char ¢ = '7";

n=c¢-"'0";

printf( "The numerical value of %c is %d\n", c, n );

But what about...?

What if we have a multi-digit number represented as a string? For
example, the string "186282"? In principle, we could go through
it one digit at a time, converting each character into a number and
multiplying it by the appropriate power of ten, then adding up
all the results. This would be tedious though, and it seems like
something we might need to do pretty often.

Fortunately, as we’ll see in Chapter 9, C provides us with two
functions that will do the work for us. They’re named atoi and
atof. The atoi function converts a string of digits into an integer.
The atof function converts a string that might contain decimal
points into a double. For example:

char ci = "12345";
char cd = "67.890";
int i;

double d;

i = atoi( ci );

d = atof( cd );

As we'll see in Chapter 9, these two functions come in very handy
in one particular situation: Interpreting command-line arguments.

Let’s look at an example that uses this trick.

8.16. Multiplicative Persistence

In Number Theory there’s a fun property of numbers called multiplica-
tive persistence’. Take the number 39, for example. It’s represented by
the two digits 3 and 9. If we multiply 3 x 9 we get another number,
27. Multiplying 2 x 7 gives 14. Multiplying 1 X 4 gives 4. Now we’re
down to just one digit after three steps: 39 — 27 — 14 — 4. We say
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7 See this YouTube video by Matt
Parker on the Numberphile channel:
https:/ /www.youtube.com/watch?v=WimgW]eDTHQ


https://www.youtube.com/watch?v=Wim9WJeDTHQ
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that 39 has a multiplicative persistence of 3, meaning that we can do
this procedure of multiplying the digits three times before we get to a
single-digit number.

Try this with some other numbers. You'll find that most numbers have
only a small persistence. 39 is actually the first one that gets as high as
3. The persistence of 77 is 4. The first number with a persistence of 5 is
679, and you have to go all the way to 6,788 to find a number that has a
persistence of 6. Mathematicians think that no base-10 number has a
multiplicative persistence greater than 11, but this remains unproven
(although it’s been checked for numbers up to 10200001,

Let’s write a program that tests the multiplicative persistence of a given
number. Take a look at Program 8.16.

Program 8.16: mpersist.cpp

#include <stdio.h>
#include <string.h>
int main () {
const int maxdigits = 10;
char number[maxdigits];
int length;
int product;

int 1i;

printf ("Please enter a number, up to %d digits long:
fgets ( number, maxdigits, stdin );

number [ strcspn( number, "\r\n" ) ] = '\0';

length = strlen( number );

while ( length > 1 ) {
product = 1;
for ( i=0; i<length; i++ ) {
product = number[i] - '0';
}

snprintf ( number, maxdigits, "%d", product

length = strlen( number );
printf ( "%d %s\n", length, number );

The program stores a number in a character array. This lets us easily

\

Figure 8.18: Still I Persist in Wondering is
the name of an excellent story collection
by Edgar Pangborn.

Source: Goodreads

", maxdigits-1 );


https://www.goodreads.com/author/show/155249.Edgar_Pangborn

get each digit of the number, since each digit is one element of the
array. The program uses strlen to find the string’s length. Notice
that the “while” loop keeps going as long as length is greater than
one. Each time around the loop, a “for” loop goes through all the
digits of the number, converting each digit to its numerical equivalent
by subtracting ' 0'. The variable named product keeps track of the
product obtained by multipying the digits together.

If we ran the program, we would see something like this:

Please enter a number, up to 9 digits long: 39
2 27
2 14
14

The first column is the number of digits, and the second column is the
current product.
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8.17. Pattern Matching

We've seen how st rcmp lets us compare two strings to see if they're
equal, but what if we want to know whether the string fits some fuzzier
pattern? For example, we might want to know if the string begins with
an upper-case letter, or we might want to check for any of the strings
“y”,“Y", “yes”, or “YES”.

The GNU C compiler supports a powerful pattern-matching system
called “Regular Expressions”. Regular Expressions (sometimes called
“regexp” for short) are used in many computer languages. A little
knowledge about them will be useful no matter what language you
use.

Regular Expressions are a way of specifying a pattern that you want to
match. The pattern is written as a group of symbols that can represent

particular characters, ranges of characters, or wildcards of various

kinds that will match any character. The Regular Expression language Figure 8.19: soure: Wikinedin Conmons

is extensive, but here are some commonly-useful symbols and their
meanings:

Symbol Meaning
Match any single character.
* Match zero or more of the preceding item.
+ Match one or more of the preceding item.
? Match zero or one of the preceding item.
{n,m} Match at least n, but not more than m, of the preceding item.
- Match the beginning of the line.
$ Match the end of the line.
[abcl123] Match any of the enclosed list of characters.
["abcl23] Match any character not in this list.

[a-zA-Z0-9] Match any of the enclosed ranges of characters.
this|that Match “this” or “that”.
\., \x, etc. Match a literal “.”, “x”, etc.

Regexp patterns can get confusing very quickly, but here are some
simple examples:

Y Match any string beginning with Y.

" [Bb]ob Match any string beginning with bob or Bob.
1008 Match any string ending in 100.

“T.xday$ Match Tuesday, Thursday, or any other string

that begins with a T and ends with day.
“datal[0-9][0-9]\.dat Match data0l.dat, data02.dat, or any other
string with data followed by two digits and .dat.


https://commons.wikimedia.org/wiki/File:Persian_Silk_Brocade_-_Bergamot_Armlet_-_Seyyed_Hossein_Mozhgani_-_1972.jpg

Program 8.17 uses regular expressions to identify strings that begin with
upper-case letters. A string like Montana would match, but montana
wouldn’t.

The program uses two functions to accomplish this: regcomp and
regexec. The first function “compiles” a Regular Expression into an
internal form that’s easier for the computer to use. The second function
uses this compiled Regular Expression to test a string. In this case, the
Regular Expression we're using is "~ [A-Z], which matches any string
that begins with the upper-case characters A through z.

Notice that we need to add #include <regex.h> in order to use
these functions. regex.h also defines a new type of variable, regex_t,
that’s used for storing the compiled version of a Regular Expression.

A complete description of the regcomp and regexec functions is
beyond the scope of this course, but Program 8.17 illustrates their basic
usage. In this example, regcomp compiles our expression and stores
the compiled version in the variable named reg. The “REG_NOSUB |
REG_EXTENDED” argument we give regcomp just specifies a couple of
options that you'll probably want to use.

The program gives the regexec function the compiled Regular Expres-
sion (stored in the variable reg) and the name of a string variable to
test. The other three arguments we give regexec aren’t really used in
this case, but they should usually be set to the values shown here.

Program 8.17: match.cpp

#include <regex.h>
#include <stdio.h>
int main ()
{

regex_t reg;

char string[100];

printf ("Enter a word: ");
scanf ( "%99s", string );

regcomp ( &reg, ""[A-Z]", REG_NOSUB | REG_EXTENDED ) ;

if ( regexec( &reg, string, 0, NULL, 0 ) == REG_NOMATCH)

printf ("Doesn't match.\n");
} else {
printf ("\"%s\" Matches!\n", string);
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8.18. Conclusion

Character strings aren’t particularly exciting, but it can be convenient
to be able to use them in your programs. When doing so though, be
careful not go past the end of your character arrays, and remember that
you need to use strcmp to compare strings. If you stick to the best
practices outlined above, you should be alright.

Figure 8.20: The author’s Uncle Buster,
playing a stringed instrument. Buster
was a character. (Character. String. See
what I did there?)



CHARACTER STRINGS 277

Practice Problems

1. Write a program called dict . cpp that asks the user for two words
(reading them with scanf), and then tells you which word would
come first in the dictionary. If the two words are the same, the
program should tell you so. Assume the words are less than 100
characters long.

2. Write a program called hiname . cpp that asks users to enter their
first and last names, on a single line like “Bryan Wright”. Use a
single scanf statement to read the user’s names. Make the program
then say “Hi”, followed by the user’s first name, like “Hi Bryan!”.

3. Write a program called getpoem. cpp that asks users to enter the
first line of their favorite poem. Let the line be up to 100 characters

long. Make your program open a file named firstlines.dat and
Figure 8.21: In 1755 Samuel Johnson

write the line into the file. Be sure to open the file for “appending”, published his A Dictionary of the English

by giving fopen an "a" as its last argument®. Try running the Language. It remained the most
program several times and entering different lines. If you look at respected English dictionary until more
. . comprehensive dictionaries were
firstlines.dat with nano, you should see all of the lines you've published in the 20 Century.
typed in, Source: Wikimedia Commons
8See Chapter 5.

4. The following statement will get the current time (measured in
seconds since January 1, 1970) and put it into an integer variable
named start:

start = time (NULL) ;

Knowing this, write a program called typel.cpp that tests how
fast a user can type the phrase “I love programming!”. Make sure
the program tells the user what to do.Hints:

¢ Use a character string at least 30 characters long to capture what
the user types.

* Remember to add “#include <time.h>" for the time function
* Use fgets to read what the user types

¢ Check the time before typing and the time after typing, then look
at the difference to find out how long it took. Tell the user how
many seconds it took him or her to type the phrase.

¢ Don’t bother to check whether the user typed the right thing.
Assume the user is honest.

5. After completing Problem 4 modify the program so that it uses a

for loop to ask the user to type the phrase three times, then tells Figure 8.22: The stylish Olivetti
Valentine typewriter, designed by Ettore
Sottsass to be “sensual and exciting”.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Samuel_Johnson_by_Joshua_Reynolds_2.png
https://commons.wikimedia.org/wiki/File:Olivetti_Valentine.jpg
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the user his or her average speed. Give the speed in three ways:
average number of seconds to type the phrase, number of characters
per second, and number of words per minute (where a standard
“word” is five characters or spaces). Be sure to allow for non-integer
speeds like “1.5 characters per second”. Call the new program

typing.cpp.

6. First, fetch a copy of Lewis Carroll’s book Alice in Wonderland by
typing either:

wget http://tinyurl.com/y99nrg3xh

or

curl -L -0 http://tinyurl.com/y9nrg3xh

After you've downloaded the file, rename it by typing:

Figure 8.23: Source: Wikimedia Commons

mv y9nrg3xh alice.txt

Then, write a program named wordlength. cpp thatreads alice.txt
and reports the average length of the words in the book. The pro-
gram should define a large (say, 100-character-long) character string,
then it should have a loop that repeatedly uses fscanf to read
words from the file. Use the strlen function to find each word’s
length (see Section 8.6).

Can you see why we often use 5 characters as the length of a standard
“word” when measuring text?

Hints: To find the average you'll need to first add up the lengths of
all the words. I recommend you use a double variable to hold this
sum. If your program tells you the average word length is exactly an
integer, you've done something wrong.

7. After completing Problem 6 create a new version of your program
that also makes a histogram that shows the distribution of word
lengths. (See examples in Chapter 7.) To do this, you'll need to add
an integer array that will keep track of how many words have a
given length. Call this array count and make it 50 elements long.
Each element of the array will contain the number of words that have
a length equal to that bin’s index. For example, count [5] will have
the number of 5-letter words. At the end of the program, print out
two columns showing the number of letters and how many words
had that many letters. Call your new program wordhist . cpp.


https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_22.png

Notice that, by making our array 50 elements long, we limit ourselves
to words with a length between zero and 49 letters. Be sure your
program checks the word length to make sure it isn’t outside those
limits.

If your program also prints out the average word length (as in
Problem 6) make sure to put a # at the beginning of the line, so
gnhuplot won’t be confused by it if you want to plot your results (see
Figure 8.24).

. Write a program named charcount.cpp that counts how many
times each letter of the alphabet appears in a file full of text, treating
upper- and lower-case letters as different. Start out by downloading
a copy of Alice in Wonderland by Lewis Carroll. You can do this with
one of the two commands below:

wget http://tinyurl.com/y9nrg3xh

or

curl -L -0 http://tinyurl.com/y9nrg3xh

After you've downloaded the file, rename it for convenience by
typing;:

mv y9nrg3xh alice.txt

Your program should take advantage of the fact that, in C, a character
is equivalent to the character’s numerical ASCII code. For example,
the character “A” is ASCII character number 65. If you have a
character variable named c, you can get the numerical ASCII code
for the character it contains by saying (int) c (that is, just “casting”
the character as an int). These numbers are in the range from zero

to 255.

At the top of your program, create a 256-element array of integers
named count, like this:

int count[256] = {0};

The = {0} is a trick we saw earlier in this chapter that sets all of
the array elements to zero initially. Your program should contain
a “while” loop that reads one character at a time from the file
alice.txt. Each time a character is read, add 1 to the element of
count that has an index corresponding to that character’s ASCII
code. You can do that with a line like this:
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Figure 8.24: If you plot a histogram of
the word lengths, you should see
something like this.

Lewis Carroll, whose real name was
Charles Lutwidge Dodgson, was also
an accomplished mathematician who
made significant contributions to that
field.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:LewisCarrollSelfPhoto.jpg
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count [ (int)c 1++;

After the “while” loop is finished, the program should have two
“for” loops to print its results. The first loop should print counts for
character numbers 65 through 9o, which corresponds to all the upper-
case letters. The second loop should print counts for characters 97
through 122, the lower-case letters. Each line of the output should
be printed like this:

printf ( "%c %d\n", i, count[i] );

where i is the character number. Notice that if we print an integer
variable using %c the program will just print the character corre-
sponding to that number. So, for example, if the file contained the

character “A” 807 times, the program would print a line like this for
that character:

A 807

After you've written your program and tested it, try redirecting its
output into a file, like this:

./charcount > charcount.dat

Then you can use gnuplot to generate the graph in Figure 8.25. The
ghuplot command to do this is:

plot "charcount.dat" using ($0):2:xtic(l) with impulses
There are two bits of magic here: First, ($0) tells gnuplot to use the

line number as the x value. Second, xtic (1) tells gnuplot to use the
values in column 1 of the data file as the labels on the x axis.

16000
Figure 8.25: Number of each character

14000 + R seen in Alice in Wonderland. Notice that
“e” is the most common, as is typical in

12000 |- E English-language text.
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4000 b

| | | ‘ | | |

anll ] aEule NN n n
U | 1 | | l | I |
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9. First, fetch a copy of the file unixdict.txt by typing either:

wget http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

or

curl -L -0 http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

(whichever works on your computer). This file contains a long list of
over 25,000 English words. You can open the file with nano to see
them.

Write a program named longestword. cpp that reads this file and
finds the longest word. The program should print the word and its
length. Use the strlen function to find each word’s length (see
Section 8.6)

Use the strerror function, as described above in Section 8.14, to
print an error message if the file unixdict.txt can’t be found.

Assume that no word is longer than 1,000 characters. Also (of course)
assume that all the words have more than zero characters.

Hints: You'll need to define two character strings: one to hold the
word you’ve just read from the file, and another to keep track of the
word that has the maximum length so far. Also, you'll find it simpler Figure 8.26: A dictionary from
if you do the following as soon as you read each word: 1*-Century BCE Uruk, in Mesopotamia.

Source: Wikimedia Commons

length = strlen(word);

then look at the value of 1ength when deciding whether this word
is longer than the current record-holder. Use an integer variable to
keep track of the length of the current record-holder. the top of your
program might look something like this:

char word[1000];
char maxword[1000];
int length;

int maxlength;


https://commons.wikimedia.org/wiki/File:Dictionary_with_colophon-AO_7661-IMG_0190-white.jpg




9. Functions

9.1. Introduction

Despite what you may think after reading the preceding chapters, C is
really a very minimal language with only a small vocabulary of about
32 words. This is one reason C has been so successful.

Different types of computer understand different binary instructions,
so programs that run on each kind of computer need to be created by a

. , . . ; Functions allow you to extend the
compiler that knows that computer’s instruction set. Because making capabilities of the C compiler.

a C compiler is relatively easy (compared to many other computing
languages), C is often the first language available when a new type of
computer is developed.

.. .y * auto * int
Even though the C language is simple, it's powerful because we can *  break long
extend its abilities by adding “functions” to it. We’ve already used case register
. : P ’ *  char *  return
many of these: Prlnt £, for example, isn’t part of t}.1e C language. It's + const short
a separate function that has been added. The same is true of the other *  continue signed
reading and writing functions we’ve been using, and the math functions default sizeof
. . e ., . * do *  static
like sgrt. All of these are found in standard “libraries” of functions *  double struct
that are usually installed along with the C compiler. The functions * else switch
in these libraries are themselves written in C. They’re essentially pre- - grﬁzief
compiled snippets of programs, ready to be plugged in where you need float unsigned
them. *  for *  void
goto volatile
* o if *  while

Just as you can extend a house by building an extra room, you can

build functions that extend the C compiler’s capabilities. In this chapter Figure 9.1: The 32 words of the C
language, with an asterisk beside those

we’ve already covered or will cover in
own. this chapter.

we’ll learn how functions work, and see how to create functions of our

C’s functions let us define simple words to do complicated things. This
is especially useful when we have to do a complicated operation over
and over again, but it can help us in other ways too. Functions can
be re-used in other programs, and using functions can help you avoid
programming mistakes.
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9.2. What’s a Function?

Let’s start out by reviewing the kind of functions you’ve used in math
class. Figure 9.2 shows the mathematical function f(x) = x* + 3.
The function is like a machine that takes some raw materials and
processes them to produce an output. The function’s raw materials
are its arguments. The function in Figure 9.2 takes one argment, which
we've called x here. We could just as easily have written f(y) = y? + 3.
The name we give the argument doesn’t matter. It’s just a placeholder.

When we write f(x) = x? + 3 we're defining a function. We’ve given
our function a name, f, we’ve specifed that it takes one argument (x),
and we’ve said what the function does with that argument to produce
an output (square the argument and add three to it). If we put in the
value 7, as in Figure 9.2, we’ll get out the value 52. We could try a range
of different input values and plot the corresponding output values on a
graph, as in the lower part of Figure 9.2.

Functions can have more than one argument. Consider the function
g(x,y) shown in Figure 9.3. This function takes two arguments (x and
y) and produces an output that combines them in a particular way.
Functions can have any number of arguments.

Functions can also make use of other functions, as illustrated in Figure
9.4. Here, the function h(x) is defined to be h(x) = i(x) + 5, where i(x)
is another function, defined as i(x) = 3x%. If we gave h(x) an input of
x=2, it would find i(2) = 3x4 = 12, and then add five to this to find that
h(2) = 17.

A function in a C program has all the properties we described above:

¢ A function has a name
* The function takes arguments and uses them to produce an output
* The behavior of a function is described by defining the function

¢ Functions can have any number of arguments (in fact we’ll see that C
function sometimes take no arguments at all!)

* Functions can use other functions

As we’ll see below, C functions also have some properties that aren’t
present in mathematical functions.

80

—_ fx)=xd+3 /

40

20

Figure 9.2: You're probably familiar
with mathematical functions. A
function takes some arguments (inputs),
performs some operations on them,
then spits out a result.

Figure 9.3: A function that takes two
arguments, x and y. Given x=4 and y=6
as arguments, the function’s output
would be 22.

2

Figure 9.4: The function h(x) shown
above uses another function i(x).



Let’s look at how we might define a function in a C program. Figure 9.5
shows a C function that takes an input value (an integer we call x) and
produces an output value that’s equal to xxx + 3. This is analogous
to the mathematical function we saw in Figure 9.2.

Program 9.1 shows how we might insert this function at the top of a
program, and use it to print some values of the function for various
values of its argument. We could plot the program’s output with gnuplot
to create a graph like the one shown in Figure 9.2.

Program 9.1: funcfun.cpp

#include <stdio.h>
int £ ( int x ) {

int n;
n = x*x + 3; ’Function definitionl
return ( n );
}
int main () { ’Using the function
int i; J
for ( i=0; i<10; i++ ) {
printf ( "%d %d\n", i, £(i) )

This looks different from anything we’ve written before. We’ve added
a new section above int main (). The new section defines a function
named f. It says that the function accepts one int argument, and
returns an int value. We then use this new function inside main (),
in our printf statement.

You'll probably notice that the first line of our function definition looks
an awful lot like the int main () statement that we’ve been using in
all of our programs. That’s no coincidence. main is a function just like
sqrt, printf, or our new f function. It turns out that, in C, almost
everything is inside of some function. When we run a C program, the
computer looks for a function named “main” and does whatever that
function tells it to do. We'll see later that we can even give arguments
to main, as we do with other functions.

Also notice that we’ve defined our new function above main. The
compiler needs to know about a function before we can use it. One way
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Figure 9.5: A C function named £ that
does the same thing as the
mathematical function shown in Figure

9.2.
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to ensure this is to define new functions at the top of the program. We’ll
see another way to do this later, in Chapter 11, where we’ll find out
that the line #include <stdio.h> tells the compiler about functions
like print f and scanf.

When we use a function in a program, it’s as though the program takes
a detour into the function and then comes back again with a value:

Enter function...
int main () { *
int i;
for ( i=0; i<10; i++ ) {
printf ( "%d %d\n", i, £( 1 ) ); <

int f(int x) {

return ( n );

Return to main...

Figure 9.6: The “flow” of the program
travels into the function, and then comes
back with a result.

Exercise 46: First Function

* Create, compile, and run Program 9.1. Redirect the pro-
gram’s output into a file by running it like this:

./funcfun > funcfun.dat

* Then use gnuplot to plot the program'’s output, using the
gnuplot command:

plot "funcfun.dat" with lines

Does your result look like Figure 9.2?

¢ Now modify your program so that f(x) = x? 4+ 20. Com-
pile the program, and run it like this to produce a second
data file (funcfun2.dat):

./funcfun > funcfun22.dat

then use the following gnuplot command to plot both files
on the same graph:

plot "funcfun.dat" with lines, "funcfun2.dat" with lines
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9.3. Function Anatomy

The anatomy of a function definition looks like Figure 9.7. First we
need to specify what type of value the function will return. This can
be any of the types we use for variables: double, int, or char, for
example.

Type of data  Function Type of 1° Any number of arguments
returned Name  argument 1%argument | ¢ only one return value. ’ |

typé ’name(typel\'varl, type2 var2, ...){

Figure 9.7: The general form of a
The return value of a C function is like the value you get when you function definition.

evaluate a function in algebra. The C expression sqrt (4.0), for
example, would return the value 2.0. The type of value returned by
sqgrt is a double.

By defining the type of value the function will return, you make it pos-
sible for the C compiler to check whether you're putting that value into
an appropriate variable. If I write a statement like “x = sqrt (4.0);”
the compiler will check to see if x is a double variable and give me a
warning or an error message if it isn’t.

Next we give the new function’s name. This must be different from
the name of any other function in your program. Function names
can contain letters (upper- or lower-case), numbers and underscores.
As with variables (see Chapter 2), it’s best to start the name of your
function with a letter.

After the function’s name, we list any arguments and their types. Our
f(x) function takes just one argument, and it’s an integer. When we use
a function in our program, the C compiler checks to make sure we're
giving it the right number of arguments, and that the arguments are of

the right type. If we’ve done something wrong, the compiler gives us a

warning Or an error message. Return J. Meigs, Jr., Governor of Ohio,
US Postmaster General, and US Senator.
As far as I know, C’s ‘return”

At the end of our function, as in our f(x) function, we can optionally statement wasn’t named for him, nor he

return a value, but we aren’t obligated to return anything. Sometimes for it.

Source: Wikimedia Commons

a function just does something without returning a value. For example,


https://commons.wikimedia.org/wiki/File:Return_J._Meigs,_Jr._by_Witt.jpg
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we might want a function that just prints some text. If a function
doesn’t return a value, we specify the function’s type as “void”, like
this:

void howLong (int hours, int mins, int secs) {
printf ("This class is %d seconds long\n",
hours*3600 + minsx60 + secs);

Functions that do return a value use the return statement to do so. In
our f(x) example, the statement “return (n)” says that the function
is done, and sends its result, n, back to the main function. Functions
can only return one value.

Functions don’t need to have any arguments, either. The rand function
is an example of this. When defining a function that takes no arguments,
just put an empty pair of parentheses after the function name.

Finally, functions can’t be defined inside other functions. We couldn’t,
for example, define a new function inside main.

9.4. Functions that Use Other Functions

Consider the apparatus shown in Figure 9.8. Ohm’s law tells us that
the current (which we represent by the symbol i) flowing through the
resistor is given by:

i=V/R

where V is the voltage across the resistor and R is the resistance.
Another law (Joule’s Law) tells us that the power output of the resistor
(which we represent by p) is given by:

p = iR

The power is a measure of how fast the resistor is emitting energy,
mostly in the form of heat. When we run a current through a resistor,
the resistor heats up.

If we know the voltage and resistance, we can calculate the current,
and then we can use the current to calculate the power. If we measure
resistance in ohms, voltage! in volts, and current in amperes, the power
we calculate will be given in units of watts.

Let’s write a program that calculates the power output of the resistor at
various voltage settings. The result might look like Program 9.2.
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Figure 9.8: An adjustable voltage source
is connected to a resistor, causing
current to flow through the resistor.

Georg Simon Ohm (left), Alessandro
Volta (center), and André-Marie
Ampere, for whom the units of
resistance, electrical potential, and
current are named.

Source: Wikimedia Commons, 1, 2, 3

*also called electrical potential


https://commons.wikimedia.org/wiki/File:Georg_Simon_Ohm3.jpg
https://commons.wikimedia.org/wiki/File:Alessandro_Volta.jpeg
https://commons.wikimedia.org/wiki/File:Ampere_Andre_1825.jpg
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Program 9.2: ohm.cpp

#include <stdio.h>

double current ( double v, double r ) {
return ( v/r );

}

double power ( double v, double r ) {

double i, p;

i current ( v, r );

p = ixi*r;
return ( p);
}
int main () {

double r = 100; // ohms.
double vmin = 0; //volts.
double vmax = 12; //volts.
double v, p, vstep;

int n;

v = vmin;
vstep = (vmax - vmin)/100.0;
for ( n=0; n<100; n++ ) {
p = power ( v, r );
printf ( "$1f %1f\n", v, p );
v += vstep;

Notice that we've defined two functions, current and power. The
current function tells us how much current will flow through the re-
sistor when a given voltage is applied across it. It takes two arguments,
v and r, and returns a value for the current. Because this is a very
simple function (it just divides v by r) we can do the calculation right
in the return statement. The current function just has one line in it

But what about the power function. Shouldn’t it have current as one of
its arguments, instead of voltage? Sure, we could do it that way, but we
want our program to tell us the power for a given voltage, so why not
write our power function so that it does the calculation for us? Here
we’ve written the power function so that it takes voltage and resistance
as arguments, then internally uses the current function to calculate
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the current, before going on to calculate the power and return that.

This makes our main program very simple. We just loop through
several voltage values and use the power function to find the power
value at each voltage. The program assumes the resistance is 100 ohms.
The program starts at the voltage vmin and goes up to the voltage
vmax in 100 steps. Notice that we calculate the size of each voltage step
(vstep) before starting the loop, and then add vstep to the voltage
each time we go around. If we used gnuplot to plot the program’s
output, we’d see a graph like Figure 9.9.

When you buy a resistor, you need to pay attention to the resistor’s
power rating. Some resistors can only tolerate a power output of % watt.
Trying to increase the power beyond that would cause the resistor to
burn or melt. Resistors that can tolerate more than one watt are often
called power resistors. Based on our program’s output (as graphed in
Figure 9.9) we’d need a power resistor that can tolerate at least 1.4 watts
if we intend to put 12 volts across it.

Exercise 47: Your Volt Counts!

Create, compile and run Program 9.2. Send the program’s
output into a file and plot the data using gnuplot.

9.5. Variable Scope

If we run two different programs, we don’t expect that the variables
in one program will interfere with the variables in the other. It would
be perfectly OK if one program had an int variable named number
and the other program had a double variable with the same name.
Variables don’t affect things outside the program they’re in. A program-
mer might say that the “scope” of a variable doesn’t extend outside the
program.

In fact, in C, the scope of a variable might not even extend to other
functions in the same program. Each variable in a C program has either
a “local” or a “global” scope. All of the variables we’ve seen so far have
local scope. This means that they can only be used inside the function
where they’re defined. Outside of that function, it’s as though these
variables don’t even exist. (See Figure 9.10 on Page 292.)

The scope of a variable is determined by where it’s defined. Variables
defined inside a function are local to that function. Take a look at
Program 9.3.
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Figure 9.9: Power versus voltage for a
100 ohm resistor.

Three high-power 100 ohm resistors,
with power ratings of 10, 50, and 100
watts. Each has an aluminum case with
cooling fins to help dissipate heat.

Source: Wikimedia Commons

A scope of a different kind: UVa’s own
Professor Kathryn Thornton replaces
solar panels on the Hubble Space
Telescope.

Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Arcol_High_Power_Resistor.jpg
https://commons.wikimedia.org/wiki/File:Kathryn_Thornton_replacing_the_solar_arrays_of_the_Hubble_space_telescope_during_the_STS-61_mission_9400261.jpg
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Program 9.3: scope.cpp (This won’t work)

#include <stdio.h>

void printstuff () {

printf ( "The value of n is %d\n", n );
}
int main () {

int n = 100;
printstuff ();

If you tried to compile this program, g++ would say:

scope.cpp: In function 'void printstuff():
scope.cpp:4: error: 'nm' was not declared in this scope

The variable n is only define<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>