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Introduction

A New Kind of Problem-Solving
It’s a lazy summer afternoon in 1450, and a tired monk is sitting at a
desk, staring at a blank sheet of vellum. He’s been given the task of
making twenty copies (twenty!) of a fifty-page book. He sighs, then
picks up a pen and begins to write, following the holes that have been
carefully pricked into the sheet as guides. He wonders if he’s being
punished. This will take forever!

Figure 1: A monk copying a
manuscript.
Source: Wikimedia Commons

As he works, his mind wanders into fantasies of being an Abbott or a
King, capable of commanding monks to do all the menial work. He’d
only have to command twenty copies of a book (or a thousand!) and
it would be done. Even better to be a Wizard, and not have to deal
with lazy monks! Swoosh! goes the magic wand, and a pile of books
appears!

Figure 2: A printing press (1520).
Source: Wikimedia Commons

The monk doesn’t know it, but his vision is becoming reality even as
he works. A few years earlier, Johannes Gutenberg had invented a
printing press that used moveable type. As it spread across Europe, this
new technology was changing the way people thought about problem-
solving.

For the monk in his scriptorium, each new page is a new problem
requiring an amount of time and effort similar to any previous page.
To copy fifty pages takes him about fifty times as long as a single page.
Even though he might begin the task by spending a little time thinking
about the style of the writing and the layout of the pages, the vast
majority of his time will be spent on the mindless, repetitive task of
producing individual pages, one at a time. If his mind wanders into
fantasies, a page could be ruined.

https://commons.wikimedia.org/wiki/File:Escribano.jpg
https://commons.wikimedia.org/wiki/File:Press1520.png
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But consider the job of a printer a hundred years later. To him, the
problem of printing a page consists of setting the type. Once he’s done
that, he can create as many copies of the page as he likes, with relatively
little effort and in a short time.

* * *

Early 20th Century particle physicists used “cloud chambers” and, later,
“bubble chambers” to see the paths of subatomic particles. Collisions
and decays within these chambers produced visible tracks that could
be photographed. The chambers could take a new photograph every
few seconds. Each photograph was then analyzed by people called
“scanners”, who measured the tracks as the photographs were projected
onto a table. At their fastest these workers could analyze only about
five photographs per hour. Photographs taken during a few days of
running a bubble chamber could take years to analyze.

Figure 3: Traces of charged particles in
a bubble chamber at Fermilab (1973).
Source: Wikimedia Commons

Bubble chambers have long been superseded by other kinds of detectors
that can be read out electronically and analyzed by computers. Because
of this, large experiments like the Compact Muon Solenoid at CERN
can record and analyze thousands of electronic “snapshots” per second.
There are no longer any “scanners”, just as monks no longer copy
manuscripts.

Figure 4: A “scanner” analyzes a
bubble chamber photograph.
Source: CERN

* * *

Since the earliest days of aeronautics, airplane designs have been tested
in wind tunnels. The Wright brothers themselves used a simple wind
tunnel in the development of the “Wright Flyer”. Whole airplanes,
parts of them, or models of them were placed into the wind tunnel
to study their behavior. The lift generated by one type of wing or
propeller might be measured and compared to measured values for
other designs. Many models were made and tested in the process of
designing an airplane.

Figure 5: A model of the X-15 rocket
plane in a wind tunnel (1962).
Source: Wikimedia Commons

Today, computer simulations have largely replaced wind tunnel tests.
Modern computational fluid dynamics can accurately model the flow
of air around complicated shapes, and we can change the shape by
clicking and dragging a mouse or changing some parameters, rather
than needing to manufacture a physical model, leaving the engineer
free to test odd shapes and explore possibilities as they occur to her.

* * *

https://commons.wikimedia.org/wiki/File:HD.6B.235_(11069100644).jpg
http://images.iop.org/objects/ccr/cern/55/3/26/CCarc2_03_15.jpg
https://commons.wikimedia.org/wiki/File:X-15_Model_in_Supersonic_Tunnel_-_GPN-2000-001272.jpg
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In 1913 Henry Norris Russell documented a relationship between the
color and brightness of stars. At that time, and indeed until the 1970s,
most graphs used in publications were drawn by hand. On the left-
hand side of the figure below you can see Russell’s graph of brightness
versus color (what we now call a Hertzsprung-Russell diagram). The
graph shows data for about 300 stars, collected by observers using
astronomical instruments and written down by hand. These data were
then plotted, using pen and ink, to show the results.

Figure 6: Russell’s original diagram, and
a modern Hertzsprung-Russell diagram
produced with gnuplot using data from
the Hipparcos satellite.
Source: Popular Astronomy. 22: 275-294, 1914

On the right-hand side of the figure above we see a modern-day
Hertzsprung-Russell diagram. It was produced using data gathered
by the Hipparcos satellite, downloaded over the Web, analyzed by a
computer program, and plotted using gnuplot. It shows about 100,000

stars. It took the computer less than a second to produce this graph
from the data.

* * *

The computer revolution of the late 20th Century gave us a new kind
of problem-solving. As in the aftermath of the Gutenberg revolution,
we suddenly found that we no longer needed to focus on the mindless,
repetitive components of many tasks. Computers could now make
data analysis more-or-less effortless. Simulations done by computers
were now capable of eliminating the need for many real-world tests.
Visualizations that were once tedious to prepare could now be done
instantly, by anybody. The ease, accuracy, and speed with which
computers could perform repetitive tasks freed us up to explore in
ways that would have been unfeasible earlier.

To a poor monk in a scriptorium every page is a new problem that needs

https://babel.hathitrust.org/shcgi/pt?id=chi.60263614;view=1up;seq=331
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to be solved. To a printer, once the page is typeset the problem is solved
forever. A well-written computer program does the same. It tackles a
problem, and solves it forever. That’s a new kind of problem-solving.

About this Book
Today, if you intend to pursue a career in science or engineering you’ll
need to know the basics of computation. This book aims to teach them
to you.

It introduces three core skills: analyzing data, simulating data, and
visualizing data. It assumes no prior programming experience or
knowledge about the inner workings of computers. It will concentrate
on using using computers to solve common problems you’ll encounter
in science and engineering.

A Note About Choices
Which is the best tool: a hammer or a screwdriver? Most people would
say that the answer depends on the task. The same is true for computer
languages. There is no "best" programming language, any more than
there’s a best tool.

When designing this book, I needed to choose a programming language
that would suit its needs and yours. I settled on the C language for
several reasons.

First of all, C and its cousins (C++, Objective-C, etc cetera) are very
widely used. It’s likely that any program you’ve ever used on a desktop
computer was written in some variant of the C language. A 2016 study
by IEEE1ranked C as the most popular programming language, based 1 IEEE Spectrum: The Top Programming

Languages 2016on its use in software repositories and appearance as a topic in various
online forums.

C has been around a long time, and many newer programming lan-
guages have adopted features from it. This means that once you’ve
learned C you’ll find it easier to learn those languages, too. Some of
these C-like languages include Java, PHP, Javascript, Perl, Go, and C#.

More than some languages, C lets you see the computer’s internal
workings. When learning C, you need to think about the way the
computer uses memory to store information, and how data is stored in

 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
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files. An understanding of these concepts will help you later on, even
if you move to higher-level programming languages that hide these
details.

C has a reputation for being fast. Other languages sometimes rely on
C to do their “heavy lifting”. For example, Google recently released
an artificial intelligence system named TensorFlow2, which appears 2 https://www.tensorflow.org/

to be written in the Python programming language. If you download
TensorFlow and look at the source code, though, you’ll find that about
80% of it is written in C. The Google developers said they wrote the
most compute-intensive parts of the code in C to make it run faster.
If you go into research or engineering, you’ll often be working at the
cutting edge of technology. Having the skill to write C programs can
help you squeeze the best performance out of your software.

Finally C is available on a wider range of computers than any other
language, and the software needed to build C programs is available
for free. No matter what kind of computer you’re using, or how small
your budget, It’s almost certain that you’ll be able to write and run C
programs.

Those are some of the reasons for choosing to use the C language in
this book. Every language has its strengths and weaknesses. After
you’ve learned C, I hope you go on to explore other languages too.
When you’re a researcher or an engineer, here are some other things
you should think about when deciding which language to use for a
project:

Figure 7: Dennis Ritchie, the inventor of
the C language.
Source: Wikimedia Commons

• What are your skills? Sometimes its better to use a language you
already know.

• What are the skills of other programmers who are likely to work
on this project in the future? When you’re collaborating with other
programmers, consider their skills, too.

• If there’s an existing code base, what language(s) does it use? When
adding features to existing software, it’s often a good idea to stick
to the same language the rest of the software uses, unless there’s a
compelling reason to introduce a new language.

• Are strengths of a given programming language a good match for
the project’s needs? Don’t try to use a hammer to insert screws.

https://www.tensorflow.org/
https://commons.wikimedia.org/wiki/File:Ken_n_dennis.jpg




1. Zero to Loops

1.1. What’s a Program?
Computers today do a lot of complicated things, from weather predic-
tion to playing music, movies and games.

You might be surprised to learn that computers have been around since
ancient times. One early computer was the “Antikythera Mechanism”,
found in a 2,000-year-old Greek shipwreck. This complicated machine
could be used to predict the future positions of astronomical bodies
and the phases of the moon.

The Antikythera Mechanism.
Source: Wikimedia Commons

The Antikythera Mechanism did many things, but unlike modern
computers it wasn’t possible to add new capabilities after the machine
was made. All of its capabilities were determined when it was built. If
someone needed to do something that it wasn’t built to do, they’d need
to buy or build a new device with different capabilities.

In the early 1800s, the English scientist and engineer Charles Babbage
proposed a new kind of computer that he called an “Analytical Engine”.
This would be a general-purpose computer. Its behavior was controlled
by punched cards (rectangular cards with a pattern of holes in them).
By creating an appropriate set of cards, the Analytical Engine could
be made to do any calculation. (Similar punched cards had previously
been used to control the patterns woven into fabric by looms.) The
mathematician Ada Lovelace, working with Babbage, created the first
sets of cards for this versatile early computer.

Ada Lovelace, the first computer
programmer.
Source: Wikimedia Commons

Most modern computers are designed to be versatile: a given computer
can be used to do many different things. We add new abilities to the
computer by installing “programs” into the computer.

We distinguish between the computer’s “hardware”, which is fixed

https://commons.wikimedia.org/wiki/File:NAMA_Machine_d'Anticythère_1.jpg
https://en.wikipedia.org/wiki/File:Ada_Lovelace.jpg
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and unchangeable, and its “software”, which can be easily changed.
Computer programs are part of the computer’s software. Examples
of computer programs you’re probably familiar with include Firefox,
Safari, Excel, Word, PowerPoint, PhotoShop, and many others.

1.2. Creating Programs
How can we create a program that tells a computer what we want it to
do? An Intel 80486 CPU. In general,

different brands and models of CPU
understand different sets of instructions,
but most processors used today share a
common set of core instructions that
they all understand.
Source: Wikimedia Commons

If the computer were a chef, we could tell it how to make our favorite
dish by writing down a recipe. There’s a problem, though: the chef in
this case (the computer) doesn’t speak English.

Figure 1.1: A program is just a recipe,
but it needs to be translated into a
language the computer can understand.
Source: Wikimedia Commons 1, 2

The computer’s brain is a “Central Processing Unit” (CPU), often just
called a “processor”. It only understands instructions that are expressed
in a language of binary numbers.

A binary number is a number written in base 2. All of the digits of
such a number are either zeros or ones, like this: 10110010. You can
think of a binary number as a line of switches that can be turned on or
off. (See Figure 1.2.)

Figure 1.2: Bits as switches.
You can think of each bit in a binary
number as as switch. (In fact, program-
mers often talk about flipping bits on or
off.) We group bits together in groups
of eight because eight is a power of two
(23), making it convenient for binary
(base-2) arithmetic, just as 10, 100 or
1000 are convenient in base-10. The very
popular early Intel CPUs used data in
8-bit chunks, and this became a de facto
standard.

Each digit of a binary number is called a “bit”.1 We say that a bit is

1 Some people claim that “bit” is a
shortened form of “binary digit”, but
I’m skeptical.

either “on” or “off” (1 or 0). We usually group bits together in sets of
eight. A set of eight bits is called a “byte”.

Although it’s possible to create a computer program by writing long
streams of bits by hand, it’s really tedious and prone to error. Even a
moderately-sized program is millions of bytes long.

What we need is some kind of translator who can read a recipe in a
language that’s easy for us to write, and then translate it into the binary
language that the computer understands.

https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg
https://commons.wikimedia.org/wiki/File:Cheese_Soup_Recipe.jpg
https://commons.wikimedia.org/wiki/File:William_Orpen_Le_Chef_de_l'Hôtel_Chatham,_Paris.jpg
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Figure 1.3: Source: Wikimedia Commons 1, 2, 3

The kind of translator we’ll be using in this book is called a compiler. It
takes a readable description of what we want the computer to do (our
“recipe”) and translates it into binary instructions.

We can’t quite write our program’s “recipe” in a human language like
English, but there are many programming languages that have been
developed to be readable by humans but still express our wishes in
a clear, simple way that can easily be translated into the computer’s
native binary language.

One of the most widely used programming languages is called simply
“C”. That’s the language we’ll be using in this book.2 The vast majority 2 There are hundreds of different

computer languages. Each has its own
strengths and weaknesses, and no
language is best for all tasks. When
choosing a language for a particular
project, programmers think about
whether the language’s strengths are a
good match for that project.

of the software you’ve used is written in C, or its cousin C++. You’d be
hard-pressed to name a piece of software on your computer, phone or
tablet that wasn’t written in C or one of its close relatives.

Think of the C language as a very terse version of English, with some
special characters to help make your meaning clear. You might compare
it to text messages or e-mails.

Program 1.1 is a simple program written in the C language:

Program 1.1: hello.cpp

#include <stdio.h>

int main () {

printf ( "Hello World!\n" );

}

https://commons.wikimedia.org/wiki/File:Linus_Torvalds_talking.jpeg
https://commons.wikimedia.org/wiki/File:A_woman_working_on_a_call_centre.jpg
https://commons.wikimedia.org/wiki/File:Intel_80486DX2_bottom.jpg
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This program just prints out the text “Hello World!”. Don’t worry about
understanding it right now. We’ll explain how it works soon.3 3 On Wikipedia you’ll find a long list

of “Hello World” programs written
in many different languages. Some of
them are truly bizarre.At this point there are three obvious questions:

• Where do we type these instructions?

• How do we get a compiler to translate them into binary instructions
that the computer can use?

• How do we get the computer to run the program we’ve created?

Before we can answer these questions, there’s one more thing we need
to talk about: files!

1.3. Files
Before the compiler can translate your recipe, it needs to be written
down. Instead of using pencil and paper, you’ll be writing your recipe
into a file that lives on the computer’s hard disk. A file is just a
named bunch of data. You can think of it as an index card with some
information scribbled on it, and a title (the file’s name) written at the
top.

Here’s how to create a program: First, we use a piece of software
called an editor (this is our “pencil”) to create a file that contains some
directions written in the C language (our “recipe”)4. Then we use a 4 This description is often called the

program’s “source code”piece of software called a C Compiler. The compiler reads the file we’ve
created and makes a binary version of our instructions in a new file5. 5 The binary file is often called an

“executable” or just a “binary”The new file is our program, and we can run it just like any other
program on the computer.

This binary file is a new piece of software that we’ve created. If we
were a software company like Microsoft, we could sell this binary file
to our customers, and they could put it onto their computers and use it.

C Compiler

#include <stdio.h>

int main () {

  printf ( "Hello World!\n" );

}

hello.cpp

01101010001110

01001001001011

11110010110111

0100101001011

hello

You write this.... ...and the compiler translates it into this.

Figure 1.4: The C compiler reads our
source code file and makes a binary file
that the computer can understand.
Source: Wikimedia Commons

https://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
https://commons.wikimedia.org/wiki/File:Notecard.jpg
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1.4. Your First Program
Let’s look at the details of each of the steps in creating a program. In
the following exercise we’ll be creating the example program called
hello.cpp (Program 1.1) that we saw earlier.

Most of our work will be done from the command line, so the first thing
you’ll need to do is open an appropriate command window. A command
window is a box like the one shown in Figure 1.5. If you don’t know
how to open one, see Appendix B for instructions tailored to the kind
of computer you’re using (Windows, Mac, or Linux). You can tell your
computer what to do by typing commands into this window.

Figure 1.5: A command window. The
appearance will vary, depending on
what kind of computer you’re using.

Writing a Program

To write our program, we’ll use a piece of software called a text editor.
It lets you type in some text, and save the text into a file. The text editor
we’ll be using is called nano.6 6 You’ll find instructions in Appendix

B for installing nano and the other
software you’ll need for the exercises in
this book.nano runs inside the command window. To create a file with nano, or

modify an existing file, just type “nano” followed by the file name.
Start it up now by typing “nano hello.cpp”. Figure 1.6 shows what
nano looks like while you’re using it.

In nano, you can just type the text of your program. At the bottom of
the window, you’ll see that nano gives you some hints about how to do
things. For example, you’ll see that ˆX means “Exit”. Here, ˆX means
“hold down the Ctrl key while pressing the X key”.
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Exercise 1: Creating a “Hello World” Pro-

gram

Start up nano and type the program “hello.cpp” that you saw
earlier (Program 1.1, above). When you’ve finished typing,
it should look like figure 1.6.

You should be careful to type the program exactly as it’s
written here. In particular, always remember that the C pro-
gramming language cares about whether letters are upper-
or lower-case. In C, the word “This” isn’t the same as “this”
or “THIS”.

Once you’ve finished typing your program, save it by press-
ing ˆX (hold down the CTRL key, and press the X key).
You’ll be asked to confirm that you want to save your work
into a file (type “y” for yes), and asked what you want to call
the file. In response to this, type hello.cpp and then press
enter. This creates a file called “hello.cpp”, puts the things
you’ve typed into it, and closes nano.

You can see the new file you’ve created by typing the com-
mand “ls” (which is short for “list”). This will show a list
of your files. You should see a file named “hello.cpp”.

For best results when writing your own
programs, stick to all lower-case unless
there’s a good reason to do otherwise.

Press Ctrl-X to exit, 
and optionally save 
your program.

Press Ctrl-X to exit, 
and optionally save 
your program.

Your program.Your program.

Figure 1.6: The editor called “nano”.
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Compiling Your Program

Now we need to translate your program into binary instructions that
the computer can understand.7 We use a compiler to do this. The 7 We call this “compiling the program”.

compiler we will use in this book is named g++. (This is pronounced
“g plus plus”.)

Exercise 2: Compiling “hello.cpp”

Use g++ to compile your program by typing the following
in your command window:

g++ -Wall -o hello hello.cpp

This tells g++ to read the file hello.cpp and create a binary
version of the program in a new file, named hello. Here’s
what the parts of the command mean:

“-Wall” means “Warn me if you see anything wrong with
my program”

“-o hello” means “Write the output into a file named
hello”

If you see any error messages, check to make sure you’ve
typed the program correctly. In particular, look for missing
semicolons and brackets, or places where you might have
used parentheses instead of brackets. To look at your pro-
gram again and fix any errors, just type “nano hello.cpp”
again. When you’re finished making changes, use ˆX as you
did before to save your changes and exit from nano. Then
try compiling your program again, as described above. Does
it work now?

As you saw in the previous exercise, you can use the ls

command to see a list of your files. If you do this now, you’ll
see that you’ve created a new file named hello.
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Running your program

You’ve created the file hello.cpp, containing a “recipe” for making
your program, and you’ve used g++ to translate this into binary instruc-
tions the computer can understand, and write these instructions into
the file hello. Now you’re ready to run your program!

Exercise 3: Run it!

Tell the computer to run your program by typing the follow-
ing command:

./hello

You should see the words “Hello World!”. Congratulations!
You’re a programmer.

Figure 1.7: Congratulations!
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Women_holding_parts_of_the_first_four_Army_computers.jpg
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1.5. The Anatomy of a Program
What do the different parts of your simple C program do?

Figure 1.8: The anatomy of our “Hello
World” program.

All but one line of this program is a framework that we’ll use for
most of the programs we write in this book. As you learn more you’ll
understand what each part of this framework does, but for now please
just accept it as it is.

The one line of the program that is of immediate interest is the one that
reads:

printf( "Hello World!\n" );

This is a single statement in the C language, and it tells the computer to
write the text “Hello World!”. The “\n” at the end tells the computer
to go to the next line after it’s written this text.8 8 “\n” means “insert a newline”. As we

go along, you’ll see other similar things
beginning with “\” and controlling how
the computer writes text.What would happen if we left out the “\n”? It would be easier to see

the effect of the “\n” if our program had two printf statements, like
this:

printf ( "Hello World!\n" );

printf ( "...and Dog!\n" );

A program like this, when compiled and run, would print out:

Hello World!

...and Dog!

But if we left off the “\n” in the first printf statement the program
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would print:

Hello World!...and Dog!

See the difference?

printf itself is called a function. Just as functions in algebra may have
arguments, so can C functions. In this case, we’re giving the printf
function one argument: the text to be printed. We’ll see many more C
functions as we go along.

Finally, at the end of our printf statement we see a semicolon. Why is
it there? Because the C language allows us to write our statements on
multiple lines if we want to. We could, for example, have written our
printf statement like this:

printf (

"Hello World!\n"

);

The semicolon at the end tells the C compiler that we’re done with
this statement now, and ready to go on to the next one. Think of the
semicolon as being like the period at the end of a sentence.9 9 Some other computer languages

actually do use a period to indicate the
end of a statement. (Cobol is one of
these.) C doesn’t use a period because it
has another use for that, which we’ll see
later, in Chapter 12.

But what about. . . ?

Could we write something like this?

printf(

"Hello

World!\n"

);

No, it turns out that this won’t work. A broken chunk of quoted
text like this will confuse the C compiler and cause it to refuse to
compile our program.

If we really wanted to break the quoted text across two lines, we’d
need to insert a “\” after “Hello”, like this:

printf(

"Hello\

World!\n"

);

The “\” means “continued on next line”. Note that there can’t be
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any spaces after the “\”, either.

This kind of thing is bad form, though, and shouldn’t be done in a
real program unless there’s a compelling reason to do so. It just
makes our program harder to read, and that’s usually a bad thing.

In fact, if we really wanted to make the program difficult to read,
we could use the “\” to break up other things:

prin\

tf(

"Hello\

World!\n"

};

Now that’s hard to read! Don’t write programs this way. It’s icky!

1.6. Doing Math
Let’s try working with numbers now. Imagine I have $25.00 in my
wallet and $238.00 in the bank. How much money do I have in total?
Let’s ask the computer to do the math for us, like this:

printf ( "Total funds: %lf\n", 25.0+238.0 );

Notice that now we’re giving printf two arguments. The first argu-
ment is some quoted text, as before. But now we’ve added a second
argument (separated from the first by a comma) that looks like an
arithmetic expression. To understand what all of this does, we’ll first
need to know a little more about how printf works.

The first argument given to printf will always be a chunk of quoted
text. Sometimes this will be the only argument. In our “Hello World!”
example, the only argument we gave to printf was the text that we
wanted it to print.

In general, though, you can think of the text in this first argument as a
fill-in form we give printf. (See Figure 1.9.) It can contain placehold-
ers that mark spots where we want printf to figure something out,
and fill in the blanks for us.

In the printf example above, the three characters %lf (percent, l as
in “Lucy”, f as in “Fred”) together form a placeholder, marking a spot
where the computer is supposed to insert a number. More specifically,



32 practical computing for science and engineering

Total funds: 

A number, 
possibly 

containing 
decimals.

Hmmm...

Figure 1.9: The text we give printf is like
a fill-in form.

%lf means “save a spot here for a number that may contain decimal
places”10. We’ll encounter several other placeholders like this later, 10 We’ll discuss what the letters lf

stand for a little later.each of them for a different kind of number (or some other kind of
thing we’d like to print out).

In our example, the second argument tells printf what we want to
insert into the spot reserved by the placeholder. In this case, we give
it the mathematical expression 25+238. The printf function will do
the math for us, fill in the blank, and print out the result.

Let’s look at a slightly less trivial problem (see Figure 1.10). Imagine we
have a linear function, y = 2x + 3, and we want to know what the value
of y will be when x = 4.3. How could we write a simple C program to
tell us the answer?

Here’s one way to do it (notice that the symbol for multiplication in C
is an asterisk):

#include <stdio.h>

int main () {

printf ( "The answer is %lf\n", 2.0 * 4.3 + 3.0 );

}

If you wrote this program, compiled it, and ran it, it would print out
“The answer is 11.6”, which is the correct value of y.11 11 Actually, you’ll see that the program

prints out something like “The answer

is 11.600000”. We’ll see how to
control how many decimal places are
printed later.
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y = 2x + 3

x = 4.3

y = ?

0

5

10

15

20

25

0 2 4 6 8 10

Figure 1.10: A line representing the
equation y(x) = 2x + 3.

printf evaluates the mathematical expression 2.0 * 4.3 + 3.0 to
get the value 11.6, and then inserts this number in place of %lf.

Placeholders like %lf are called format specifiers. They tell the computer
where to insert something and how it should be formatted. We can use
more than one format specifier to insert multiple numbers into the text.
For example:

#include <stdio.h>

int main () {

printf ( "At x=%lf the value of y is %lf\n",

4.3,

2.0 * 4.3 + 3.0 );

}

Note that I’ve broken the line up
because it’s long. This is OK, as long
as I don’t insert a line break in the
middle of a word or a chunk of quoted
text without using a “\” continuation
character.

This program would print “At x=4.3 the value of y is 11.6”.
The first %lf gets replaced with the first number, and the second %lf

gets replaced with the second number. (See Figure 1.11.)

1.7. Variables
When you look at the expression “2.0 * 4.3 + 3.0” do you remem-
ber what the numbers represent? Which is the line’s slope? Which
is the y-intercept? Which is the value of x? If we came back to this
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At x=4.3 the value of y is 11.6

A number, 
possibly 

containing 
decimals.

A number, 
possibly 

containing 
decimals.

Figure 1.11: The printf text can
contain more than one placeholder.

program later, we might not have any idea which number was which.
Let’s get organized!

Here’s another version of the program:

#include <stdio.h>

int main () {

double x;

double y;

double slope = 2.0;

double yint = 3.0;

x = 4.3;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

}

Definitions
of Variables

Now our mathematical expression is “slope * x + yint”, which
should be much easier to understand.

We’ve defined four variables in this program: x, y, slope, and yint.
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A variable is a named box into which we can put a value.12 Variables 12 Variables are stored in the computer’s
memory, which is a temporary storage
area that’s erased whenever you restart
the computer. This is unlike files,
which are permanently stored on the
computer’s hard drive.

in C are similar to variables in algebra, except that there are different
kinds of C variables for holding different kinds of data.

The four lines beginning with the word double define the four vari-
ables we’re going to use. “Defining” the variable means telling the
computer what kind of values you’ll assign to the variable. (In C, you
must define variables before you can use them.) While you’re defining
the variable, you can optionally also give the variable an initial value.
You can see that we’ve done this with the slope and yint variables.

The word double means that these variables will hold “double-precision
floating-point numbers”. Don’t worry too much about what that means
right now. It’s enough to know that these variables will hold numbers
with decimal points in them. Programmers call numbers that contain
decimal places “floating-point numbers.” 13 13 In this book we’ll only use three or

four types of variables, although there
are a lot more than that available.

Once you’ve defined a variable, you can use it in your program. For
example, you can assign a value to it using an equals sign, as in “x
= 4.3”. This statement means “set the value of x equal to 4.3”. The
statement “y = slope * x + yint” does the math on the right-
hand side of the equation and then sets the variable y equal to the
result. Later on, we’ll learn how to ask the user

for numbers, so we’ll be able to ask the
user to enter a value for x, instead of
having the value written explicitly into
the program.

We can use our new variables wherever we previously used numbers.
Going back to the “%lf” format specifier in our printf statements, I’ll
now tell you that “%lf” means “insert a ’double’ number here”. The
letters “lf” stand for “long float”, which is another way of saying
“double-precision floating-point number”.

Finally, notice that we’ve defined our variables near the top of our
program. Variables must be defined before you can use them, and
some C compilers require that you define all variables before you do
anything else in the program. Going back to our recipe analogy, you
might think of these variable definitions as the list of ingredients. After
we’ve listed the ingredients, then we can get down to the business of
describing how to combine them into a tasty dish.

Figure 1.12: “La Tailleuse de Soupe”,
François Barraud (1933).
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:François_Barraud_-_La_Tailleuse_de_Soupe.jpg
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1.8. A Note About Algebra
Let’s pause for a minute and look at the way math is done in C pro-
grams. In the example above, we wrote “y = slope * x + yint”.
This looks an awful lot like equations we’ve seen in algebra.

Figure 1.13: A blackboard used by
Albert Einstein.
Source: Wikimedia Commons

One obvious difference is that we tend to use longer variable names in C
programs than in algebra. When we’re doing algebra, we usually write
equations by hand, either on paper or on a blackboard, and we save
time and effort by using single-letter symbols for variables whenever
possible.

When typing a computer program, it doesn’t take much effort to use
longer, more descriptive names for our variables. This can help prevent
us from getting confused as we’re writing the program, and it makes
it easier for other people (or our future selves) to look at the program
and understand it.

A second, less obvious difference involves the actual meaning of an
expression like “y = slope * x + yint”. In algebra, this expres-
sion would mean something like “I promise you that the value of y is
equal to slope * x + yint.” On the other hand, in a C program,
this expression means “I command you to make y equal to slope * x

+ yint.”

The difference becomes apparent when you encounter an statement
like “x = x + 1” in a C program. This statement would make no
sense in algebra. There’s no value of x for which x = x + 1. But in
C, it makes perfect sense: We’re commanding the computer to give the
variable x the new value x + 1. If x is equal to 3 before this statement,
it should be equal to 4 after the statement.

3
x

3+1 = 4

4
x

Figure 1.14: How the computer
interprets the statement “x = x + 1”.
Remember that a variable in a C
program is just a named storage
location in the computer’s memory. In
this example, there’s a variable named x

that initially contains the value “3”.

If we could look inside a computer’s brain as it acts on the statement
“x = x + 1” we’d see that it first calculates x + 1, saving the result
in a temporary location, then copies the result into the variable x.

In later chapters you’ll find that it’s very important to remember that
the equal sign in statements like this means make the left-hand side
equal to the right-hand side.

In algebra the statements “y = 2x + 3” and “2x + 3 = y” are equivalent,
but not in C. Remember that a C program is like a recipe: it’s a set
of instructions that should be followed in a particular order. “Pour
milk into a bowl” isn’t the same as “pour bowl into a milk”! The latter
doesn’t make any sense, just as the statement “2x + 3 = y” wouldn’t
make sense in a C program.

https://commons.wikimedia.org/wiki/File:Einstein_blackboard.jpg
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1.9. Using Loops
We could use the program above to tell us the value of y at one par-
ticular value of x, but what if we want to look at how y varies as we
change x? It would be nice if our program could print out, say, ten
different x values and the corresponding y values.

We could, of course, do something like this:

x = 1.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

x = 2.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

x = 3.0;

y = slope * x + yint;

printf ( "At x = %lf the value of y is %lf\n", x, y );

et cetera, but it would be really tedious to type all of this. It would also
be hard to change it later if we wanted a different set of x values, or if
we wanted to use a different function for y.

Fortunately, if there’s one thing computers are good at, it’s doing the
same thing over and over. That’s why computers were invented. The
C programming language lets us tell the computer to repeat a task a
given number of times, optionally making small changes each time.

One way to do this in C is by using a “for” statement. Take a look at
Program 1.2, named loop.cpp.

Program 1.2: loop.cpp

#include <stdio.h>

int main () {

int i;

for ( i=0; i<10; i++ ) {

printf ( "%d\n", i );

}

}
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First notice that we’ve defined a variable named “i”. Instead of being
a double, like the variables we’ve used before, this new variable is an
int. That’s short for “integer”, which in the C language means the
variable can hold numbers without decimal places.14 Integers are the 14 You’ll usually use double or int

for numbers in your programs. Use
double for any numbers that might
have a decimal point, and int for
integers.

numbers we use to count discrete things, like apples or cars. They’re the
counting numbers, like 1, 2, 3,... including zero and negative numbers
like -1. We’re going to use the new variable to count how many times
we’ve repeated a part of our program.

Programmers call a repeated part of a program a “loop”. The computer
starts at the “top” of the loop, does a list of tasks that are included
in the loop, then goes back to the top of the loop and (optionally)
starts again.15 In principle, the computer could keep going around and 15 See the lyrics to “Helter Skelter” by

the Beatles.around the loop forever, but we’ll usually want to tell it to stop after it’s
gone around some number of times, or after some other requirement is
met.

You can create a loop in your program by using a “for” statement.
Figure 1.15 shows the anatomy of a for statement:

for (i = 0 ; i < 10 ; i++) {

  printf(“%d\n”, i);

}

Initialize Are we done? Increment

%d is a placeholder for int variables.

%lf is for double variables.

do this 
again...

Figure 1.15: The anatomy of a “for”
loop. The first line marks the top of the
loop. The bottom line marks the end of
the loop. Everything in between is done
repeatedly, some number of times.

In the first line, inside the parentheses after the word “for”, we tell the
computer three things that control how it will travel through this loop
(see Figure 1.16). These are:

1. How to set things up before we start looping.

2. When to stop looping.

3. What changes to make each time we come to the bottom of the loop.
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In Program 1.2, when we say “(i=0; i<10; i++)” we mean:

1. Before you start looping, set i equal to zero.

2. Keep going around the loop as long as i is less than ten.

3. Whenever you get to the bottom of the loop, add 1 to the value of i.

Set i equal to zero

Make i greater by 1

Is i greater than ten?

printf(“%d\n”,i);

Initialize:

Test:

Increment:

Done!

No

Yes

G
o
 a

ro
u

n
d
 a

g
a

in

Figure 1.16: This diagram shows how a
“for” loop works. Notice that if we gave
i a value like 100 in the beginning, the
program would never do the printf.
Instead, it would just skip the loop
entirely. This is important, because later
on we’ll encounter another kind of loop
that will always be acted on at least once.

The mysterious-looking statement “i++” means “set i equal to i +

1”. In C, “++” is the increment operator. (There’s also a decrement operator,
“−−”, that decreases a variable’s value.) The expression “i++” is just a
handy shortcut here. It’s exactly equivalent to saying “i = i + 1”.

In the example program, we just print out the value of i each time
we go around the loop. Notice that, instead of “%lf” in the printf
statement, we use “%d”. The “d” stands for “decimal integer”, and it’s
what printf uses as a placeholder for an integer value. int variables go
with “%d”, and double variables go with “%lf”. These are the only
kinds of numerical values we’ll use for most of the exercises in this
book.
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Exercise 4: Using Loops

As you did before with hello.cpp, create Program 1.2 by
typing it into nano. When you’re done typing, press ˆX to
exit nano. When asked what to call the new program, say
“loop.cpp”. Then compile your new program by typing:

g++ -Wall -o loop loop.cpp

If you see any errors, use nano to correct them, and try
compiling again. When you’ve successfully compiled the
program, run it by typing “./loop”. What do you see? The
program should print out a list of numbers, from zero to
nine.

But what about. . . ?

One more thing you should notice about Program 1.2: Look at
the way we’ve indented the lines. This isn’t necessary, but it’s a
good idea to keep your code neat and readable. Indenting the lines
inside a loop can help you see where the loop begins and ends.
When you write more complicated programs, you’ll find that this
often makes it easier to catch mistakes.

Pay attention to the way all of the examples in this book are
formatted. Even if you don’t use the same “programming style”,
you’ll find it very useful to have a consistent style of some kind
when writing your programs.
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1.10. Calculations Inside a Loop
Now let’s apply our knowledge of loops to the problem of finding the
value of y for several values of x. Program 1.3 shows one way to do it.

Program 1.3: line.cpp

#include <stdio.h>

int main () {

double x;

double y;

double slope = 2.0;

double yint = 3.0;

int i;

x = 0.0;

for ( i=0; i<10; i++ ) {

y = slope * x + yint;

printf ( "%lf %lf\n", x, y );

x = x + 1.0;

}

}

Before we start this program’s “for” loop, we set the value of x to be
zero. Then, each time we go around the loop we calculate the value
of y, using “slope”, “yint” and “x”, and we add 1.0 to the value of
x. The next time around, we use the new x value to calculate a new y

value. After we’ve done this ten times, we stop.

Exercise 5: Doing Math Inside a Loop

As you’ve done before with the programs hello.cpp and
loop.cpp, create the new program line.cpp using nano

and compile it by typing “g++ -Wall -o line line.cpp”.
(If you see any errors, use nano to correct them, and try com-
piling again.) Run the program by typing “./line”. Do
you see what you expect? The program should print out a
list of X and Y values.
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But what about. . . ?

Notice that we change the value of x by saying “x = x + 1.0”.
Could we have used C’s increment operator to do ths same thing,
by just saying “x++” on this line? In principle, yes, that would
work fine, but many programmers prefer not to use “++” with
numbers that have decimal places (“floating-point” numbers, as
programmers call them). As we’ll see later, we sometimes need to
keep in mind the limits of the computer’s abilities. A computer
can’t store all of the infinitely-many decimal places that a real
number actually has. Instead, the computer needs to truncate the
number to some manageable length. For example, instead of

3.14159265358979323846264338327950288419716939

9375105820974944592307816406286208998628034825

3421170679821480865132823066470938446095505822

3172535940812848111745028410270193852110555964

4622948954930381964428810975665933446128475648

2337867831652712019091... et cetera

the computer might approximate the number as 3.14159265358979.
Because of this limitation on the precision of real numbers, small
errors are introduced into the calculations done by the computer.
A result that should be (by our knowledge of arithmetic) equal
to 1.0000000..... will turn out to be (as seen by the computer)
1.0000000000001 or 0.999999999999. This kind of thing makes com-
puter programmers cautious when incrementing, decrementing or
(especially) comparing floating-point numbers. Avoiding the use
of “++” with floating-point numbers helps us keep in mind that
they aren’t the same as counting numbers, where the computer
always has a well-defined, exact, “next number” to go to.
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1.11. Graphing Our Results
Program 1.3 should print out a list of X and Y values, but how do we
know they’re the right ones? How do we know that our program is
doing the right thing? The formula for calculating the Y values was y
= slope * x + yint, which is the equation of a straight line. One
way to check our program’s output would be to see if the X,Y values it
generates fall on a straight line.

Exercise 6: Making Graphs

To do this, we can use a third command-line utility (in
addition to nano and g++, which we’ve already used) and
a particular command-line trick. The command-line trick is
this: Instead of just typing “./line” to run your program,
type:

./line > line.dat

You won’t see anything printed on your screen. Instead, the
things that the program would otherwise have printed will
be saved in a new file named line.dat.

The new command-line utility we’ll use is gnuplot, which
will let us make graphs of data. To start it, just type “gnuplot”.
You’ll see something like this:

G N U P L O T

Version 4.2 patchlevel 6

gnuplot>

The “gnuplot>” at the bottom means that gnuplot is waiting
for us to give it a command. Now type:

plot "line.dat"

This should show you a nice straight line of points, more or
less like the picture in Figure 1.17.

If we’d like to draw a line through the points, we could type:

plot "line.dat" with linespoints

(“with linespoints” means draw a symbol at each point,
and draw a line connecting them.)

When we’re done with gnuplot, we can leave it by typing
“quit”.
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Figure 1.17: The result of typing plot

"line.dat" in gnuplot.
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Figure 1.18: The result of typing plot

"line.dat" with linespoints in
gnuplot.
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1.12. More About Variables
To understand how your programs use variables, you need to know a
little about the computer’s memory.

In computer terminology, memory is a temporary storage area that
programs can use. It’s a kind of scratch pad on which the program
can scribble some information that it will need while it’s working. The
computer’s memory consists of may bits that be turned on or off. (Think
of a long, long line of thousands of light switches.)

When you use a variable in a program, the computer reserves some of
those bits for storing whatever value you want to assign to that variable
(for example, the number “11.6”). How many bits are reserved, and
how they’re used, depends on the type of variable.

Figure 1.19: How a computer might
store three variables in memory.

Figure 1.19 shows how the storage space for variables might be arranged
if you wrote a program with a double variable named “velocity”,
and two int variables named “i”, and “number”. (Remember that a
byte is just a group of eight bits.) Different types of variables are given
different amounts of space. Bad things can happen if you try to put the
wrong type of data into a variable.

For example, what would happen if you tried to stick a double value
into the variable named “i”, above? If you succeeded, the data would
spill over into the adjoining variable (“number”) and corrupt it.

The C compiler tries to prevent this sort of thing two ways:

• It warns you when try to stick the wrong type of data into a variable,
and

• It tries, when reasonable, to re-cast your data into a format that’s
appropriate for the variable into which you’re putting it.

This re-casting can sometimes cause unexpected effects. For example, if
you try to set an integer variable equal to “3.1415”, the computer might
just automatically drop the decimal part and set the variable equal to
“3”. We’ll look at this in more detail later.
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1.13. Fibonacci Numbers

5×5

8×8

13×13

21×21

A spiral made from squares whose
sides are Fibonacci numbers.
Source: Wikimedia Commons

Let’s use our new-found loopy powers to do a little more math. The
Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13, ..., where each
term in the sequence is the sum of the preceding two terms. This
sequence pops up in all sorts of unlikely places in mathematics. It’s
named for the 13th Century mathematician Leonardo of Pisa (later
nicknamed “Fibonacci”), who used the sequence in describing the
month-by-month growth of a population of rabbits.

We might write a program to print the first few numbers of the sequence
like this:

Program 1.4: fib.cpp

#include <stdio.h>

int main () {

int a = 0;

int b = 1;

int c;

int i;

printf( "%d\n", a );

printf( "%d\n", b );

for ( i=0; i<10; i++ ) {

c = a + b;

printf( "%d\n", c );

a = b;

b = c;

}

}

These variables will hold three succes-
sive terms of the sequence at a time.
We’ll start with the numbers 0 and 1.

Print the first
two numbers.

The next number is the sum
of the preceding two numbers.

b and c become the new first
and second numbers, then we

just keep repeating this process.

The program progresses by keeping track of three numbers at a time,
in the variables named a, b, and c. It starts with 0 and 1 in a and b,
respectively, then calculates the next number, c, by adding them. After
printing the value of c the program “shifts” the numbers by one space,
giving a the value of b, and b the value of c. Then it goes around the
loop again, and comes up with a new value for c, the next number in
our sequence.

If you compile program 1.4 and run it, it should print the first ten

https://commons.wikimedia.org/wiki/File:FibonacciSpiral.svg
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Fibonacci numbers, like this:

0

1

1

2

3

5

8

13

21

34

55

89

A statue of Leonardo of Pisa, also
known as “Fibonacci”.
Source: Wikimedia Commons

Great! Since that went so well, what would happen if we tried to print
more terms in this sequence? We could modify the “for” statement to
make it do 100 terms instead of ten:

for ( i=0; i<100; i++ ) {

If we compiled this new version of the program and ran it, we’d see
that things start off fine, but about halfway through something goes
wrong:

...

165580141

267914296

433494437

701408733

1134903170

1836311903

-1323752223

512559680

-811192543

-298632863

...

What’s going on here? If you refer back to Figure 1.19 in the preceding
section, you might find a clue. Computers can’t store infinitely big
numbers. Each kind of variable has only a limited amount of space in
the computer’s memory. If the value keeps getting bigger and bigger,
eventually it will be too big for the computer to store in that variable,
and strange things will happen. But don’t despair! The “int” and
“double” variables we’ll be using for most of our programs will be
plenty big enough to hold the numbers we need, and later in the
book, in Chapter 13, we’ll see some techniques for storing humongous
numbers.

https://commons.wikimedia.org/wiki/File:Statua_di_leonardo_fibonacci,_matematico.JPG
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Practice Problems

Here’s a picture of a “computer”. That
was Katherine Johnson’s title when she
worked for NASA. She was one of
many mathematicians who did, by
hand, the tedious calculations required
to successfully navigate spacecraft into
orbit and back to earth. She worked on
the Apollo 11 mission to the moon, and
her calculations helped bring the
aborted Apollo 13 mission safely back
to earth. Even after electronic
computers came into use, human
computers like Katherine Johnson were
asked to check the results that came out
of their electronic counterparts.
Source: Wikimedia Commons

1. Write a program like Program 1.1 (hello.cpp), but instead of
“Hello World!” make your program print your name. Call the
program myname.cpp.

2. Write a program like Program 1.1 (hello.cpp), but instead of
writing “Hello World!” make your program print the following
address:

Mr. Sherlock Holmes

Consulting Detective

221b Baker St.

London NW1 6XE

The address should appear exactly as it’s written above. Remember
that you can use “\n” to move to the beginning of a new line. Call
your program sherlock.cpp.

The Sherlock Holmes Museum at 221b
Baker Street.
Source: Wikimedia Commons

3. Write a program that has a double variable named age. Give
the variable a value equal to your current age, in years. Have the
program write out the text “When I am twice my current age I will
be ... years old”, where “...” is replaced by twice your current age,
as calculated by the computer. Call the program myage.cpp.
Hint: Remember that printf uses %lf as a placeholder for double
values, as shown in Section 1.6.

4. Repeat the previous problem, but this time have the program write
out the text “When I was half my current age I was ... years old”,
where “...” is replaced by half your current age, as calculated by the
computer. Call the program halfage.cpp. (Note that the symbol
for division in C is “/”.)
Hint: Remember that printf uses %lf as a placeholder for double
values, as shown in Section 1.6.

5. Using Program 1.2 (loop.cpp) as a model, write a program that
prints out the words “I’m a programmer!” ten times. Call the new
program cheers.cpp. (Check to make sure your program prints
the text the correct number of times.)

6. Using Program 1.2 (loop.cpp) as a starting point, write a program
called countdown.cpp. Change just the printf line to make the
new program print the following:

10...9...8...7...6...5...4...3...2...1...

Hint 1: Remember that you can use an arithmetic expression in a
printf statement, as shown in Section 1.6.
Hint 2: Remember that you can add or remove \n in a printf

https://commons.wikimedia.org/wiki/File:Katherine-johnson.jpg
https://commons.wikimedia.org/wiki/File:Sign_at_Sherlock_Holmes_Museum_in_Baker_St_221b.jpg
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statement to control whether it goes to the next line after printing
some text, as shown in Section 1.5.

7. What if we wanted Program 1.2 (loop.cpp) to start at 100 and count
to 1000 by hundreds (100,200,300,... up to 1000)? How could we do
that without changing the “for” line in this program? Write a new
program with these changes, and call it loop2.cpp.

8. Using Program 1.2 (loop.cpp) as a model, write a program that
prints out a list of all the numbers from zero to 999 and the cube of
each of these numbers. The format of the output should be lines like
this:

0 0

1 1

2 8

3 27

4 64

...

where the second number in each line is the cube of the first number.
Hint: One way to cube a number in C is simply to multiply it by
itself twice, like this: 2*2*2. Call your program cubes.cpp.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0  100  200  300  400  500  600  700  800  900 1000

"cubes.dat"

Figure 1.20: The output of your cubes
program plotted by gnuplot.

You can use gnuplot to check the program’s results. First, send the
program’s output into a file, like this:

./cubes > cubes.dat

Then start gnuplot and give it the command:

plot "cubes.dat" with lines

The result should look like Figure 1.20.

9. Using Program 1.3 (line.cpp) as an example, write a program
named curve.cpp that prints values of x between -50 and 50 (in
increments of 1), along with the value of y = 200 + x2/3 for each x

value. (Note that the symbol for division in C is “/”.)

Note that you won’t need the variables slope and yint from Pro-
gram 1.3. You’ll also need a slightly different for statement, since
this loop will cover 100 values instead of only 10. You might find it
useful to know that one way to square a number in C is simply to
multiply it by itself, like “x*x”.

The program should print the x and y values in two columns, like
this:

-50.000000 1033.333333

-49.000000 1000.333333

-48.000000 968.000000
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-47.000000 936.333333

-46.000000 905.333333

...

 200
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-50 -40 -30 -20 -10  0  10  20  30  40  50

"parabola.dat"

Figure 1.21: The output of your curve
program plotted by gnuplot.

You can use gnuplot to check the program’s results. First, send the
program’s output into a file, like this:

./curve > curve.dat

Then start gnuplot and give it the command:

plot "curve.dat" with lines

The result should look like Figure 1.21.

10. Make a new program named pell.cpp. Start by copying Program
1.4 on Page 46. Then modify the program so that it:

(a) Starts with a = 2 and b = 6, and

(b) Instead of adding the preceding two numbers, as Program 1.4
does, add the first number to twice the second number.

When you compile and run your program it should print a sequence
of numbers like 2, 6, 14, 34, 82, .... These are the “companion Pell
numbers16”. They’re related to the Fibonacci numbers, and can be 16 See this Wikipedia article.

used to find approximate values of the square root of 2.

https://en.wikipedia.org/wiki/Pell_number
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Writing Pretty Programs

The C programming language gives you a lot of freedom in how you
write your programs. There aren’t any rules about how lines should be
indented, for example, and you can choose to write long statements as
one long line or break them up over multiple lines. Two programs that
do exactly the same thing can look very different. For instance, here’s
another way we could have written Program 1.3 (line.cpp):

Figure 1.22: The Cheyenne or Arapaho
woman named Pretty Nose was a war
chief who fought at the Battle of Little
Bighorn. Her grandson, Mark Soldier
Wolf, was a U.S. Marine who fought in
Korea. Pretty Nose was 101 years old
when he returned home, and greeted
him with a war song.
Source: Wikimedia Commons

#include <stdio.h>

int main () { double x; double y; double slope = 2.0;

double yint = 3.0; int i; x = 0.0;

for ( i=0; i<10; i++ ) {y = slope * x + yint;

printf ( "%lf %lf\n", x, y ); x = x + 1.0;}}

I think you’ll agree that this is harder to read than the earlier version.
Here are four rules for writing pretty programs:

Rule 1: Use Indentation
For making your programs pretty, the most important thing you should
remember is that programs are made out of parts that can hold other

parts inside them. When writing a program we use indentation to make
it clear that some parts are inside of others17 17 You’ll find lots of other tips for

writing pretty programs here:
https://www2.cs.arizona.edu/ mccan-

n/indent_c.html.In a C program, curly brackets tell the computer that something is
contained inside something else. For example, Program 1.3 consists of
a main program that has a for loop nested inside it. The statements
inside the for loop are almost like a little program that the main
program runs ten times:

#include <stdio.h>

{

Main Program
{

A for Loop
}

The Rest of the Main Program

}

https://commons.wikimedia.org/wiki/File:Arapaho_woman_Pretty_Nose,_1879,_restored.jpg
https://www2.cs.arizona.edu/~mccann/indent_c.html
https://www2.cs.arizona.edu/~mccann/indent_c.html
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As you’re writing your programs, when you see an opening bracket,
{, start indenting. When you see a closing bracket, }, stop indenting.
If you’re in an already-indented section and you see another opening
curly bracket, add more indentation:

Figure 1.23: Curly brackets are also
called “braces”, a word that originally
meant “arms”, as in “embrace”. The
curly brackets in our programs embrace
the statements they enclose.
(Louise Élisabeth Vigée Le Brun,
Self-portrait with Her Daughter, Julie, c.
1789).
Source: Wikimedia Commons

#include <stdio.h>

int main () {

double x;

double y;

double slope = 2.0;

double yint = 3.0;

int i;

x = 0.0;

for ( i=0; i<10; i++ ) {

y = slope * x + yint;

printf ( "%lf %lf\n", x, y );

x = x + 1.0;

}

}

It doesn’t matter how much space you use for indentation. Some
people like to use a tab for each level of indentation. Other people
prefer something “shallower”, maybe only a couple of spaces. Either
way is OK. Just be consistent inside each program you write.

Rule 2: Group Variable Definitions
At this stage in your programming career, I recommend that you
define all variables at the top of your programs, right under the
“int main ()” statement. Later on you’ll learn that C++ allows you
to define variables anywhere in a program, and there are advantages to
using that ability, but pure C compilers don’t allow this. If you want
your programs to be as portable as possible, stick to defining variables
at the top for now. This also gives you one handy place to look to see
your variable definitions.

https://commons.wikimedia.org/wiki/File:Elisabeth_Vigée-Lebrun_-_Self-Portrait_with_Her_Daughter,_Julie_-_WGA25083.jpg
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Rule 3: Use Comments
“Comments” are text that you put into your program to explain what
the program does, tell people who wrote the program, give advice
about how to run the program, warn about copyrights and patents,
or anything else you want to say. Comments are just ignored by the
compiler, so they don’t affect the way your program runs. As far as the
compiler is concerned, the comment isn’t even there.

Figure 1.24: Source: Wikimedia Commons

The g++ compiler lets you add comments to your program in a couple
of ways. Here’s one of them:

#include <stdio.h>

int main() {

// This program was written by Bryan Wright.

int i;

for (i = 0 ; i < 10 ; i++) { // Start loop.

printf("loop number %d\n", i);

}

}

Almost any text between a double slash (//) and the end of the line
is a comment. I say “almost” only because this doesn’t work inside
quotes, so that:

printf("Hello World! // and some other stuff");

would print out “Hello World! //and some other stuff”.

The second way to add comments is an older one that will work in
any compiler that understands C or C++, and it has the advantage
that comments can extend over multiple lines. Look at the following
example:

#include <stdio.h>

int main() {

int i;

/* This program was written by Bryan Wright.

Copyright 2015.

All rights reserved.

Seriously. I'll call my lawyer.

Don't mess with me. */

for (i = 0 ; i < 10 ; i++) {

printf("loop number %d\n", i);

}

}

https://commons.wikimedia.org/wiki/File:Visitors'_comments,_Kiasma,_Museet_for_Nutidskonst,_Helsingfors.jpg
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Any text between /* and */ is a comment. One caveat is that you can’t
have a comment inside another comment, so something like:

/*Some words /* and some more words */and the end */

would cause the compiler to complain, and refuse to compile your
program.

Comments are a great way to make your program more readable, but
they’re also very useful for temporarily removing parts of your program.
If the program contains a line that we want to keep, but temporarily
disable, we can just put a “//” at the beginning of the line. You’ll find
that this can help you find problems in your programs. If something
isn’t working right, you can selectively turn off parts of the program to
help you find the problem.

Rule 4: Look Around You18 18 Not to be confused with the BBC
series of the same name, which you
should watch if at all possible:

https://www.youtube.com/watch?v=gaI6kBVyu00

It’s possible that someday you’ll join a research group or a business
where other people have already written lots of programs. When
you start contributing your own programs, it’s important that your
programming style matches the stylistic conventions that are already in
use. If everybody uses tabs for indentation, you should probably do so,
too. This is especially important if you start modifying programs that
other people have written.

Figure 1.25: Now you’re programming
with style!
(Fred Astaire and his sister Adele cutting
a rug in 1921.)
Source: Wikimedia Commons

https://www.youtube.com/watch?v=gaI6kBVyu00
https://commons.wikimedia.org/wiki/File:AdeleFred1921.jpg


2. Random Numbers and

Simulations

2.1. Introduction

A weather forecast.
Source: NOAA

Some of the world’s most powerful computers and most sophisticated
software exist for the purpose of telling you whether you need to
carry an umbrella tomorrow. Weather predictions demand extreme
computing power. These predictions are made by simulating the earth’s
atmosphere. They begin with current weather conditions (temperature,
pressure, humidity, wind speed) at many locations around the world
and at different heights within the atmosphere. Then they approximate
the atmosphere by pretending it’s made of millions of discrete “cells”,
and the behavior of each of these cells is simulated as it changes over
time. Simulations like this allow us to find approximate answers to
problems that would be difficult or impossible to solve exactly.

Computer-generated trees.
Source: Wikimedia Commons

Computer simulations often make use of random numbers. If you’ve
ever played a video game (or watched a movie with computer-generated
special effects) you’ve seen images made with the help of random
numbers. The trees in a video game forest probably aren’t drawn by
hand. They’re generated from a recipe that uses random numbers to
decide where to put the branches and leaves, how tall the tree is, and
its location in the forest.

Simulations can let us take random numbers, combine them with a few
simple rules that describe how neighboring components interact with
each other, and turn that into a prediction about the complex behavior
of a large system.

A computer simulation of twisted
magnetic fields in the Sun’s
atmosphere.
Source: Tim Sandstrom, NASA/Ames

In this chapter we’ll learn how to create programs that use random
numbers to simulate processes in the real world.

http://www.noaa.gov
https://commons.wikimedia.org/wiki/File:Dragon_trees.jpg
http://www.nas.nasa.gov/SC14/demos/demo21.html
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2.2. The Code Development Dance

Dance in the Moonbeam by Theodor
Kittelsen.
Source: Wikimedia Commons

In the last chapter we saw how to create programs using an editor and
a compiler. The process of creating a program is usually a loop, like
the loops we created inside our programs. We start out by writing
some statements in the C language and saving them into a file, then we
compile the file and run the resulting binary version of the program.
If the program doesn’t do what we want it to do, we go back and edit
some more, then try again until we have a working program. I call this
process “The Code-Development Dance” (see Figure 2.1).

Figure 2.1: The Code-Development
Dance

No matter how far you go in programming, you’ll still follow this same
process while developing programs. Programmers often refer to the instruc-

tions in a computer program as “code”.
The C language statements you’ve
written are called “source code” and the
binary files created by the compiler are
called “binary code”

In the exercises that follow, we’ll be working on two new programs. In
each case, we’ll start out with a simple version of the program, then
make improvements. Each time we change something, we’ll go through
the process of editing our program, compiling it, and running it. Refer
back to Figure 2.1 if you need help.

2.3. Using the rand Function
Take a look at Program 2.1, named rand.cpp. This program is similar
to the loop programs we’ve written previously, but it introduces two
new things. First, at the top of the program there’s an extra #include
statement. Second, the program makes use of a new function, called
rand.

https://commons.wikimedia.org/wiki/File:Dans_i_Maaneglans.jpg
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Program 2.1: rand.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

int main () {

int i;

for ( i=0; i<10; i++ ) {

printf ( "%d\n", rand() );

}

}

Notice that rand is a function, like
printf, but it’s a function that takes
no arguments. It just generates random
numbers out of nothing.

Exercise 7: Random Numbers

Write and compile Program 2.1, using nano and g++, then
run it to see what it does.

You should find that the program generates a list of seem-
ingly random numbers. That’s the whole purpose of the
rand function. Each time your program uses rand, it gives
you a different number.

Try running your program several times. Do you notice
anything surprising?

Here’s a useful tip: If you want to run
your program again without having
to type “./rand”, you can use the up
arrow key on the keyboard to bring
back commands you’ve used before.
Just keep pressing the up arrow until
you see the command that you want to
re-do, then press enter to repeat that
command. You can also use the left
and right arrow keys to move back and
forth in what you’ve typed and make
changes before you press enter.

Before we can use rand, we need to add the extra #include statement
at the top of the program. This statement tells the C compiler some
necessary information about the rand function. The first #include
statement, which we’ve used in our earlier programs, provides the
compiler with information it needs in order to use the printf function.
We’ll learn more about these #include statements in later chapters.

2.4. Making it Better
If you run Program 2.1 several times, you should find that, although
the numbers look random, you get the same set of numbers each time
you run the program. That doesn’t seem very random, does it? Let’s
try to do better. Take a look at Program 2.2.

In Program 2.2 we’ve added two more lines. Before the “for” loop
there’s now a cryptic-looking statement involving two new functions,
srand and time. Then, at the top, we’ve added yet another #include
statement.
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Program 2.2: rand.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

srand(time(NULL));

for ( i=0; i<10; i++ ) {

printf ( "%d\n", rand() );

}

}

Exercise 8: More Random!

What do these changes do? Let’s try it. Remember that you
can modify your program by typing “nano rand.cpp”,
then make your changes, and press Ctrl-X to save your
changes and exit nano.

Edit your rand.cpp program, compile it again and then try
running it several times. (Wait at least one second between
tries.) You should now see that you get a different set of
numbers each time you run the program. That’s great, but
how did it happen?

2.5. Pseudo-Random Numbers
Let’s think about what we mean by “random”. If we roll a fair die, it
should be impossible to predict which number will come up. Even
if we roll the die many times, the outcome of the next roll should be
unpredictable and independent of all the previous rolls. If the numbers
are really random, it should be impossible to predict what the next
number will be.

Rolling a fair six-sided die will give you
a truly random number between 1 and
6, inclusive.
Source: Wikimedia Commons

It’s not possible to generate truly random numbers using only a com-
puter program. A function like rand can ultimately only do math,
and we can expect that the same set of mathematical operations will
always give the same answer. The rand function starts with an initial
number (called a “seed”) and then just does some very roundabout
calculations that give us another number that has no obvious relation
to the preceding number. Thereafter, each time we use rand in our
program it builds on the number it had before.

https://commons.wikimedia.org/wiki/File:Seven_5732852.jpg
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Our first program gave us a chain of seemingly random numbers, but
because the seed gets set to the same value each time we start the
program, the list of numbers was always the same. The second version
of the program sets the seed to a different value each time we run the
program. It does this by using the computer’s clock. Whenever we
run Program 2.2 the seed is set to the current time, expressed as the
number of seconds that have elapsed since January 1, 1970.1 That’s

1 This is why I told you to wait at least
one second between tries. Otherwise
you might run the program twice with
the same seed, and get the same set of
numbers.

what “srand(time(NULL))” does. The srand function sets the seed
used by rand. The expression “time(NULL)” gives us the time. The
extra #include statement tells the compiler what it needs to know in
order to use the time function.

Even with this change, it’s important to know that if your program
generates millions or billions of numbers, rand will eventually start
repeating itself. (See Figure 2.2.)

Figure 2.2: These two images show the
output of a bad random number
generator (top) and a better generator
(bottom). The lines in the top image
indicate that the generator soon starts
repeating the same set of numbers. The
generator used for the bottom image
goes much longer without repeating.

Functions like rand are called “pseudo-random number generators”
(PRNGs). The numbers they generate aren’t really random, but they’re
good enough for many purposes. Some computers now include a
device called a “true random number generator” (TRNG). These devices
generate random numbers by observing real physical processes, such
as thermal noise. They effectively roll real miniature dice to generate
their random numbers. TRNGs are becoming more important because
good random numbers are essential to cryptography.

2.6. Random Numbers Between Zero and One
You’ve probably noticed that the numbers generated by rand are large
integers. That’s fine for some things, but programmers often want to
generate random real numbers that fall in the range between zero and
one (for reasons that will soon become apparent). How can we do this
using rand? Take a look at Program 2.3.

The rand function generates integers between zero and a large number
called RAND_MAX. RAND_MAX is one of the things defined when we say
#include < stdlib.h >.2 If you’re curious, you could print out the

2 The numerical value of RAND_MAX
may vary, depending on what version
of the C compiler you use.

value of RAND_MAX with a statement like:

printf( "%d\n", RAND_MAX ).

Program 2.3 introduces a new variable, x. We’ll want x to be a random
number between zero and one, so this variable can’t be an integer.
Instead, we’ll make it a double.3 We calculate the value of x by 3 See Chapter 1.
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Program 2.3: rand.cpp (Version 3)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double x;

srand(time(NULL));

for ( i=0; i<10; i++ ) {

x = rand()/(1.0 + RAND_MAX);

printf ( "%lf\n", x );

}

}

getting a random integer from rand and dividing that number by
1.0 + RAND_MAX. Since the numbers generated by rand are always
between zero and RAND_MAX, x should always be between zero and
something slightly less than one4. 4 Why don’t we want to go all the way

to one? We’ll see the benefits of that in
a later chapter. For now, don’t worry
too much about it. Since RAND_MAX is a
very large number, the biggest numbers
we generate will be very close to one
(less than a billionth smaller).

Note that it’s important to say 1.0 + RAND_MAX here instead of
1 + RAND_MAX. To understand why, we have to think about the way C
does arithmetic with integers. RAND_MAX and the numbers generated
by the rand function are integers.

When C divides one integer by another, it assumes that you want the
result to be an integer, too. If the result were equal to 0.7, the computer
would drop everything after the decimal point and just leave zero. Since
RAND_MAX is an integer, C would see the expression 1 + RAND_MAX

as an integer, and rand()/(1 + RAND_MAX) would always be zero.
By just saying 1.0 instead of 1, we give C a clue that we want to keep
decimal places in our results.

Exercise 9: Making Real Numbers

Try modifying your program so that it looks like Program
2.3. Compile it, run it, and look at the results. You should
now see a list of numbers that are all between 0 and 1.
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2.7. Random Integers Between Some Limits
Sometimes we want to generate a random integer between some mini-
mum and maximum values. For example, maybe we want to simulate
rolling a six-sided die, so we want to generate numbers between one
and six.

We can do this by starting with a random real number between zero
and one, as described in the preceding section. For example, we might
have a double variable named x in our program, and a line that says:

x = rand()/(1.0 + RAND_MAX);

That would give x a random value between 0 and 0.9999999. . . 5. We 5 It never quite gets to 1.0 because the
maximum value returned by rand is
RAND_MAX and we’re dividing by 1.0

+ RAND_MAX.

could multiply this by six to get a number between 0 and 5.9999999. . . .
Let’s create a new double variable named y that does that:

y = 6 * x;

C provides us with a way of chopping the decimal part off of a number.
All we need to do is put (int) in front of the value. Let’s modify our
program so that we have an integer variable named i instead of the
double variable named y:

i = (int)( 6 * x );

Notice that we’ve put parentheses around 6 * x so that (int) ap-
plies to the whole thing. Otherwise, it would just apply to 6. Be-
fore the (int) is applied, we have a random number between 0 and
5.9999999. . . . The (int) chops off the decimals and leaves us with a
number between 0 and 5.

If our goal is to generate a number between 1 and 6, we just need to do
one more thing: add 1 to the value of i.

i = 1 + (int)( 6 * x );
Dice come in many shapes. Often
they’re shaped like one of the five
platonic solids. These are the only
regular convex polyhedra that are
possible in three dimensions. In four
dimensions there are six such shapes,
but in five and higher dimensions, there
are only three. See this excellent video
by Carlo Sequin for some fun with
higher-dimensional “polytopes”:
https://www.youtube.com/watch?v=2s4TqVAbfz4.
Source: Wikimedia Commons

What if we wanted numbers between 2 and 7 instead of 1 and 6? Then
we’d just need to change one thing:

i = 2 + (int)( 6 * x );

Notice that the multiplier, 6, didn’t change. This is because the our new
range still includes six possible values. Now they’re 2, 3, 4, 5, 6, and 7.
In general, if we want integers between nmin and nmax, the number of
values will be nmax − nmin + 1.

https://en.wikipedia.org/wiki/Platonic_solid
https://en.wikipedia.org/wiki/Polytope
https://www.youtube.com/watch?v=2s4TqVAbfz4
https://commons.wikimedia.org/wiki/File:Platonic_Solids_Transparent.svg
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So, if we want to get a random integer between min and max we can
do it like this:

nvals = max - min + 1;

i = min + (int)( nvals * x );

Program 2.4 uses this strategy to generate a random number between 1

and 6.

Program 2.4: diceroll.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

double x;

int i;

int min = 1;

int max = 6;

int nvals;

nvals = max - min + 1;

srand(time(NULL));

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

printf ( "%d\n", i );

}

This program could be modified to generate a random integer in any
range you want, just by changing the values of min and max.

Claus Meyer, 1886, Die Würfelspieler.
Source: Wikimedia Commons

Exercise 10: Gonna Roll The Bones

Write a program based on Program 2.4 that rolls two six-
sided dice and prints (1) the number on each die and (2) the
sum of their two numbers. For example, if both dice roll six,
the sum would be twelve. Run the program several times to
see if you can roll a twelve!

https://commons.wikimedia.org/wiki/File:ClausMeyer-Bild_2564.jpg
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2.8. Writing a Simulation Program
Imagine a rock in a gutter. In this place it rains once per day, and every
time it rains the rock slides some random distance, ∆x, down the gutter.
Assume ∆x is always between zero and 100 cm. Let’s try to simulate For more on stones in gutters, see the

excellent short story “Fall of Pebble-
Stones” by R.A. Lafferty.

this physical system with a computer program, and see how the rock
behaves.

Figure 2.3: A rock, sliding along a gutter.

Program 2.5: gutter.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double delta_x;

double x;

srand(time(NULL));

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x = x + delta_x;

printf ( "%lf\n", x );

}

}

You’ll notice that Program 2.5 is very similar to Program 2.3. The main
differences are that (1) we set the variable x equal to 0.0 before starting
our loop, and (2) each time around the loop we add a random amount
to x. Also, instead of x as our random number, we’ve renamed this

As you saw in Chapter 1, when you
see an expression like x = x+d in a C
program it means “Set the new value
of x equal to the old value plus d”.
Remember that this is a little different
from what you may be used to in
algebra. It might help if you keep in
mind that, in C, the statement x =

1 means “assign the value 1 to the
variable x”. In algebra, on the other
hand, the same statement would mean
“I promise you that x is equal to 1”.

variable delta_x.
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The variable x stores the rock’s current position, in centimeters. It starts
out at x = 0.0. Each time around the loop represents one rainstorm,
which washes the rock a random distance, ∆x, down the gutter. We
want ∆x to be a number between zero and 100 centimeters, so we
calculate it by taking a random number between zero and one (as we
did in Program 2.3) and multiplying that by 100. The new value of x

after the rainstorm is x + ∆x. At the bottom of the loop we print out
the new value of x. The program simulates the movement of a rock as
it slides down the gutter over the course of ten days in this very rainy
location.

Exercise 11: First Gutter Program

Try writing Program 2.5, compiling it, and running it. Do
the values it prints out make sense? Run it several times
(waiting at least one second between tries). You should get
different, but still reasonable, results each time.

Each time you run it, the last number printed by the program
is the stone’s position at the end of day number ten. Do
these numbers seem reasonable? Keep in mind that if the
stone traveled exactly 50 cm each day (halfway between zero
and 100 cm), it would end up 500 cm from the origin at the
end of day ten.

But what about. . . ?

In Program 2.5 we named one of the variables delta_x. What
kinds of names are allowed for variables in the C language?

Allowed Characters:

Variable names can only contain letters (upper- or lower-case),
numbers and the underscore character, “_”. Names must begin
with a letter or an underscore (not a number).

It’s good practice to always use a letter as the first character in
variable names. Leading or trailing underscores are sometimes
used internally by the compiler. If you get into the habit of using
an underscore at the beginning of variable names, you may run
into confusion later in your programming career.

Remember that C is case-sensitive, so that a variable named
Velocity, with an upper-case “V”, is completeley different from
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a variable named velocity. Also, note in particular that spaces
aren’t allowed in variable names.

Maximum Length:

Different versions of the C compiler have different limits on the
maximum length of variable names. The compiler we’re using, g++,
has no limit. In principle, you could give a variable a name that
was thousands of letters long, although this would obviously be
awkward to type! Some C compilers limit variable names to 2,048

characters, and others require that at least the first 31 characters
of each name be different from any other name in your program.
With all of that in mind, it would be a good idea to limit yourself
to variable names that are 31 characters or fewer.

It’s good practice to give your variables clear, concise names like
velocity, width, temperature, et cetera. This helps you re-
member what they’re for, and makes it easier for other people to
understand your program.

Reserved Words:

Some names are simply not allowed. For one thing, you can’t give
your variable a name that’s the same as any of the words that make
up the C language. You couldn’t, for example, name a variable
int, double or for. There are 32 words of this type. For the
record, they are:

auto break case char const continue default do double

else enum extern float for goto if int long register return

short signed sizeof static struct switch typedef union un-

signed void volatile while

You also can’t give your variable the same name as any function
your program knows about. It wouldn’t be allowable to name
a variable printf, for example, in any of the programs we’ve
written so far.

(Note that I’m being careful to say “any function your program
knows about”. You’ll understand what I mean later, when we talk
about libraries of functions.)
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2.9. Some New Arithmetic Operators
The C compiler understands many arithmetic operators. Besides +,−, ∗,
and / there are several “combination” operators that provide shortcuts
for doing common operations. Figure 2.4 shows some of these.

If we say, for example, d += 100, we mean “increment the value of d
by 100”. It’s exactly equivalent to writing d = d + 100, but a little
easier to type. I find that it also helps prevent typing errors, especially The += operator is similar to the ++ op-

erator we’ve been using in “for” loops.
The difference is that ++ increments the
value by 1, but += can increment by any
amount.

with long variable names. Consider the following for example:

somelongname = somelongnome + 10;

Did you catch the typo? If I’d written somelongname += 10 instead,
I’d have one less opportunity to misspell the variable name.

+ a+b Addition

- a-b Subtraction

* a*b Multiplication

/ a/b Division

Arithmetic Operators:

C has many arithmetic operators.  Here are some of them:

Operator Usage Equivalent to

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

decrement a++ → a = a+1

decrement a-- → a = a-1

Some operators let you do 
arithmetic while assigning 
a value to a variable.

Some operators let you do 
arithmetic while assigning 
a value to a variable.

++ and -- do this too:++ and -- do this too:

Figure 2.4: Some of C’s arithmetic
operators.
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2.10. Focusing on the Important Results
What if we’re only interested in the total distance a stone has travelled
at the end of ten days? We can modify our program, as shown in
Program 2.6, so that instead of printing each new position, it only
prints out the final position. As you can see, this just requires us to
move the printf statement outside of the “for” loop.

Note that Program 2.6 also takes advantage of the += operator to make
one of the statements a little shorter. Remember that x += delta_x

does exactly the same thing as x = x + delta_x.

Program 2.6: gutter.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double delta_x;

double x;

srand(time(NULL));

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x += delta_x;

}

printf ( "%lf\n", x );

}

Exercise 12: Let’s Race!

Modify your gutter program so that it looks like Program
2.6. Compile it, and then run it a few times. Each time you
run it, you should see a single number, and you should get a
different number each time (assuming you wait at least one
second between tries, as before). Try racing your stone with
your neighbors!

2.11. Tips for Using Loops
Almost all of the programs we write will use loops. Here are a few tips
that will help keep you out of trouble when using them:
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• Count starting with zero, not one. You could write a “for” loop
like this to count from 1 to ten:

for ( i=1; i<11; i++ )

but you’ll find later that it’s more natural in C to number items
starting with zero instead of one. So, in the programs we’ve been
writing we loop ten times by writing a “for” statement like this,
instead:

for ( i=0; i<10; i++ )

Doing it this way will make things much easier for you in the future.

• Don’t change the value of your counter variable inside the loop.

For example, what would this do?:

#include <stdio.h>

int main() {

int i;

for (i = 0 ; i < 10 ; i++) {

i = 100*i;

printf("loop number %d\n", i);

}

}

(Note the line that reads i = 100*i.)

If you tried it, you’d see that the program only prints out two
numbers, instead of the ten numbers you might have expected. Why
is this? It’s because you’ve changed the value of i inside the loop.

The first time around the loop, the program prints “0”, and the
second time around the loop it prints “100”. So far, so good. But
then the program stops.

This happens because the value of i is now 100, so when we get
back to the top of the loop, the “for” statement sees that “i<10” is
no longer true, and the loop stops.6 6 See the discussion about how “for”

loops work in Chapter 1.

• Finally, don’t assume that your counter variable has a useful value

any place outside its loop. After the loop is finished, does “i”
contain the number of times around the loop, or something more or
less? (Or even something completely different?) The answer can get
complicated. It’s better to assume that you can only trust the value
of the counter variable when you’re inside its loop.
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2.12. Nested Loops
Let’s get back to our gutter program now. Imagine that we draw a
starting line and arrange a bunch of our rocks behind it, ready to
race each other down the gutter like racehorses in their starting gates.
After many rainstorms, the rocks would all be at different locations
somewhere lower down the gutter.

They’d be at different locations because each rock slides a different
random amount during each rainstorm. A few rocks will get lucky and
travel a long way. A few will travel unusually short distances. Most of
the rocks will end up somewhere between these extremes, mounded
up around some average distance.

Does the output of our program match this prediction? If we wanted
something really boring to do, we could run Program 2.6 once for each
rock, write down the results, and then graph them. Computers can
save us that effort, though, and they’re less likely to make the mistakes
we might make while doing the work ourselves.

The inner loop of Program 2.7 is nested
inside the outer loop, like these Russian
Matryoshka dolls.
Source: Wikimedia Commons

We can modify our program so that it effectively runs the simulation
many times. To do this, we’ll need to add another loop. Take a look at
Program 2.7.

Program 2.7: gutter.cpp (Version 3)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

int j;

double delta_x;

double x;

srand(time(NULL));

for ( j=0; j<10000; j++ ) {

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x += delta_x;

}

printf("%lf %d\n", x, j);

}

}

Nested
Loops

Changes from
Program 2.6 are
shown in bold.

https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg
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The new loop wraps around the loop that was already there. (We say
that the old loop is “nested” inside the new loop.) Each time we go
around the new loop we’ll simulate another stone washing down the
gutter for ten days. The variable i counts the number of rainstorms and
j counts the number of stones. The program simulates 10,000 stones!
That would be a lot of work by hand, but it’s trivial for a modern
computer.

The program prints out two numbers7 for each stone: The total distance 7 Notice that our printf statement
here has two placeholders, “%lf %d”,
one for the stone’s final position, which
is a number containing decimal places,
and one for the stone’s starting gate,
which is an integer.

the stone travels, and the number of the stone’s “starting gate”. We
number these gates from zero to 9,999, and use these numbers to
keep track of which stone is which. We use the new variable j to
represent the starting gate number, and this is the counter variable for
the newly-introduced loop.

Each stone will start at the same place, so every time the program
starts a new stone, it resets x (which represents the stone’s position) to
zero. When a stone has been through ten rainstorms, its final position
and starting gate number are printed out, and then the program starts
working on another stone.

Exercise 13: Scattering Stones

Modify your “gutter” program so that it looks like Program
2.7. Compile it, but don’t run it like you’ve run the preceding
programs. Instead, use the trick we saw in Chapter 1 that
lets you send the program’s output into a file, like this:

./gutter > gutter.dat

Now plot your results using gnuplot. Type gnuplot, then enter
the following commands (can you guess what the xrange

command does?):

set xrange [0:]

plot "gutter.dat"

You should see something like Figure 2.5. The horizontal
axis shows how far each stone traveled. The vertical axis
shows which gate the stone started from. As you can see, a
“typical” stone travels about 500 cm, but some stones only
make it to about 200 cm, and some go over 800 cm.

Does Figure 2.5 look the way we’d expect it to? Let’s think about it.
During each rainstorm, a stone travels a random distance between
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zero and 100 centimeters. We’d expect the average distance to be 50

centimeters. So, after ten rainstorms, we’d expect a typical stone would
travel 50× 10 = 500 centimeters. This is the position of the densest part
of Figure 2.5. A maximally sticky stone wouldn’t move at all (travelling
zero centimeters), and a maximally slippery stone would zip through
a distance of 100 × 10 = 1, 000 centimeters. We’d expect our graph
to range from zero to 1,000 centimeters, with a peak at around 500

centimeters, and that’s indeed what it shows.

Figure 2.5: A plot of the results from our
latest version of the “gutter” program.

But what about. . . ?

Sometimes, you’ll make a mistake that causes your program to
keep looping forever. What can you do to stop this?

You can tell the program to stop running by pressing Ctrl-C (hold
down the Ctrl key while pressing the “C” key).

Stopping a runaway program.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Arbuckle_Bros._(3093006195).jpg?fastcci_from=342503&c1=342503&d1=15&s=200&a=list
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2.13. Conclusion
Imagine that we continued to extend and improve our “gutter” program.
We could add the effects of friction, rainstorms of random duration
and strength, the slope of the gutter, and so forth. Eventually, we might
have a program that could realistically simulate erosion, an avalanche
or a mudslide.

Erosion near Bern, Switzerland
Source: Wikimedia Commons

For example, we could modify our program so that the range of random
distances was determined by the duration of the rainstorm, instead
of always being zero to 100 cm. Then we’d generate rainstorms of
random durations and see what happens. By adding more and more
refinements, we can make our simulation’s results similar enough to
reality to meet our needs.

Simulation programs like this allow us to handle large, complex prob-
lems by breaking them up into simple, understandable pieces. They
represent an important computing technique that you can apply to
many problems.

https://commons.wikimedia.org/wiki/File:Erosion_Off-site_Wege013.jpg
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Practice Problems

“Time keeps on slippin, slippin, slippin,
into the future....” Steve Miller in 1977.
Source: Wikimedia Commons

1. As described in Section 2.6, write a program that prints out the value
of RAND_MAX. Call your program printrand.cpp.

2. Write a program named epoch.cpp that prints the following:

Seconds since 1970: ...

Years since 1970: ...

Where the ... is replaced by the current number of seconds and
years since 1970, based on the value returned by the time function,
as described in Section 2.5. Check your program by running it sev-
eral times to make sure that the number of seconds changes as time
passes.
Hint 1: The statement “t = time(NULL);” will store the number
of seconds in the variable t.
Hint 2: Assume that the number of seconds in a year is 60*60*24*365.25.
Hint 3: You’ll probably want to use %lf as the placeholder when
printing the year. Otherwise, g++ might give you warnings or errors.

3. Modify Program 2.4 so that it generates either a zero or a one. Then
modify your new program so that it uses a loop to do this ten times.
The resulting program does the equivalent of ten coin flips, with
zero or one representing heads or tails. Call your new program
coinflip.cpp.

4. Modify Program 2.4 so that it prints out two random digits between
zero and nine. Make the program write the digits side-by-side, like
67 or 03. Call your new program percentile.cpp. If you’ve ever
played a roll-playing game like Dungeons and Dragons you’ve used
ten- or twenty-sided dice to generate pairs of digits like this. In these
games such a pair of dice are called percentile dice. The two digits
they give you are interpreted as a percentage between 00% and 99%.

A 20-sided die shaped like an
icosahedron. Two dice like this were
originally used in Dungeons and
Dragons for rolling percentiles. Later,
they were replaced by two ten-sided
dice. In this author’s opinion, ten-sided
dice are an abomination, since they
aren’t one of the five platonic solids!

5. Each line printed by Program 2.2 shows a single random integer.
Using that program as an example, write a program that prints
out two random integers on each line, separated by a space. Make
the program print 10,000 pairs of integers. Let’s call this program
tworand.cpp. Use the trick you learned in Chapter 1 to send the
program’s output into a file named tworand.dat:

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 0  5e+08  1e+09  1.5e+09  2e+09

Figure 2.6: The output of the tworand
program, plotted by gnuplot.

./tworand > tworand.dat

Check the program’s output by using gnuplot to plot the data in this
file. Start gnuplot and give it the command:

plot "tworand.dat"

https://commons.wikimedia.org/wiki/File:Steve_Miller_in_1977.JPG
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This causes gnuplot to use the two numbers on each line as the x

and y coordinates of a point. You should see a graph that looks like
Figure 2.6.

The tworand program generates a set of random points in the x, y

plane. As we’ll see later (in Chapter 10) this can be very useful.

6. Our gutter programs have a lot of numbers written into them: 10

days, 100 cm, 10,000 trials. If we want to change to, say, 1,000 trials,
we need to find all of the places in the program where we currently
assume a value of 10,000, and change them.

It would be better if these numbers were more easily changed. Can
you rewrite Program 2.7 so that the number of days, the maximum
“slide” in cm, and the number of trials are given by variables defined
near the top of the program?

For example:

int ndays = 10;

double maxslide = 100.0; // in cm.

int ntrials = 1000;

7. Using a nested pair of loops, as described in Section 2.12, write a
program named grid.cpp that prints out the grid shown below:

[0,0] [0,1] [0,2] [0,3] [0,4]

[1,0] [1,1] [1,2] [1,3] [1,4]

[2,0] [2,1] [2,2] [2,3] [2,4]

[3,0] [3,1] [3,2] [3,3] [3,4]

[4,0] [4,1] [4,2] [4,3] [4,4]

Hint 1: Remember that you can leave off \n if you want printf to
keep printing things on the same line.
Hint 2: It’s perfectly OK to use printf to print nothing but a
newline, like this: printf ("\n"); A grid like the one you produce in

Problem 7 might be used to identify the
squares on a Bingo card.
Source: publicdomainpictures.net

8. Make a new program named bingo.cpp that is a modified version
of Program 2.4. The new program should be different from Program
2.4 in two ways: (1) The numbers it prints should be between 1 and
75, inclusive, and (2) instead of printing just one random number, it
should use a pair of nested loops8 to print a grid of random numbers, 8 See Program 2.7 for an example of

nested loops.like a Bingo card. You could use this program to generate Bingo
cards! See the two hints in Problem 7 for advice about how to print
a nice-looking grid. Also, don’t try to make a “Free Space” in the
middle: Just put a number there, like all the other squares.

9. Imagine you have twelve 6-sided dice. Now roll all the dice at once
and add up the numbers they show. This should give you a sum

https://www.publicdomainpictures.net/en/view-image.php?image=268252&picture=one-bingo-card
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between 12 and 72. Write a program named 12dice.cpp that rolls
twelve dice and prints their sum. Have the program repeat this
10,000 times. Run the program like this to send its output into a file
named 12dice.dat:

./12dice > 12dice.dat

Now start gnuplot and give it the command plot "12dice.dat".
You should see a graph like Figure 2.7. Notice that the numbers
tend to cluster around a value of 42. You might expect this, since
the average value for rolling a single die is (6 + 1)/2 = 3.5 and
12 × 3.5 = 42.  20
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Figure 2.7: The sum of twelve dice,
repeated 10,000 times. They cluster
toward the center due to something
mathematicians call the Central Limit
Theorem. We’ll talk more about this in
Chapter 7.

Hint: Use a variable named sum to hold the sum of the 12 dice. Each
time you start rolling the dice, remember to set sum to zero at the
beginning. Then just add the value of each die to sum until you’ve
added all twelve numbers. Print sum, then go on to the next roll.

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem




3. Writing Flexible Programs

3.1. Introduction

In some situations, recompiling the
program to change its settings isn’t an
option.
Source: Wikimedia Commons, Wikimedia Commons

The programs we’ve written so far have have all been designed to do one
predetermined thing. If you wanted to change the behavior of one of
these programs, you’d need to edit it and re-compile it. If you had to do
this often, it would be rather inconvenient, and if you were a software
vendor you almost certainly wouldn’t ask your customers to edit and
re-compile your program every time they needed to change a setting.
(A vendor might not even want to give customers the source code for
the program. Having the source code would allow the customers, or
other vendors, to write their own programs, eliminating demand for
your product!)

In this chapter, we’ll see how you can write flexible programs that
behave differently depending on input from the user.

3.2. Reading Input from the User
C provides a function called scanf that can read information typed
by the person running your program. The scanf function causes your
program to pause until the user has entered some information. After
the information has been supplied, it’s put into variables for later use,
as illustrated in Figure 3.1.

Take a look at Program 3.1. This is a pretty useless program, but it
illustrates how scanf works. When the program is run, it asks the
user to enter a number1, and then just tells the user what number was 1 Remember that printf uses %d for

int variables and %lf for double
variables. You’ll see that scanf does
the same.

entered.

As you can see, the scanf function looks a lot like printf. The biggest
difference is the ampersand (“&”) in front of the variable i. For now,

https://commons.wikimedia.org/wiki/File:Cat_scan.jpg
https://commons.wikimedia.org/wiki/File:Defense.gov_News_Photo_110426-N-0569K-005_-_Seaman_Nathalie_G._Sanchez_operates_an_advanced_combat_direction_system_console_in_the_commanding_officer_s_tactical_plot_room_aboard_the_aircraft.jpg
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Figure 3.1: The scanf function acts like
a scribe. It takes the information you
give it and puts that information into
variables in your program. We can only
speculate about its internal
commentary...
Source:Die Gartenlaube (1875), Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Die_Gartenlaube_(1875)_b_213.jpg
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Program 3.1: reader.cpp

#include <stdio.h>

int main () {

int i;

printf("Enter an integer: ");

scanf("%d",&i);

printf("The number you entered was %d\n", i);

}

you don’t need to understand why this ampersand is there, but you
need to use it whenever scanf reads a number. We’ll come back to it
later and explain why.

Refer to Chapter 1 if you don’t re-
member how to create and compile a
program.

Exercise 14: Using Scanf

Using nano and g++, create and compile Program 3.1. Be
extra careful not to leave out the ampersand! Try running the
program several times, giving it integers as input. Note that
you’ll need to press “Enter” after you’ve typed the number.
Does the program work as expected?

What happens if you enter spaces or tabs before or after the
number? Does it make any difference?

Try giving the program a number with a decimal, like “1.5”.
What happens? What if you type extra text after the number,
like “5 and other things”?

What happens if you type a letter as the first character?

You can think of scanf as the opposite of printf. The printf

function writes things, and the scanf function reads things. The “f”
in both cases stands for “formatted”, and both functions take a “format
string” as their first argument. We’ve learned that the format string
tells printf how to write its output. In the case of scanf, the format
string tells the function what it should expect its input to look like.

scanf scans the text you type, looking
for numbers (or other things) in a given
format.
Source:Die Gartenlaube (1875), OpenClipart.org

scanf reads whatever the user types, then sorts it out and puts it into
one or more variables. The format string we give scanf tells it what
kind of input to expect, and how to sort it into the variables we specify.

In Program 3.1 we’re only reading data into one variable. If we wanted

https://openclipart.org/detail/208615/rampaging-robot
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to read the values of more variables, we could either add more scanf
statements to the program, or we could use a format string like the one
shown at the top of Figure 3.1, with more than one placeholder in it:

scanf ( "%d %lf", &age, &shoesize );

The number of placeholders in the format string must match the number
of variables we give scanf.

When you give Program 3.1 a number like “1.5”, you should see that
it gets truncated to “1”. This is because we told scanf to look for an
integer by giving it the format string “%d”. scanf stops looking as
soon as it encounters something that doesn’t look like part of an integer.
If you enter “5 and other things”, you’ll see that the program thinks
you typed “5”.

3.3. scanf and Extra Spaces
As you saw in the exercise above, scanf ignores any leading or trail-
ing spaces around placeholders. This is nice, because it makes your
program forgive any extra spaces that the user might type.

For example, consider Program 3.2, which is just a modified version
of Program 3.1. The new program asks the user to enter two integers.
The format specification given to scanf is "%d %d", meaning “look
for one integer followed by some space and then another integer”.
(Remember that %d is a placeholder for an integer.) After the user
enters the two numbers, they’re put into the variables i and j. Finally,
the program just prints the values stored in these variables to confirm
that the program really got the numbers we tried to give it.

Program 3.2: reader.cpp, with 2 variables

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter two integers: ");

scanf("%d %d",&i, &j);

printf("The numbers you entered were %d and %d\n", i, j);

}



writing flexible programs 81

Exercise 15: Space Patrol

Create, compile and run Program 3.2, then try some experi-
ments with it. The first time you run it, obediently give it
two integers separated by a space. Then run it again, putting
several spaces between the numbers. What happens if you
press the “enter” or “return” key between the numbers in-
stead of putting spaces? What about pressing “enter” or
“return” multiple times?

You should find that the program behaves the same no
matter which of these ways you choose to enter the numbers.
As far as scanf is concerned, spaces, tabs, and returns
are all the same thing, and it doesn’t matter how many of
them you enter. Programmers call these invisible characters
“white space”.

Roberta Leigh, producer of the 1960s
British TV series Space Patrol. The show
used puppets as its characters. The
intrepid Captain Larry Dart sits to the
left of Leigh.

3.4. Un-initialized Variables
When you enter a letter instead of a number, Program 3.1 behaves
unexpectedly. Instead of a letter, the program might tell you that it saw
some big number. It might even show you a different number if you
do the same thing again. What’s going on here? The problem is that
scanf is looking for a number to put into the variable i, but it never
sees one, so it doesn’t change the value of i.

What value does i have if the program has never given it a value?
Remember that each variable’s value is stored in a chunk of the com-
puter’s memory2. When a program finishes, the computer can re-use 2 See Section 1.12 in Chapter 1.

that chunk of memory for another program. When a new program
starts, the chunks of memory for all of its variables just contain whatever
data was left over by the last program that used that space.

That’s why Program 3.1 prints something unexpected if we enter a
letter instead of a number. scanf never sets the value of i so the
variable just has some leftover junk in it, which gets printed out by
our printf statement. If we wanted to make things a little neater, we
could change one line of the program so that it sets the value of i at
the beginning of the program. Instead of

int i;

we could say
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int i=0;

Then, if the user enters something that’s not a number, the program
would always say that the number was zero. One lesson to learn from
this is that you shouldn’t assume that a variable has any value until
you give it one. This will come up a lot later, so keep it in mind.

Later on (in Chapter 8) we’ll talk about reading text. Until then, we’ll
only be using scanf to read numbers.

But what about. . . ?

What if we put text like “Hello World!” into the format string for
scanf? Or what if we put a \n at the end of the format string?

First, if our program said scanf("my age is %d",&i); then
we’d need to type something like “my age is 54”, because the
program would be looking for the text “my age is” followed by a
number. Note that we wouldn’t be allowed to have any extra spaces
in front, either, since scanf only ignores extra spaces around
placeholders like %d.

In the second case, scanf doesn’t distinguish between space, tab,
or newline characters. These are all “white space”. When scanf
sees white space in a format specifier, it waits for the user to type in
any number of these characters, followed by at least one non-white-
space character. If we said scanf("%d\n",&i); the program
wouldn’t continue until we’d entered a number, followed by one
or more white space characters, followed by something that isn’t a
white space character.
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3.5. Decisions, Decisions!
We’ve seen that computers are good at loops, but they’re also good
at making comparisons and decisions, and doing those things very
rapidly.

Until now we’ve dealt with programs that follow a single predetermined
path from start to finish. Now we’ll look at ways to control the flow
of our programs, making them do different things under different
circumstances.

In C, you can use an “if” statement to make decisions. “if” statements
check to see if some condition is true, then decide whether to take
some action. Program 3.3 shows a straightforward example. The
printf statement inside the curly brackets is only acted upon when
the condition in the “if”’s parentheses is true. It’s easy to read this as
a sentence: “If i+j is greater than 10, print some stuff.”

Figure 3.2: “if” statements are like
valves that control the flow of your
program.

Notice that Program 3.3 uses two
scanf statements to read two numbers
from the user.

Exercise 16: “if” Statements

Use nano to create Program 3.3, then compile it with g++

and try running the program a few times. Does it behave as
expected?
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Program 3.3: checksum.cpp (Version 1)

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter an integer number: ");

scanf("%d",&i);

printf("Enter another integer number: ");

scanf("%d",&j);

if ( i+j > 10 ) {

printf("The sum is greater than 10\n");

}

}

The most general form for an “if” statement looks like this:

if ( CONDITION ) {

lIST OF THINGS TO DO

}

The “condition” is some test that will determine whether or not the
following list of things should be done. We can check to see if two
things are equal, or if one is greater than the other, or any of several
other conditions. We can also combine several tests, and require (for
example) that they all be true. Maybe we want to check to see if
something isn’t true. We can do that, too.

The “list of things to do” can include any C statements we want to use.
This list is just a section of our program that will only be acted upon
when “if” statement’s condition is met.
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Here’s another example of an “if” statement:

if ( i > 10 ) {

printf ("i is greater than 10.\n");

printf ("The value of i is %d\n", i);

}

You can also nest “if” statements, as in this example:

if ( a < 5 ) {

printf ("a is less than 5.\n");

if ( b > 100 ) {

printf ("and b is greater than 100.\n");

}

}

In the nested example, the printf statement inside the second “if”
would only be acted upon if both b > 100 and a < 5 are true state-
ments.

3.6. True or False?
The computer looks to see whether the statement in parentheses after
“if” is true. Is a really less than five? Is b really greater than 100?

The C language provides several comparison operators that can be
used in “if” statements. We’ve already seen the “<” operator in the
loops we’ve written in earlier chapters, where it appears in expressions
like for (i=0;i<10;i++). In Program 3.3 above, we see the “>”
operator.

Sometimes we want to combine multiple comparisons, like “this and
that” or “this or that”. Maybe we even want to require “this but not
that”. For these purposes, C provides a set of logical operators. The
“and” operator (“&&”) can be used to say things like

if ( (a<6) && (b>3) ) {

printf ( "Do stuff.\n");

}

meaning “If a is less than 6 and b is greater than 3, do stuff”.3 The

3 Note how we use parentheses here
to enclose each simple expression, and
then put the whole expression inside
the “if” statement’s “(CONDITION)”
parentheses.

“or” operator (“||”) can be used in expressions like “(c<5)||(d<5)”,
meaning “either c is less than 5 or d is less than 5”. An exclamation
point in front of an expression means “not”. For example, “!(a>10)”
means “a is not greater than 10”. Figure 3.3 shows C’s comparison and
logical operators.
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Comparison and Logical Operators:

== Equality a==b

!= Inequality a!=b

< Less than a<b

> Greater than a>b

<= Less or equal a<=b

>= Greater or equal a>=b

! Logical NOT.  Invert 
a test or true/false 
value

!a

&& Logical AND (a==b) && (c==d)

|| Logical OR (a<=b) || (c>b)

Example:
Figure 3.3: These operators are
particularly useful in “if” statements.
They compare values, or do logical
operations like “and” or “or”. Pay
particular to ==, as described in the next
section.

3.7. Testing Equality
Note in particular the “==” operator in Figure 3.3. This is the source of
a lot of confusion. This operator compares two values to see if they’re
equal. This is often confused with “=”, which assigns a value to a
variable.

You can use the == operator in an “if” statement to compare two
values. For example:

if ( i == 5 ) {

printf ("Do stuff.\n");

}

would mean “If i is equal to 5, do stuff”.

Figure 3.4: Use == to test equality, and
= to force equality.
Source: Wikimedia Commons 1, 2

In C, if I say “a==2” I’m saying “compare the value in ’a’ with the
value ’2’ and tell me if they’re the same.” On the other hand, if I say
“a=2” I’m telling the program to stick the value “2” into the variable
“a”. The most important thing to remember is that the “==” operator
doesn’t change the values of the variables, but the “=” operator does.
This confusion results in many bugs.

https://commons.wikimedia.org/wiki/File:2011-09-10_Pensive_man.jpg
https://commons.wikimedia.org/wiki/File:Angry_woman.jpg


writing flexible programs 87

But what about. . . ?

What would happen if you mistakenly used “i = 5” instead of
“i == 5” in an “if” statement?

To answer that, we first need to think about how the computer in-
terprets these conditions. As it turns out, the the computer actually
converts everything inside an “if” statement’s “(CONDITION)”
to a number. If the number is zero, the condition is false. If it’s not
zero, it’s true. This means that an expression like

if ( 1 ) {

printf ("Do Stuff.\n");

}

would cause “Do Stuff” to always be printed, since the number 1

is (and always will be) different from zero.

Sometimes programmers take advantage of this. We can have an
“if” statement look at the value of a variable, and only act if the
variable has a non-zero value. The expression if ( width )

would only be acted upon if the variable “width” had a non-zero
value, and if ( !width ) would only be acted upon if “width”
was equal to zero.

Now back to the question at hand: What if we accidentally wrote
if ( i=5 ) instead of if ( i==5 )? Remember that “i=5”
means “assign the value 5 to the variable i”. Would doing this
inside the “(CONDITION)” of an “if” statement give a true or a
false result? Perhaps surprisingly, it depends on what value we
assign to i. If we say if ( i=0 ) the result will always be false.
If we use any other value (non-zero), the result will always be true.

That’s because, in C, the numerical “value” of “i = 5” is just the
value of i. So, the expression i = 0 will always be false, but i =

(anything else) will be true.

If you find that your program is acting as though an “if” condition
is always true or always false, even though you think it shouldn’t
be, check to make sure you haven’t used = where you should have
used ==. Even though g++ won’t complain if you use = in an “if”
condition, you should never use it there.
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Program 3.4: checksum.cpp (Version 2)

#include <stdio.h>

int main () {

int i;

int j;

printf("Enter an integer number: ");

scanf("%d",&i);

printf("Enter another integer number: ");

scanf("%d",&j);

if ( i+j > 10 ) {

printf("The sum is greater than 10\n");

} else {

printf("The sum is NOT greater than 10\n");

}

}

3.8. Choosing Between Several Alternatives

“Good banana, bad banana...” (Women
sorting bananas in Belize)
Source: Wikimedia Commons

Take a look at Program 3.4, which is just a slightly modified version of
Program 3.3. As you can see, you can optionally add an “else” clause
to an “if” statement. If the condition in parentheses is false, the actions
in the “else” clause will be done.

Exercise 17: ...Or Else!

Modify your checksum.cpp program so that it looks like
Program 3.4. Compile it, then run it several times. Make
sure you give it some pairs of numbers that add up to more
than ten, and some that have a sum smaller than ten. Does
your program behave as expected?

You can add as many other options as you want, using “else if”
clauses:

if ( i+j > 100 ) {

printf("The sum of these numbers (%d) is greater than 100\n", i+j);

} else if ( i+j > 50 ) {

printf("The sum of these numbers (%d) is greater than 50\n", i+j);

} else if ( i+j > 25 ) {

printf("The sum of these numbers (%d) is greater than 25\n", i+j);

} else {

printf("The sum of these numbers (%d) is less than 25\n", i+j);

}

https://commons.wikimedia.org/wiki/File:Banana_sorting.jpg
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Each “else if” has some alternative condition that may be satisfied.
If nothing else is true, the statements in the final, “else”, clause are
acted upon. 4 4 Notice that even these complicated

“if” statements can still be read as
sentences: “If this is true, do something.
Otherwise, if that is true do a different
thing, ...”.

Only the first true condition will be acted upon. Even if other later
conditions are true too, they’ll be ignored. If you have a final “else”
statement in the list, that will only be acted upon if none of the “if”
or “else if” conditions are met. You don’t need to have an “else”
section. Without it, the “if” statement will just do nothing when none
of the conditions are true.

if ( i+j > 100 ) {

  printf("Greater than 100\n");

} else if ( i+j > 50 ) {

  printf("Greater than 50\n");

} else if ( i+j > 25 ) {

  printf("Greater than 25\n");

} else {

  printf("Less than or equal to 25\n");

}

Figure 3.5: An “if” statement creates a
set of alternative paths that the computer
can follow when walking through your
program.

When the computer runs one of your programs, you might imagine
the computer starting at the top of the program and walking through
it, line by line, until it gets to the bottom. Up until now, the programs
we’ve written have only had one possible path. The “if” statement
gives the computer multiple alternative paths it can follow.

Exercise 18: More Choices

Once again modify your checksum.cpp program. This
time, add “else if” sections to your “if” statement so
that the program tells you whether the sum is greater than
100, greater than 50, greater than 25, or less than 25, as
shown in the examples above. Run the program several
times, giving it different pairs of numbers so that you test
each possible path through the “if” statement.
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3.9. “if/else if” versus multiple “if” state-

ments
It’s important to realize that an “if” statement always says “Here are
some options. Do the first one that matches.” The “if”, “else if”,
and “else” lines in Figure 3.5 are all part of one unified statement
that defines the options and tells the computer how to choose between
them.

You might be tempted to use several independent “if” statements
instead of one big “if/else if” statement, but you should remember
that these are different.

You can see this difference in the examples shown in Figures 3.6 and 3.7.
The first example shows a single “if/else if” statement that chooses
between two options. The second example shows two independent
“if” statements.

if ( i > 100 ) {

  printf("Greater than 100\n");

} else if ( i > 50 ) {

  printf("Greater than 50\n");

}

i = 200

✔✔
Figure 3.6: If i=200, this statement will
print “Greater than 100” and nothing
else. Only the first matching option is
acted upon in an “if/else if”
statement.

if ( i > 100 ) {

  printf("Greater than 100\n");

}

if ( i > 50 ) {

  printf("Greater than 50\n");

}

i = 200

✔✔

✔✔
Figure 3.7: Alternatively, this pair of “if”
statements will print “Greater than 100”
followed by “Greater than 50”, since
both are true and the two “if”
statements are independent.

Keep this in mind when you’re writing programs that need to choose
one option out of several possibilities.
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But what about. . . ?

If you look at other people’s C programs you might see “if”
statements like this:

if ( i == 5 )

printf ( "i is equal to 5\n" );

Notice that there are no curly brackets here. This is different from
the “if” statements we looked at above.

The C language allows you to omit the curly brackets if there’s only
one line in the list of statements controlled by an “if” statement.
This can make your program shorter, but I don’t recommend that
you do this, because it can lead to confusion later.

Consider what would happen if you used a line like the one above,
and later modified the program by adding another line, like this:

if ( i == 5 )

printf ( "i is equal to 5\n" );

printf ( "Do some other stuff\n");

You might mistakenly think that the new line is also part of the “if”
statement, but it’s not. The new printf statement will always be
executed, no matter what the value of i is.

This is exactly what led to a scary security bug (called the “Goto
Fail” bug) on Apple computers in 2014.

d'oh!

Figure 3.8: Sticking to a well-chosen
programming style can help prevent
errors in your programs.
Source: Wikimedia Commons

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://commons.wikimedia.org/wiki/File:Paris_Tuileries_Garden_Facepalm_statue.jpg
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3.10. Using “and” and “or”
Sometimes we want to check more than one thing in an “if” statement.
For example, imagine that you are enrolled in a class that has both a
written and an oral exam. To pass the course, you need to get a passing
grade on both exams. If the teacher wrote a program to tell her which
students passed, it might include an “if” statement like this:

if ( written >= 70 && oral >= 55 ) {

printf ("Student passed! :-)\n");

} else {

printf ("Student failed. :-(\n");

}

The && in the “if" statement means “and”. This statement says that
the student passes the class if they get a score greater than or equal to
70 on their written exam and they get a score greater than or equal to
55 on the oral exam.

Alternatively, we could re-write the statement like this:

if ( written < 70 || oral < 55 ) {

printf ("Student failed. :-(\n");

} else {

printf ("Student passed! :-)\n");

}

Here we’re using ||, which means “or”. The statement now says that
if the student got a written score less than 70 or an oral score less than
55, they failed.

Augustus de Morgan, one of the
founders of modern mathematical logic.
Source: Wikimedia Commons

There’s an important principle in the mathematics of logic that’s called
de Morgan’s theorem. It says you can always rewrite a logical condition
by replacing “and” with “or” and flipping everything to its opposite.
That’s what we’ve done in going from the first example above to the
second. If you go on in programming, or into a field like digital circuit
design, you’ll find de Morgan’s theorem very useful. Sometimes it can
make tangled logical expressions a lot simpler.

You might be wondering about the order of operations in these “if”
statements. There are a lot of things going in in an expression like
“written >= 70 && oral >= 55”. In what order does the program
do these things? Do we need to add parentheses?

https://commons.wikimedia.org/wiki/File:De_Morgan_Augustus.jpg
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Expressions like this are evaluated in a well-defined order that’s an
extension of the “PEMDAS” rule you probably learned in school5. 5 PEMDAS says to do things in this

order: Parentheses, Exponentiation,
Multiplication, Division, Addition,
Subtraction.

Consider this expression:

if ( 2*x+5 < 10 && y*6-3 > 4 ) {

The PEMDAS rules would tell us to multiply 2*x first and then add
5. Similarly, we’d multiply y*6 and then subtract 3. In C, comparison
operators like < and > come after PEMDAS, so the next thing we’d do
is check to see if 2*x+5 is less than 5, and then check to see if y*6-3
is greater than 4. Finally, we’d deal with the logical operators like &&
and ||, so we’d check to see if 2*x+5 < 10 and y*6-3 > 4.

To help you remember this, you might just tack a “CL” on the end
of PEMDAS, for “Comparison” and “Logic”, to make PEMDASCL
(rhymes with “rascal”!)6.

6 You can find the full order of opera-
tions (called “operator precedence”) for
C here:
https://en.cppreference.com/w/c/language/operator_precedence

Figure 3.9: Future Tokyo University
students excited at having passed their
entrance exams.
Source: Wikimedia Commons

https://en.cppreference.com/w/c/language/operator_precedence
https://commons.wikimedia.org/wiki/File:Tokyo_University_Entrance_Exam_Results_4.JPG
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3.11. Writing a Math Quiz Program
Now let’s do something more practical. Take a look at Program 3.5.

Albert Anker, Mädchen mit Schiefertafel
Source: Wikimedia Commons

Program 3.5: mathquiz.cpp (Version 1)

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

int i;

int j;

int sum;

srand(time(NULL));

i = (int)( 100.0 * rand()/(1.0 + RAND_MAX) );

j = (int)( 100.0 * rand()/(1.0 + RAND_MAX) );

printf("What is %d + %d ?: ", i, j);

scanf("%d",&sum);

if ( i+j == sum ) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %d. Go back to school.\n",

i+j);

}

}

Program 3.5 is a simple math quiz program. It generates two random
integers between zero and 100, and asks the user to add them and enter
the sum. The program then checks to see if the user got it right.

Exercise 19: Making a Math Quiz

Create Program 3.5. Be careful of all the parentheses, and
make sure you have all of the necessary semicolons. Run
the program several times. Are you a math wizard?

Notice how we’ve written the statements with rand in them. We want
our random numbers to be an integers7, so this is a little different 7 You’ll see why later in this chapter,

when we talk about comparing floating-
point numbers.

from what we did in Chapter 2, where we wanted to generate random
distances that could contain decimals. In Program 3.5 we convert our
random numbers into integers by enclosing them in (int)(...)8 8 Programmers call this kind of thing

“casting”. In this case, we’re “casting
our number as an int”. Think of it
as casting an actor in a different role.
Here, we’re taking a number that would
otherwise be a double and casting it as
an int.

https://commons.wikimedia.org/wiki/File:Albert_Anker_M%C3%A4dchen_mit_Schiefertafel.jpg
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The program uses the scanf function to read input from the user.
Then, in the program’s “if” statement we use the == operator to see if
the number entered by the user (sum) equals the actual sum of the two
random integers (i+j). If the user gets it wrong, the program prints
out the real sum.

3.12. A Longer Math Practice Program
What if we wanted our program to keep asking us questions? We could
just add a loop to it.

In Program 3.6 we take the integer addition program we made before,
and wrap it with a loop. The loop keeps the program asking questions
until we’ve answered ten of them.9

9 If the user gets tired before answering
all of the questions, Ctrl-C can be used
to stop the program.

The only differences between Programs 3.5 and 3.6 are the new variable
nproblems, to count the number of questions asked, and the “for”
loop.

Hong Kong children demonstrating
their math skills.
Source: Wikimedia Commons

Program 3.6: loopquiz.cpp

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

int i;

int j;

int sum;

int nproblems;

srand(time(NULL));

for ( nproblems = 0; nproblems < 10; nproblems++ ) {

i = (int)( 100.0 * rand()/(1.0 + RAND_MAX) );

j = (int)( 100.0 * rand()/(1.0 + RAND_MAX) );

printf("What is %d + %d ?: ",i,j);

scanf("%d",&sum);

if ( i+j == sum ) {

printf("Right!\n");

} else {

printf("Nope. The sum is %d. Go back to school.\n", i+j);

}

}

}

Think about how you might modify Program 3.6 to make it even better.
Could you make the program keep score, and print out the score at the
end? Could you use an “if” statement and random numbers to make
the program choose addition or subtraction at random?

https://commons.wikimedia.org/wiki/File:CFSC.JPG
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Exercise 20: A Better Quiz

So far, we’ve used the commands nano, gnuplot, g++, and ls

(for showing a list of files). Let’s use another command now.
The cp command makes a copy of a file. Use it to make a
copy of your mathquiz.cpp file by typing the following:

cp mathquiz.cpp loopquiz.cpp

The command above will make a new file called loopquiz.cpp

that’s a copy of your mathquiz.cpp file.

Now use nano to modify loopquiz.cpp so that it contains
the changes shown in Program 3.6. Compile the program
with g++ and run it. Does it behave as it should?

Figure 3.10: Albert Anker, Die Dorfschule
von 1848

Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Anker_Die_Dorfschule_von_1848_1896.jpg
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3.13. Comparing Floating-Point Numbers
In our math quiz programs we’ve used integer numbers. What if we
had used floating-point numbers instead? Consider Program 3.7, which
is just like Program 3.5, except that we’ve changed all of the integers
into floating-point numbers.10 10 We changed int to double and

%d to %lf, and we omitted the
(int)(...) when generating our
random numbers.If you tried using this program, you might be surprised by what it does.

Here’s what it might look like:

What is 30.345296 + 60.080443 ?: 90.425739

Nope. The sum of these numbers is 90.425739. Go back to school.

But we got the sum right, didn’t we? The program even tells us so!
Why doesn’t it work as expected?

Program 3.7: Why doesn’t this work?

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

double i;

double j;

double sum;

srand(time(NULL));

i = 100.0 * rand()/(1.0 + RAND_MAX);

j = 100.0 * rand()/(1.0 + RAND_MAX);

printf("What is %lf + %lf ?: ", i, j);

scanf("%lf",&sum);

if ( i+j == sum ) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %lf. Go back to school.\n",

i+j);

}

}

The reason has to do with the difference between floating-point num-
bers (which can have decimal places going on forever – think of π, for
example) and integers, which always have a finite number of digits.
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When printf prints a floating-point number, it rounds the number off
after a few decimal places. When you use the %lf format to print out
a number, your program shows the first six decimal places, but inside
the program the number is actually much more precise.

If we tell printf to show us more decimal places, we’ll see what went
wrong above. We can do so by modifying the %lf placeholder in our
printf statement.

Instead of %lf, we can write an expression like %x.ylf, where x is a
number that tells the program how much space to reserve for printing
out the number, and y is a number that says how many digits to the
right of the decimal point should be printed. We can leave off either x
or y and printf will try to figure out what’s the best thing to do on
its own.

For example:

If we had replaced %lf with %.10lf in the last printf statement of
Program 3.7 (to print ten decimal places instead of the normal six) we
would have seen:

What is 30.345296 + 60.080443 ?: 90.425739

Nope. The sum of these numbers is 90.4257384084. Go back to school.

As you can see, the number the computer was thinking of really didn’t
match the number we typed.

3.14. The Right Way to Do It
The right way to compare floating-point numbers is to ask whether they
differ by more than some small amount, which we’ll call “epsilon”.

In Program 3.8, we define epsilon to be something acceptably small
for our purposes, and then we use the “fabs” function11 to get the 11 We’ll learn more about C’s math

functions in Chapter 4.
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absolute value of the difference between the actual sum and our guess.
If this difference is less than epsilon, we say we’re close enough.

To use the fabs function, you’ll need to add math.h at the top of your
program.12 12 Note that we could have done the

same thing without fabs by checking
to see if the difference was somewhere
between -epsilon and epsilon.Program 3.8: The Right Way

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main () {

double i;

double j;

double sum;

double epsilon = .000001;

srand(time(NULL));

i = 100.0 * rand()/(1.0 + RAND_MAX);

j = 100.0 * rand()/(1.0 + RAND_MAX);

printf("What is %lf + %lf ?: ", i, j);

scanf("%lf",&sum);

if ( fabs(i+j - sum) < epsilon ) {

printf("Right!\n");

} else {

printf("Nope. The sum of these numbers is %lf. Go back to school.\n",

i+j);

}

}

This is the right way to compare floating-point numbers.

3.15. Conclusion
This chapter has covered a couple of tools you can use to allow users to
control your program. The scanf function lets your program get input
from the user, and “if” statements let you program make decisions.
Combine these new tools with the elements of C you’ve learned in
earlier chapters (loops, random numbers, et cetera, and you can already
create some pretty sophisticated programs.
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Practice Problems

Source: Wikimedia Commons

1. Using Program 3.1 as an example, write a program that asks you
for a circle’s radius and then tells you the area of the circle. Use
3.14 as the value of π, and remember that the area of a circle is
πr2. Make sure the program tells the user that this is the area (don’t
just print a number without anything else). Call your program
circlearea.cpp. Hint: You’ll want to be able to enter numbers
like “1.5” as the radius, so you’ll need to use a double variable, not
an int.

2. If you throw a ball straight up into the air with an initial velocity v it
will reach a height of

v2

2g

where g = 9.8 m/s2, the acceleration of gravity near the earth’s
surface. Write a program named playball.cpp that asks the user
to enter the ball’s initial velocity (in meters per second), and tells you
how high the ball would go (in meters). Make sure your program
tells the user what units to use when entering the velocity, and what
units are used when reporting the height. (Hint: A ball thrown with
a velocity of 10.5 m/s should reach a height of about 5.6 meters. Use
this to check your program.)

3. Modify the looping version of the math quiz program (Program 3.6)
so that it asks the user how many math problems he/she wants to
answer. Use scanf to put this number into an integer variable, and
use that variable in the program’s “for” statement to control how
many times the program loops. Call the new program nloop.cpp.

4. Write a program named airflow.cpp that asks you for the length,
width, and height of a rectangular room, in feet. Inside the program,
calculate the volume of air in the room. Assume we’d like to replace
all of the air in the room ten times per hour. That would mean
we need to remove 1/6 of the room’s air every minute. Fans are
typically rated in terms of the number of cubic feet per minute that
they can move. Have your program tell us how many cubic feet per
minute we need to move in order to replace the room’s air ten times
per hour.

Source: Wikimedia Commons

5. Write a program named checkage.cpp that asks the user for
his/her birth year (like “1998”) and the current year (like “2017”).
Use an “if” statement to tell the user if he/she is under 21 years
old, or not. (Ignore the birth month, and assume that everyone was
born on January 1. Include people who are exactly 21 in the “not
under 21” group.)

https://commons.wikimedia.org/wiki/File:Bord_met_op_het_plat_een_vaas_met_bloemen_en_een_vogel_in_blauw.jpeg
https://commons.wikimedia.org/wiki/File:Kawasaki-Electric_Fan.jpg
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6. Write a phone menu program. Start by printing the following menu
and asking the user to enter one of the numbers:

1 For sales
2 For billing
3 For support
4 For a live human being

William Howard Taft, 27th President of
the United States.
Source: Wikimedia Commons

Use scanf to read the number entered by the user. Make an
“if” statement like the one on Page 88, using “else if”, and
have it print out an informative message for each of the possible
choices. (For example, “You have reached the sales department.”)
Use an else statement to give the user an informative message if
she/he enters a number that’s not on the menu. Call your program
phonemenu.cpp.

7. Modify the looping version of the math quiz program (Program 3.6)
so that it keeps score, and tells the user how well he/she did at the
end. (That is, print out a message like “You got 8 out of 10 answers
right!”) Call your new program mathscore.cpp.

8. Modify Program 3.6 so that it randomly picks addition or subtraction
for each problem.

Hints:

• Look back at Program 2.3 in Chapter 2 to see how to generate a
random number between zero and one.

• Check to see whether this random number is greater than 0.5. If
it is, choose addition. If it’s not, choose subtraction.

A 2x4 driven through a palm tree in
Puerto Rico by a 1928 hurricane.
Source: Wikimedia Commons

9. Hurricanes can hurl objects with tremendous force. Homeowners
sometimes nail sheets of plywood over windows in preparation for
a major storm. Studies done at Clemson University13 have looked

13 See https://www.fema.gov/previous-
missile-impact-tests-wood-sheathing

at the effect of 2x4 pieces of lumber fired with various velocities at
plywood sheets. They found that the thickness of plywood required
to stop such a projectile was proportional to the projectile’s momen-
tum. In mathematical terms, they found that the thickness required
to stop the projectile was t = 0.00032×m×v, where t is measured in
meters, m is the mass of the projectile in kg, and v is the projectile’s
velocity in m/s.

Write a program named 2x4.cpp that asks the user to enter a
velocity in meters per second. Have the program calculate t from
the equation above, using 9.45 kg for the mass of the projectile
(that’s approximately the mass of a ten-foot pressure-treated pine
2x4). Have the program tell the user what thickness, in meters, of
plywood they’ll need to protect their home from such a projectile

https://commons.wikimedia.org/wiki/File:Wm_H_Taft_smiling_1908.jpg
https://commons.wikimedia.org/wiki/File:Hurricane_winds_drive_a_10-foot_2X4_through_a_palm_tree.jpg
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing
https://www.fema.gov/previous-missile-impact-tests-wood-sheathing
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flying at this velocity. Also tell them what this thickness is in inches,
by mutiplying the thickness in meters times 39.37. Test your program
by telling it the velocity is 28 m/s (which is about 100 kilometers per
hour). It should tell you that the required thickness of plywood is
about 3 inches.

Are you tall enough? (Illustration by
John Tenniel for Lewis Carroll’s Alice in
Wonderland.
Source: Wikimedia Commons

10. Write a program named ridecheck.cpp that checks to see if the
user is eligible to ride a roller coaster. The program should ask the
user for her height, in feet, and age, in years. Assume that the height
might have a decimal place (like 4.9) but assume that the age will
be an integer (like 21). If the user’s age is greater than 11 and her
height is greater than 4.5 feet, the program should say that she’s
allowed to ride. Otherwise, the program should say “Sorry, you’re
not allowed to ride.”. Don’t use more than one “if” statement in
your program.

11. You’re a physicist working at CERN, and your experiment uses the
apparatus shown below. In the middle there’s a cylindrical target, at
which you’ll be shooting a beam of particles. Some of the particles
entering the target will decay while inside, and emit other particles.
Each emitted particle will shoot out of the cylinder and go through
one of four rectangular detectors arranged around the target. The
detectors are named D1, D2, D3, and D4, and each one measures the
energy of particles passing through it. You want to check periodically
to see whether any of the four detectors saw a particle.

D1

D2

D3

D4

Write a program called 4signal.cpp that asks the user to enter
four energy values (numbers that might contain decimal points), one
for each of the four detectors. Use a single “if” statement to see if
any of the values was greater than 100. If so, the program should
print “Saw a particle.” Otherwise it should print “No particles this
time.”

https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_05.png
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A nano Cheat-Sheet

Here are a few tips and tricks that will make it easier for you to edit files with nano.

• Delete lines: To delete a line, move to beginning of line, then press Ctrl-k (hold down the CTRL key, and
press the K key). The “K” is for “Kut”.

• Cutting and Pasting: First, move to the beginning of the text you want to cut and press Ctrl-6. Then move
to end of the text you want and press Ctrl-K. This will “Kut” the text. Now move to the place where you
want to insert the text and press Ctrl-U (for “Uncut”). Your text will be inserted here. If you want to paste
the same text in another location, move there and press Ctrl-U again. You can do this as many times as
you want.

• Search: To search for text, press Ctrl-W (for “Where is...”). You’ll be asked what to search for. Enter it,
then press the Enter or Return key. The cursor will jump forward to the first occurrance of the text you’re
searching for. If there are no matches, you’ll see a message at the bottom telling you that the thing you
searched for wasn’t found. To search for the same thing again, press Crtl-W again.

• Find and Replace: Press Alt-R (hold down the ALT key and press the R key). You’ll be asked what to
search for. Enter it, then press the Enter or Return key. You’ll be asked for replacement text. Enter this, and
press Return again. Finally, you’ll be asked whether you want to replace just the first occurrence, or all
occurrences.

• Saving Your Work Without Exiting nano: To save your work at any time, press Ctrl-O (that’s the letter O,
not a zero).

• Displaying the Current Line Number: nano can optionally display the current line number (the number
of the line where the cursor currently is). This can be useful when g++ give you an error message like:

hello.cpp:3:27: error: 'prantf' was not declared in this scope

In the example above, g++ is telling us that our program has an error on line 3. (It also tells us that g++

thinks the error was around character number 27 on that line, but this number is often unreliable.) You can
ask nano to temporarily turn on line numbers by pressing Alt-C (meaning “Hold down the Alt key and
the C key simultaneously”). This will show line and column numbers near the bottom of nano’s window.

If you like, you can make nano always display line and column numbers by using nano to create a file
named /.nanorc and putting the following line into that file:

set const

The next time you start nano it should automatically display the line number at the bottom of the window.





4. Math and More Loops

4.1. Introduction

Figure 4.1: An illustration of “Moore’s
Law” for CPUs. Note that the vertical
axis is logarithmic.
Source: Wikimedia Commons

In 1965, Gordon Moore observed that the density of components in
integrated circuits (such as computer CPUs) was doubling every year
or two1. This observation came to be known as “Moore’s Law” and it

1 Moore, G. E. Electronics 38, 114-117

(1965).

continued to be valid for several decades, although recently the rate
has slowed2. Similar “Moore’s Laws” have been observed for other

2 Nature 530, 144-147 (11 February
2016).

computer components, such as disk drives, memory, and displays.

The first “PC”: The IBM PC 5150,
introduced in 1981.
Source: Wikimedia Commons

A modern supercomputer: NASA’s
Pleiades Cluster.
Source: Wikimedia Commons

As we saw in Chapter 2, modern computers can do thousands of cal-
culations in the blink of an eye. In the final version of our “gutter”
program (Program 2.7) we used nested “for” loops to simulate the be-
havior of ten thousand stones during ten rainstorms, and our program
ran in less time than it took you to read this sentence.

Computers are very good at doing things over and over again very
rapidly. Previously we’ve used “for” loops for this. In this chapter,
we’ll look at several other kinds of loops available in the C programming
language. We’ll start out by using a “for” loop to test how fast your
computer is. Along the way, we’ll find out about C’s math functions
and use them to give your computer something substantial to chew on.

4.2. Math Functions in C
C provides a rich set of math functions and some predefined math
constants such as the value of π. Table 4.2 shows some of the most
commonly-used functions.

https://commons.wikimedia.org/wiki/File:Moores_law_(1970-2011).PNG
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://commons.wikimedia.org/wiki/File:IBM_PC_5150.jpg
https://commons.wikimedia.org/wiki/File:Pleiades_row.jpg
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sqrt(x) Square Root

fabs(x) Absolute Value

cos, sin, tan,... Trig Functions

acos, asin, atan,... Inverse Trig 
Functions

exp(x) ex

log(x) Natural Logarithm

pow(x,y) x
y

Figure 4.2: Some of C’s commonly-used
math functions.As we learned in Chapter 1, functions in C are a lot like the functions

you’ve used in math class. We give the function some number of
arguments, and the function gives us back a value. In C the expression
y = cos(x); means “make the variable y equal to the cosine of the
value in the variable x”. We’ll learn a lot more about how C functions
work in Chapter 9. For now, it’s important to know that most of C’s
math functions require double values for their arguments, and these
functions also give back a double value.

To use these functions in your programs, you’ll need to add another
“#include” statement at the top of your program, like this:

#include <math.h>

But what about. . . ?

What do these #include statements do, anyway? The answer is
that they insert chunks of text from other files into your program.

Somewhere on your computer there’s a file called math.h that
contains information about how math functions like sqrt are
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supposed to be used. The information in this file allows g++

to check that you’re using sqrt correctly: Are you giving the
function the right number of arguments? Are you putting the
value returned by sqrt into the right kind of variable?

For example, sqrt takes one double number as an argument,
and it returns a double number. Take a look at Figure 4.3. It
shows a couple of incorrect ways to use the sqrt function.

In the first case, the programmer puts the output of sqrt into
an integer variable. Since sqrt returns a double number, this
means that the decimal part of the number will be chopped off.
The g++ compiler will warn you about this, but it will go ahead
and compile the program.

In the second case, the programmer has made a worse mistake.
The sqrt function takes only one argument, but it’s been given
two. The g++ compiler doesn’t know what the programmer wants
it to do, so it emits an error message and refuses to compile the
program.

double q;

int i;

i = sqrt(10.);

q = sqrt(10.,2.);

g++ will give a warning.g++ will give a warning.

g++ will give an error, and 

refuse to do this.

g++ will give an error, and 

refuse to do this.

Figure 4.3: Wrong ways to use the sqrt
function.The math.h file also defines values for some common constants.

For example, if you need the value of π in your program, you can
just write M_PI, and for the base of natural logarithms (e), you can
write M_E.

4.3. How Fast is Your Computer?
Let’s use one of these math functions to test how fast your computer is.
Take a look at Program 4.1. This program uses the sqrt function, and
sums up the square roots of a billion numbers!

Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Stopwatch2.jpg
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The program uses C’s “exponential notation”, which makes it easier
to write large numbers. Instead of writing 1000000000 we can write
1e+9, meaning “1x109”. Here are some more examples:

2.5e+3 = 2, 500
6.02e+23 = 6.02 × 1023 (≃ Avogadro’s number)

5e-11 = 5 × 10−11

Notice that 103 is just 1e+3 (“one times ten to the third power”), not

10e+3. Here the e means “times ten to the . . . ”.

Program 4.1 begins by recording the current time3 in the variable 3 in terms of the number of seconds
since January 1, 1970. You might
remember the time function from
Chapter 2, where we used it to pick a
“seed” for our pseudo-random number
generator.

tstart. After summing up all of the numbers, the program looks at
the new time, and prints out how long, in seconds, the program ran.

Notice that the sqrt function, like all of the math functions we’ll be
using, takes double arguments and returns a double value. Because
the variable i is an integer, we need to “cast” it as a double by saying
(double) in front of it. If we didn’t do this g++ would complain.

Why do we set sum equal to zero before we start the program’s loop?
Won’t it just be zero automatically? No, not necessarily. You shouldn’t
assume that a variable has any particular value before you explicitly
give it one. Remember that variables are temporary boxes in the
computer’s memory. After the program is done with them, the same
chunk of memory can be re-used by other programs. In some cases,
if you don’t explicitly give a variable a value, it will contain whatever
random data happens to be at that memory location, leftover from the
last program that used it.4 4 Some compilers will automatically set

all variables to zero at the beginning of
a program, but it’s best not to assume
this.Program 4.1: timer.cpp (Version 1)

#include <stdio.h>

#include <time.h>

#include <math.h>

int main () {

int i;

int tstart;

int delay;

double sum = 0.0;

tstart = time(NULL);

for ( i=0; i<1e+9; i++ ) {

sum = sum + sqrt( (double)i );
}

delay = time(NULL) - tstart;

printf ("Sum is %lf\n", sum );

printf ("Total time %d sec.\n", delay );

}
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This is important for a variable like sum in Program 4.1. Notice the
line in bold. Each time around the loop, this sets the new value of sum

equal to the old value plus
√

i. If we didn’t explicitly set sum = 0.0

before we began adding things up, then the “old value” of sum would
be undefined (and possibly some bizarre, unexpected number) the first
time we went through the loop.

Exercise 21: How Fast is Your Computer?

Create, compile and run Program 4.1. On a typical computer,
it should take no more than a minute or two to run. If you
find that it takes longer, press Ctrl-C to stop it, and try
reducing the number of loops by a factor of ten. How many
square roots per second can your computer do?

4.4. Progress Reports

Another kind of progress: A Russian
Progress cargo spacecraft departing from
the International Space Station. The
computers that control the ISS aren’t
particularly new or fast. They’re
tried-and-true technology chosen for its
reliability. The “Vehicle Management
Computers”, for example, are many
redundant computers each powered by
an Intel 386SX CPU running at 32 MHz.
This is 100 times slower than the CPUs
in most modern laptop and desktop
computers.
Source: Wikimedia Commons

While your timer program was running, you may have worried that it
wasn’t actually doing anything. It’s often useful to make your program
print out reports periodically, so you can see its progress. Let’s modify
Program 4.1 and make it do this. We’ll use a new mathematical operator
to help us.

The “modulo” (or “modulus”) operator, “%”, does one peculiar but
useful thing: it tells us the remainder left over after we do division. For
example, “10 % 5” would be equal to zero, since the remainder after
dividing ten by five is zero. Here are some other examples:

10 % 7 gives 3
1001 % 10 gives 1

25 % 7 gives 4

Program 4.2 uses the modulo operator to print out the elapsed time,
and the number of square roots that have been summed so far, every
million times around the loop. It does this by looking at i % 1000000
(we can read this as “i modulo one million”). When this quantity is
zero, it means that i is a multiple of 1,000,000.

Exercise 22: Speed Test with Progress

Report

Create, compile, and run Program 4.2. Does it behave as
expected? Is it more entertaining to see evidence that the
program is doing something?

https://commons.wikimedia.org/wiki/File:ISS_Progress_cargo_spacecraft.jpg
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Program 4.2: timer.cpp (Version 2)

#include <stdio.h>

#include <time.h>

#include <math.h>

int main () {

int i;

int tstart;

int delay;

double sum = 0.0;

tstart = time(NULL);

for ( i=0; i<1e+9; i++ ) {

sum = sum + sqrt( (double)i );

if ( i%1000000 == 0 ) {

delay = time(NULL) - tstart;

printf ("Time after %d terms: %d sec.\n", i, delay );

}

}

delay = time(NULL) - tstart;

printf ("Sum is %lf\n", sum );

printf ("Total time %d sec.\n", delay );

}

Figure 4.4: Have two hours passed, or
14 hours? Or even a 26 hours? We can’t
tell. Source: Openclipart.org

But what about. . . ?

What does “modulo” mean anyway? Where does that word come
from?

Take a look at the two clocks in Figure 4.4. Can you tell how much
time has passed? Not necessarily, because clocks count to twelve,
and then they start over again. This is what mathematicians call
“modular arithmetic”. In the case of the clocks, we could say that
they have a “modulus” of twelve.

For example, if we start at midnight and wait 28 hours, the little
hand on the clock will be pointing to 28 % 12 (“28 modulo 12”),
which is 4.

In modular arithmetic, two numbers that have the same remainder
when divided by the modulus are said to be “congruent”. A
mathematician would say that 2 AM and 2 PM are congruent in
the clock’s modular arithmetic.

https://openclipart.org/detail/217065/3-oclock
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4.5. Trigonometric Functions

Figure 4.5: Math tables were once
widely used to find values for
trigonometric functions, logarithms,
and other functions. Source: Wikimedia Commons

The advantages you young people have! Take a look at Figure 4.5.
Back in the days before pocket calculators, if your ancestors needed
to find the sine or cosine of an angle they looked up the values in
“trig tables” like this one. Think about the hours of work that went
into constructing these tables. The numbers had to be computed by
hand, using tedious mathematical techniques to find the value of each
function at given angles. One of the first tasks given to early computers
like ENIAC (1945-1947, Figure 4.6) was the creation of mathematical
tables, particularly those needed for aiming artillery shells.

For a good overview of the techniques
used in constructing such tables, see
this Wikipedia article

Figure 4.6: Betty Jennings and Frances
Bilas operating ENIAC.
Source: Wikimedia Commons

Modern computers make this much easier for us. Let’s write a program
that uses C’s math functions to generate a table of values for cos(θ)

and sin(θ) for various values of θ. Before we start, it might be good to
remind ourselves what sine and cosine are. Take a look at Figure 4.7. If
you imagine a point travelling along the circumference of a circle with
a radius of 1, then cos(θ) and sin(θ) are just the x and y coordinates of
the point when it’s at the angle θ. Let’s start out with θ = 0 and move
around the circle in 100 steps, until we get back to where we started.

r = 1

Figure 4.7: The definition of sine and
cosine.
Source: Wikimedia Commons

Remember that there are two different systems for measuring angles:
degrees and radians. When you go all the way around a circle, you’ve
turned by 360°. This is equivalent to 2π radians. C’s trigonometric
functions all use radians, so our program will need to divide 2π radians
into 100 steps, and calculate the sine and cosine for each.

That’s what we do in Program 4.3. Notice that we’re careful to set

https://commons.wikimedia.org/wiki/File:GoniometrischeTafel.jpg
https://en.wikipedia.org/wiki/Trigonometric_tables
https://commons.wikimedia.org/wiki/File:Two_women_operating_ENIAC.gif
https://commons.wikimedia.org/wiki/File:Sin-cos-defn-I.png
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Program 4.3: trig.cpp

#include <stdio.h>

#include <math.h>

int main () {

double theta = 0.0;

double step = 2.0 * M_PI / 100.0;

int i;

for ( i=0; i<100; i++ ) {

printf ( "%lf %lf %lf\n", theta, cos(theta), sin(theta) );

theta += step;

}

}

theta equal to zero at the beginning, just as we did with sum in
Program 4.1. Each time around the loop, we add a little bit to theta

until we’ve worked our way completely around the circle. The size of
each step is 2π/100, since the whole circle is 2π radians and we want
to divide it up into 100 steps.

Also notice that we use the symbol M_PI that’s conveniently provided
for us by math.h.
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Figure 4.8: Plots of θ versus cos(θ), θ

versus sin(θ), and cos(θ) versus sin(θ).

Exercise 23: Making a Trig Table

Create, compile, and run Program 4.3. It should make three
columns of text, containing values for θ, cos(θ) and sin(θ).
Now run it again, like this, to write the table into a file:

./trig > trig.dat

It’s hard to see whether your program is doing the right
thing by just looking at the numbers. Let’s try graphing
them. Start up gnuplot by typing its name, and then give it
this command:

plot "trig.dat"

You should see something that looks like the top graph in
Figure 4.8. Now try giving gnuplot this command:

plot "trig.dat" using 1:3
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You should see something like the middle graph in Figure
4.8. Next try this gnuplot command:

plot "trig.dat" using 1:2, "trig.dat" using 1:3

The result should be the first two graphs laid on top of each
other. Finally, try this:

plot "trig.dat" using 2:3

You should see something like the bottom graph in Figure
4.8.

Hipparchus of Nicea (180-125 BCE) is
credited with creating the first
trigonometric tables. He’s the bearded
gentleman shown holding the blue
celestial sphere in this detail from The
School of Athens, by Raffaello Sanzio
(1509). Source: Wikimedia Commons

What did gnuplot do? The first command told gnuplot to plot the
contents of the file trig.dat, but how did it know which columns to
use? The file contains three columns of data: θ, cos(θ), and sin(θ). As it
turns out, gnuplot assumes that the first two columns in a file represent
the x and y coordinates of a set of points to be plotted. If the file only
contains one column, gnuplot uses the line number as x, and the value
on each line as y.

If your file contains more than two columns, you can tell gnuplot which
ones to use as x and y with the “using” qualifier. If you say “using
1:3”, that means “column 1 is x and column 3 is y”. We can ask gnuplot

to superimpose multiple graphs by giving it a comma-separated list of
things to plot, as we did in the next-to-last “plot” command in the
exercise above.

Before computers and calculators
became widely available, the slide rule
was widely used for calculations
involving logarithms or trigonometric
functions.
Source: Wikimedia Commons

As you can see from the bottom graph in Figure 4.8, our values for
cos(θ) and sin(θ) really do correspond to the x and y values of a point
at various angles, as they should. (The circle looks flattened because
the vertical and horizontal scales are different. By default, gnuplot fits
its graphs into a rectangular window that’s wider than it is tall. You
can fix this by telling gnuplot “set size square”.)

4.6. Using “while” Loops
Until now we’ve used just one of the kinds of loops that the C pro-
gramming language provides. The “for” loop that we’ve been using is
what programmers call a “counted” loop, because we tell the computer
how many times to go around the loop. Another kind of loop is called
a “conditional” loop. We can create one of these using C’s “while”
statement, which looks like this:

https://commons.wikimedia.org/wiki/File:La_scuola_di_Atene.jpg
https://commons.wikimedia.org/wiki/File:Frank_Whittle_CH_011867.jpg
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while (CONDITION) {

BLOCK OF STATEMENTS

}

The statements inside the loop will be acted upon again and again, as
long as the “CONDITION” is true. You might notice that this looks a
lot like an “if” statement, where a block of statements is only executed
if some condition is met. With “if”, the block of statements is only
acted upon once, but with while they’re done over and over, for as
long as the condition continues to be met. Here’s an example:

int i = 0;

while ( i < 10 ) {

printf ( "%d\n", i );

i++;

}

The code in this example would print out the integers from zero to nine.
This is the same kind of thing we’ve done with “for” loops, but done
in a different way. Consider the following example, though:

int i = 0;

while ( i < 1000000 ) {

i = rand();

printf ( "%d\n", i );

}

How many loops are in this roller
coaster?
Source: Wikimedia Commons

The second example will continue printing random numbers until it
finds one that’s greater than 1,000,000, and then it will stop. We don’t
know in advance how many times the computer will go around the
loop. The number of loops just depends on the condition we set in the
while statement. That’s why this kind of loop is called a “conditional”
loop.

4.7. Writing a Game
Program 4.4 also uses a while loop. In this case, we’re playing a game
like Blackjack. Blackjack (also know as Twenty-One) is a card game
where each player is dealt cards, one card at a time. Each card has a

https://commons.wikimedia.org/wiki/File:Vekomaboomerang.jpg
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numerical value from one to thirteen. The object of the game is to get
the sum of all your cards as close to twenty-one as possible, without
going over. Each time Program 4.4 goes through its while loop, it
picks a random number from one to thirteen, then adds this number to
the sum so far. It keeps doing this for as long as the sum is less than
twenty-one.

Traditional playing cards have either
numbers or faces on them. The values
of the numbers are self-explanatory. For
the faces, we count Jack, Queen and
King as 11, 12 and 13, respectively.
Source: Wikimedia Commons

Program 4.4: addem.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int sum = 0;

int card;

srand(time(NULL));

while ( sum < 21 ) {

card = (int)( 1 + 13.0*rand()/(1.0 + RAND_MAX) );

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum );

}

}

Do you see how this makes
a number between 1 and 13?

Exercise 24: Add ’Em Up!

Create, compile and run Program 4.4. Does it work as
expected? Run it several times to see if you can hit exactly
twenty-one.

The card-player, by Aba Novak.
Source: Wikimedia Commons

We could improve on Program 4.4 by telling it to congratulate us when
we win. To do this we might modify the while loop to make it look
like this:

while ( sum < 21 ) {

card = (int)( 1 + 13.0*rand()/(1,0 + RAND_MAX) );

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum );

if ( sum == 21 ) {

printf ("You WIN!\n");

}

}

https://commons.wikimedia.org/wiki/File:Playing_cards_collage.jpg
https://commons.wikimedia.org/wiki/File:Aba-Novák_The_card-player.jpg
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4.8. Stopping or Short-Circuiting Loops
The problem with our game so far is that there’s no skill involved in
playing it. It’s purely random whether you win or lose.

The Card Players by Catherine Ann
Dorset. (Note that one of the players
seems to be a Great Auk, which sadly
became extinct in the mid nineteenth
Century.)
Source: Wikimedia Commons

In the real game of Blackjack, after each card is dealt the player is asked
whether he/she wants another. If the player is very close to twenty-one
already, he or she may choose not to get any more cards, hoping that all
of the other players will either go over twenty-one, or not get as close.
(Whichever player gets closest to twenty-one, without going over, wins.)
Let’s modify our program to allow for this. Take a look at Program 4.5.

Program 4.5: addem.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int sum = 0;

int card;

int ans;

srand(time(NULL));

while ( sum < 21 ) {

card = (int)( 1 + 13.0*rand()/(1.0 + RAND_MAX) );

sum += card;

printf ("Got %d. Sum is now %d\n", card, sum );

if ( sum == 21 ) {

printf ("You WIN!\n");

} else if ( sum > 21 ) {

printf ("You lose!\n");

} else {

printf ("Enter 1 to continue or 0 to quit while you're ahead: ");

scanf("%d", &ans);

if ( ans != 1 ) {

printf("Your final score was %d\n",sum);

break;
}

}

}

}

As you can see, we’ve added an “if” statement to deal with the various
possible outcomes. If the sum is exactly twenty-one, we tell the player
he or she has won. If it’s over twenty-one, we identify the player as
a loser. If the sum is under twenty-one, we give the player a choice:
continue or quit? If the player chooses to continue, we go around the
loop again.

https://commons.wikimedia.org/wiki/File:The_Card_Players.jpg
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But what if the player chooses to quit? How can we make the loop stop
right now, without waiting for the sum to get greater than twenty-one?
To do this, we use the C language’s “break” statement. A break

statement causes the loop it’s in to stop immediately.

Exercise 25: Playing a Card Game

Create, compile and run Program 4.5. Try running it several
times, making sure you sometimes tell it to continue, and
sometimes tell it to quit. Does it behave as expected?

Figure 4.9 shows another program that uses the break statement. The
program in the figure does a countdown, from ten toward zero, but
before it reaches zero the countdown is stopped by using break.

Figure 4.9: Using break to stop a loop.

C’s break statements are often useful when your program is searching
for something. Imagine you’re looking through a big stack of books,
trying to find one with a particular title. You start from the top and
look at the books one at a time until you find the one you want. Then
you stop. You don’t keep looking through the rest of the stack.

You can use break to do something similar in a C program. When we
find the thing we’re looking for, we can immediately stop looping and
go on with the rest of the program.
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But what about. . . ?

What if you use break inside two or more nested loops, like this?:

for ( i=0; i<nrocks; i++ ) {

for ( j=0; j<nstorms; j++ ) {

...

break;

}

}

This is similar to the nested loops in Program 2.7, which tracked
each of many rocks as they were washed down a gutter by some
number of rainstorms.

The break statement only halts the innermost loop containing it.
In the example above, the break would stop the nstorms loop,
and the computer would go back to the top of the nrocks loop. If
there were more rocks left to do, it would continue with the next
rock, and start the nstorms loop again for the new rock.

Compare that with the following example:

for ( i=0; i<nrocks; i++ ) {

for ( j=0; j<nstorms; j++ ) {

...

}

...

break;

}

In the second example, the break statement would stop the outer,
nrocks, loop, and the computer would continue without doing
anything else with either of these loops.

What if you wanted to skip the rest of this trip around a loop, but not
stop looping? You can do that, too, using C’s “continue” statement.
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Consider the following example:

for ( i=0; i<10; i++ ) {

printf ("Loop number %d\n", i);

if ( i >= 5 ) {

continue;

}

printf ("This number is below 5.\n");

}

If we ran a program containing this code, it would print:

Loop number 0

This number is below 5.

Loop number 1

This number is below 5.

Loop number 2

This number is below 5.

Loop number 3

This number is below 5.

Loop number 4

This number is below 5.

Loop number 5

Loop number 6

Loop number 7

Loop number 8

Loop number 9

When the continue statement is acted upon, the computer skips
everything else in this trip around the loop and goes directly back to
the top, to start the next trip. Just like break, continue only affects
the innermost loop containing it.

Figure 4.10 shows another countdown example. This time, for some
reason, Mission Control has decided to omit some numbers from the
countdown. (Maybe they’re superstitious?)

As with the other countdown example, we can imagine an analogy
between this and searching for something in the real world. Imagine
that you have a stack of books, some of which are paperback and
some of which are hardback. You’re looking for a particular title, and
you remember that it’s a hardback book. You’ll go through the stack
quickly, discarding the paperbacks without even looking at them, and
proceeding down the stack.
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We can use a continue statement to do this kind of thing in a loop.
The continue causes the current trip around the loop to stop, and the
computer goes immediately back up to the top of the loop and starts
the next trip.

#include <stdio.h>
int main ()
{
  int n;
  for (n=10; n>0; n--) {
    if (n==5 || n==6) {

continue;
    }
    printf(“%d, ”, n);
  }
  printf("G0!\n");
}

10, 9, 8, 7, 4, 3, 2, 1, GO!
Output:

Note missing 
numbers

Note missing 
numbers

Figure 4.10: Using “continue” to
short-circuit a loop.
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4.9. Writing a Two-Player Game
Let’s use use our new knowledge of while loops to write another
game. This time, we’ll write a two-player game in which the user plays
against the computer. It will be a version of an ancient game called
“Nim”.

There are more complicated versions of
Nim. Often it’s played by laying out a
pyramid of objects (such as the
matchsticks shown here), and only
allowing players to remove objects from
a single row during each turn.
Source: Wikimedia Commons

In this version of Nim, twelve coins are placed on a table, as in Figure
4.11. The players take turns picking up 1, 2, or 3 coins at a time (the
player is free to choose how many coins to take). The player who picks
up the last coin wins.

Program 4.6 plays this game. It starts out with 12 coins on the table by
setting the variable coins equal to 12. After telling the user the rules
(using some printf statements) the program begins a while loop.
Each time around the loop one of the players (user or computer) takes
some number of coins, and this number is subtracted from coins. The
while loop keeps going as long as the value of coins is greater than
zero.

Figure 4.11: Are you ready for a game of
“12-coin Nim”?
Source: Wikimedia Commons (1, 2, 3)

If you try playing this game, you’ll find that the computer always wins!
By employing a simple strategy, the computer can always win the game.
Can you understand how it works?5 5 There’s an excellent Wikipedia ar-

ticle about the game of Nim and the
mathematics behind it. You’ll also be
amused by Matt Parker’s explanation
of the game on his YouTube channel,
“Standup Maths”. Take a look if you
can’t figure out how the computer’s
strategy works.

Notice that the program uses a continue statement to keep users from
cheating. If the user picks a number other than 1, 2, or 3, the program
sends the user back to the top of the loop to try again.

https://commons.wikimedia.org/wiki/File:NimGame.svg
https://commons.wikimedia.org/wiki/File:Denier_à_l'effigie_de_Didia_Clara.jpg
https://commons.wikimedia.org/wiki/File:Denier_frappé_par_les_Lingons.jpg
https://commons.wikimedia.org/wiki/File:Didrachme_de_l'ile_de_Paros_à_l'effigie_de_Déméter.jpg
https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=9KABcmczPdg
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Also notice how the program switches between “Player 0” and “Player
1”. After each player’s turn, the variable nextplayer is set to a value
that indicates who the next player should be.

Program 4.6: nim.cpp

#include <stdio.h>

int main () {

int coins = 12;

int take;

int nextplayer = 0; // Player 0=user, 1=computer

int currentplayer;

printf ("There are %d coins.\n", coins);

printf ("You may take 1, 2, or 3 of them.\n");

printf ("Whoever gets the last coin wins.\n");

printf ("You are player 0, the computer is player 1.\n");

while ( coins > 0 ) {

currentplayer = nextplayer;

printf ("-------- Player %d's Turn --------\n", currentplayer);

if ( currentplayer == 0 ) {

printf ("How many coins will you take?: ");

scanf("%d", &take);

if ( take > 3 || take < 1 ) {

printf ("You must take 1, 2, or 3. Try again\n");

continue;

}

nextplayer = 1;

} else {

take = 4 - take;

printf ("I will take %d of them.\n", take );

nextplayer = 0;

}

coins = coins - take;

printf ("There are now %d coins left.\n", coins );

}

printf("Player %d Wins!\n", currentplayer);

}

The computer’s
winning strategy

Player 0

Player 1

Keep looping until
all coins are gone
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4.10. One More Kind of Loop
Programmers say that for loops and while loops are both “pre-test
loops”. Take a look at the partial program below, containing a for loop
and a while loop:

int nloops = 0;

int i;

for ( i=0; i<nloops; i++ ) {

printf ( "%d\n", i );

}

while ( nloops > 0 ) {

printf ( "%d\n", i );

}

Neither of these loops will print out anything, because their conditions
are never satisfied. In the first loop, nloops is zero, and i will never
be less than zero, and the second loop does nothing for a similar reason.
The statements in these loops will never be acted upon, not even once.

The C language offers a third kind of loop that’s a “post-test loop”.
This is the “do” loop (also known as the “do-while” loop). Consider
this example:

do {

printf ( "%d\n", i );

} while ( i < 0 );

If we ran the example above, it would always print out something, no
matter what the value of i is. The statements inside a do-while loop
will always be acted upon at least once. After each trip through the
loop, the do-while statement’s condition is examined to see whether
it’s satisfied, determining whether to go around the loop again. A
do-while loop is sort of an upside-down while loop.

The important difference is that statements inside a do-while loop
will always be acted upon at least once, but there’s no guarantee that
statements inside a while loop will ever be acted upon. do-while
loops can be useful in cases where initial values are undetermined
before the loop starts.
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The general form of a do-while loop is this:

do {

BLOCK OF STATEMENTS

} while (CONDITION);

4.11. Estimating the Value of π
Take a look at Program 4.7. This program estimates the value of π

by using an approximation discovered in the 14th-Century by Indian
mathematician Madhava of Sangamagrama. He found that π was given
by the sum of the terms of an infinite series:

A π pie. Source: Wikimedia Commons

π =
√

12
(

1 − 1
3 · 3

+
1

5 · 32 − 1
7 · 33 + · · ·

)

Notice that the size of term number n inside the parentheses is:

1
(1 + 2n) · 3n

and that the sign of the terms bounces back and forth between positive
and negative. The terms get smaller and smaller as the series goes on.

Program 4.7 starts calculating the terms in this series and adding them
up. It keeps going until it comes to a term that’s smaller than 10−11 (we
chose this value arbitrarily, deciding that we could ignore corrections
smaller than that). The program uses a do-while loop to do the
work. Notice that we use C’s pow function to get the value of 3n when
calculating each term, and the fabs function to find the absolute value
of the term.6 The alternating signs of the terms is taken care of by the 6 See Figure 4.2.

multiplier variable, which alternates between 1 and −1 (can you
see why?).

After each trip through the loop, the computer checks the absolute value
(since the terms alternate between positive and negative) of the current
term to see if it’s less than our cutoff value of 10−11. A do-while loop

https://commons.wikimedia.org/wiki/File:Pi_pie2.jpg
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is more convenient than a while loop in this case, since we don’t know
what the value of the first term will be until we’ve gone through the
loop once.

At the end of the program, we print out our estimate of π and compare
it to the “actual” value as given by M_PI. Notice that we have to
multiply our sum by

√
12 to get π (see Madhava’s series, above). The

program’s output looks like this:

Pi = 3.141592653595635 after 21 terms.

Actual = 3.141592653589793
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Figure 4.12: The difference betwen our
estimate of π and the actual value, as we
add more terms to the sum. Note that
the vertical scale is logarithmic.

Program 4.7: findpi.cpp

#include <stdio.h>

#include <math.h>

int main () {

double sum = 0.0;

double term;

double multiplier = 1.0;

double small = 1.0e-11;

int nterms = 0;

do {

term = multiplier / (( 1.0 + 2.0*nterms ) * pow(3.0,nterms));

sum += term;

nterms++;

multiplier = -multiplier;

} while ( fabs(term) >= small );

printf ("Pi = %.15lf after %d terms.\n", sum*sqrt(12.0), nterms );

printf ("Actual = %.15lf\n", M_PI);

}
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4.12. Conclusion
C provides a rich set of math functions and a versatile toolkit of loop
structures. Together, these allow us to write computer programs that
accomplish in seconds tasks that once took many hours of human labor.

To summarize some of the things we’ve talked about in this chapter:

• To use C’s math functions, you need to add #include <math.h>

to the top of your program.

• The math functions take arguments of type double, and return
double values.

• Several constants are defined in math.h, including M_PI and M_E.

• “for” loops are good for situations where you know in advance
how many times you want to go around the loop.

• while loops are good when you want to keep going until some
condition is met.

• do-while loops are good when you want to do a test after going
through the loop the first time.
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Practice Problems
1. Create a modified version of Program 4.1 (the first version of the

timer.cpp program) that tells you how many square roots per sec-
ond your computer can do. Call the new program speedtest.cpp.

2. Write a program named clocktime.cpp that uses only addition
and j

¯
ust one modulo operator (see the example in Program 4.2) to

calculate what number the hour hand of a clock would be pointing
to after a given number of hours have passed. The program should
ask the user for the current hour, and then ask how many hours in
the future. For example, if the user says that the hour is currently 3,
and wants to know what the hour will be after 15 hours have passed,
the program should say “6”. Hint: It’s OK if your program prints
zero when the answer should really be 12.

3. Write a new program called square.cpp. The new program should
be like Program 4.3, except that:

(a) instead of θ, sin(θ) and cos(θ), the new program should print out
two columns: θ and

√
θ

(b) instead of going from zero to 2π, do it for 100 steps between zero
and ten.

4. Like trig tables, tables of logarithms were also very important to
scientists and engineers before calculators and computers were avail-
able7. One of the first tasks assigned to early computers was the 7 This Numberphile video

by Roger Browley shows
how log tables were used:
https://www.youtube.com/watch?v=VRzH4xB0GdM.

generation of these tables. Write a program named log.cpp that
uses a while loop to generate a list of numbers from 1 to 10, in
steps of 0.01, along with the natural logarithm of each number, as
given by C’s log function (see Figure 4.2). Make the program write
two columns, separated by a space: The first column should be the
number, and the second column should be its log.

Hints: Define two double variables, x and deltax. Set deltax =

0.01 and initially set x = 1. Then use a while loop to print x and
log(x). Then, before going around the loop again, add deltax to
x. Make the loop stop when x is no longer less than ten.

5. Imagine that a very generous bank offers you a nominal annual
interest rate of 100% on your investments. If you deposit $1,000 at
the beginning of the year and the bank adds 100% at the end of the
year, you’d end up with $2,000! Sweet!

Portrait of Jacob Bernoulli (1654-1705).
Source: Wikimedia Commons

But what if, instead of adding all the interest at the end of the year,
the bank gave you 50% interest after six months and another 50%

https://www.youtube.com/watch?v=VRzH4xB0GdM
https://commons.wikimedia.org/wiki/File:Jakob_Bernoulli.jpg
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after another six months? (A banker would say that the interest
was “compounded” two times per year.) In the middle of the year
you’d have $1,500. Adding another 50% to that at the end of the year
would give you a total of $2,250. Even better! And if the bank paid
us 25% four times per year we’d end up with $2,441, an even larger
amount. Compounding the interest more often apparently gives us
more money at the end of the year.

In the 17th Century, Jacob Bernoulli realized that you can find out
how much money you’ll have at the end of the year by multiplying
your original investment by:

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 0  20  40  60  80  100

n

Figure 4.13: This is what a graph of
your interest.cpp program’s output
should look like. Notice that the value
rises rapidly at first, then levels of to a
value approaching e.

(1 +
1
n
)n

where n is the number of times per year that the interest is com-
pounded. He discovered that there’s a limit to how much money
you can make, even if you let n go to infinity. In this limit, the
expression above approaches a value of about 2.718. Today we know
this number as Euler’s Constant, e, the base of natural logarithms8. 8 e is perhaps the second most

important mathematical constant,
after π. If we think of π as the “circle
constant”, we might think of e as
the “growth constant”. It appears
in equations describing growth
and decay in every area of science.
For more information, see this
Numberphile video by James Grime:
https://www.youtube.com/watch?v=AuA2EAgAegE

So, the most we’d have at the end of the year would be about $2,718,
no matter how often the interest is compounded.

Write a program named interest.cpp that uses the pow function
(see Figure 4.2) to evaluate the mathematical expression above. For
each value of n from 1 to 100 print n and the expression’s value.
(The program’s output should be two columns of numbers.) Check
your program by making sure that the value approaches about 2.718

as n increases.

You can also graph your results by typing ./interest > interest.dat

and then using gnuplot to graph the data. To do this, start gnuplot

and type plot "interest.dat" with linespoints. The re-
sult should look something like Figure 4.13.

6. Write a program (call it baselpi.cpp) that uses a “do-while”
loop to sum up the terms of the series:

s =
1
12 +

1
22 +

1
32 +

1
42 + · · ·

Notice that the terms keep getting smaller and smaller. Keep adding
terms until you come to a term that’s less than 10−6 (include this

https://www.youtube.com/watch?v=AuA2EAgAegE
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term in your sum). Print out the sum and the number of terms,
clearly identifying which is which. Your program should also use
this sum to print an estimate of the value of π. How can it do this?
Read on!

Portrait of Leonhard Euler (1707-1783).
Source: Wikimedia Commons

This is a famous problem in the history of mathematics, known as
the “Basel Problem9”. Leonhard Euler was the first to solve this

9 See Wikipedia for much more informa-
tion.

problem, finding that the sum of this series approaches the value
π2/6. This provides a way to check your program: Multiply the
sum by 6 and take the square root. You should get a number that is
approximately equal to π.

Hint: When C divides one integer by another, it assumes that you
want the answer to be an integer, too. So, if you type 1/i, where i
is an integer, C will chop off any decimal places in the answer. If
you want to preserve those decimal places, type 1.0/i instead. This
gives C a hint that you want to save things after the decimal place.

7. Many people think that everything in mathematics is boring, and
that there aren’t any mathematical discoveries remaining to be made.
Nothing could be farther from the truth. Just as there are still plenty
of unanswered questions in physics (for example: What is dark
matter?) there are also lots of unanswered questions in math. One
unsolved mathematical mystery is called the Collatz conjecture10, 10 See

https://www.youtube.com/watch?v=5mFpVDpKX70

and
https://en.wikipedia.org/wiki/Collatz_conjecture.

named after German mathematician Lothar Collatz. Let’s write
a program that illustrates the property of numbers that Collatz
observed.

Make a program named collatz.cpp that asks the user to enter a
starting number that’s an integer greater than 1. After the number
has been entered, the program should have a “while” loop that
does the following:

• If the number is even, divide it by 2.

• If the number is odd, multiply by 3 and add 1.

Lothar Collatz (1910-1990)
Source: Wikimedia Commons

The loop should keep doing this for as long as the result is not
equal to 1. Each time around the loop, print the current result. For
example, if the user enters the number 5, the program should print:

16

8

4

2

1

Hint: You can find out whether a number is even by using the

https://commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg
https://en.wikipedia.org/wiki/Basel_problem
https://www.youtube.com/watch?v=5mFpVDpKX70
https://en.wikipedia.org/wiki/Collatz_conjecture
https://commons.wikimedia.org/wiki/File:Lothar_Collatz.jpg
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modulo operator (%). For example, if i%2 is zero, then i is even.
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This graph shows the path taken by
each of the integers up to 1,000 as they
work their way through the Collatz
process on their way to 1. As you can
see, the paths form a pretty shape, like
coral.
Source: Wikimedia Commons

You should find that any number you enter will generate a sequence
that ends in 1. Collatz speculated that this was always true for all
starting numbers, but nobody has ever been able to prove it. The
Collatz conjecture has been tested by computers for all numbers up
through 1060 and found to be true for each of them, but there might
be some huge number out there somewhere that doesn’t obey this
rule. Nobody knows.

8. Imagine that your algebra teacher has asked you to simplify the
expression 12x + 438. You suspect that there’s some common factor
of 12 and 438 that you could pull out, but how can you find it?
Fortunately, the ancient Greek mathematician Euclid provided us
with a simple recipe for finding the greatest common factor of two
numbers11. Let’s call the two numbers n1 and n2. Euclid’s method

11 This is also sometimes called the
“greatest common divisor” or “greatest
common denominator”.

works like this:

1) Divide n1 by n2 and find the remainder.

2) Now make n1 equal to n2, and make n2 equal to the remainder.

3) keep repeating steps 1 and 2 until you get to a remainder of zero.
At this point, the value of n1 will be the greatest common factor
of the original numbers.

Write a program named gcf.cpp that uses a “do-while” loop to
find the greatest common factor of two numbers by using Euclid’s
method. The program should start by asking the user for two
integers. When you run the program, it should look something like
this:

Enter first number: 12

Enter second number: 438

GCF is 6

Hint 1: Remember that the % operator gives you the remainder after
division.
Hint 2: If the remainder is rem, your loop should continue for as
long as rem != 0.

9. Write a program named findtwo.cpp that uses a do-while loop
to sum up the terms of the series:

https://commons.wikimedia.org/wiki/File:Collatz_orbits_of_the_all_integers_up_to_1000.svg
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Figure 4.14: In the findtwo.cpp
program, as we add more terms, each
term becomes smaller and their sum
converges toward 2.

Notice that the denominators of the terms start with 1, and each de-
nominator is two times as large as the preceding one. Your program
should keep adding terms until it comes to one that’s smaller than
10−9 (include this term in your sum).

The program should print the sum and the number of terms it added
up. If we could add up an infinite number of such terms the sum
would be exactly 2. Since each term in the series is substantially
smaller than the preceding term, your program should show a sum
that’s approximately 2.

As we saw in Chapter 3 it’s possible to tell C how many decimal
places we want to show when printing a number. Inside your
program’s do-while loop, put a statement like this that prints the
value of each term and the current sum after adding that term:

printf ("%.20lf %.20lf\n", term, sum);

The “.20” between % and lf tells the program to print twenty digits
after the decimal point. By watching how the terms change, we can
see them get smaller and smaller, and we can see the sum get closer
and closer to 2.

Hint: To prevent your program from chopping off numbers after
the decimal point, use double variables to hold the values of the
denominators, the terms in the series, and the sum.





5. Reading and Writing Files

5.1. Introduction

A part of the CMS detector, at CERN’s
Large Hadron Collider.
Source: Wikimedia Commons

CERN’s Large Hadron Collider produces mountains of data: about
a gigabyte (109 bytes) per second. That’s enough to fill a couple of
hundred laptop-sized disks per day! This data is saved in files, and
these files are distributed around the world for analysis.

A keypunch machine in the basement
of the UNC Physics building. As late as
the 1980s, undergraduates would flock
there nightly to punch cards for
programming projects.
Source: UNC-Chapel Hill Computing History photo collection

Early computers read data from punched cards, or from paper tape with
holes punched into it. The pattern of holes on each card was a code that
represented numbers or letters. “Keypunch operator” was a job much-
advertised in the help-wanted section of the newspaper. A keypunch
machine was similar to a typewriter. As the operator typed, holes
were punched in the appropriate places on the card. Some keypunch
machines also typed the words onto the card, so you could look at it
and easily see what was encoded on it (although many programmers
became quite adept at reading the holes themselves).

A magnetic tape library at the National
Oceanographic Data Center.
Source: Wikimedia Commons

Each punched card could store about eighty bytes of information. If
digital cameras had existed at that time, storing a single photo would
have required tens of thousands of cards. As computers became faster
and capable of dealing with larger data sets, new storage technologies
had to be developed. One of these was magnetic media, first in the form
of tapes and later disks. Early reel-to-reel tapes of the type introduced
by IBM in the 1960s could hold several tens of megabytes: enough
for a few photographs from a modern camera. Removable “diskettes”
(also called “floppy disks”) were developed in the 1970s and 80s. These
couldn’t hold as much data as tapes, but they were were convenient
for storing a few spreadsheets or word-processing documents. “Hard
disks”, of the type still in use today, can hold several terabytes (1012

bytes) of data. That’s enough to hold hundreds of thousands of digital
photos.

https://commons.wikimedia.org/wiki/File:CERN_CMS_endcap_2005_October.jpg
http://www.ibiblio.org/comphist/node/35
https://commons.wikimedia.org/wiki/File:NDOC_magnetic_tape_library.jpg
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As we’ve learned in earlier chapters, computers store data in the form
of ones and zeros. A “file” on a disk is just a collection of ones and
zeros, with a name attached to it so we can find it when we need it. In
this chapter, we’ll learn how to write data to files and read data from
files.

5.2. Writing Files

A very famous broken file cabinet. This
is the cabinet that was broken into in
the Watergate Hotel, at the behest of the
Nixon administration. It now resides in
the Smithsonian’s National Museum of
American History.
Source: Wikimedia Commons

Until now, we’ve used the printf function to send output to the
computer’s screen. If we want to write things into a file instead, we can
use another function named fprintf (for “file printf”). Before we
can do that, though, we have to do a little preliminary work.

Writing to a file isn’t quite as simple as writing to the screen. For one
thing, we can usually assume that there’s a screen to send our output
to, but the file might not exist. If it doesn’t exist, do we want to create
it, or just give the user an error message? If the file exists already, do
we want to replace its contents with something new, or do we want to
add content after the end of whatever’s already there?

We can control all of these options with the fopen function. The fopen
function “opens” a file and makes it ready for reading or writing.

A companion to fopen is the fclose function. This makes sure that
all data has completely been written to a file. Although programs will
usually do this for you automatically when they finish running, it’s
good practice to explicitly use the fclose function to “close” a file
when you’re done with it.

The fopen function returns a value that can be used to identify the file
you’ve opened. This identifier is called a “file handle”, since it’s like a
handle by which you can grab the file when you need it.1 As you’ll see, 1 This identifier is sometimes referred to

as a “file descriptor” or “file pointer”.
These are all the same thing.

there’s a new kind of variable that we use just for storing file handles.

When you use the fprintf function to print something into a file, you
tell fprintf which file to use by giving it a file handle.

Program 5.1 is a very simple example showing how to open a file, write
something into it, and then close it. The program writes the words
“Hello File!” into a file named hello.txt.

https://commons.wikimedia.org/wiki/File:WatergateFC.jpg
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Program 5.1: hellofile.cpp

#include <stdio.h>

int main () {

FILE *output;

output = fopen("hello.txt","w");

fprintf( output, "Hello File!\n");

fclose( output );

}

Even though Program 5.1 is short, there’s a lot going on in it. Let’s
look at some of the parts individually. First, let’s look a the fopen

statement:

Figure 5.1: Structure of an fopen

statement.As you can see from Figure 5.1, fopen takes two arguments: the name
of the file to be opened, and a second argument that specifies how
we’re going to use the file. For example, we can say that we want to
read ("r"), write ("w") or append ("a") to the file. There are also other
options. See Figure 5.2 for some of them. Usually, you’ll only need "r"
or "w".
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r
Open the file for reading only. Give an error message if 
the file doesn't exist.

r+
Open the file for reading or writing.  Give an error 
message if the file doesn't exist.

w
Open the file for writing only.  If a file with this name 
already exists, erase it and create a new file.

w+
Open a file for reading or writing. If a file with this name 
already exists, erase it and create a new file.

a
Open a file for appending (writing at end of file).  Create 
the file if it doesn't exist, but don't erase an existing file.

a+
Open the file for appending and reading.  Create the file 
if it doesn't exist.  For existing files, start reading from the 
top of the file, but write at the bottom.

Figure 5.2: Various ways that fopen can
open a file.
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The Writing Master, by Thomas Eakins.
Source: Wikimedia Commons

The fopen function returns a file handle, which we can capture in a
variable for later use. In Program 5.1 we name this variable “output”,
but it can have any name you want to give it. This is a new kind
of variable, unlike the int and double variables we’ve been using
to store numbers. It’s a special type of variable just for storing file
handles. Just as we might define an integer variable by saying “int
i”, we define this new variable by saying “FILE *output”. Note the
asterisk here is part of the file type. The type of this variable isn’t int
or double, it’s “FILE *”.

Once we’ve stored the file handle in a variable, we can use it to read
from a file or write to a file. The fprintf function is like printf,
except that it takes one extra argument: a file handle. In Program 5.1
we use the fprintf function to write the text “Hello File!” into the
file hello.txt, which we’ve previously opened with fopen. We’ve
specified this file by giving fprintf the file handle “output”. If we
wanted to, we could open several different files and write different
things into each of them. In that case, we’d pick which file we wanted
to use by giving the appropriate file handle to the fprintf function.

fprintf( output, "Hello File!\n" );

File Handle
Format 

Specification

Could put other things 
here, just like printf.

Could put other things 
here, just like printf.

Figure 5.3: Structure of an fprintf

statement.Finally, Program 5.1 uses the fclose function to make sure everything
has been written to the file before the program finishes.

Exercise 26: Hello File!

Create, compile and run Program 5.1. When you run the
program, you shouldn’t see any output since it’s being sent
into a file instead of to the screen. How can you tell if the
program did the right thing?

https://commons.wikimedia.org/wiki/File:The_writing_master_thomas_eakins.jpeg
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First of all, look to see if there’s a new file. The ls command
will show you a list of your files. Do you see a file called
hello.txt?

Next, take a look inside the file by typing nano hello.txt.
Does it contain the text “Hello File!” as it should?

The word “hello” wasn’t commonly
used until the invention of the
telephone. There was initially some
disagreement about the proper form of
greeting on the new device. Alexander
Graham Bell favored “Ahoy!”, and
some people advocated the jauntier
variant “Hoy, Hoy!”. Eventually, we
settled on “Hello!”, and it was so much
identified with the device that early
telephone operators were referred to as
“Hello Girls”.
Source: Wikimedia Commons

Be careful when using > to send a
program’s output into a file. If you
type the wrong file name, you could
accidentally write over a file you want
to keep!

But what about. . . ?

In earlier chapters, we’ve seen that we can redirect the output of
our programs into a file by appending > followed by a file name
when we run the program (as we did when plotting the output of
our gutter program in Chapter 2). You can alternatively use » to
append some output at the end of an existing file. For example,
you could do the following:

./gutter > gutter.dat

./gutter >> gutter.dat

./gutter >> gutter.dat

The first command would create a new file called gutter.dat

and write the program’s output into it. The next command would
run the program again, and append the output onto the end of the
existing file. The last command appends even more output onto
the file.

If we can use > or » to redirect a program’s output into a file, why
would we want to make our C programs write files in any other
way? There are at least a couple of reasons:

• Sometimes we want to send some output to the screen and some
to a file. Think about a program that asks the user for some
input, and then writes out some data. Text that says “Please
enter your age” should go to the screen, but we might want the
rest of what the program writes to go into a file.

• Sometimes a program needs to write more than one file. Think
about a program that sorts data into several categories, and
writes each category to a different file. Imagine the program
that Santa uses to sort kids into naughty.dat and nice.dat.

https://commons.wikimedia.org/wiki/File:A_Telephone_Operator.png
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5.3. Some Useful Commands for Managing Files
In the exercise above we saw the ls command, and we’ve been using
the commands nano, g++, and gnuplot for a while now. Figure 5.4
summarizes some commands that you might find useful when working
with files.

[~/demo]$ ls
clus.pdf     data-for-everybody.1.dat  phase2
cluster.pdf  ForYourEyesOnly.dat       readme.txt
cpuinfo.dat  phase1                    ReadMe.txt
[~/demo]$ nano hello.cpp
[~/demo]$ cp hello.cpp new.cpp
[~/demo]$ mv new.cpp hello_new.cpp

Results

ls List the contents of a directory.

nano Edit a file.

cp Copy a file.

mv Move (rename, relocate or both) a file.

rm Delete (remove) a file.

g++ Compile a C (or C++) program.

Some useful commands:

The prompt means “Hello human! I'm 
ready to receive another command”.

Poof!

Prompt Command

Figure 5.4: Some useful commands for
managing files.
Source: Openclipart.org

As we saw in the exercise above, you can use the ls command to show
us a list of our files.2 The cp (“copy”) command can be very useful

2 “ls” is just an abbreviation for “list”.
As we’ve seen before, programmers are
sometimes lazy typists.

in cases where you want to write a new program that’s similar to one
you’ve written in the past. You can make a copy of the old program,
with a new name, and then modify the copy as needed.

When entering commands at the command line, notice that the com-
puter will usually put a “prompt” at the beginning of each new line.
This is some text that might tell you what folder you’re working in, or
what the computer’s name is. The text will vary depending on the type
of computer and its configuration. In any case, think of the prompt as
the computer’s way of saying “OK, I’m ready for you to give me a new

https://openclipart.org/detail/177846/old-wizard
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command now.”

Although the commands in Figure 5.4 have strange names, you might
think of them as wizardly incantations like Harry Potter’s “lumos!”. By
invoking these arcane spells you can cause the computer to do useful
things for you.

5.4. Infinite Loops
Sometimes a program doesn’t know how much data you’re going to
give it. Consider Program 5.2 for example.

Program 5.2: input.cpp

#include <stdio.h>

int main () {

int nsiblings;

int nperson = 0;

FILE *output;

output = fopen("siblings.txt","w");

printf ("Enter the number of siblings, or -1 to quit.\n");

while ( 1 ) {

printf ( "Number of siblings for person %d: ", nperson );

scanf ( "%d", &nsiblings );

if ( nsiblings < 0 ) {

break;

}

fprintf( output, "%d %d\n", nperson, nsiblings );

nperson++;

};

printf ("Thank you!\n");

fclose( output );

}

Imagine you’re collecting data about how many siblings your classmates
have. Program 5.2 prompts you to enter the number of siblings each
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individual has, and saves the data into a file called siblings.txt.

Notice how the program uses the “while” loop. As we saw in Chapter
4, a “while” loop keeps going for as long as the condition in paren-
theses is true. Here, the value in parenthesis is just “1”. Is that true or
false?

The address of Apple’s corporate
headquarters is “1 Infinite Loop”.
Source: Wikimedia Commons

When a C program comes to a condition statement after an “if” or
“while”, the computer converts the condition into a number. If the
condition statement is false, the number is zero. Any other number
means the statement is true. The “if” or “while” then uses this
number to decide what to do. If we use the number 1 as the condition,
it will always be true, so the “while” statement in Program 5.2 will
keep looping forever unless we somehow tell it to stop. This is called
an “infinite loop”.

Program 5.2 uses an infinite loop because it doesn’t know beforehand
how many people you’re going to survey. It just keeps asking for more
data until you explicitly tell it you’re done. When you’ve collected all of
your data, you signify this by giving -1 as the number of siblings. This
causes the break statement to be acted upon, and the loop terminates.

Infinite loops like this are often used when a program needs to keep
doing something until the user tells it to stop. For example, there’s an
infinite loop underneath the operating system on your computer. It
waits for mouse clicks, keystrokes, and other interesting events, and
examines them to find out what you’re asking it to do. At some point,
you may tell the computer to shut down, causing the operating system
to clean things up and break the loop.

Our program assumes that nobody
really has a negative number of siblings.
How could that even happen?
Antimatter??
Source: Wikimedia Commons

Exercise 27: Collecting Data

Create, compile and run Program 5.2. Enter some data from
your friends and neighbors, or just make something up.
Enter at least ten numbers. When you’re done, enter “-1” to
stop the program.

Now use nano to look at the program’s output file: Type
“nano siblings.txt”. Does it look like what you ex-
pected?

Exit from nano, then start up gnuplot. Plot the data you’ve
collected by giving gnuplot the command:

https://commons.wikimedia.org/wiki/File:Infiniteloop.jpg
https://commons.wikimedia.org/wiki/File:Attribué_à_Pierre_Gobert,_Louise-Élisabeth_de_France_et_sa_soeur_jumelle_Henriette_de_France_(vers_1737).jpg
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plot "siblings.txt" with boxes

The result should look something like Figure 5.5. The phrase
“with boxes” tells gnuplot to draw boxes instead of just
plotting points.

Depending on how many points you entered, you may find
that gnuplot chops off part of the first box. You can fix this
by explicitly telling gnuplot where you want the x axis to
start. To do this, type:

set xrange [-1:]

and then type “replot”.
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Figure 5.5: Example sibling data,
plotted with gnuplot.

5.5. Producing Data Files
Sometimes programs write data, and sometimes they read data. It’s
often the case that data written by one program will be read by a
different program. Think about the experiments at CERN. During an
experiment, programs collect the data from particle detectors and write
the data into files. Later, perhaps at a university elsewhere, someone
uses a different program to read the data files and analyze them.

Let’s create a pair of programs that produce and consume data. The
first one will write some data into a file, and the second will read the
data and do something useful with it. The data will involve a simple
physics problem, but don’t worry if you don’t understand the physics.

Figure 5.6: The scenario behind
Program 5.3

Imagine that you fire a gun straight up into the air. The bullet leaves
the gun’s muzzle at approximately 700 meters per second. As it rises,
gravity slows it until eventually it stops rising and begins to fall. As-
suming a constant deceleration due to gravity, the velocity of the bullet
at any time after it’s fired would be:

V = V0 − gt

where t is the elapsed time in seconds, V0 is the bullet’s initial velocity,
in meters per second, and g is the acceleration due to gravity near the
earth’s surface, which is about 9.8 m/s2. Because of the minus sign,
the bullet’s velocity gets smaller and smaller as time passes, until it
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eventually reaches zero, and then it becomes negative (meaning that
the bullet has started falling back to earth).

We assume that the acceleration of
gravity is a constant, which is
approximately true if we don’t get too
far from the surface of the earth. In
Georges Melies’ 1902 film Le Voyage
dans la Lune six men are fired to the
moon inside a large artillery shell.
Needless to say, our approximation
would not hold true in this situation.
Source: Wikimedia Commons

The height of the bullet at any time will be:

h = V0t − 1
2

gt2

if we assume that the bullet starts from a height of zero.

Program 5.3 calculates the bullet’s velocity and height once per second
during the first one hundred seconds of its flight, and writes those
values into a file for later analysis.

Program 5.3: bullet.cpp

#include <stdio.h>

#include <math.h>

int main () {

int i;

double t = 0.0;

double v;

double h;

double v0; // meters per second.

double delta_t = 1.0; // seconds.

double g = 9.8; // meters/second.

FILE *output;

printf ( "Enter initial velocity (m/s): " );

scanf ( "%lf", &v0 );

output = fopen("bullet.txt","w");

for ( i=0; i<100; i++ ) {

v = v0 - g*t;

h = v0*t - 0.5*g*pow(t,2);

fprintf( output, "%lf %lf %lf\n", t, v, h );

t += delta_t;

};

fclose( output );

}
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Figure 5.7: A bullet’s height and
velocity as a function of time, for a
starting velocity of 700 m/s.

Notice that we’ve added some comments beside the definitions of our
variables to remind us what units we’re using. Comments like this can
be very helpful if someone else needs to understand your program.

https://commons.wikimedia.org/wiki/File:Le_Voyage_dans_la_lune.jpg
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Exercise 28: Fire At Will!

Create, compile and run Program 5.3. It should ask you
for an initial velocity. Use 700 m/s. After the program
finishes, use the “ls” command to check that the output file,
bullet.txt, has been created. Take a look inside the file
with nano by typing “nano bullet.txt”. There should
be three columns of data, for time, velocity, and height.

Now exit from nano and use gnuplot to plot the bullet’s
height versus elapsed time, by giving gnuplot this command:

plot "bullet.txt" using 1:3

You should see a graph that looks like top graph in Figure
5.7. Try to identify the bullet’s maximum height, and the
time at which it reaches this height.

If you have time, you can also graph the bullet’s velocity as
a function of time by giving gnuplot this command:

plot "bullet.txt" using 1:2

But what about. . . ?

Notice that Program 5.3 only tracks the bullet for one hundred
seconds. The bullet may not reach the ground during that time.
What if we wanted the program to track the bullet for as long as
it’s in the air, and stop when it hits the ground? We could modify
the program by replacing the “for” loop with a “do-while” loop,
like this:

do {

v = v0 - g*t;

h = v0*t - 0.5*g*pow(t,2);

fprintf( output, "%lf %lf %lf\n", t, v, h );

t += delta_t;

} while ( h >= 0.0 );

5.6. Analyzing a Data File
In the exercise above, you might have found that it was hard to tell
exactly where the bullet reached its maximum height by looking at the
graph of our data. Analyzing data by hand is tedious and imprecise.
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Imagine how much harder it is to analyze the data from a huge experi-
ment like the ones at CERN, where billions of data points are recorded
per second!

Even for small experiments, it’s often necessary to write computer
programs to help us analyze data. Let’s write a program that can read
the bullet program’s output file and find the maximum height for us.

Take a look at Program 5.4 on Page 147. This program does several new
things. First of all, it opens the file for reading, instead of writing, by
giving an "r" to the fopen function.

Next, notice that Program 5.4 uses an infinite loop (see the “while
(1)”) to read data from the file. This allows the program to read a file
of any length. If we modified our bullet program so that it produced
more or fewer lines of data, Program 5.4 would still be able to read the
output file.3 3 This would be very important if we

changed the loop in our bullet program
to a “do-while” loop, as in shown
in the box above. In that case, we’d
never know how many lines of data the
program would generate.

Each time Program 5.4 goes around its loop, it reads a line from the
bullet.txt data file. To do the reading, we use a new function:
fscanf. The fscanf function is like scanf, except that it reads data
from a file instead of from the keyboard. The first argument we give
fscanf is a file handle. This tells fscanf which file we want to read
from. In principle, we could open up several different files and choose
which one we want to read by giving the appropriate file handle to
fscanf. Figure 5.8 shows the structure of a typical fscanf statement.

Figure 5.8: Structure of an fscanf

statement.Just like scanf, you should always put an ampersand (&) in front of
the variable names whenever you read numbers with fscanf, and you
should avoid “\n” in the format specification you give fscanf.4 4 See Chapter 3.

Since the program uses an infinite loop, we have to do some sort of
test inside the loop to see if we’re done yet. In this case, we let fscanf
tell us when there’s nothing left to read. Each time we call fscanf
it returns an integer value that indicates its “status”. For example,
the returned value may indicate that some error has occurred. One
of the values that can be returned is “End Of File”. The #include
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file stdio.h defines a special symbol for this: EOF.5 When fscanf 5 The status returned by fscanf is
really just an integer, but stdio.h defines
EOF because that’s easier to remember.
There’s no guarantee that different C
compilers will return the same number,
but they’ll all have a stdio.h that defines
EOF appropriately for that particular
compiler.

returns the value EOF, that means that we’ve read all the way to the end
of the file and there’s nothing left to read. Program 5.4 keeps reading
lines until fscanf says that it’s reached the end of the data file.

Now that we understand the mechanics of reading a file, how do we
find the maximum height in our bullet data? First, we create variable
called hmax, in which we’ll store the maximum height. After opening
our data file, we read it, one line at a time. Each line of the file contains
three numbers: the elapsed time since the bullet was shot, the current
velocity, and the current height. We initially set hmax equal to the first
height value in the file, then each time we read another line from the
data file, we look to see if its height is greater than hmax. If it is, we
make this height the new value of hmax. When we’re done looking at
all of the data, hmax should contain the maximum height value.

Another group of intrepid adventurers
who journeyed to the Moon inside an
artillery shell. These are from Jules
Verne’s From the Earth to the Moon, as
illustrated by Henri de Montaut.
Source: Wikimedia Commons

The program also finds the time at which the maximum height is
reached. Whenever the program sets a new hmax value, it also sets the
variable tmax equal to the time value that appears on the same line of
the data file. When the program finishes, tmax should contain the time
at which the maximum height was reached.

Exercise 29: Finding the Maximum

Create, compile and run Program 5.4. Does it give you
results that match your expectations?

Now try running your earlier bullet program again, this
time giving it a different initial velocity, say 600 m/s instead
of the 700 m/s you used earlier. Run your readbullet
program again to find the new maximum height.

If you pick an initial velocity much higher than 700 m/s,
you’ll find that your readbullet program will always tell
you that the time at maximum height is 100 seconds. This is
because our bullet program only tracks the bullet for 100

seconds, and if its initial velocity is too large the bullet will
still be rising at the end of this time.

If you have time, look at the new bullet.txt file with
gnuplot, as you did before, to see if the maximum height
looks like it matches the output of readbullet.

https://commons.wikimedia.org/wiki/File:'From_the_Earth_to_the_Moon'_by_Henri_de_Montaut_38.jpg
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Program 5.4: readbullet.cpp

#include <stdio.h>

int main () {

double t;

double v;

double h;

double hmax;

double tmax;

int initialized = 0;

FILE *input;

input = fopen("bullet.txt","r");

while ( fscanf( input, "%lf %lf %lf", &t, &v, &h ) != EOF ) {

if ( !initialized || h > hmax ) {

hmax = h;

tmax = t;

initialized = 1;

}

}

printf ( "Maximum altitude of %lf after %lf seconds\n", hmax, tmax );

fclose( input );

}

Open the file for
reading, using "r"

Read
lines
from

the file

Stop when we get to
the end of the file

Have we found a greater
height? (Or do we need

to initialize hmax?)

Have we initialized hmax?

hmax has now been initialized.
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5.7. The Perils of Excessive open/close
We saw in Chapter 4 that modern computers are very fast. Adding up
the square roots of a billion numbers takes only seconds. But some
things take longer than others. In particular, it takes a computer a
relatively long time to open or close a file.

Eeek!
Source: Wikimedia Commons

We can test this with a program like Program 5.5. Here we have a
loop that opens and closes a file a million times. Each time around the
loop, the program opens the file, writes some text into it, and closes
the file. Before the loop starts, the program saves the current time in
the variable tstart. After the loop finishes, we calculate how much
time has passed since tstart. The program prints the total time, in
seconds, and also prints the time per open/close.

If your computer has an old-fashioned spinning disk this program
might take a few minutes to run, with each open/close taking about a
millisecond. On a modern solid-state disk each open/close might only
take a tenth of a millisecond, but the program will still take several
seconds to run. If we increased ntimes to a billion, the program would
take a thousand times longer (several hours at least). Compare that
with the few seconds it took our earlier test program (Program 4.1) to
add up the square roots of a billion numbers. You can see that opening
and closing files is much slower than just doing math.

Program 5.5: openclose.cpp

#include <stdio.h>

#include <time.h>

int main () {

int i;

int ntimes = 100000;

int tstart;

double delay;

FILE * output;

tstart = time(NULL);

for ( i=0; i<ntimes; i++ ) {

output = fopen( "openclose.dat", "w" );

fprintf( output, "Testing...\n" );

fclose( output );

}

delay = time(NULL) - tstart;

printf ("Time to open/close %d times: %lf seconds\n", ntimes, delay );

printf ("Time per open/close: %lf seconds\n", delay/ntimes );

}

https://commons.wikimedia.org/wiki/File:Perilsofpauline.jpg
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Exercise 30: Open for Business?

Create, compile and run Program 5.5. How fast is your
computer’s disk? Remember that on slower disks it can take
several minutes for the program to run. If you get tired of
waiting, you can stop the program by pressing Ctrl-C.

The lesson we should learn from this is that it’s a good idea to avoid
unnecessarily opening or closing files. If you write a simulation pro-
gram like gutter.cpp in Chapter 2 and make the program write its
output into a file, it’s best to open the output file once, before starting
any loops, and then close the file after all the loops are finished. Even
though, in principle, you could open the file each time you want to
write a new number, that would make your program much, much
slower.

Notice that in Program 5.5 we opened the file for writing by giving
a "w" as the second argument to fopen. Remember that this wipes
out any already-existing file that has the same name. That’s why only
one small file, containing just the text “Testing”, is created when the
program is run. The program actually creates and overwrites this file a
million times.

Accidentally overwiting an output file is a common programming error.
Consider Program 5.6.

Program 5.6: overwrite-test.cpp

#include <stdio.h>

int main () {

FILE *output;

int i;

for ( i=0; i<10; i++ ) {

output = fopen("overwrite-test.dat","w");

fprintf( output, "%d\n", i);

fclose( output );

}

}

This program has a loop that sets i to each value from 0 to 9 and writes
that value into the output file. If the programmer ran this program
he or she might be surprised to find that the output file ends up with
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only a single number in it: “9”. That happened because the fopen and
fclose statements are inside the loop, and because we gave fopen

"w" (for “write”) as its second argument instead of "a" (for “append”).
We could fix the program by just moving fopen and fclose outside
the loop, like this:

Come in, we’re open!
Source: Wikimedia Commons

Program 5.7: overwrite-test.cpp, Fixed!

#include <stdio.h>

int main () {

FILE *output;

int i;

output = fopen("overwrite-test.dat","w");

for ( i=0; i<10; i++ ) {

fprintf( output, "%d\n", i);

}

fclose( output );

}

Now the program’s output file will look like this:

0

1

2

3

4

5

6

7

8

9

which is probably what the programmer intended.

Closing a file before the program is done with it is another common
programming error. If the program above had left fclose inside the
loop, then the output file would be closed after the first number was
written to it. The next time the program tried writing into the file we’d
get lots of ugly errors like this:

Error in `./overwrite-test': double free or corruption

This isn’t very informative, but the computer is trying to tell us that
we’re attempting to write into a file that is no longer open.

https://commons.wikimedia.org/wiki/File:Neon_Internet_Cafe_open_24_hours.jpg
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5.8. Analyzing Other People’s Data
Imagine that you’re an astronomer, and you’ve been given the task of
analyzing some data about the stars in our local neighborhood. In 1957

astronomer Wilhelm Gliese published the first edition of his list (or
“catalog”) of nearby stars. It contained entries for about 900 stars. By
“nearby”, he meant stars within about 65 light-years of Earth. Several
editions later, the Gliese catalog now contains about 3,800 stars. The
catalog contains information about each star’s position, brightness, and
color, among other things.

These stars might seem special because they’re our closest neighbors. If
we were ever to venture into interstellar space, these are the first places
we’d visit. You’ve probably heard of some of them. Sirius, the “Dog
Star”, is the brightest star in our sky. Tau Ceti and Epsilon Eridani are
two nearby Sun-like stars that figure prominently in Science Fiction.

But how close is the nearest star (other than the Sun) to us? Let’s write
a program to analyze some data about nearby stars and find out.

Program 5.8 reads a file containing x, y, and z coordinates (measured
in parsecs6) for the position in space of each star. In our readbullet 6 One parsec equals approximately 3.26

light years.program, we analyzed some data to find the maximum value. Here we
want to find the minumum value: the star that’s closest to earth.

In this data’s coordinate system, our Sun is at the origin. If we’re given
the coordinates of another star, we can find its distance from the Sun
like this:

x

y

z

(x, y, z)

Sun

Star

r

Figure 5.9: Calculating the distance
from the sun to another star.
Source: Wikimedia Commons

r =
√

x2 + y2 + z2

where r is the distance.

Program 5.8 reads a star’s coordinates from the data file stars.dat,
then calculates the distance to that star. If that distance is less than the
smallest distance we’ve encountered so far, the program uses it as the
new value for the variable rmin. Compare this program with Program
5.4, which found a maximum.

https://commons.wikimedia.org/wiki/File:3D_Cartesian.svg
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Figure 5.10: The stars in our immediate
neighborhood.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Nearby_Stars_(14ly_Radius).svg
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Program 5.8: stars.cpp

#include <stdio.h>

#include <math.h>

int main () {

double x;

double y;

double z;

double r;

double rmin;

int initialized = 0;

FILE *input;

input = fopen("stars.dat","r");

// Read coordinates for the stars:

while ( fscanf( input, "%lf %lf %lf", &x, &y, &z ) != EOF ) {

r = sqrt( x*x + y*y + z*z );
if ( !initialized || r < rmin ) {

rmin = r;

initialized = 1;

}

}

printf ( "Minimum distance is %lf parsecs\n", rmin );

fclose( input );

}

-15 -10 -5  0  5  10  15-15
-10

-5
 0

 5
 10

 15

-100

-50

 0

 50

 100

 150

 200

Figure 5.11: Some local stars, plotted
with gnuplot.

Exercise 31: Seeing Stars

For this exercise you’ll need a copy of the data file named
stars.dat. You can find instructions for obtaining it in
Appendix C.1 on page 541. After you have the data file,
create, compile and run Program 5.8. What’s the distance
to the closest star in this data set? Its name is Proxima
Centauri.

If you have time, start up gnuplot and give it the following
commands (note that the last command is splot, not plot):

set xrange [-5:5]

set yrange [-5:5]

set zrange [-5:5]

splot "stars.dat"

This should show you a 3-dimensional view of the stars
within about 15 light years from earth. Depending on the
version of gnuplot you’re using, you may be able to grab this
plot with the mouse and drag it around to rotate it.
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5.9. Combining Files
Sometimes it’s useful to be able to combine data from two or more files
into one. Here are a few techniques for doing that.

Appending:

Imagine you’re a teacher. You begin the semester by creating a file
named grades.dat that will hold your students’ grades. The format
of the file will be one line per student, with the student’s ID number
at the beginning of the line, followed by a list of homework grades
separated by spaces. The file might look like Figure 5.12.

After you’ve created this file, you find that your class is very popular
but the classroom is small. You’ll have to teach two groups of students
at different times. To accommodate the second group of students, you
create a new file grades2.dat with the same format as the first file.

1 95.0 89.5 100.0

2 79.5 88.0 90.0

3 82.5 87.5 95.5

4 99.0 100.0 97.5

5 88.0 89.0 91.5

6 92.0 93.5 96.0

7 100.0 99.0 95.5

8 90.0 92.0 95.0

9 88.5 92.5 95.0

10 100.0 96.5 90.0

Figure 5.12: Your grades.dat file
might look like this. Each line begins
with the student’s ID number. After
that comes a list of that student’s
homework grades.

As the semester goes along, you realize that you’d really like to have one
file that contains all the grades for both sets of students. No problem!
This is a programming class, so you know how to write a program for
combining the two files.

You decide that you just want to append the data from grades2.dat

onto the bottom of grades.dat, and then ignore grades2.dat from
now on. To accomplish this, you write Program 5.9.

Program 5.9: append.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

int id;

double h1,h2,h3;

file1 = fopen("grades.dat","a");

file2 = fopen("grades2.dat", "r");

while ( fscanf( file2 , "%d %lf %lf %lf", &id, &h1, &h2, &h3 ) != EOF ) {

fprintf ( file1 , "%d %lf %lf %lf\n", id, h1, h2, h3 );

}

fclose ( file1 );

fclose ( file2 );

}

Open grades.dat

for appending by
specifying "a".

Read from file2

(grades2.dat).

Write to file1

(grades.dat).
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Program 5.9 reads each line of grades2.dat and writes it at the end
of grades.dat. It’s written at the end because we told fopen to open
the file for appending, by specifying "a". After running this program,
all of the grades would be in grades.dat.

This program shows that you can have more than one file open at a
time. When we read or write, we specify which file to use by giving
the appropriate file handle to fscanf or fprintf.

Concatenating:

Thinking about your class a little more, it might occur to you that it
would be better to leave both grades.dat and grades2.dat as they
are (since these are important student records!) and create a third,
new file named homework.dat that combines the data from both the
original files. You could write another program (Program 5.10) to do
that.

Program 5.10: concat.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

FILE *homework;

int id;

double h1,h2,h3;

homework = fopen("homework.dat", "w");

file1 = fopen("grades.dat","r");

while ( fscanf( file1, "%d %lf %lf %lf", &id, &h1, &h2, &h3 ) != EOF ) {

fprintf ( homework, "%d %lf %lf %lf\n", id, h1, h2, h3 );

}

fclose ( file1 );

file2 = fopen("grades2.dat", "r");

while ( fscanf( file2, "%d %lf %lf %lf", &id, &h1, &h2, &h3 ) != EOF ) {

fprintf ( homework, "%d %lf %lf %lf\n", id, h1, h2, h3 );

}

fclose ( file2 );

fclose( homework );

}

Open the new file
homework.dat for

writing by specifying "w".

Read data from grades.dat

and write it to homework.dat.

Now read data from grades2.dat

and write it to homework.dat.

grades.dat

grades2.dat
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As you can see, Program 5.10 creates a new file named homework.dat

by giving fopen a "w". The program then has two sections: first it
reads data from grades.dat and writes that data into homework.dat.
Then it does the same for grades2.dat.

Merging:

All is well until the end of the semester. You’ve graded all of the home-
work assignments and put the grades into homework.dat. You’ve
also graded some quizzes and put those grades into quizzes.dat.
There were three homework assignments and two quizzes (it was a
short course). Each student has one line in each file. Figure 5.13 shows
what the quizzes.dat file might look like.

1 100.0 96.5

2 88.5 92.5

3 90.0 92.0

4 100.0 99.0

5 92.0 93.5

6 88.0 89.0

7 99.0 100.0

8 82.5 87.5

9 79.5 88.0

10 95.0 89.5

Figure 5.13: The quizzes.dat file
might look like this, with each line
containing a student’s ID number and
two quiz grades.

Hmmm. It would be really nice if we could combine homework.dat
and quizzes.dat and create a new file that had all of each student’s
grades, homework and quizzes, on a single line. To do that, you could
write something like Program 5.11.

Program 5.11 creates a new file named allgrades.dat that will con-
tain one line per student, with all of that student’s grades (homework
and quizzes). Each line begins with the student’ ID number. The new
file might look like Figure 5.14.

1 95.0 89.5 100.0 100.0 96.5

2 79.5 88.0 90.0 88.5 92.5

3 82.5 87.5 95.5 90.0 92.0

4 99.0 100.0 97.5 100.0 99.0

5 88.0 89.0 91.5 92.0 93.5

6 92.0 93.5 96.0 88.0 89.0

7 100.0 99.0 95.5 99.0 100.0

8 90.0 92.0 95.0 82.5 87.5

9 88.5 92.5 95.0 79.5 88.0

10 100.0 96.5 90.0 95.0 89.5

Figure 5.14: The file allgrades.dat,
produced by Program 5.11, might look
like this. Each line has the students ID
number, followed by three homework
grades and two quiz grades.

Notice that the program reads one line from each input file each time
it goes around the while loop. The fscanf statements for reading
homework.dat and quizzes.dat are different, because the files have
different formats. Both begin with the student ID number, but there are
three homework grades and only two quizzes.

The loop stops (by using the break statement) when it reaches the end
of either input file. It’s important to check both files, to help us deal
with mistakes we might have made when we entered the grades. What
if we’ve left a student out of one of the files? In that case the input files
wouldn’t both be the same length.

Similarly, we put the student ID number into id1 when we read it
from homework.dat and we put the number into id2 when we read
it from quizzes.dat. If we haven’t made any mistakes in creating the
input files, these two ID numbers should always match. If they don’t,
the program gives us an error message telling us so.

Finally, once the program has successfully read a line of homework
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data and a line of quiz data, it writes all of the data out on a single
line of the output file. Notice that the first fprintf statement doesn’t
end with a “\n”. Instead, it ends with a space. The next fprintf
statement picks up where the first one left off, adding more stuff to the
end of the same line, and then finishing with a “\n”.

Program 5.11: merge.cpp

#include <stdio.h>

int main () {

FILE *file1;

FILE *file2;

FILE *combined;

int id1, id2;

double h1,h2,h3;

double q1,q2;

combined = fopen("allgrades.dat", "w");

file1 = fopen("homework.dat","r");

file2 = fopen("quizzes.dat", "r");

while (1) {

if ( fscanf( file1, "%d %lf %lf %lf", &id1, &h1, &h2, &h3 ) == EOF ) {

break;

}

if ( fscanf( file2, "%d %lf %lf", &id2, &q1, &q2 ) == EOF ) {

break;

}

if ( id1 == id2 ) {

fprintf ( combined, "%d %lf %lf %lf ", id1, h1, h2, h3 );

fprintf ( combined, "%lf %lf\n", q1, q2);

} else {

printf ( "Error! IDs don't match: %d and %d\n", id1, id2);

}

}

fclose ( file1 );

fclose ( file2 );

fclose( combined );

}

Stop when we reach the
end of either input file.

Input files

Read
home-
work

Read
quizzes

Check to make sure the student
IDs from both files match.

Output file

Write homework and
quiz data on one line.
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5.10. Conclusion
In this chapter we’ve covered the basics of reading from files and writing
to files. These same techniques can be used for any numerical data
that’s stored in the form of multi-column, readable numbers. Programs
like gnuplot read data files in a way very similar to this. Multi-column
numerical data is very commonly used for small-to-moderate sized
data sets, although sometimes the columns are separated by commas,
colons or other characters besides spaces.7

7 Large data sets are generally stored
differently, in formats not readable by
humans but which allow the files to
be smaller, faster to read, and easier to
search. We’ll take a look at reading and
writing this kind of files later on.

Figure 5.15: In the days before files were
stored on disks, students delivered
stacks of punched cards to counters like
this one in the the basement of the UNC
Physics building. Computer operators
loaded the stacks into readers, and the
program’s output was printed
(sometimes hours later) and dropped by
the operator into a bin, until the student
came by to pick it up.
Source: UNC-Chapel Hill Computing History photo collection

http://www.ibiblio.org/comphist/node/60
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Practice Problems

Figure 5.16: Eastern Comma butterfly
(Polygonia comma).
Source: Wikimedia Commons

1. Write the following two programs:

(a) Modify Program 5.3 (the bullet.cpp program) so that it writes
comma-separated columns into its output file, instead of space-
separated columns. Run the program to generate a new bullet.txt

output file.

(b) Modify Program 5.4 (the readbullet.cpp program) so that it
will read the new comma-separated data file.

2. Using nano, create a data file called numbers.dat that contains a
column of at least ten integers (positive or negative), like this:

27

-3

189

43

-1280

7

-16

9

Write a program called readnum.cpp that uses a “while” loop to
read the numbers from numbers.dat. Make the program print out
the sum of all of the numbers, the value of the largest number, and
the value of the smallest number, like this:

Sum is -1024

Largest is 189

Smallest is -1280

Make sure your program does the right thing even if all the numbers
are negative.

3. Using nano, create a file named budget.dat that contains three
equal-length columns of numbers, like this:

-462.13 486.47 973.79

755.42 843.04 -963.67

442.58 -843.02 -462.86

-233.93 -821.67 399.59

-379.65 -556.37 837.46

55.18 -144.93 -93.15

533.73 804.64 -66.25

-922.12 914.68 -264.67

-600.27 -838.59 747.02

-962.97 49.96 -677.79

https://commons.wikimedia.org/wiki/File:Eastern_Comma_(15320319450).jpg
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Now write a program named budget.cpp that reads this file and
adds up the numbers in each column. The program’s output should
look like this:

Column sums are: -1774.16 -105.79 429.47

Note that you can limit the number of decimal places you print by
using %.2lf instead of just %lf. This tells printf to print only two
numbers after the decimal point.

Doing homework.
Source: Wikimedia Commons

4. Using nano, create the file grades.dat shown in Figure 5.12 on
Page 154. Now write a program named meangrade.cpp that reads
grades.dat and prints out a list of student IDs along with each
student’s average grade. Determine the average by adding up the
student’s grades for the three homework assignments and dividing
the result by 3. The program should print "Student ID" and
"Mean Grade" at the top of the output, to tell the user what the
numbers mean.

5. Using nano, create the file grades.dat shown in Figure 5.12 on
Page 154. Now write a program named lowgrade.cpp that reads
grades.dat and prints the lowest grade for the first homework
assignment, and the ID number of the student who got this grade.
Make sure your program tells the user what these numbers mean.
(If there’s more than one student with the lowest grade, just print
the first student ID that has this grade.) Don’t assume the grades
will always be between zero and 100. (What if the program were
given a file full of SAT scores, for example?)

6. Write a program named oddeven.cpp that generates 10,000 random
integers and sorts them into two files. Put the odd integers into
odd.dat and the even integers into even.dat. Here are a few
hints to help you:

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0  1000  2000  3000  4000  5000  6000

Figure 5.17: This is how the data in
odd.dat and even.dat might look if
plotted with gnuplot.

• You can generate a random number with the rand function, as
we did in Chapter 2. For example:

number = rand();

• You can use the modulo operator, %, to check whether a number is
positive or negative. If number % 2 is zero, then number is even.
Otherwise it’s odd. (Look back at Chapter 4 for more information
about the modulo operator.)

You might find it interesting to look at odd.dat and even.dat with
gnuplot. For example, if you start gnuplot and give it the command:

plot "odd.dat", "even.dat"

https://commons.wikimedia.org/wiki/File:The_hygiene_of_the_schoolroom_(1911)_(14784071055).jpg
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you should see a rectangle filled with dots of two different colors,
one color for odd numbers and the other for even (see Figure 5.17).
The extent of the rectangle horiontally will show you how many
numbers there are of each type. About half of the numbers you
generated should fall into each category, so the rectangle should go
up to about 5,000. The vertical axis shows the actual numbers you
generated. The height of the rectangle will depend on what kind of
C compiler and computer you’re using, but it should go up to some
very big numbers.

7. Modify Program 5.3 (the “bullet” program) so that it uses a
“do-while” loop to track the bullet until it reaches the ground.
(See the gray box after bullet program for information about
how to do this.) Make the program write out how long (in sec-
onds) it takes the bullet to reach the ground. Call the new program
bullettimer.cpp.





6. Using Arrays

6.1. Introduction
Scientists often make groups of similar measurements under different
conditions. We might measure the temperature of a metal bar at several
different points along its length for example, or measure the velocity of
a dropped ball at several times during its fall. A modern high-energy
physics experiment might record the amount of energy deposited in
each of hundreds of detectors every time an interesting event is seen.

Galileo used his pulse to measure how
long it took a ball to reach several
marked locations while rolling down a
ramp. This experiment established that
the distance traveled is proportional to
the square of the elapsed time, no
matter how much the ball weighs.
Source: Wikimedia Commons

Programs that analyze data need to store such measurements in vari-
ables. We could define one variable for each measurement, giving them
names like t1, t2, t3 and so forth, but that would be awkward if there
were hundreds of measurements. For example, imagine adding them
all up: we’d need to write an expression like t1 + t2 + t3 + . . . ,
and we’d need to remember to change it if we added or removed any
measurements the next time we used the program.

This detector assembly consists of 240

cesium iodide crystals. Each of them
measures the energy of particles that
pass through the crystal.
Source: PiBeta Collaboration

C provides us with an easier way of storing a group of related values.
An “array” is a numbered list of boxes in the computer’s memory.
The array as a whole has a single name, and individual boxes can be
referred to by number. In this chapter we’ll see how to create and use
arrays.

6.2. A Coal Train
Imagine that you’re in charge of a rail system carrying coal. Each train
has some number of coal cars, and each car can carry some amount of
coal up to a maximum capacity. You’d like to keep track of how much
coal is in each car, but you’re also interested in the total amount of coal
that the train is hauling. How might you store all of those numbers in
a program?

A coal train in eastern Wyoming.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Galileo_by_leoni.jpg
http://pibeta.phys.virginia.edu/
https://commons.wikimedia.org/wiki/File:Coal_train_in_eastern_Wyoming,_2006.jpg
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Program 6.1 uses an array to store the weight of coal in each car. The
array is defined by the statement:

double carweight[100];

This statement defines an array of one hundred elements1, each capable
1 Each “element” of an array is just a
storage box for holding something.

of storing a floating-point number. The elements are numbered from
zero to 99.

We can refer to a particular element of the array by giving its number.
For example, if we wanted to print out the value in element number
27 of the array, we could write printf("%lf",carweight[27]);.
It’s very important to remember that the last element in the array is
carweight[99], not carweight[100]. When we define the array,
we say how many elements are in it, but the elements are numbered
starting with zero, so the last element will always have a number that’s
one less than the total number of elements.2

2 Programmers often refer to an ele-
ment’s number as its “index”. Array
indices are like the subscripts we use
in mathematics when we write an ex-
pression like Xi . The index must be an
integer, since it just counts the number
of elements.

Figure 6.1: The first element of an array
is number zero.
Source: Openclipart.org

The first loop in Program 6.1 puts a random weight of coal into each of
the cars. The weights vary between 50 and 100 tons. In a real-world
program, these weights probably wouldn’t be random. They might
be read out of a file, or they might be read from some kind of device
that measures each car’s weight as it goes by. This is just an example,
though, so we’ll use random numbers.3 Notice that we can set the 3 Since we don’t use the srand function

to change the random number genera-
tor’s seed, the program will always give
us the same set of “random” numbers.
(See Chapter 2.)

value of one of the array’s elements by referring to it by number.

The program’s second loop just prints out the weight of each car in a
nice, readable format. Notice that the value of i in both loops runs from
zero to 99, since the loop starts at zero and continues for as long as i is
less than 100 (i<100).

Program 6.1 also tells us the total amount of coal the train is carrying.
The variable sum starts with a value of zero, then has the weight of

https://openclipart.org/detail/202273/coal-wagon


using arrays 165

each car added to it. At the end of the program, the total weight of all
cars is printed.

Program 6.1: coal.cpp

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

double sum = 0.0;

int i;

for ( i=0; i<100; i++ ) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

for ( i=0; i<100; i++ ) {

printf ( "Car %d carries %lf tons\n", i, carweight[i] );

sum += carweight[i];

}

printf( "The total weight of coal is %lf tons.\n", sum );

}

Exercise 32: “I think I can...”

Create, compile and run Program 6.1. Notice that the car
numbers (the array indices) start at zero and end at 99.

Think about how you’d need to change the program to
accommodate 200 cars instead of 100. What would be the
index of the last car then?

6.3. How Arrays Are Stored
In our programs, a variable is just a temporary storage location in the
computer’s memory that has a name attached to it. The size of this
storage location depends on the type of data we want to put into it. Just
as a violin case is different from a trombone case, the box of memory
reserved for an int variable will be different from the box reserved for
a double variable.
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The great jazz violinist Stephane
Grappelli.
Source: Wikimedia Commons

“Trombone Shorty” (aka Troy Andrews)
began playing the trombone before the
age of six, when he was so small he had
to use his feet to reach the low notes.
Source: Wikimedia Commons

Figure 6.2 shows how a group of variables might be placed in the
computer’s memory. Note that int and double variables require
different-sized storage boxes. The data inside these boxes is also or-
ganized differently. Because of this, even though int data would fit
into the space reserved for a double, the data would appear garbled
when your program tried to read it, because the program would try to
interpret these bits as a floating-point number. You might be able to
squeeze a violin into a trombone case, but imagine trying to play the
violin by blowing into it like a trombone!

Figure 6.2: How a group of variables
might be arranged in the computer’s
memory. The actual size of double or
int variables may differ depending on
the type of computer, operating system,
or C compiler. The values shown here
are typical, though.Figure 6.2 also shows how an array is stored. In the figure, a five-

element int array named marbles is defined. Imagine that it records
the number of marbles in each of five bags. As you can see, this array
takes up the same amount of storage space as five regular int variables.

It’s important to remember that each element of an array takes up just
as much memory as a separate variable of that type. So, if we define a
large array with thousands of elements, we may run into the limits of
the computer’s memory.

https://commons.wikimedia.org/wiki/File:Django%26Grappelli_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Jazzfest_2010_Troy_'Trombone_Shorty'_Andrews_playing_with_Glen_David_Andrews,_Julius_McKee_and_Amanda_Shaw.jpg
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The elements of an array are always stored one after another in the
computer’s memory. You could think of them as a stack of shoe boxes.
In fact, when you ask the computer to find, say, marbles[3] it finds
the memory address of the first element of marbles and then just
skips forward by a distance equal to three times the size of a single int
variable. If you have a small array, you might

find it useful to set the initial values of
the elements when you define the array.
For the marbles array, for example,
we could define and initialize the
array by saying int marbles[5]

= {3,42,21,7,10}; The list of
numbers in curly brackets will be put
into elements zero through five of the
array.

All of the elements of an array must have the same type, but this can be
int, double, or any other type that C provides. In our train example,
we defined an array of double elements called carweight. In Figure
6.2 we define an array of int elements called marbles.

But what about. . . ?

Is there a way to find out how much storage space is needed for a type of variable? Yes! You can use the
sizeof function to find the size of a type, or of a particular variable.

Take a look at this example:

#include <stdio.h>

int main () {

int i;

double x;

printf ("Size of int is %d bytes.\n", (int)sizeof( int ) );

printf ("Size of double is %d bytes.\n", (int)sizeof( double ) );

printf ("Size of i is %d bytes.\n", (int)sizeof( i ) );

printf ("Size of x is %d bytes.\n", (int)sizeof( x ) );

}

If you ran this program, the output would look something like this:

Size of int is 4 bytes.

Size of double is 8 bytes.

Size of i is 4 bytes.

Size of x is 8 bytes.

The sizes may be different on your computer, but you can always use sizeof to find them if you need
them. (Note that we force the value of sizeof to be an int by putting “(int)” in front of it. This is
necessary on some computers because the value returned by sizeof isn’t strictly an int.)
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6.4. Selecting Array Elements
Let’s get back to work on our coal-hauling business. As our train is
travelling across the country, we might want to look up the weight of a
particular car. Maybe we have a customer in Schenectady who wants at
least 85 tons of coal. Will the last car in the train be full enough, or do
we need to pick another one?

Program 6.2 adds another section to our earlier program. Now, after
the program has listed the weights of all the cars and told us the total
weight, it begins waiting for us to enter a car number, and will tell us
how much coal is in that particular car.

Program 6.2: coal.cpp, Version 2

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

double sum = 0.0;

int i;

int carno;

for ( i=0; i<100; i++ ) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

for ( i=0; i<100; i++ ) {

printf ( "Car %d carries %lf tons\n", i, carweight[i] );

sum += carweight[i];

}

printf ("The total weight of coal is %lf tons.\n", sum );

while (1) {

printf ( "Enter car number (-1 to quit): " );

scanf ( "%d", &carno );

if ( carno < 0 ) {

break;

}

printf ( "Car number %d carries %lf tons.\n", carno, carweight[carno] );

}

}
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Exercise 33: Runaway Train!

Create, compile and run Program 6.2. Try entering some
numbers between zero and ninety-nine. Enter −1 to stop.
Do the results look reasonable?

Now try entering 1000 and 1000000. These values are
clearly beyond the end of the train. What does the program
do?

Look out! Arrays give us a lot of new
abilities, but they also introduce a
whole trainload of potential pitfalls to
beware of.
Source: Wikimedia Commons

6.5. Checking Array Index Values
Many programs can run simultaneously on a modern computer. To
keep programs from interfering with each other, the computer assigns a
separate chunk of memory to each program. A program is only allowed
to use the memory that belongs to it.

When your coal train program starts running, the computer reserves
enough memory space to hold all of the variables you’ve defined,
including the 100 elements of the carweight array.4 However, as 4 The memory reserved in this way is

called “the stack”, because it’s like a
stack of storage boxes, as illustrated in
Figure 6.2.

demonstrated in the exercise above, the computer doesn’t check your

array indices to make sure they stay within the bounds of the array. This
can cause problems if you’re not careful when writing your program.

Take a look again at Figure 6.2. If we asked the program to print out
the value of marbles[14] the computer would happily skip forward
14 × 4 bytes from the beggining of the marbles array, and try to read
whatever was at that memory location.

If that part of memory is in the chunk belonging to our program, then
the program will be able to successfully read whatever unpredictable
value happens to be stored there (see Figure 6.3a). If this part of the
computer’s memory doesn’t belong to our program, then the program
will crash (see Figure 6.3b). Usually, a crash like this generates an error
message that says “Segmentation fault”. This means that the program
has tried to do something in a segment of the computer’s memory that
doesn’t belong to it.

If Jesse James were alive today he might
have robbed computers instead of
trains. Don’t give Bad Guys a break!
Check to make sure your array indices
don’t stray outside your arrays.
Source: Wikimedia Commons

This might be an even worse problem if we tried to change the value
of marbles[14]. In that case, if the program didn’t crash, we’d be
unexpectedly modifying the value of some completely different variable
in our program.

https://commons.wikimedia.org/wiki/File:Train_wreck_at_Montparnasse_1895.jpg
https://commons.wikimedia.org/wiki/File:Jesse_james_portrait.jpg
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(a) Reading beyond the end of an array, but still
staying within the memory allocated to this program.
This will succeed, but the number you get will likely
be nonsense.

(b) Attempting to read outside the memory allocated
for this program. This will fail and cause the program
to crash.

Figure 6.3: Reading past the end of an
array will give unexpected results.
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It’s up to the programmer to prevent these problems. In Program 6.2
for example, we could add an “if” statement to check to see if the
number entered is between zero and ninety-nine, and tell the user to
pick another number if it’s not.

Reading or writing past the end of an array is one of the most common
programming mistakes. It has led to many bugs in many programs,
including some serious security bugs. Imagine what could happen if
a banking program accidentally allowed users to change the value of
any variable by entering, say, a very large account number! Bad Guys
routinely look for bugs like this, and try to exploit them.

Let’s move away from the hot, dirty coal industry for a little while now,
and visit the cool, clean world of mathematics.

6.6. The Sieve of Eratosthenes
Prime numbers have fascinated mathematicians since ancient times.
You’ll recall that a prime number is a whole number that can only be
divided evenly by itself and one. The first five prime numbers are 2, 3,
5, 7 and 11. (the number 1 isn’t considered to be a prime.) Numbers
that aren’t prime are called composite numbers.

Euclid, who lived around 300 BCE, is
best known as the father of geometry.
Source: Wikimedia Commons

Eratosthenes, born around 276 BCE, is
perhaps best remembered for his
remarkably accurate determination of
the radius of the earth. (No, the ancient
Greeks didn’t think the earth was flat!)
Source: Wikimedia Commons

Early on, the Greek mathematician Euclid proved that there are in-
finitely many prime numbers. There doesn’t, however, seem to be any
simple rule for predicting them all. You just have to find them by
searching.

Another Greek mathematician, Eratosthenes, described a straightfor-
ward procedure for searching for prime numbers. Today we call his
technique “the Sieve of Eratosthenes”. It finds primes by a process of
elimination. First, write down all numbers in a range, and then mark
out the ones that aren’t prime. Anything left over (the “holes” in the
sieve) is prime. But how to you know which numbers to eliminate?

Here’s how it works: Write down all of the numbers from one to N,
where N is the highest number you want to test. Then mark out all
the multiples of 2 (4, 6, 8, . . . ). We know that none of these numbers
can possibly be prime, since they can be divided evenly by 2. After
that, mark out all of the multiples of 3 for the same reason, and so on.
When you’ve gone through all of the numbers, anything that hasn’t
been marked out isn’t a multiple of anything but 1 and itself, so it’s a
prime number. Figure 6.4 shows what it might look like after you’d

https://commons.wikimedia.org/wiki/File:Euclid._Line_engraving._Wellcome_V0001797.jpg
https://commons.wikimedia.org/wiki/File:Eratosthene.01.png
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done this for the numbers 1 to 100.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 6.4: White squares show the
prime numbers between 1 and 100. Gray
squares are numbers that have been
marked out by the sieve process.

Program 6.3 uses Eratosthenes’ technique to find all of the prime
numbers smaller than 100,000. In terms of the description above,
the program sets N equal to 100,000. It begins by defining an N + 1
element array named isprime that will hold the “prime status” of
each number. If the number i is prime, then isprime[i] will be equal
to 1. Otherwise, this value will be zero.

Why does the array need N + 1 elements? Remember that the last
element of a 100-element array is number 99, not 100, since the first
element is number zero. If we want the last element of isprime to be
number N, then the array needs to have N + 1 elements.

Notice that, instead of writing “int isprime[100001];” we’ve de-
fined a variable, N, that says how many elements are in our array. The
size of an array can’t be changed once it’s defined, though, so it’s a
good idea to mark a variable used this way as a “constant”. By putting
the word const in front of a variable definition, you tell the compiler
that the value of this variable will never change.5 If you try to change 5 “constant variable?” Isn’t that an

oxymoron?the variable’s value somewhere later in the program, the compiler will
give you an error message and refuse to compile the program.

Program 6.3 assumes that all of the numbers are prime unless proven
otherwise. The first “for” loop initializes all of the elements of
isprime to a value of 1.

The next “for” loop begins with 2, and goes through all of the multiples
of 2 that are smaller than N. For each of these multiples, the program
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sets the corresponding element of isprime to a value of zero, thus
flagging this number as a non-prime. The program then works its way
through multiples of other numbers, up to N.

The study of integers is an important
part of the branch of mathematics called
“number theory”. Mathematician
Leopold Kronecker famously said “God
made the integers, all else is the work of
man.”
Source: Wikimedia Commons

When it’s done, anything that still has an isprime value of 1 is really
a prime. The program prints out these numbers, and a count of how
many primes were found.

You can probably think of some shortcuts we could have taken to
make our program run faster. For one thing, if you’ve worked partway
through the list and come to, say, 31, you know without going any
farther that 31 is prime, since only smaller numbers could possibly be
its factors. For another thing, it turns out that you only need to look for
multiples of prime numbers. All the multiples of 4, for example, will
already have been marked out, since they’re also multiples of 2, and all
multiples of 6 are also multiples of 2 and 3, which have already been
marked out. Finally, we only need to test multiples of numbers smaller
than

√
N. Any larger, non-prime numbers smaller than N must be a

multiple of one of these.

To keep the program simple, Program 6.3 doesn’t use these shortcuts. It
trades speed for simplicity. This is a choice you’ll often have to make as
a programmer. Is a simple program fast enough? If I make the program
more complicated in order to gain some speed, will I be more likely to
do something wrong?

Exercise 34: Prime Time

Create, compile and run Program 6.3. How many primes
does it find? Think about what problems you might run into
if you tried to use this program to find even larger prime
numbers.

N Number of Primes
10 4

100 25

1,000 168

10,000 1,229

100,000 9,592

1,000,000 78,498

10,000,000 664,579

100,000,000 5,761,455

1,000,000,000 50,847,534

10,000,000,000 455,052,511

100,000,000,000 4,118,054,813

1,000,000,000,000 37,607,912,018

10,000,000,000,000 346,065,536,839

Figure 6.5: The number of primes less
than N, for various values of N.
Source: https://primes.utm.edu/howmany.html

https://en.wikipedia.org/wiki/File:Leopold_Kronecker_1865.jpg
https://primes.utm.edu/howmany.html
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Program 6.3: sieve.cpp

#include <stdio.h>

int main () {

const int N = 1e+5;

int isprime[N+1]; // Why N+1? Number of elements, INCLUDING ZERO!

int i;

int multiple;

int nprimes = 0;

// Start by assuming everything is prime:

for ( i=0; i<=N; i++ ) {

isprime[i] = 1;

}

// Mark the non-primes:

for ( i=2; i<=N; i++ ) { // Don't want to include multiples of 1!

multiple = i+i; // First multiple of i

while ( multiple <= N ) {

isprime[multiple] = 0;

multiple += i;

}

}

// Print out what's left:

for ( i=2; i<=N; i++ ) { // Why 2? Zero and 1 aren't prime by definition.

if ( isprime[i] == 1 ) {

printf ( "%d\n", i );

nprimes++;

}

}

printf ( "Total number of primes below %d is %d\n", N, nprimes );

}
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6.7. Reading Array Elements

Figure 6.6: The airplane image on this
1918 “Inverted Jenny” stamp was
accidentally printed upside-down. Only
100 such stamps are known to have
been printed, making them very
valuable to collectors. In 2007 one of
these stamps was sold for almost
$1,000,000.
Source: Wikimedia Commons

Because C doesn’t prevent us from going past the end of an array (see
Section 6.5 above) we need to be careful when we read data from a
user or from a file and put it into an array. Take a look at Program 6.4,
for example. This program defines a 5-element array named marbles,
and asks the user to enter numbers into it, one element at a time. The
numbers are then printed out in reverse order.

Notice that the program uses “for” loops that systematically go
through the array’s indices, from zero to 4. (Remember that the last
element of a 5-element array is numbered 4, since the first element’s
number is zero.) Also notice that we put the array element into the
scanf statement in just the same way that we’d put a non-array vari-
able. In particular, we still need to put an ampersand in front of it.

After reading the numbers, the program prints them out in reverse
order. It does this by starting with the last array element and working
backwards through the array. We could have done this by saying
“for ( i=4; i>=0; i-- )”, but we’ve chosen to do it a different
way. The program uses the same kind of “for” loop that it used when
reading the numbers, but instead of printing marbles[i] it prints
marbles[4-i]. Since i starts at zero and goes to 4, the value of 4-i
starts at 4 and goes to zero.

If you run Program 6.4 it might look
like this:

./reverse

Enter a number: 2

Enter a number: 7

Enter a number: 5

Enter a number: 1

Enter a number: 9

Numbers in reverse order:

9

1

5

7

2

Program 6.4: reverse.cpp

#include <stdio.h>

int main () {

int marbles[5];

int i;

for ( i=0; i<5; i++ ) {

printf ( "Enter a number: " );

scanf ( "%d", &marbles[i] );

}

printf ( "Numbers in reverse order:\n" );

for ( i=0; i<5; i++ ) {

printf ( "%d\n", marbles[4-i] );

}

}
Array indices give us a way to uniquely
identify each element of an array, but
they can also provide information about
relationships between elements. For
example, they tell us the order of the
cars in our coal train, or the order of the
numbers we entered in Program 6.4.

Exercise 35: Doing Flips

Create, compile and run Program 6.4. Does it work as
expected?

https://commons.wikimedia.org/wiki/File:US_Airmail_inverted_Jenny_24c_1918_issue.jpg
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6.8. Sorting the Elements of an Array
We sometimes want to sort the elements of an array based on the values
they contain. In our coal train example, for instance, we might want
to put the heaviest cars at the back of the train, and the lightest at the
front.

One of the simplest (but, unfortunately, slowest) ways to sort things is
called a “bubble sort”. Let’s write a program that uses a bubble sort to
arrange the cars of our train from lightest to heaviest.

A bubble sort works by comparing the values in two neighboring
elements of an array. If the two values are in the proper order already
(light car in front of heavy car, in our train example), they’re left alone.
Otherwise the two values are swapped to put them into the right order.
We go through each pair of elements in the array, from first to last,
swapping values when necessary. Then we do this again and again,
until no more values need to be swapped. At that point, the array has
been completely sorted. Figure 6.7 shows what the first pass might do
to the values in our marbles array.

Figure 6.7: A bubble sort works its way
through this array from bottom to top,
comparing neighboring numbers and
swapping them where necessary. When
we get to the top of the array, we see that
the largest number has “bubbled up”.
We could then start back at the bottom
and repeat this procedure until all of the
numbers had been sorted.

To write a program that does this, we’ll first need to think about how
to swap the values of two elements of an array. We can’t just copy, say,
marbles[1] into marbles[2]. If we did, we’d have two copies of the
value in marbles[1], and would have lost the value of marbles[2]
completely! To swap values in a program, we’ll generally need to have
a temporary storage place to put one of the values while we’re moving
things around. This is illustrated in Figure 6.8.

Once we know how to swap the values in two elements, we’re ready to
write our bubble sort program. Program 6.5 is the result. The middle
of the program is two nested loops.
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Figure 6.8: Swapping two values usually
requires a temporary storage location.
This illustration shows to swap the
values in two adjacent elements of the
marbles array. We use a variable called
temp as a place to park one of the values
while we’re moving things around.

The inner loop is a “for” loop. This loop goes through each pair of
array elements, starting with elements zero and one, then going to one
and two, two and three, and so forth. The last pair will be 98 and 99,
since the last element is number 99. The loop’s counter variable, i,
identifies the first member of each pair. The second member is i+1.
The loop stops when i is equal to 98 and i+1 is equal to 99 (the last
element of the array).

“A little later, remembering man’s earthly
origin, ’dust thou art and to dust thou shalt
return,’ they liked to fancy themselves
bubbles of earth. When alone in the fields,
with no one to see them, they would hop,
skip and jump, touching the ground as
lightly as possible and crying ’We are
bubbles of earth! Bubbles of earth! Bubbles
of earth!”’ —Flora Thompson, in Lark
Rise (1939)
Source: ©Basher Eyre and licensed for reuse under this Creative

Commons license

The variable temp is a temporary storage location for use while swap-
ping values, as shown in Figure 6.8. The variable nswapped keeps
track of how many pairs needed to be swapped. before we begin each
pass through the elements, nswapped is reset to zero.

The outer “do-while” loop repeats the inner loop until there are
no more pairs that need swapping, indicated by a value of zero for
nswapped.

A bubble sort is a simple sorting algorithm. An “algorithm” is just a
recipe for doing something. Bubble sorts are easy to write, but there
are much faster sorting algorithms. We’ll look at one of these called
“qsort” in a later chapter.

http://www.geograph.org.uk/reuse.php?id=3843447
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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Program 6.5: bubble.cpp

#include <stdio.h>

#include <stdlib.h>

int main () {

double carweight[100];

double w;

int i;

double temp;

int nswapped;

for ( i=0; i<100; i++ ) {

w = 50.0 + 50.0 * rand()/(1.0 + RAND_MAX);

carweight[i] = w;

}

do {

nswapped = 0;

for ( i=0; i<99; i++ ) { // Note: omit last element!

if ( carweight[i] > carweight[i+1] ) {

temp = carweight[i];

carweight[i] = carweight[i+1];

carweight[i+1] = temp;

nswapped++;

}

}

} while (nswapped > 0);

for ( i=0; i<100; i++ ) {

printf ("Car %d carries %lf tons.\n", i, carweight[i] );

}

}
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But what about. . . ?

Where does the word “algorithm” come from anyway? Surpris-
ingly, it has nothing to do with Al Gore. Instead, it’s a variation on
the name of Muhammed ibn Musa al-Kwarizmi. al-Kwarizmi was
an 8th-Century Persian mathematician who adopted a revolution-
ary new Indian method for writing numbers: the decimal number
system we still use today. Before decimal numbers, arithmetic was
a tedious process only known to specialists. Decimal numbers
suddenly made arithmetic accessible to the masses.

al-Kwarizmi’s writings, translated into Latin, brought the new
number system to Europe, along with other insights into mathe-
matics. The word “algebra” comes from the Arabic word al-jabr,
meaning “make whole”, used in the title of one of al-Kwarizmi’s
books: al-Kitab al-mukhtasar fi hisab al-jabr wal-muqabala (The Com-

pendious Book on Calculation by Completion and Balancing).

al-Kwarizmi’s mathematical writings were so influential that his
name, transmogrified into “algorithm”, became a shorthand for
calculation in general. A page from one of al-Kwarizmi’s

books.
Source: Wikimedia Commons

6.9. Fun with Metronomes
A metronome is a device that clicks in a regular rhythm. Music students
sometimes use them while practicing. These devices have a straight,
weighted arm that swings back and forth. Imagine that you have
several metronomes sitting at various widely-separated places in a
room. The metronomes are all ticking at the same rate, but the arm of
each metronome has been set in motion at a different time. It might
look like the top half of Figure 6.9. At any given time, the arms of the
metronomes are in different places. We say that the metronomes are
"out of phase", and they would stay that way for as long as we could
tolerate their maddening ticking!

Now imagine we take the metronomes and put them side-by-side on a
wobbly table6. Again, we start their arms moving at different times, so 6 This example was inspired by

Matt Parker’s video on this topic:
https://www.youtube.com/watch?v=J4PO7NbdKXgthey’re out of phase. But now we’d find that, over time, the metronomes

begin to synchronize, until they are eventually "in phase" with each
other, with all the arms at the same position at any given time, like the
bottom half of Figure 6.9.

https://commons.wikimedia.org/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg
https://www.youtube.com/watch?v=J4PO7NbdKXg


180 practical computing for science and engineering

Starting
Positions
(all different)

Later
Positions

(all the same)

0 1 2

0 1 2

Figure 6.9: Even though the metronomes’
arms might start out in different places,
they can influence each other over time.

What’s happening here is that the wobbly table lets the metronomes
jiggle each other a little bit. We say that they’re now "coupled", whereas
they were "uncoupled" when they were spread out around the room.
Over time, the coupling between the metronomes tends to bring them
into phase with one another.

In the 1970s Yoshiki Kuramoto developed a simple mathematical
model7 that describes how the metronomes’ motion evolves from out-

7 http://go.owu.edu/ physics/StudentRe-
search/2005/BryanDaniels/kuramoto_paper.pdf

of-phase to in-phase. Let’s write a program that uses Kuramoto’s model
to simulate the behavior of a set of metronomes on a wobbly table.
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Figure 6.10: The motion of a single
metronome arm.

We’re going to need to keep track of each metronome’s arm as it
oscillates back and forth. Figure 6.10 shows the motion of a single
metronome. The vertical axis shows the position of its arm, where 1

means all the way to the right, and -1 means all the way to the left. As
time passes, the arm oscillates between these two extremes in a sine
wave.
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Figure 6.11: The motion of four
"uncoupled" metronome arms.

Figure 6.11 shows the motion of four uncoupled metronomes. They
move in sine waves with the same frequency, but they’re shifted relative
to each other because the arms were started at different times.

When dealing with oscillating things, it’s natural to measure time in
terms of multiples of the oscillating period. We could say that the
mentronome has gone through one cycle, two cycles, three cycles... The
vertical axis (arm position) on our graph is the sine of an angle, and
the horizontal axis (time) is an angle telling us how far "around" the

http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
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cycle we’ve gone so far. (Note that it’s perfecly OK to go around twice,
or three times, or as many times as we want.) One complete cycle is
equivalent to an angle of 2π radians.

The time to go through one complete cycle is the metronome’s period.
After some amount of time, t, the "angle" the metronome has traveled
through in its cycle is θ = 2πt/period. Note that this is different from
the physical angle the metronome’s arm makes. θ here is an abstract
thing that just tells us what stage we’re at in the metronome’s cycle. If
different metronomes are started at different times, that’s just equivalent
to shifting θ by some amount that we’ll call each metronome’s "phase
angle". When the metronomes jiggle each other, they gradually change
each other’s phase angles until all they’re all the same.
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Figure 6.12: The motion of four
metronomes that are "coupled" because
they’re sitting together on a wobbly
table.

For coupled metronomes, the Kuromoto model tells us that each
metronome is jiggled by each other metronome by an anount that’s
proportional to the difference in their phase angles. Mathematically, we
could say that the change in phase angle of metronome i is:

correctioni =
constant

N
×

N−1

∑
j=0

(phasej − phasei)

where N is the number of metronomes and j is a label for each
metronome, starting with zero. Over time, after many such small
corrections, this would cause the phases of the metronomes to converge,
as in Figure 6.12.

Program 6.6 tracks the motion of four metronomes that can jiggle
each other. It initially gives the metronomes different phase angles
spread evenly between zero and π/2 radians (1/4 of the way through a
cycle). Then the program starts a loop that goes through four complete
metronome cycles in 100 steps. During each step, the program loops
through all the metronomes, and for each metronome it calculates the
correction due to all the other metronomes. It then does a second loop
and applies those corrections by modifying each metronome’s phase
angle. During each step, the program prints out the current value of
θ and the position of each metronome arm (given by sin(theta +

phase[i]).

At the top of the program we define two arrays, phase and correction,
that will hold the current phase angle of each metronome and the cor-
rection to be applied to that phase angle before beginning the next
step. We can’t just change the numbers in phase because we still need
those values until we’re finished calculating the correction to each of
the metronomes. That’s why we store the corrections in a separate
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array until we’re ready to apply them.

When you run the program it will print five columns of numbers: θ,
which represents time, and the position of each of the four metronome
arms. If you want to simulate more metronomes, just change the value
of nmetronomes in the program.

Program 6.6: metronome.cpp

#include <stdio.h>

#include <math.h>

int main () {

const int nmetronome = 4;

double nsteps = 100;

double phase[nmetronome];
double correction[nmetronome];
double coupling_strength = 0.03;

double thetamax = 8.0*M_PI;

double diff,diffsum;

double theta,thetastep;

int istep;

int i,j;

diff = 0.5*M_PI/nmetronome;

for ( i=0; i<nmetronome; i++ ) {

phase[i] = diff*i;

}

thetastep = thetamax/nsteps;

theta = 0;

for ( istep=0; istep<nsteps; istep++ ) {

printf( "%lf ", theta );

for ( i=0; i<nmetronome; i++ ) {

printf( "%lf ", sin(theta + phase[i]) );

diffsum = 0;

for ( j=0; j<nmetronome; j++ ) {

diffsum += phase[j] - phase[i];
}

correction[i] = coupling_strength*diffsum/nmetronome;

}

printf ("\n");

for ( i=0; i<nmetronome; i++ ) {

phase[i] = phase[i] + correction[i];
}

theta += thetastep;

}

}

Set initial values.

Loop
through

time

Print θ. Loop through
all metronomes.

Add up the
phase differences.

Apply corrections.

Print arm position.
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6.10. Multi-Dimensional Arrays
Each array we’ve seen so far can be visualized as a long, one-dimensional
chain of elements, one after another. Arrays don’t have to be one-
dimensional, though. For example, the program below shows an array
called matrix with two indices. We could think of this as representing
a two-dimensional (20 × 30, in this case) matrix of values.

The Karl G. Jansky Very Large Array
(VLA) is an array of radio telescopes
near Socorro, New Mexico. The
antennas can turn to follow celestial
targets as the Earth rotates. Their
motion is usually so slow as to be
almost imperceptible, but they
periodically need to “unwind” to avoid
tangling cables. Astronomers describe
the eerie scene when, in the middle of
the night, a plain full of antennas
suddenly begins twisting in unison, as
though they’ve come to life.
Source: Wikimedia Commons

int main(){

int matrix[20][30];

int i,j;

for (i=0; i<20; i++) {

for (j=0; j<30; j++) {

matrix[i][j] = i * j;

}

}

}

The Chess Game (1555), by Sofonisba
Anguissola
Source: Wikimedia Commons

There’s a legend, of uncertain origin,
that goes something like this: The
inventor of chess presented the new
game to his ruler, who was so pleased
that he offered the inventor any prize
he wanted. The apparently modest
inventor asked only for some grains
of wheat (or rice, in some versions).
One grain was to be placed on the first
square of the chessboard, two on the
second, four on the third, and so forth,
doubling the number of grains each
time, until the last square was reached.
“Certainly!” said the ruler, but he found
that he couldn’t honor his offer. To
reach the last square would require over
263 grains of wheat, more than all of the
wheat in the world!

A two-dimensional array might store the barometric pressure at loca-
tions on a map grid, or the number of grains of wheat on each square
of a chess board.

Figure 6.13: An 8 × 8 two-dimensional
array, with the indices i and j.

https://commons.wikimedia.org/wiki/File:VLA_4893505508.jpg
https://commons.wikimedia.org/wiki/File:The_Chess_Game_-_Sofonisba_Anguissola.jpg
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Arrays in C can have as many indices as you like. A three-dimensional
array might hold data about a grid of points in space, or a four-
dimensional array might be useful for problems in General Relativity,
where space and time are combined into a four-dimensional continuum.

Each index of a multi-dimensional array starts with zero, just like arrays
with a single index. In the example above, the first index of matrix
goes from zero to 19, and the second index goes from zero to 29.

6.11. Working with 2-dimensional Arrays
You’re an artillery sergeant in the Union Army during the American
Civil War. The rebel forces are trying to float a barge full of coal down
the Missisippi river to supply fuel for their new ironclad warship. Your
job is to make sure that barge doesn’t reach its destination. You set up
camp on the side of the river and wait for the barge to come through.
But wait! Suddenly a thick fog descends, blocking your view of the
river! You’ll have to fire blind, and listen for the sound of crackling
wood to tell you whether you’ve hit the barge.

Quickly you sketch out a diagram of the river to help you keep track of
hits and misses (see Figure 6.14).
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Figure 6.14: A coal barge floats down the
Mississippi. The front of the barge is at
[5][1], and the vessel occupies the
four elements to the right of that
position. An artillery shell has hit the
barge at position [6][1], but another
shell at [2][3] has missed.

Hmmm. This sounds like it would make an exciting game! Fortunately,
you learned C programming in Boot Camp, so after completing your
mission you can return home and write Program 6.7.

These are the rules of the game: A coal barge occupies a line of four
consecutive elements in a 2-dimensional array (the map). The barge is
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oriented horizontally, along the flow of the river, and placed at some
random location on the map. The barge must be completely on the
map, it can’t hang off the edge.

In 1863 Union forces built this dummy
ironclad out of an old coal barge, and
used it to frighten Confederates. The
smokestacks were made of pork barrels
and contained smudge pots to make
smoke.
Source: Wikimedia Commons

In order to win the game, the player must hit each of the four array
elements that contain the barge. The player fires an artillery shell by
giving the two indices, [i][j], of an array element. The program tells
the player whether the shell hits the barge.

The program uses a 2-dimensional array named grid to store a map
of the river and the barge’s position. Most of this array contains zeros,
but the four elements occupied by the barge are initially marked with
ones. When a player hits one of the barge elements its value is changed
to -1. The variable nhits keeps track of the total number of hits. The
program keeps running as long as nhits is less than four.

https://commons.wikimedia.org/wiki/File:Admiral_Porter's_Second_Dummy_Frightening_the_Rebels.jpg
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Program 6.7: coalbarge.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int grid[10][5];

int nhits = 0;

int i, j, iprow, jprow;

for ( i=0; i<10; i++ ) {

for ( j=0; j<5; j++ ) {

grid[i][j] = 0;

}

}

srand( time(NULL) );

iprow = (int)( 7.0*rand()/(1.0 + RAND_MAX) );

jprow = (int)( 5.0*rand()/(1.0 + RAND_MAX) );

for ( i=0; i<4; i++ ) {

grid[iprow+i][jprow] = 1;

}

do {

printf ("Enter x coordinate: ");

scanf( "%d", &i );

printf ("Enter y coordinate: ");

scanf( "%d", &j );

if ( i >= 10 || i < 0 || j >= 5 || j < 0 ) {

printf ("Bad coordinates. Try again.\n");

continue;

}

if ( grid[i][j] == 1 ) {

printf ("Hit!\n");

grid[i][j] = -1;

nhits++;

} else if ( grid[i][j] == -1 ) {

printf ("Already hit! Try again.\n");

} else {

printf ("Miss! Try again.\n");

}

} while ( nhits < 4 );

printf ("You sunk my coal barge!\n");

}
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The front (“prow”) of the barge must
be in the shaded section to prevent the
back end from hanging off the map.
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6.12. Solving a Heat Problem
Let’s use a two-dimensional matrix to help us solve a problem. Imagine
that you have a square metal plate. One edge of the plate is connected
to something very hot, like the engine of a locomotive. The other three
edges are connected to a cooling system that keeps them cold. But
what are the temperatures of the other parts of the plate?

A steam locomotive.
Source: Wikimedia Commons

Figure 6.15: A metal plate, hot on one
edge and cold on the others.

We might assume that points near each other on the plate would have
similar temperatures. Points near the hot edge would tend to be hotter
than points near the cold edges. In fact, it wouldn’t be surprising if
the temperature at any given point were close to the average of the
temperatures at the points around it.

Let’s write a program that tries to estimate the temperature at various
points on the plate. Assume that the very hot edge of the plate has a
temperature of 500 celsius, and that the cold sides are kept at a chilly
zero celsius by our highly efficient cooling system.

We’ll start by dividing the plate into a 100 × 100 grid of points.

https://commons.wikimedia.org/wiki/File:Locomotive_engineering_-_a_practical_journal_of_railway_motive_power_and_rolling_stock_(1900)_(14573293108).jpg
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Hmmm. . . Sounds like a 2-dimensional array might be useful here. We
could define the array like this:

double temp[100][100];

The array named temp will hold the temperature values of the points
on our grid. We already know the temperatures of some of these points.
The points along the hot edge of our plate have a temperature of 500

celsius, and those along the cold edges are at 0. These are the “boundary
conditions” of our problem. We need to determine the temperatures of
the other, interior, points though.

Pierre-Simon, marquis de Laplace made
important contributions to many areas
of mathematics.
Source: Wikimedia Commons

We’ll start by just setting these interior temperatures arbitrarily to zero.
This probably isn’t a good guess for their temperature, especially for
those points near the hot edge, but we can improve our estimate by
using the approximation we mentioned above: We’re going to assume
that the temperature at any point is approximately the average of the
temperatures of the neighboring points.

It turns out that this type of problem is a common one in physics and
engineering. To arrive at the solution mathematically, we’d need to solve
what’s called “Laplace’s Equation” for this system.8 Fortunately, there’s 8 In the language of math, Laplace’s

equation is expressed as ∇2φ = 0.an easy way to find an approximate solution to Laplace’s equation with
a computer program. The technique is called “relaxation”. You’ll see
why soon.

After setting the temperatures, let’s go through all of the interior points,
changing each point’s temperature to the average of its neighbors’
temperatures. After doing this, we might expect that the temperatures
are a now a little more realistic. How far off was our original estimate?
We might look at how much difference there is between our original
guess and the new estimate. What’s the biggest difference?

If we did this averaging process again, we’d get an even better ap-
proximation for the temperatures, and we’d see that the maximum
temperature change is smaller than it was the first time. If we keep
averaging, again and again, the temperature values will eventually
settle into stable values that don’t change much each time we average.
At some point, we decide that this approximation is good enough, and
stop averaging.

A soap film stretching between two
hoops.
Source: Wikimedia Commons

Our approximation started out very far from the true temperatures.

https://commons.wikimedia.org/wiki/File:Laplace,_Pierre-Simon,_marquis_de.jpg
https://commons.wikimedia.org/wiki/File:Bulle_caténoïde.png
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You could think of this original approximation as being a rubber sheet
that’s stretched out into some unnatural shape. Each time we do the
averaging process, the sheet “relaxes” a little, until it falls into whatever
natural shape fits the boundary conditions we’ve imposed. That’s why
this technique is called “relaxation”. It can be used for temperature
problems like this, but also for a real rubber sheet, or for a soap film
on a wire frame. All of these are instances of a system controlled by
Laplace’s equation.

Program 6.8 follows the strategy we’ve described above and uses it to
find approximate temperatures for interior points on our metal plate.
First, it sets temperatures to some initial values, then repeatedly loops
through all of the interior points, averaging temperatures. Every time
it changes a temperature, it looks to at the size of the change and
keeps track of the biggest change. When the changes get small enough
(smaller than smalldiff), the program prints the final temperatures.

Notice that Program 6.8 uses some magic to make sure each element of
the temp and told arrays contains a value of zero when the program
starts. That’s what the special value {{0}} means when defining a
2-dimensional array.

[i][j-1]

[i-1][j] [i][j] [i+1][j]

[i][j+1]

Figure 6.16: Program 6.8 sets the new
value of temp[i][j] equal to the
average temperature of the four array
elements surrounding it. As we saw in
Section 6.7, the array indices can be
used to tell us something about the
relationships between array elements.
In this case, the indices give us
information about which elements are
near each other.
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Figure 6.17: Temperatures at various
points on the metal plate, as estimated
by Program 6.8.

We can put the program’s output into a file by writing ./relax >

relax.dat, then we can graph the results with gnuplot. Figure 6.17

shows the result of the following gnuplot command:

splot "relax.dat" with pm3d
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The command splot9does a “surface plot”. The qualifier “with 9 Note that it’s splot, not plot.

pm3d” tells gnuplot to use a style of plotting called “palette-mapped
3-d”. This color-codes values based on their height. The color scale
shows which color corresponds to which value.

To enable gnuplot to read the data file, Program 6.8 wrote it in a particu-
lar format. If you look inside the data file (relax.dat) you’ll see that
it contains a single column of numbers. If you scroll down in the file
a little, you’ll see that there’s an empty line after every 100 numbers.
The numbers represent the temperature values along a row of our grid
points on the metal plate. Each extra blank line indicates the beginning
of the next row.
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Figure 6.18: Another view of the
temperature distribution, as seen from
above the plate.

By choosing different “boundary conditions” (the unchanging tempera-
tures at the plate’s edges) we can simulate other interesting situations.
For example, Figure 6.19 shows the temperature distribution on the
plate when there are two hot spots at the top and one hot spot at the
bottom.
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Figure 6.19: These graphs show the
temperature distribution when there are
two hot spots at the top of the plate and
one hot spot at the bottom.
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Program 6.8: relax.cpp

#include <stdio.h>

#include <math.h>

int main () {

int i,j;

double diff, maxdiff, smalldiff=1.0e-3;

double temp[100][100] = {{0}}; // Current temps.

double told[100][100] = {{0}}; // Previous temps.

// Set elements along hot edge to 500 celsius:

for (i=0;i<100;i++){

temp[i][0] = 500.0;

}

// Keep averaging until maxdiff is small:

do {

for (i=0;i<100;i++){

for (j=0;j<100;j++){

told[i][j] = temp[i][j];

}

}

maxdiff = 0;

// These two nested loops go through all of the

// interior points:

for (i=1;i<99;i++){

for (j=1;j<99;j++){

temp[i][j] = 0.25 * (told[i-1][j] + told[i+1][j] +

told[i][j-1] + told[i][j+1]);

diff = fabs(temp[i][j]-told[i][j]);

if ( diff > maxdiff) {

maxdiff = diff;

}

}

}

} while ( maxdiff > smalldiff );

// Write out results:

for (i=0;i<100;i++){

for (j=0;j<100;j++){

printf("%lf\n", temp[i][j]);

}

printf ("\n");

}

}

[0][0] [1][0] [2][0] [3][0] ...

[0][1] [1][1] [2][1] [3][1] ...

[0][2] [1][2] [2][2] [3][2] ...

[0][3] [1][3] [2][3] [3][3] ...

... ... ... ... ...

Keep this 
edge hot:

Keep the other 
edges cool:

Estimate the temperature 
of the interior points.
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See Figure 6.16 on Page 189Relax...
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But what about. . . ?

Let’s look more closely at the trick we used in Program 6.8 when
defining the temp and told arrays. If a statement like:

double temp[100][100] = {{0}};

gives each of the array’s elements a value of zero, could we do this:

double temp[100][100] = {{100}};

to set all of the elements to 100?

Unfortunately, no, but the real result might suprise you. If you
printed the values stored in an array defined like this, you’d find
that element [0][0] had the value 100, as expected, but all of the
other elements would be set to zero.

Let’s back up a little and see how these curly brackets work when
we use them in an array definition. As we noted back on Page 167,
we can initialize the elements of an array by explicitly giving a list
of values in curly brackets, like this:

int marbles[5] = {7,9,3,15,8};

But what if the list contains fewer values than the number of array
elements, like this?:

int marbles[5] = {7,9};

In that case, the first two elements would be set to 7 and 9, and
the rest would be set to zero. Whenever there are too few values,
the computer assumes that we want to set the rest of the values to
zero.

As we’ve noted before (see Chapter 4), variables are just named
sections of the computer’s memory, and we can’t assume that they
contain any particular value before we explicitly give the variable
a value. If we want all of an array’s elements to be zero, we need
to set them to zero. We could do this by saying:

int marbles[5] = {0,0,0,0,0};

or, as we’ve just seen, we could say:

int marbles[5] = {0};
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causing the computer to set the first element to zero, and setting
all of the other elements to zero by default, since we didn’t say
what we wanted them to be.

Some compilers will even let us say “int marbles[5] = {}”,
but that doesn’t work with all of them, so it’s best to always give
at least one value.

So what about the double brackets we used in Program 6.8? That’s
because these are 2-dimensional arrays. With a 2-d array, we can
initialize values like this:

double x[20][20] = {{7,9},{4,3}};

setting the first two elements of the first row to 7 and 9, and the
first two elements of the second row to 4 and 3. All of the other
elements would be set to zero. And, if we said:

double x[20][20] = {{0}};

all of the array’s elements would be set to zero. This is the trick
we used in Program 6.8.

Figure 6.20: A collection of marbles
within the permanent collection of The
Children’s Museum of Indianapolis.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:The_Childrens_Museum_of_Indianapolis_-_Marbles.jpg
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6.13. Conclusion
Arrays are useful whenever your program needs to store several related
values. Array indices uniquely identify each array element, and they
may also say something about relationships between array elements.
(They can indicate the spatial or time ordering of measurements, for
example.)

Some important things to remember about arrays are:

• The elements of an array can be of any type (but all elements of a
given array must be of the same type).

• When defining an array, the number in square brackets says how
many elements are in the array.

• It’s important to remember that an N-element array’s indices start
with zero, and end at N-1.

• Arrays take up memory. It’s easy to write “double x[1000]”, but
remember that this takes as much memory as a thousand single
variables. Keep this in mind when defining large arrays.

• Array elements can be referred to by their indices.

• The index must be an integer.

• The index uniquely identifies a single array element.

• Arrays can optionally be initialized when they’re defined.
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Practice Problems

John Coltrane. Because “Coal Train”.
Source: Wikimedia Commons

1. On page 171 it was suggested that adding an “if” statement to
Program 6.2 could make it safer. Add an “if/else” statement to
Program 6.2 (without changing anything else!) to check whether the
number is too big or too small. If it is, ignore the number and give
the user a helpful message. Call your program coal.cpp.

2. Create, compile and run Program 6.8. Use the “ls” command to
make sure that the program created the file relax.dat.

Use the gnuplot command described above to plot the data using
gnuplot’s “pm3d” plotting style. If your version of gnuplot allows it,
grab the figure with your mouse and rotate it around. Does it look
like what you’d expect?

3. Imagine you have a very short coal train, containing only five cars.
Each of the cars is to be sent to one of your customers. Each customer
is identified by an integer “Valued Customer ID Number” (VCID)
like “37654”.

(a) Using nano, create a data file named orders.dat that contains
five rows of numbers, one row for each car in your train. Each
row of the file will have two numbers: the weight of coal in that
car (which might be a number with decimal places), and the ID of
the customer it belongs to (which will always be an integer). The
file might look like this:

63.4 5487

52.1 30978

77.8 8765

89.0 435

95.3 789

(b) Now write a program named orders.cpp that will read orders.dat.
All of the weights should go into a 5-element array of doubles
named carweight and all of the customer IDs should go into
a 5-element array of ints named vcid, so that carweight[0]
and vcid[0] are the weight and customer ID for the first car,
and so forth. After the program reads the data, have it ask the
user for a car number (a number between zero and four) and print
out the weight and customer ID for that car. Make sure you check

the car number to see if it’s in the range zero to four, and tell the
user if it’s not. Also make sure the program tells the user which
number is which.

Hints: See Program 6.4 for something similar, and look at Chapter
5 for advice about reading things from files.

https://commons.wikimedia.org/wiki/File:John_Coltrane_1963.jpg
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Problem 3 uses two “parallel arrays”, carweight and vcid, to store
two pieces of information about each car. If we wanted to add more
information (maybe the car’s age, so we know when to replace it?)
we could add more arrays. We’ll see a different way to do this sort
of thing later, in Chapter 12.

4. In mathematics, a matrix is an array of numbers. Matrices are impor-
tant in many fields of science, engineering and mathematics.

8 4 1

5 7 5

1 0 3
Figure 6.21: The trace of a matrix is
defined as the sum of its diagonal
elements. In the example above, the
trace is equal to 8 + 7 + 3.

Using nano, create a file named matrix.dat that contains a 3×3

matrix like this:

8 4 1

5 7 5

1 0 3

Write a program named matrix.cpp that reads data from matrix.dat

and puts the numbers into 2-dimensional array, double m[3][3].
To do this, use nested pair of for loops that repeatedly uses fscanf
to read the array’s elements, one at a time. The fscanf statement
might look like this:

fscanf( input, "%lf", &m[col][row] );

where col and row are the column and row numbers.

Make the program do the following:

(a) First, print out the elements of the matrix, so you can make sure
they match the data in matrix.dat.

(b) Second, compute and print out the trace of the matrix. The trace is
defined as the sum of the matrix’s diagonal elements. (See Figure
6.21.) (Hint: The diagonal elements are the ones where the row
and column numbers are the same, like m[0][0] and m[1][1].)

(c) Third, compute and print out the determinant of the matrix. The
determinant for a 3×3 matrix is:

det =

m[0][0]*( m[1][1]*m[2][2] - m[1][2]*m[2][1] ) +

m[0][1]*( m[1][2]*m[2][0] - m[1][0]*m[2][2] ) +

m[0][2]*( m[1][0]*m[2][1] - m[1][1]*m[2][0] );

You’ll obviously need to be careful when typing this into your
program, but looking at the way the numbers in the statement
line up vertically can help you avoid mistakes.

We can think of each row of the matrix
as the coordinates of a point in
three-dimensional space. In the picture
above, we call these points r1, r2, and
r3. The determinant of the matrix is just
the volume of the parallelepiped
defined by these three points (the
shaded volume above).
Source: Wikimedia Commons

If you make your matrix.dat file look like the example above, you
should find that the matrix has a trace of 18 and a determinant of
121. Use these values to check your work.

https://en.wikipedia.org/wiki/File:Determinant_parallelepiped.svg
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5. Write a program named fibarray.cpp that fills an array with the
first 20 terms of the Fibonacci sequence. The first two numbers in
the Fibonacci sequence are 1, 1, and each subsequent number is the
sum of the preceding two numbers. Your program should have a
20-element int array named term. The program should start out by
setting term[0]=1 and term[1]=1. Then the program should have
a “for” loop that finds the value of each of the remaining 18 terms.
Inside the loop you’ll want to have a statement like term[i+2] =

term[i]+term[i+1]. After this loop is done, add another loop
that prints out all the elements of term. The program’s output
should look like this:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

6. In the Fibonacci sequence each term is the sum of the two preceding
terms. There’s also a “Tribonacci sequence”, in which each term is
the sum of the three preceding terms. It starts out with the numbers
0, 0, 1. Referring to the instructions in Problem 5, write a program
named tribarray.cpp, but with the Tribonacci numbers instead
of the Fibonacci numbers. The program’s output should look like:

0 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513





7. Statistics

7.1. Introduction
In the 17th century, English authors John Graunt and William Petty
began writing about a new science called “Political Arithmetic”, which
tried to understand social, economic, and public health problems
through the collection and analysis of numerical data. In the 18th
century, authors such as Germany’s Gottfried Achenwall began writing
about another new field of study called “Statistik” which aimed at dis-
covering the general principles by which a state could be successfully
run.

Figure 7.1: Der Sommer, by Abel
Grimmer (565-1630).
Source: Wikimedia Commons

Figure 7.2: John Graunt’s Observations
on the Bills of Mortality (1662) studied
mortality data in an effort to
understand the spread of Bubonic
Plague.
Source: Wikimedia Commons

Statistik soon began using the techniques of Political Arithmetic. The
success of a state might depend on the amount of wheat or milk it
produces, or the number of skilled craftsman. A spreading plague
might be detected by systematically collecting data about deaths. These
studies were the beginning of what we call “statistics” today.

Figure 7.3: A boa who’s swallowed an
elephant, from Antoine de St.
Exupery’s The Little Prince.

The modern science of statistics attempts to see inaccessible underlying
truths by sampling the superficial things that are visible to us. By
surveying a limited number of households, we arrive at an estimate
of the total number of families living in poverty. By observing a few
thousand particle decays, we estimate the probability that such decays
will happen. In the language of Antoine de St. Exupery’s Little Prince,
statistics tries to see the elephant that lies hidden inside the boa (see
Figure 7.3).

The available data is often incomplete, and shows us only a blurry
outline of what’s underneath, so statistics also tries to measure the
uncertainty in its estimates. These measures of uncertainty help us
judge how much we should trust our statistical conclusions.

https://commons.wikimedia.org/wiki/File:Abel_Grimmer_002.jpg
https://commons.wikimedia.org/wiki/File:Graunt_Observations.jpg
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7.2. Summarizing Data with Histograms
It can be hard to see the patterns in a bunch of raw numbers, but
a graph often makes the data snap into focus. In this section, we’ll
look at a new kind of graph called a “histogram”. The histogram was
introduced in 1891 by Karl Pearson, one of the founders of modern
statistics. It summarizes an arbitrarily large amount of data by reducing
it to a smaller, fixed, number of data points that represent how often
certain values appear in the original data.

Figure 7.4: British mathematician Karl
Pearson (1857-1936).
Source: Wikimedia Commons

Let’s look at an example. Particle physicists often use “scintillation
detectors” to measure the energy of subatomic particles. A “scintillator”
is a material such as Thallium-doped Sodium Iodide which produces a
flash of light when an energetic particle passes through it. By measuring
this flash of light, we can find out how much energy is deposited as a
particle passes through. More light means more energy.

 Incoming
particle

Electrical 
Signal

Sodium
Iodide

Scintillator

Light
Photon

Photomultiplier
Tube

Figure 7.5: A scintillation detector
produces a flash of light whenever an
energetic particle passes through it. The
amount of light is proportional to the
energy that the particle deposits in the
detector. The flash of light is converted
into an electrical signal by a
“photomultiplier tube”, and the electrical
signal is measured and recorded.

The output of such a detector is just a bunch of numbers, each of which
corresponds to the energy deposited by a detected particle.1 These 1 The size of the electrical signals com-

ing out of the detector is proportional
to the energy. For our example, we’ll
just assume that we can read the energy
values directly.

energies are measured in “electron Volts” (eV), and a million electron
volts is called an MeV. The data we collect might look like Figure 7.6.

15.130490

16.942571

16.627112

10.780935

14.569799

15.192141

6.489004

12.386759

17.793823

4.181682

19.381618

...

Figure 7.6: Some data from our detector,
representing energies measured in MeV.
It’s hard to make sense of a stream of
numbers.

It’s hard to see patterns in a stream of numbers like this, but let’s
imagine that we’ve looked at the data and noticed that all of the
numbers lie between 0 and 20 MeV. It would be interesting to know how
the numbers are distributed in this range. Are they spread uniformly?
Do they bunch up in some places?

If we were rather bad at programming but good with tools, we might
construct a set of bins like those in Figure 7.7 to satisfy our curiosity.
Each bin represents a 4 Mev-wide range of energies. Whenever we see
a particle with an energy in that range, we could drop a marble into
the corresponding bin. After going through all of the data we could
look at our bins and easily see which energies were the most common,
because they’d contain the most marbles.

https://commons.wikimedia.org/wiki/File:Portrait_of_Karl_Pearson.jpg
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Bin 0 Bin 1 Bin 2 Bin 3 Bin 4

0 – 4 MeV 4 - 8 MeV 8 - 12 MeV 12 - 16 MeV 16 - 20 MeV

Bin width = 4 MeVBin width = 4 MeV

Figure 7.7: Binning the detector data
produces a histogram.

The pattern of high and low marble stacks that we’ve produced is
called a histogram. It tells us how frequently a measurement falls
within a given range. For this reason, histograms are sometimes called
“frequency plots”.
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Figure 7.8: A histogram can also
represent a spectrum. The most intense
places on this fluorescent light spectrum
are just those where photons are most
frequent. In the graph, we’ve marked
only the top of each of 700 “columns of
marbles”.
Spectrum taken by Finian Wright, using a DIY spectrometer.

If we wanted to save our histogram (maybe we want to re-use the
lumber for another project?) we could just write down the number of
marbles in each bin. But if a histogram is just equivalent to a list of
numbers, that means we could use an array in a C program to store it.

Program 7.1 reads energies from a file and produces a histogram,
represented by an array of bin counts. The program reads a list of
numbers from the file energy.dat. The numbers represent energies
from a scintillation counter, ranging between approximately 0 and 50

MeV. For each number, the program adds a virtual marble to one of 50

bins. The bins are the elements of the array named bin.

To find out which bin to put the marble into, the program divides
each energy value by the bin width, and rounds the result down to the
nearest integer. The result is the bin number. For example, take a look
at Figure 7.7 again. In this figure, an energy of 9 MeV would go into
bin number 2, since the bin width is 4 MeV, and 9/4 = 2.25.

https://www.youtube.com/watch?v=IA5BTD-aelo
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In Program 7.1, for simplicity, we’ve made the bin width 1 MeV, so
we can just look at the bin number to see the approximate energy it
represents.

Program 7.1: hist.cpp

#include <stdio.h>

int main () {

int i, binno, overunderflow = 0;

double energy, binwidth = 1.0;

int bin[50];

FILE *input;

for ( i=0; i<50; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%lf", &energy ) != EOF ) {

binno = energy/binwidth; // Find which bin.

// Is it too small or too big?

if ( binno < 0 || binno >= 50 ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Add a marble to this bin.

}

fclose(input);

for ( i=0; i<50; i++ ) {

printf ("%d %d\n", i, bin[i]);

}

printf ("# Saw %d over/underflows\n", overunderflow);

}

Read lines
from file.

At the end of the program, it prints out each bin number and the
number of virtual marbles that bin contains.

As we saw in Chapter 6, it’s important to check our array indices to
make sure we’re not going past the end of the array. What if the file
energy.dat contains some unexpected energies that would fall into
bins beyond the last element of our bin array? What if a negative
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number somehow found its way into the file? We’d want to know
about these things, but we wouldn’t want our program to crash.

Underflow Overflow

Figure 7.9: In Program 7.1,
overunderflow counts the number of
overflows and underflows.

To record these unexpected values, Program 7.1 has a variable called
overunderflow that counts the number of overflows (energies that
are too low) and overflows (energies that are too high). The program
checks the energy with an “if” statement like this:

if ( binno < 0 || binno >= 50 )

The condition in the “if” statement checks to see if either of two
conditions are true by using the “or” operator, ||. (We say >= 50

because the highest bin number is 49.)

If an overflow or underflow is found, the program increments the value
of overunderflow and then immediately skips to the next energy
value in energy.dat. It accomplishes this by using a “continue”
statement. In Chapter 4 we saw that it was possible to stop a loop by
using a break statement. The continue statement is similar, except
that instead of stopping the loop, it causes the program to skip the rest
of the current trip through the loop and immediately start the next trip.

Figure 7.10: Legend has it that the
Greek philosopher Archimedes proved
the value of noticing overflows. He’d
been given the task of measuring the
density of a crown to determine
whether it was made of pure gold. This
required measuring the crown’s volume,
but he couldn’t figure out how to do
that. Getting into his bath one day, he
noticed that his body displaced an
equal volume of water, and it was easy
to measure the volume of water. He
jumped from the tub, shouted “Eureka!”,
meaning “I’ve found it!” and ran naked
through the streets of Syracuse.
Source: Wikimedia Commons

When the program finishes, it prints out the number of overflows and
underflows that were seen. Notice that it prints a hash symbol (#) in
front of the message about over/underflows. This is so the message
won’t confuse gnuplot if we want to plot the results. Gnuplot ignores
any lines that begin with #.

https://commons.wikimedia.org/wiki/File:Archimede_bain.jpg
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Exercise 36: Making a Histogram

For this exercise you’ll need a copy of the data file energy.dat.
You can find instructions for obtaining it in Appendix C.2 on
page 542. Take a look inside this file using nano. You should
see a single column of numbers, representing simulated
energy measurements of 100,000 particles.

Try graphing this file by starting gnuplot and typing:

plot "energy.dat"

The result should look something like Figure 7.12.

Exit from gnuplot and then create, compile and run Program
7.1. The program’s output should be two columns of num-
bers (a bin number and the number of “virtual marbles” in
that bin), followed by a message about overflows and under-
flows. By looking at the columns of numbers, you should
already be able to see a pattern emerging.

Now run the program again, redirecting its output into a
file, like this:

./hist > hist.dat

Start gnuplot and plot the data by using the command:

plot "hist.dat" with impulses

“with impulses” causes gnuplot to draw a vertical line for
each point. The result should look something like Figure
7.13. Where do most of the energy values lie?

35.130490

36.942571

36.627112

40.780935

34.569799

35.192141

36.489004

32.386759

...

Figure 7.11: Some of the data in the file
energy.dat.
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Figure 7.12: The data in energy.dat,
plotted with gnuplot.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  10  20  30  40  50

P
a

rt
ic

le
 C

o
u

n
t

Energy Bin

Figure 7.13: The output of Program 7.1,
plotted with gnuplot.

Even though the data file we’re analyzing (energy.dat) contains
100,000 lines, the output of Program 7.1 is just two 50-line columns. We
could give Program 7.1 a million times more data to analyze, and the
program’s output would still be only fifty lines, although the numbers
on those lines would be larger. This is one reason histograms are useful:
they can summarize large data sets very efficiently. In the exercise
above, the program turns 100,000 numbers into a 50-number summary.
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7.3. Resolution and Range of Histograms
We could improve Program 7.1 by making a few changes that allow us
to adjust the resolution of the histogram (the width of its bins) and its
range (the lowest and highest energy values it can display). Let’s also
make the program more general, so it’s clear we can use it for other
kinds of data besides energy values.

Controlling the Resolution of a Histogram:

Figure 7.14: Finer-grained resolution
sometimes shows us features of our
data that are invisible at lower
resolutions. (Photo of Werner
Heisenberg.)
Source: Wikimedia Commons

In Program 7.1 we set the bin width to 1 MeV for convenience, so we
could see the energy values by just looking at the bin number. Bin
number 35 corresponded to 35 MeV. What if we wanted a finer- or
coarser-grained histogram, though? We might want a bin width of 0.5
MeV or 2 MeV, for example. In that case, we might want the program
to print the energy value of each bin instead of the bin number.

But do we want to print the energy at the left side of the bin, the right
side, or the middle? These are all different. Let’s just print all of them,
and then we can decide which value we want to use when we graph
the data.

We can make this happen by modifying just a few lines of our program.
Instead of saying this:

printf ("%d %d\n", i, bin[i]);

we can say this:

elow = binwidth*i;

emid = binwidth*(0.5+i);

ehi = binwidth*(i+1);

printf ("%lf %lf %lf %d\n", elow, emid, ehi, bin[i]);

The first three lines calculate the energy value at the left, center, and
right of the bin (to get the center, we add 0.5 to the bin number). Then,
instead of printing the bin number, we print all three energy values.
This will mean that our output has four columns: the three energy
values and the number of “marbles” in the corresponding histogram
bin.

https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg_crop.jpg
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Controlling the Range of a Histogram:

Program 7.1 also assumes that the energy range we’re interested in
starts at zero. Sometimes this won’t be the case. Maybe we want to
focus on the range between 30 and 40 MeV, for example. Or, if we’re
measuring something other than energy, we might even have negative
values. Maybe we’re measuring distance, and we want to look at values
between -10 meters and 10 meters, where zero is the origin of our
coordinate system.

To accommodate that we’ll need to make a few more changes to our
program. First, let’s define the lower bound of our energy range with a
new variable:

double emin = 20.0; //MeV.

Figure 7.15: Two images with the same
resolution (both are 348×348), but the
bottom image zooms in on a small
region near the center of the upper
image. If we have a fixed number of
histogram bins, we should try not to
waste them on regions where there’s no
interesting data. (Image of a “gnat ogre”
– a robber fly of the genus Holcocephala –
taken by the author.)

Here we’ve set it to 20 MeV, but we could set it to whatever we want.
Now we’ll need to use this value when we calculate the bin number
(binno) and when we calculate the energy of each bin at the end of the
program. Our new calculation of binno would look like this:

binno = (energy-emin)/binwidth;

Instead of just energy, we’re using energy-emin to determine which
bin we should use. When energy is equal to emin, the bin number is
zero. At the end of the program, when calculating the left, center, and
right energy values of the bin we can say:

elow = emin + binwidth*i;

emid = emin + binwidth*(0.5+i);

ehi = emin + binwidth*(i+1);

We’ve added emin because the lowest bins correspond to that energy.

Calculating binwidth Instead of Specifying It:

It’s often convenient to specify the limits of a histogram’s range and
the number of bins, and then let the program calculate the value of
binwidth. We might, for example, want 100 bins covering the range
from 20 MeV to 45 MeV. That would tell us that each bin has a width of
(45 − 20)/100 = 0.25 MeV.

We’ll need to rearrange a few things to make that happen. Let’s start
by adding a new variable to specify the upper end of our range:

double emax = 45.0; //MeV.
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Now let’s define a variable that specifies the number of bins, to make it
easy to adjust this value later:

const int nbins = 50;

int bin[nbins];

As we mentioned in Chapter 6, the word const tells the C compiler
that this value should never change. (See Page 172.) Next, we need to
add a line to calculate the value of binwidth:

binwidth = (emax-emin)/nbins;

Finally, we need to replace 50 with nbins wherever the program has
previously assumed there were 50 bins.

Putting It All Together:

Okay, now let’s see what the finished program looks like after we’ve
made all of these changes. Notice that Program 7.2 uses x, xmin
and xmax in place of energy, emin and emax, since we can use this
program for any kind of data. There are also some new printf

statements at the bottom of the program that remind the user about the
program’s settings.  0
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Figure 7.16: Output of Program 7.2,
plotted with the gnuplot comand
plot "hist.dat" using 2:4

with impulses.
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Program 7.2: hist.cpp, Improved

#include <stdio.h>

int main () {

int i, binno, overunderflow = 0;

double x, xlow, xmid, xhi, binwidth;

double xmin = 20.0;

double xmax = 45.0;

const int nbins = 100;

int bin[nbins];

FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%lf", &x ) != EOF ) {

binno = (x-xmin)/binwidth;

if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Increment the appropriate bin.

}

fclose(input);

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth*i;

xmid = xmin + binwidth*(0.5+i);

xhi = xmin + binwidth*(i+1);

printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}

printf ("# Xmin = %lf\n", xmin);

printf ("# Xmax = %lf\n", xmax);

printf ("# Binwidth = %lf\n", binwidth);

printf ("# Nbins = %d\n", nbins);

printf ("# Saw %d over/underflows\n", overunderflow);

}
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7.4. Two-Dimensional Histograms
Imagine that you’re a school principal whose students have just finished
taking reading and math tests. You could make a histogram of all the
reading scores or all the math scores, but you’d like to see how reading
scores and math scores are related to each other. Do students with high
math scores also have high reading scores, or do students excel in only
one area? What can we do? Let’s stroll down the hall and talk to the
Shop teacher. He’s a clever guy. Maybe he’ll have a suggestion.

You begin by telling him about the wooden bin you constructed for
sorting marbles in the preceding section. He thinks about the problem
for a moment, then says, “Well, all you need to do is make a crate that
lets you sort marbles out in two directions: one direction for reading
scores and the other for math. Give me a few minutes and I’ll make one
for you.” Sure enough, after a few minutes of sawing and hammering,
he’s produced a crate like the one shown in Figure 7.17.

“Great!” you say. “Each marble represents a student. I just need to drop
the marble into the bin that corresponds to that student’s reading and
math scores. In the end, the number of marbles in a bin will tell me
how many students had that particular combination of reading and
math scores.”

Bin 0 Bin 1 Bin 2 Bin 3

Reading Score

Math Score

0-30

26-50 51-75 76-100

31-60
61-90

0-25

Figure 7.17: Binning marbles in two
directions produces a two-dimensional
histogram. In this example, math scores
range from zero to 90 and reading scores
range from zero to 100. We’ve divided
the math scores into bins with a width of
30, and the reading scores into bins with
a width of 25.

Our crate full of marbles can be thought of as a two-dimensional his-
togram2. As with the one-dimensional version we saw in the preceding 2 Two-dimensional histograms are some-

times called “bivariate” histograms,
because they show data from two vari-
ables (reading score and math score in
this example).

section, we can save our histogram by just writing down the number of
marbles in each bin. In Program 7.1 we used a one-dimensional array
(bin[50]) to hold the values in our one-dimensional energy histogram.
For a two-dimensional histogram, we’ll need a two-dimensional array.
We might store the number of marbles in each bin of Figure 7.17 in a
3×4 array of integers, defined like this: int bin[3][4];
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Take a look again at Program 7.1 (hist.cpp). If we wanted to modify
this program so that it makes a two-dimensional histogram, we’d need
to change bin into a 2-d array, and we’d need to modify the way we
fill this array.
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Figure 7.18: Two ways we might
represent the data in a two-dimensional
histogram.

For example, assume we have a data file that has two numbers on each
line: a math score and a reading score. Instead of the single bin number
(binno) that we calculate in Program 7.1, we now need to calculate
two bin numbers, one for math and one for reading. We might do that
like this:

mbin = math/mbinwidth;

rbin = reading/rbinwidth;

if ( rbin < 0 || rbin >= nrbins ||

mbin < 0 || mbin >= nmbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[mbin][rbin]++; // Increment the appropriate bin.

where reading and math are the reading and math scores, mbin and
rbin are the calculated bin numbers for math and reading, mbinwidth
and rbinwidth are the widths of the math and reading bins, and
nmbins and nrbins are the number of math and reading bins.

Figure 7.18 shows two ways of representing a 2-dimensional histogram
of reading and math scores. Here the reading and math scores both
range between zero and 100, and we’ve split each range into ten bins.
In the top picture, we use a vertical bar to represent the height of each
bin’s stack of marbles. In the bottom picture we look down on the top
of these stacks, and we’ve color-coded each stack to indicate its height.

Two-dimensional histograms are useful when we want to see how
two measured quantities interact with each other. In Figure 7.18, we
can easily see that students with high math scores also tend to have
high reading scores. This wouldn’t be obvious if we just looked at the
numbers, or graphed math or reading scores by themselves.
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7.5. Finding the Mean
Looking at the one-dimensional histogram in Figure 7.13 we can see
that the energies tend to cluster around approximately 35 MeV, but they
trail off to the left and right in a bell-shaped curve. If all of the particles
actually had the same energy, and all of their energy was deposited in
the detector, we might expect all of the numbers in energy.dat to be
exactly the same. In practice, though, our measurements will always
have some random variation no matter how careful we are. This is
partly because of imperfections in our instruments, but there may also
be physical limits to the precision of our measurements

Truth(?)Truth(?)

Distribution of all 
possible 

measurements.

Distribution of all 
possible 

measurements.

Data we observe.Data we observe.

Parent Population

Sample Population

Reality

Figure 7.19: We are always at two
removes from the “underlying truths”
that we’re trying to measure.
Statisticians call the right-hand graph the
“sample population”, and the middle
graph the “parent population”, from
which the sample is drawn at random.

If we made an infinite number of measurements, we might see that
they’re spread out like the middle graph in Figure 7.19. In reality, we
make a finite number of measurements that are just a small sample of
all of the possible measurements, like the right-hand graph. If we only
take a few measurements, it’s not too unlikely that all of them may
happen to lie on the left or right side of the true value. As we make
more measurements, our data will begin to look more and more like
the middle graph.3 3 In statistics, this is called “The Law of

Large Numbers”.

Once we’ve taken enough measurements to approximate the middle
graph, what’s our best guess for the true value in the left-hand graph?
Some of our measurements are higher than the true value and some
are lower, but we expect that the true value lies somewhere between
the extremes, at some “average” value.
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In everyday speech, we use the word “average” to mean “typical”. The
“average guy” is a typical person. How do we measure this, though?
How can we objectively decide what’s “typical”?

Figure 7.20: The Tempting Cake, by
Albert Rosenboom
Source: Wikimedia Commons

In science, we often use a quantity called the “arithmetic mean” (often
just called the “mean”) to represent what’s “average” or “typical”.
You’ve probably used this before. The mean of a set of values is the
sum of all the values, divided by the number of values. Mathematically,
we could write it like this:

X =
1
N

N

∑
i=1

Xi (7.1)

where N is the number of values, Xi are the values themselves, and X

is the mean.

If we slice a cake into several pieces, the mean size of a piece is the sum
of the size of all the pieces (which is just the total size of the cake),
divided by the number of pieces. The mean is the size that each piece
would have if the cake were sliced up into perfectly equal parts.

Figure 7.21: On the left, an unfairly
sliced cake. On the right, a cake sliced
into equal pieces. The size of each
right-hand slice is equal to the mean size
of the left-hand slices.

We often assume that the mean value of our measurements is the best
guess at the true, underlying value that we’re trying to measure. If
we make enough measurements, we expect that the mean value will
approximate the mean value of all possible measurements, and we
expect that the mean of all possible measurements will approximate
the true, underlying value, which may never be directly accessible to
us.

Program 7.3 reads the energy values from energy.dat and finds their
arithmetic mean. In the program, the variable named sum is intially
set equal to zero. Each time a new number is read, it’s added to sum.
After reading all of the numbers, the program calculates the mean by
dividing the sum by the number of energy values.

https://commons.wikimedia.org/wiki/File:Albert_Roosenboom_The_tempting_cake.jpg
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Program 7.3: mean.cpp

#include <stdio.h>

int main () {

double energy;

double sum = 0.0;

int nvalues = 0;

double mean;

FILE *input;

input = fopen("energy.dat","r");

while ( fscanf( input, "%lf", &energy ) != EOF ) {

sum += energy;

nvalues++;

}

mean = sum/nvalues;

printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %lf\n", mean );

fclose (input);

}

We could also modify our histogram program (Program 7.1) so that it
tells us the mean energy. Program 7.4 is a new version of hist.cpp
that adds up the energy values as they’re read, and prints out the mean
when it’s done. Again, we put a # on the front, so gnuplot will ignore
this line.

Notice that we want to include all of the energy values, even the
underflows and overflows. We want the arithmetic mean of all values.

Exercise 37: You Big Meanie!

Modify your earlier hist.cpp program so that it looks like
Program 7.4. Compile and run it. Does the value given by
the program look consistent with what you saw when you
plotted a histogram of the data (Figure 7.13)?

Figure 7.22: In the 1968 Beatles movie
The Yellow Submarine, the Blue Meanies
hated music.
Source: unigami, at Deviant Art

http://unigami.deviantart.com/art/Chief-Blue-Meanie-from-Yellow-Submarine-280821413
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This version of the program prints the
average energy value. Changes from
Program 7.1 are shown in bold.

Program 7.4: hist.cpp, Version 2

#include <stdio.h>

int main () {

int i, binno, overunderflow = 0;

double x, xlow, xmid, xhi, binwidth;

double xmin = 0.0;

double xmax = 50.0;

double sum = 0.0;

int nvalues = 0;

const int nbins = 50;

int bin[nbins];

FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );

while ( fscanf( input, "%lf", &x ) != EOF ) {

sum += x;

nvalues++;

binno = (x-xmin)/binwidth;

if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Increment the appropriate bin.

}

fclose(input);

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth*i;

xmid = xmin + binwidth*(0.5+i);

xhi = xmin + binwidth*(i+1);

printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}

printf ("# Xmin = %lf\n", xmin);

printf ("# Xmax = %lf\n", xmax);

printf ("# Binwidth = %lf\n", binwidth);

printf ("# Nbins = %d\n", nbins);

printf ("# Saw %d over/underflows\n", overunderflow);

printf ("# Mean value is %lf\n", sum/nvalues );

printf ("# Nvalues = %d\n", nvalues );

}

Add each value to the sum.

Count the number of values.
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7.6. Standard Deviation
Figure 7.13 shows that the energy values in energy.dat tend to bunch
up in one spot, forming a peak. If you were describing this shape to
someone, you could start by telling them that “the mean energy value is
35 MeV”. This says where the peak is, but it doesn’t tell them anything
about how wide it is. How can we measure the width of a peak like
this?

Figure 7.23: A comparison of
histograms made from two samples,
one with a small standard deviation
and one with a large standard deviation.
Both samples have the same mean value
and contain the same number of data
points.
Source: Wikimedia Commons

If the peak is wide, we might expect that a lot of data points would
be far from the mean value. In the terms used in Equation 7.1, we
might think about going through all of the points and adding up the
values of Xi − X. Unfortunately, we’d find that this sum is always zero,
since some points are to the left of the mean and some to the right. It’s
possible to prove mathematically that the sum of all of these positive
and negative distances will always add up to zero.

What we really want is just the distance from the mean, without worry-
ing about whether it’s positive or negative. Since the square of a real
number is always positive, we might think about adding up the squares
of the Xi − X values. Statisticians define a quantity called the “sample
variance” that does just this. It’s defined this way4: 4 Why do we divide by N − 1 instead

of N? A simple explanation is that the
variance is undefined if you have only
one data point.

s2 =
1

N − 1

N

∑
i=1

(Xi − X)2 (7.2)

where s2 is the variance. For the example we’ve been working on, the
units of the variance would be MeV2 (energy squared). The square root
of the variance is called the “standard deviation”.5 In our example, this 5 This is another term that was intro-

duced in the 1890s by Karl Pearson.has units of MeV, and it can be used to describe the width of the peak
in Figure 7.13. The standard deviation tells us the “typical” distance
between a data point and the mean value.

Figure 7.24 shows some data along with its arithmetic mean (X) and
standard deviation (s). The data we observe is just a sample of all
the possible values we might see if we did an infinite number of
measurements. Our data is called the “sample” and the collection of
all possible values is called the “parent”. Underneath it all, like the
elephant inside the boa, is the true value that we’re trying to estimate.

There’s a practical problem with using Equation 7.2 in a computer
program, though. Since it uses X (the mean value of the energy), we’d
have to first loop through all of the energy values to calculate their
mean, and then loop through them all again to calculate the variance.

https://commons.wikimedia.org/wiki/File:Comparison_standard_deviations.svg
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X

s

Truth

Parent
Distribution

Sample
Distribution

Figure 7.24: Sample distribution, parent
distribution (the set of all possible
measurements), and true value. X is the
mean of the sample, and s is its standard
deviation.

Fortunately, clever mathematicians have provided us with a shortcut to
make things easier. It turns out that Equation 7.2 can be rewritten like
this:

s2 =
1

N − 1

[ N

∑
i=1

X2
i −

1
N
(

N

∑
i=1

Xi)
2
]

(7.3)

The right-hand sum in Equation 7.3 is the same one we’re already using
in Program 7.4. To find the variance we also need the left-hand sum,
which is the sum of the squares of the values. Our program just needs
to do one loop, and keep two sums: the sum of the values and the sum
of their squares.

That’s what Program 7.5 does with our energy.dat data. The pro-
gram includes math.h at the top, since it uses the sqrt and pow

functions. We’ve also added a new variable sum2 to store the sum of
the squares, from Equation 7.3. At the end of the program, we calculate
the standard deviation and print it out.
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This program is an improved version
of mean.cpp (Program 7.3) that prints
out the standard deviation of the energy
values. Changes from Program 7.3 are
shown in bold.

Program 7.5: stddev.cpp

#include <stdio.h>

#include <math.h>

int main () {

double energy;

double mean;

double stddev;

double sum = 0.0;

double sum2 = 0.0;

int nvalues = 0;

FILE *input;

input = fopen("energy.dat","r");

while ( fscanf( input, "%lf", &energy ) != EOF ) {

sum += energy;

sum2 += pow( energy, 2 );

nvalues++;

}

mean = sum/nvalues;

stddev = sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) );

printf ("Number of values is: %d\n", nvalues );

printf ("Mean value is: %lf\n", mean );

printf ("Std. Dev is: %lf\n", stddev );

fclose (input);

}

We can apply the same technique to our ever-improving hist.cpp

program, giving it the ability to print out the standard deviation as well
as the mean value. That’s what we do in Program 7.6.

Exercise 38: Finding the Standard Devi-

ation

Create, compile, and run Program 7.6, a new version of
hist.cpp that now prints the standard deviation. How
large is this value in comparison with the width of the peak
in Figure 7.13?
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This is an updated version Program 7.4.
Changes from Program 7.4 are shown
in bold.

Program 7.6: hist.cpp, Version 3

#include <stdio.h>
#include <math.h>
int main () {

int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
double sum = 0.0;
double sum2 = 0.0;
int nvalues = 0;
const int nbins = 50;
int bin[nbins];
FILE *input;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "energy.dat", "r" );
while ( fscanf( input, "%lf", &x ) != EOF ) {

sum += x;
sum2 += pow( x, 2 );
nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue; // Skip this value and jump to the next.

}
bin[binno]++; // Increment the appropriate bin.

}
fclose(input);

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %lf\n", sum/nvalues );
printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

}

Needed for sqrt and pow.

Add square of each value to sum2.
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7.7. The “Normal” or “Gaussian” Distribution
The peak in Figure 7.13 is a bell-shaped curve. Curves like this occur
very frequently in data. In fact, they occur so frequently that this
shape is called the “Normal Curve”. The German mathematician Carl
Friedrich Gauss (1777-1855) was perhaps the first to appreciate the
significance of it, so it’s sometimes called a “Gaussian Curve”.

Figure 7.25: Gauss is pictured on this
German banknote. If you look closely
you’ll see a small picture of the Normal
curve at the left.
Source: Wikimedia Commons

The ubiquity of this curve was a source of amazement to early statisti-
cians, who saw it popping up everywhere: astronomical data, actuarial
tables, agricultural data.

Why does this curve appear so often? Because of the “Central Limit
Theorem”, which says that any linear sum of random variables tends
toward a Normal distribution, no matter what the distribution of the
individual variables looks like.6 6 Note that this means you can construct

a pretty good Normal distribution just
by adding together sufficiently many
numbers pulled from any random
distribution. For example, roll six dice
and add their numbers together. Keep
doing this and recording the sum each
time. A histogram of the sums will look
very similar to the Normal distribution.

The Central Limit Theorem is so important that it’s called the “second
fundamental theorem of probability”. (The first is the Law of Large
Numbers.)

The Normal curve can be expressed mathematically by the following
equation:

P(x) = Ae
− (x−x)2

2s2
(7.4)

The curve reaches its maximum at x, the mean value of x. The curve’s
width is controlled by s, the standard deviation. The height of the curve
at its maximum is A.
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Figure 7.26: Three Normal curves with
standard deviations of 3 (the widest), 2

and 1.

If we look at data that’s bunched together in a Normal distribution, the
standard deviation of the data gives us some quantitative information
about the way the data is distributed. We know, for example, that about
68% of Normally-distributed data lies within one standard deviation
away from the mean value. (See Figure 7.28.)

Standard Deviation

Figure 7.27: The standard deviation of a
Normal curve is the horizontal distance
from the midline to one of the points
where the curvature changes from
positive to negative.

If Program 7.6 tells us that the standard deviation of our energy data
is 2.5 MeV and the mean is 35 MeV, that implies that 68% of our
energy values fall between 32.5 MeV and 37.5 MeV. If we were telling
someone about our measurements, we might say that the energy value
we observed was 35 ± 2.5 MeV.

https://commons.wikimedia.org/wiki/File:10_DM_Serie4_Vorderseite.jpg
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We also know that about 95% of the data lie within 2 standard deviations
from the mean, and about 99.7% of the data are within 3 standard
deviations.

X X+sX-s

68% of Data

are within ± s 

from the mean

95% of Data

are within ± 2s 

from the mean

99.7% of Data

are within ± 3s 

from the mean

Figure 7.28: If data are distributed
Normally, 68% of the values fall within
one standard deviation from the mean.
95% of values are within two standard
deviations, and 99.7% are within three
standard deviations.

If you look at a Normal curve, you can find its standard deviation by
locating the places where the curvature changes from positive (concave
up) to negative (concave down). Mathematically, these points (called
“points of inflection”) are where the 2nd derivative of the function is
zero. The standard deviation is the horizontal distance from the mean
to either of these two points. (See Figure 7.27.)

Exercise 39: It’s Only Fitting

We’ve seen that gnuplot can plot data, but it can also plot
functions. Several functions, like sin(x), cos(x), and exp(x)
are built into gnuplot, but you can also define your own
functions. Try starting up gnuplot and typing the following:

p(x) = a*exp(-0.5*(x-m)**2/s**2)

s=2.5

m=35

a=10000

plot "hist.dat" with impulses, p(x)

The first line defines a new function p(x) that’s just the
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Normal curve given in Equation 7.4 above. The next three
lines set the parameters: s is the standard deviation, m is the
mean (X), and a is the height of the peak.

The last line plots your histogram data from the file hist.dat
and overlays a Normal curve on top of it. You can see that
the shapes are similar, but the curve doesn’t exactly match
the data.

We could try adjusting the values of s, m, and a by hand
to make the curve fit better, but gnuplot can do this for us
automatically.

Type the following gnuplot commands:

fit p(x) "hist.dat" via s,m,a

replot

The first command tells gnuplot to adjust the parameters s,
m, and a to make p(x) match the data in hist.dat. When
it’s done, it prints out a lot of information including the
new values of the parameters. The second command tells
gnuplot to re-do our last graph, which will now draw p(x)

using the new parameters. Does it fit better now?
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Figure 7.29: A Normal curve
superimposed on our hist.dat data.
The top graph shows a curve that
doesn’t quite match. The bottom graph
shows the curve after we’ve asked
gnuplot to adjust the parameters for the
best fit.

But what about. . . ?

In the data we’ve been looking at, each data point is some distance,
d (positive or negative) from the mean value. The sample standard
deviation, s, tells us how far a “typical” data point strays from
the mean, but there are other ways we could choose to quantify
a “typical” deviation. For example, we could look at the average
absolute value of d.

The standard deviation has some nice properties, though. In par-
ticular, it has a natural relationship to the Normal distribution. As
we saw above, 2s is the distance between the “points of inflection”
(the places where the curvature goes from positive to negative) of
the Normal distribution.

More importantly, statisticians tell us that the sample standard
deviation is usually the best estimate of the standard deviation
of the infinitely many data points we could possibly collect (the
“parent population”).
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7.8. Exploring The Central Limit Theorem
In Chapter 2 we learned how to simulate rolling dice. For example,
Program 2.4 generates a random number between 1 and 6, just like
rolling a 6-sided die. Program 7.7, below, is an updated version that
rolls a 6-sided die 1,000 times. If we used gnuplot to plot this program’s
output, we would see something like Figure 7.30.
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Figure 7.30: The output of
singledie.cpp plotted using the
gnuplot command plot

"singledie.dat"

Notice that we see about the same number of rolls landing on each
number, which is what we’d expect from a fair die (or a good random-
number generator!). If we made a histogram of the values obtained
from rolling a single 6-sided die, it might look like Figure 7.31. As you
can see, each value has an equal probability of turning up.
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Figure 7.31: A histogram of the values
obtained by rolling a single 6-sided die
1,000 times.

Program 7.7: singledie.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int roll;

int min = 1;

int max = 6;

int nvals;

int i;

double x;

nvals = max - min + 1;

srand(time(NULL));

for ( roll=0; roll<1000; roll++ ) {**

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

printf( "%d\n", i );

}

}

Some dice games require you to roll two or more dice at once, and add
up their numbers. Let’s modify Program 7.7 so that it rolls twelve dice
at once, instead of just rolling one die. We’ll need to add an extra loop
and a couple of variables to do that. The result is Program 7.8.
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Figure 7.32: The upper figure shows the
output of Program 7.8 plotted using
gnuplot. The bottom figure shows what
it would look like if we increased the
number of rolls from 1,000 to 10,000.

Program 7.8: multidice.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int roll, die;

int min = 1;

int max = 6;

int nvals;

int i, sum;

double x;

nvals = max - min + 1;

srand(time(NULL));

for ( roll=0; roll<1000; roll++ ) {

sum = 0;

for ( die=0; die<12; die++ ) {

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

sum += i;

}

printf ( "%d\n", sum );

}

}

If we plotted the output of Program 7.8 we’d see something like the
upper graph in Figure 7.32. Notice that now the values aren’t spread
evenly any more. When we roll twelve dice and add them up, their sum
is most likely to be somewhere around 42. This is even more apparent
in the bottom graph of Figure 7.32, where we’ve increased the number
of rolls to 10,000.
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Figure 7.33: A histogram of our dice
roll sums, created by Program 7.9, using
the following gnuplot command:
plot "dicehist.dat" using 1:4

with impulses

To get a better sense of the distrubution of the values, let’s make a
histogram of them. We can do that by combining Program 7.8 with
Program 7.2. The result is Program 7.9 below. (Notice that we’ve set
the number of dice rolls to 10,000 now.) If we ran this program and
plotted its output using the gnuplot command

plot "dicehist.dat" using 1:4 with impulses"

we’d see something like Figure 7.33.
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Program 7.9: dicehist.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int roll, die;

int min = 1;

int max = 6;

int nvals;

int i, sum;

double x;

const int nbins = 100;
int bin[nbins];
int binno, overunderflow = 0;
double xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 100.0;

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

nvals = max - min + 1;

srand(time(NULL));

for ( roll=0; roll<10000; roll++ ) {

sum = 0;

for ( die=0; die<12; die++ ) {

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

sum += i;

}

binno = (sum-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue; // Skip this value and jump to the next.

}
bin[binno]++; // Increment the appropriate bin.

}

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);

}
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Figure 7.33 shows that a value of 42 appears almost 700 times when
we sum up our twelve dice. The farther away from 42 we get, the less
likely we are to see a given sum. The distribution of values looks like
a Gaussian or Normal distribution, as described in Section 7.7. As
we noted in that section, this effect is known as the “Central Limit
Theorem”. It tells us that the sum of several random variables tends to
take on a Normal distribution.

Even though the distribution of numbers we get from each die is flat, as
shown in Figures 7.30 and 7.31, the sum of these numbers approaches
a Normal distribution (see Figures 7.32 and 7.33).

The fact that our observed values are centered around 42 makes sense
too. Each 6-sided die gives a value between 1 and 6, so the average
value we should get from a single roll of a die is (1 + 6)/2 = 3.5. That
means that the average value for the sum of twelve dice should be
12×3.5 = 42.

Figure 7.34: Beans bounce off of pegs as
they roll down a “Galton Board”. At the
bottom they fall into bins, like histogram
bins. The sum of all the random left and
right bounces experienced by the beans
results in an approximately Normal
distribution.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Galton_board.png
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7.9. Analyzing Multi-Column Data
Statistics began as a study of demographic data (numerical data about
populations), so let’s take a look at some “people data” before we finish.
The US constitution mandates that a census be taken every ten years,
and the task of collecting and analyzing data falls on the US Census
Bureau.

Figure 7.35: The US Census Bureau is
charged with conducting a decennial
census.
Source: Wikimedia Commons

Census takers collect a lot of data for each household they visit. They
might record the number of children, the number of bedrooms in the
house, the amount paid monthly in rent, and so forth. We might store
the data for each household in a row, with a column for each quantity
that was recorded. The result would look something like this:

Figure 7.36: Taking the census could be
a dangerous job. Consider the plight of
a census taker asked to survey these
denizen’s of an 1890 New York
“Bandit’s Roost”. This picture was taken
by Jacob Riis, who prowled New York’s
tenements accompanied by
then-Police-Commissioner Theodore
Roosevelt, documenting “How the
Other Half Lives” (the title of Riis’s
best-known book).
Source: Wikimedia Commons

0 1 3 10700 2 2 0

0 1 4 7800 2 40 0

0 1 3 64200 2 130 0

0 1 3 -1 2400 210 0

0 0 1 -1 2 10 780

0 1 3 44600 2 90 1905

...

In the following sections, we’ll be constructing a program that can read
a data file from the US Census Bureau that contains information about
1,285,588 households. The file has seven columns of integers for each
household. Each column represents a different measurement:

Column Description

0 Number of related children in household
1 Lot size
2 Number of bedrooms
3 Family income
4 Annual fuel cost
5 Monthly gas cost
6 Monthly rent

The file we’ve been analyzing, energy.dat, contains only one column
of data. Only one measurement (the amount of energy deposited) was
recorded for each particle that passed through the detector. The census
taker, on the other hand, takes several measurements for each family.
Let’s look at how we might modify our earlier programs to allow them
to read such multi-column data.

One way to do it would be to replace our single variable (energy, in
the earlier programs) with an array. The number of elements in the
array will need to match the number of columns in the data file.

https://commons.wikimedia.org/wiki/File:Seal_of_the_United_States_Census_Bureau.svg
https://commons.wikimedia.org/wiki/File:Bandit's_Roost_by_Jacob_Riis.jpeg
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Program 7.10 uses this strategy to analyze data from a seven-column
data file. In order to read each row, it loops through the seven elements
of the array data. The new variable field specifies which column of
the data we want to analyze, and the new program gives the variable
x the value of data[field]. (Program 7.10 sets field to 0, but it
could be set to any value from 0 to 6.) The new program also changes
the name of the data file from energy.dat to census.dat.

Because Program 7.10 uses a “for” loop to read multiple items from
each line, we can no longer use a simple break when we reach the
end of the file, as we did when reading energy.dat. Remember from
Chapter 4 that the break statement only stops the loop it’s in. If we
used a break inside the “for” loop of Program 7.10 when we get to the
end of the file, the break would only stop the “for” loop. It wouldn’t
stop the outer, enclosing “while” loop, so the program would keep
trying (and failing) to read lines forever.

There are several ways we could handle this. One of them is to use C’s
“goto” statement. A goto statement jumps immediately to another
location in your program. You might think that this could be a highly
dangerous thing to do, and you’d be right. There’s a superstition
among programmers that says goto should never be used, but experts
agree7 that goto is sometimes the best solution in one specific case: 7 See the “exception” under

ES.76 in the CPP Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines.

when your program needs to break out of nested loops like the ones
we have in Program 7.10.

Notice the line in Program 7.10 that just says “done:;”. This is called
a “label”. A label can be any word, followed by a colon8, on a line by 8 Notice that this is a colon, not a

semicolon. In the examples in this
book we’ll also put a semicolon after
the label, just as we do with other C
statements.

itself. Labels don’t do anything. They just mark a spot in your program.
Think of them as bookmarks. When we say goto done; we’re telling
the program to jump to the label named “done”. When Program 7.10

gets to the end of the file it’s reading, the goto statement jumps out of
the nested loops and continues below the done:; label.

Used in this way, goto statements can be a safe and efficient way to
break out of nested loops. If you think of goto as a kind of “super-
break” it’s quite unlikely that you’ll be eaten by a velociraptor9... but 9 See https://xkcd.com/292.

remain vigilant.

Figure 7.37: Skull of Velociraptor
mongoliensis.
Source: Wikimedia Commons

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-goto
https://xkcd.com/292/
https://commons.wikimedia.org/wiki/File:Velociraptor_mongoliensis_type_skull_and_jaws.jpg
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Program 7.10: census.cpp

#include <stdio.h>
#include <math.h>
int main () {

int i, binno, overunderflow = 0;
double x, xlow, xmid, xhi, binwidth;
double xmin = 0.0;
double xmax = 50.0;
const int nbins = 50;
int bin[nbins];
double sum = 0.0;
double sum2 = 0.0;
int nvalues = 0;
FILE *input;
int field=0; // Select column 0 from data.
double data[7]; // Add "data" array.

binwidth = (xmax-xmin)/nbins;

for ( i=0; i<nbins; i++ ) {
bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "census.dat", "r" );
while ( 1 ) {

for ( i=0; i<7; i++ ) {
if ( fscanf( input, "%lf", &data[i] ) == EOF ) {

goto done;
}
}

x = data[field]; // Choose which column.

sum += x;
sum2 += pow( x, 2 );
nvalues++;

binno = (x-xmin)/binwidth;
if ( binno < 0 || binno >= nbins ) {

overunderflow++;
continue;

}
bin[binno]++;

}
done:;
fclose(input);

for ( i=0; i<nbins; i++ ) {
xlow = xmin + binwidth*i;
xmid = xmin + binwidth*(0.5+i);
xhi = xmin + binwidth*(i+1);
printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}
printf ("# Field number %d\n", field);
printf ("# Xmin = %lf\n", xmin);
printf ("# Xmax = %lf\n", xmax);
printf ("# Binwidth = %lf\n", binwidth);
printf ("# Nbins = %d\n", nbins);
printf ("# Saw %d over/underflows\n", overunderflow);
printf ("# Mean value is %lf\n", sum/nvalues );
printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );
printf ("# Nvalues = %d\n", nvalues );

}

Read
lines

from file

Jump out of nested
for and while

loops when we reach
the end of the file

Get 7
items
from

each line
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7.10. Filtering Data
Census takers can’t always collect all measurements from every house-
hold. Sometimes a measurement just doesn’t apply. What’s the monthly
rent on a house that’s not being rented? What’s the annual household
income for an unoccupied house? Our data sets will sometimes contain
special values that indicate “Not Applicable”. We might not want to
include these values in our averages, or show them on our histograms.
We could think of this a “filtering” our data.

Figure 7.38: The planck spacecraft
examined the microwave radition
leftover from the Big Bang. The figure
above shows analyses of planck’s data
with several different filters applied.
Source: Planck Mission, European Space Agency

In the census data we’re going to look at, these special values are
indicated by zeros or negative numbers. By making a couple of changes,
we can cause our program to ignore such values. First, we want to look
for special values whenever we read a line from our data file. When we
find one, we want to skip that line and just go on to the next. We can
accomplish this by adding the following section before the “sum +=”
in Program 7.10:

if ( x <= 0 ) {

continue; // Ignore zeros and negatives.

}

We’ll probably want to know how many values were ignored (or, equiv-
alently, how many weren’t). It would be a good idea to add a line like
the following at the end of the program, along with the other numbers
we print out:

printf ("# Saw %d data values\n", nvalues);

The variable nvalues tells us how many data points we really ana-
lyzed, not counting those we filtered out.

We can modify our data analysis program to filter our data any way
we like. We might even look at the other columns on each line when
deciding whether or not to use the data on that line. For example,
maybe we’re interested in the number of children per household, but
only want to look at families paying more than $500 per month in rent.

7.11. Setting Analysis Parameters
Program 7.10 explicitly chooses a particular column to analyze by
setting the field variable. It would be nice if the program asked
us which column we wanted to use. We can easily add a section
somewhere before our while loop to do this:

printf ( "Pick a column [0-6]: " );

scanf ( "%d", &field );

http://www.cosmos.esa.int/web/planck/picture-gallery
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If we pick a different column, we might also want to use a different bin
width. (This is the width of the bins into which we drop our “virtual
marbles” while making a histogram.) A bin width of 1 is fine if we’re
looking at the number of children per household, but we might want
a width of 10,000 if we’re looking at annual household income. An
income difference of $1 isn’t very interesting, but $10,000 would be. We
could add another section to our program for setting the bin width:

printf ( "Enter bin width: " );

scanf ( "%lf", &binwidth );

If we specify binwidth, we can calculate the value of xmax (the maxi-
mum value we’re interested in) like this:

xmax = binwidth*nbins + xmin;

Let’s leave the lower end of our range (xmin) at zero, since the data in
each colum of our data set includes some small values.

We could add any number of similar sections to the beginning of a data
analysis program, to allow us to set any parameters we need. Maybe
we want to analyze only data for households with annual incomes
in a given range (say, between $20,000 and $30,000). In that case, the
program could ask for minincome and maxincome, and use those
variables when filtering the data.

Figure 7.39: Some members of the
author’s family, circa 1939.
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7.12. Using stderr
If our program asks the user for parameters, we introduce another
complication: some of the program’s output (the request to “Enter
bin width”, for example) needs to go to the computer’s display, so
the user can see it, but other output (the histogram data) needs to
be written into a file so we can plot it with gnuplot. If we just type
./census > output.dat then the user won’t see the requests for
entering parameters, and the program will just sit forever waiting for
them.

There are several ways to solve this problem. For one, we could use
fprintf to write the histogram into a file instead of sending it to the
display, as we saw in Chapter 5.

Let’s look at another way of doing it, though. As we saw in Chapter 5,
we can open a file with fopen like this:

FILE *output;

output = fopen("output.dat","w");

The variable output is a “file handle” that we can use later with
fprintf. We can open as many files as we want, and choose which
file handle to use when we want to print something into one of them.

It turns out that three file handles are automatically created whenever
you run your program. These are named stdout, stderr, and stdin.
The stdout file handle doesn’t point to a real file. Instead, it points to
your display. The printf statement uses this file handle whenever it
prints something. The statement printf("Hi!"); is just equivalent
to fprintf(stdout,"Hi!");.

When you type a command like “./census > output.dat” the
computer disconnects stdout from your display and connects it to
the file output.dat instead. This makes the output of any printf

statements go into the file instead of to your screen.

The stdin file handle points to your keyboard. The statement scanf("%d",
&i); is the same as fscanf(stdin,"%d", &i);.

The third predefined file handle, stderr, also points to your display,
but it’s intended to be used for errors and warnings. Imagine, for
example, that you’ve typed “./census > output.dat” but your
program crashes with a Segmentation Fault error. The error message
should be sent to your display, not to the file. Error messages like this
are sent to stderr, which is still connected to your display.
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./census > output.dat

stderr

stdout

output.dat

        0100101         

1110010         

1100110         

1101101         

1100001      “Connect stdout to 
the file output.dat”

“Connect stdout to 
the file output.dat”

stderr connected 
to screen.

stderr connected 
to screen.

Figure 7.40: The predefined file handles
stdout and stderr both start out
pointing at your display, but they can be
redirected elsewhere.

We can use stderr for our own purposes, too. We want our “Enter
bin width” message to go to the display even if we’ve redirected the
program’s output into a file. All we need to do is send those messages
to stderr instead of stdout. We can do that by modifying a couple
of printf statements:

fprintf ( stderr, "Pick a column [0-6]: " );

scanf ( "%d", &field );

fprintf ( stderr, "Enter bin width: " );

scanf ( "%lf", &binwidth );

Instead of printf, we use fprintf to send these messages to stderr.

But what about. . . ?

Are there other ways we could split the program’s output between
display and file? Why yes, I’m glad you asked!

One way involves the third predefined file handle, stdin. This nor-
mally points to your keyboard, and it’s used by scanf whenever it
reads some input. However, just like stdout, you can disconnect
stdin from the keyboard and connect it to a file instead. If you
did that, you could cause your program to read stored answers
from a file, rather than having to type them in at the keyboard.
Figure 7.41 shows how to do this, using the “<” symbol on the
command line. If we did it this way, the program would expect to
find two numbers in the file input.dat: the column number we
want to analyze, and the bin width.
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./census < input.dat > output.dat
stdout

output.dat

        0100101         

1110010         

1100110         

1101101         

1100001      

“Connect stdin to 
the file input.dat.”

“Connect stdin to 
the file input.dat.”

        0100101         

1110010         

1100110         

1101101         

1100001      

stdin

input.dat

“Connect stdout to 
the file output.dat.”

“Connect stdout to 
the file output.dat.”

Figure 7.41: We could redirect both
stdout and stdin if we wanted to. The
“<” on the command line means “Read
input from this file”, just as the “>”
means “Write output to this file”. If the
program asks us some questions, we can
save our answers in the file input.dat.
The program will read them from there,
instead of waiting for us to type them.

7.13. Improved Analysis Program
Program 7.11 is an improved analysis program that incorporates all of
the improvements we’ve talked about in the preceding sections. When
we run the program it asks us which column (0 through 6) we want to
analyze, then it asks us what bin width we want to use. The histogram
data is sent to the display, unless we redirect it to a file.

Figure 7.42 shows some results from the program. To plot the income
graph, for example, we did this:

./census > income.dat

and then answered the questions:

Pick a column [0-6]: 3

Enter bin width: 10000

The output file was graphed with gnuplot as with our earlier histograms.

Notice that the data here aren’t bunched into Normal distributions like
the energy data. In the energy case, we were making many measure-
ments of the same value (the energy of some kind of particle striking
our detector). The only variations in these measurements were due to
random factors.

The census data, on the other hand, is inherently different from one
household to another. The distribution of values could give us some real
information about people’s lives. Nonetheless, we can still calculate the
mean values of things like income, and calculate the standard deviation
of our data sample. The standard deviation still tells us something
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Figure 7.42: Some results from Program
7.11, plotted with gnuplot. Bin width was
set to 10,000 for the income graph, 100

for the rent graph, and 1 for the
bedrooms and children graphs.

about the width of the distribution, as it did with the energy data, even
though the income distribution is far from Normally-distributed.
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Figure 7.43: The output of the gnuplot
command
plot "census.dat" using 4.

Exercise 40: Little Pink Houses

For this exercise you’ll need a copy of the file census.dat.
You’ll find instructions for obtaining it in Appendix C.3 on
page 544.

First, examine census.dat with gnuplot. Start gnuplot and
type the command:

plot "census.dat" using 4

gnuplot numbers columns starting with 1, so this should
display a graph of household income similar to Figure 7.43.
Note the bar of negative values representing special cases
that our analysis program will ignore.

Now exit from gnuplot and compile Program 7.11 (the new
census.cpp, on Page 236). Run the program like this:
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./census > income.dat

Select the income by choosing column number 3 (the pro-
gram starts numbering the columns with 0). Use a bin width
of ten thousand.

Now start up gnuplot again and ask it to plot the results of
your analysis:

plot "income.dat" using 1:4 with boxes

By saying “using 1:4” we tell gnuplot to use column 1

(the smallest value in each bin) as the value on the x axis,
and column 4 (the number of “virtual marbles” in each bin)
as the y value. The graph shows us how many households
are in each income range.

If you have time, try plotting other columns from the census.dat
file and analyzing them.
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Figure 7.44: The income histogram
produced by our analysis program.



236 practical computing for science and engineering

Program 7.11: census.cpp, Version 2

#include <stdio.h>

#include <math.h>

int main () {

int i, binno, overunderflow = 0;

double x, xlow, xmid, xhi, binwidth;

double xmin = 0;

double xmax;

const int nbins = 50;

int bin[nbins];

double sum = 0.0;

double sum2 = 0.0;

int nvalues = 0;

FILE *input;

int field=0;

double data[7]; // Add "data" array.

fprintf ( stderr, "Pick a column [0-6]: " );

scanf ( "%d", &field );

fprintf ( stderr, "Enter binwidth: " );

scanf ( "%lf", &binwidth );

xmax = binwidth*nbins + xmin; // Calculate xmax from xmin and binwidth.

for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.

}

input = fopen( "census.dat", "r" );

while ( 1 ) {

for ( i=0; i<7; i++ ) {

if ( fscanf( input, "%lf", &data[i] ) == EOF ) {

goto done;

}

}

x = data[field]; // Choose which column.

if ( x <= 0 ) {

continue; // Ignore zeros and negatives, since they're special.

}

sum += x;

sum2 += pow( x, 2 );
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nvalues++;

binno = (x-xmin)/binwidth;

if ( binno < 0 || binno >= nbins ) {

overunderflow++;

continue; // Skip this value and jump to the next.

}

bin[binno]++; // Increment the appropriate bin.

}

done:;

fclose(input);

for ( i=0; i<nbins; i++ ) {

xlow = xmin + binwidth*i;

xmid = xmin + binwidth*(0.5+i);

xhi = xmin + binwidth*(i+1);

printf ("%lf %lf %lf %d\n", xlow, xmid, xhi, bin[i]);

}

printf ("# Field number %d\n", field);

printf ("# Xmin = %lf\n", xmin);

printf ("# Xmax = %lf\n", xmax);

printf ("# Binwidth = %lf\n", binwidth);

printf ("# Nbins = %d\n", nbins);

printf ("# Saw %d over/underflows\n", overunderflow);

printf ("# Mean value is %lf\n", sum/nvalues );

printf ("# Std. dev. is %lf\n",

sqrt( (sum2 - sum*sum/nvalues)/(nvalues-1) ) );

printf ("# Nvalues = %d\n", nvalues );

}
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7.14. Conclusion
In this chapter we’ve looked at some basic techniques for doing sta-
tistical analysis of data with computer programs. Histograms and
calculations of the mean and standard deviation are primary tools for
data analysis in the sciences.

The details can vary greatly, but the outline of most data analysis
programs will look much like Figure 7.45. We’ve discussed each of
these steps as we developed and improved our census analysis program.

Get Parameters

Read Data

Filter Data

Analyze

Write Results
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Figure 7.45: The figure above shows an
outline of a typical data analysis
program.
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Practice Problems
1. Write a small program named listmean.cpp that finds the mean

value of a list of numbers. Start out with an array of numbers, like
this:

double x[10] = {0,1,2,3,4,5,6,7,8,9};

Use a “for” loop to go through the elements of the array, adding
them up. At the end of the program, print out the mean value of
these numbers.

2. The “mean” that we’ve talked about in this chapter is the “arithmetic
mean”. There are other kinds of mean value that we could calculate.
One of them is called the “geometric mean”. To find the geometric
mean of a set of numbers, multiply them together and take the n-th
root of their product, where n is how many numbers are in the set.
For example, if we have the numbers 4, 5, and 6, their geometric
mean would be:

3
√

4×5×6 or, alternatively (4×5×6)1/3

Write a program named geomean.cpp that calculates the geometric
mean of these nine numbers:

double x[9] = {1,2,3,4,5,6,7,8,9};

Hints:

• You can use the pow function to find the n-th root. For example,
the 4th root of 38 would be pow( 38, 1.0/4 ). Note that it’s
important to say 1.0/4 instead of 1/4, because the latter would
tell the computer that you wanted to trim the decimal places off
of the result.

• When summing up a bunch of numbers we start with sum = 0.0

and add each number by saying sum += x. When multiplying a
bunch of numbers, you might start by saying product = 1.0,
then multiply by each number by saying product *= x.

3. Using Program 7.5 as a starting point, create a program called
stats.cpp that prompts the user to enter numbers, one at a time,
and then prints out the mean value and standard deviation of the
numbers entered.Make sure the program can accept numbers that
have decimal places.

You’ll need to think about how the user can let the program know
that he/she is finished entering numbers. If you only allow positive
numbers, you could ask the user to enter “-1” to stop the program.
There’s a better way to do it, though. It turns out that you can mimic
an “EOF” by typing Ctrl-D (that is, holding down the Ctrl key while
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pressing the D key). When a program sees Ctrl-D when reading
from the keyboard, it’s the same as seeing an “End Of File” when
reading from a file. Use this trick in your program. Hint: You won’t
need to open or close any files, and you can use scanf instead of
fscanf.

4. Imagine an inebriated person standing beside a lamppost. He wants
to get home, so he starts walking, but each time he takes a step it’s
in a different, random, direction. How far away from the lamppost
will he be, on average, after 100 steps?
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Figure 7.46: The paths of 20 drunken
people, each shown in a different color.
The lamppost is at the origin. The
distance units are “steps”, which we
assume to be of equal length. Each
person has taken 100 steps.

This is a well-known problem in mathematics called “the drunkard’s
walk”. As you can see from Figure 7.46, the distance travelled by the
drunkard can vary a lot from one trial to the next. If he walked in
a straight line, he’d end up 100 steps away from the lamppost, but
most of these random paths leave him much closer.

Write a program named drunkard.cpp that simulates 1,000 of
these 100-step paths and prints out the average final distance from
the lamppost. (Measure all distances in “steps”, which we assume
to be of equal length.) Make sure you use srand(time(NULL)) to
choose a different “seed” for the random number generator each
time you run your program.

Here are a few hints to help you:

• You’ll need a pair of nested loops: An outer loop for each path,
and an inner one for each step.

• Keep track of the person’s position with a couple of variables,
xpos and ypos. Remember to set them both back to zero at the
beginning of each path.

• Every time the person takes a step, generate a random angle like
this:

angle = 2.0*M_PI*rand()/(1.0+RAND_MAX);

then add cos(angle) to xpos and sin(angle) to ypos to get
the person’s new position.

• At the end of each path, calculate the final distance from the origin
like this:

distance = sqrt( xpos*xpos + ypos*ypos );

and add that to a sum of all of the distances, for use later when
you compute the mean distance.

• To check your work: your program should find that the average
final distance is about 8.86 steps. This is 0.886 × the square root
of the number of steps.
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This kind of random motion is common in nature, making the
drunkard’s walk an important problem in science. In physics, for
example, it describes the random motions of molecules in a gas, or
the motion of impurities jumping across a surface. In chemistry it
describes the shapes of polymers. In economics, random walks can
even explain some of the variation in stock prices.

Figure 7.47: Photons generated in the
center of the sun follow a “drunkard’s
walk” path as they make their way to
the sun’s surface. This twisty path can
include trillions of steps and take as
much as a million years to complete.
Source: Wikimedia Commons

5. Modify Program 7.11 so that it asks the user for two new parameters:
maxincome and minincome (maximum and minimum income) as
described on Page 230. Use these in the filter section of the program
(the section where we currently check to see if x is less than or equal
to zero). Skip the current row of data if the following is true:

data[3] < minincome || data[3] > maxincome

6. The following program tests how fast your computer can create files.
The program repeatedly opens a file ("jittertest.dat"), writes into it,
then closes it. As it’s doing this it keeps track of how long each
open/write/close cycle takes (in microseconds).

Program 7.12: jitter.cpp

#include <stdio.h>

#include <sys/time.h>

#include <math.h>

long epoch;

void startclock(){

struct timeval t;

gettimeofday(&t, NULL);

epoch = t.tv_sec * (int)1e6 + t.tv_usec;

}

int microtime(){

struct timeval t;

gettimeofday(&t, NULL);

return( (int)(t.tv_sec * (int)1e6 +

t.tv_usec - epoch) );

}

int main () {

int i;

int tstart, delay;

FILE * output;

startclock();

for ( i=0; i<1000; i++ ) {

tstart = microtime();
output = fopen( "jittertest.dat", "w" );

fprintf( output, "Testing...\n" );

fclose( output );

delay = microtime() - tstart;
printf ( "%d\n", delay );

}

}

https://commons.wikimedia.org/wiki/File:Sun920607.jpg
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The top part of the program (everything above int main()) is just
some magic that lets us measure time to microsecond accuracy. Some
of this will become clear in Chapters 9 and 12, but for now, don’t
worry about how it works.
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Figure 7.48: If you graphed the
numbers from the jitter program,
they might look like this. As you can
see, sometimes an open/close takes a
lot longer than usual.

The program’s “for” loop opens, writes, and closes a file 1,000

times. Before opening the file, the program saves the current time (in
microseconds) in the variable tstart. After the file is closed, the
program looks at the new time and calculates how long it took to
open, write, and close the file. This time (again in microseconds) is
stored in the variable named delay and printed with printf.
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Figure 7.49: If you made a histogram
from the numbers, it might look like
this. Note that most of the data are
clustered around 300 microseconds
here, but there are some measurements
that go all the way up to thousands of
microseconds. (This graph throws away
anything bigger than 2,000 µs.)

Copy this program, compile it and run it. You should see a string
of mostly 3-digit numbers. Now modify the program so that it
calculates the mean and standard deviation of delay and prints
those values at the end of the program.

The mean value will tell you how long, on average, it takes your
computer to open a file, write a little text into it, and close the file.



8. Character Strings

8.1. Introduction

Figure 8.1: Some very early text: The
Epic of Gilgamesh, first written down
around 2,000 BCE. It tells the story of
King Gilgamesh and his friend Enkidu
and their epic journey to visit the wise
man Utnapishtim, who was a survivor
of the Deluge. New fragments of the
Epic were discovered in an Iraqi
museum in 2015.
Source: Wikimedia Commons

Until now we’ve avoided reading or writing text in our programs, and
have worked exclusively with numbers. Even though we use a lot of
numbers in science and engineering, we still need to work with words
sometimes. Wouldn’t it be convenient to have a header at the top of
each column of numbers in a data file, saying what that column means?
We might also want to use text for data values themselves, like “on”
or “off” instead of zero or one, to make our data easier for humans
to read. Even if we have a glossary of numerical values and their
meanings, like “32 = Virginia, 33 = Maryland”, it’s handy to be able
to just look at the data in a file and see its meaning directly, without
having to go look up the meaning of each number. B
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Figure 8.2: The Phoenician alphabet.
Source: Wikimedia Commons

Early writing systems used written symbols to represent the sounds of
speech. Learning to read requires that you learn a sort of glossary of
these symbols and their speech equivalents. Computers can only store
data in the form of binary numbers, so somewhere there’s going to
need to be a glossary that matches up text with numerical equivalents.

In this chapter we’re going to see how computers store text, and how to
read, write and compare text in a C program. Although you might not
expect it, introducing text also introduces a lot of potential problems
for the programmer.

8.2. Character Variables
As we’ve seen, there are several different types of variables in C. We’ve
used “int” for integers and “double” for floating-point numbers.
Now we’re going to introduce another type of variable: “char”. A
char variable can hold one character (letter, number, punctuation, etc.)

http://www.smithsonianmag.com/smart-news/epic-of-gilgamesh-new-verses-discovered-worlds-oldest-story-180956844/?no-ist
http://www.smithsonianmag.com/smart-news/epic-of-gilgamesh-new-verses-discovered-worlds-oldest-story-180956844/?no-ist
https://commons.wikimedia.org/wiki/File:GilgameshTablet.png
https://commons.wikimedia.org/wiki/File:Phoenician_alphabet.svg
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Here’s a C statement that defines a char variable named letter and
gives it the initial value ’A’:

char letter = 'A';

Notice that we use single-quotes (apostrophes) around the letter. This
tells the computer that A isn’t the name of a variable, it’s literally just
the letter A. Program 8.1 shows how you might use char variables.

Program 8.1: checkyn.cpp

#include <stdio.h>

int main () {

char answer;

printf ("Can you ride a bike? (y or n): " );

scanf ("%c", &answer);

if ( answer == 'y' ) {

printf ("Yay! Biking is fun.\n");

} else if ( answer == 'n' ) {

printf ("Awww. You should learn.\n");

} else {

printf ("Might ride a bike, but can't follow instructions.\n");

}

}

Along with the new variable type, we need a new type of placeholder
for our printf and scanf statement. Just as we use “%d” for int and
“%lf” for double, we use “%c” for char. When we say “%c” we mean
“insert a single character here”.

Figure 8.3: Three Men on Wheels (1900,
aka Three Men on the Bummel) by Jerome
K. Jerome is a sequel to Three Men in a
Boat (to Say Nothing of the Dog) (1889). It
follows Jerome, George, and Carl on a
bicycle trip through Germany.

8.3. Character Strings
We can use an array of char elements to hold a chunk of text. We call
such an array a “character string” (see Figure 8.4). We’ll use the terms
“character array”, “character string”, and “string” interchangeably.

As we saw in Chapter 6, C lets us put numbers into an array when we
define it (although this is only practical for small arrays). For example,
we could define a small array of integers and print them out like this:
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int array[5] = {1,2,3,4,5};

int i;

for ( i=0; i<5; i++ ) {

printf ( "%d\n", array[i] );

}

We could do something similar with an array of characters if we wanted
to:

char string[20] = {'t','h','i','s',' ',

'i','s',' ','a',' ',

't','e','s','t','.'};

int i;

for ( i=0; i<20; i++ ) {

printf ( "%c", string[i] );

}

Since we’ve omitted the \n all of the characters will be printed on
the same line, and the output will say “this is a test.” That’s a
really tedious way to define a chunk of text and print it out. Fortunately,
C provides with a couple of shortcuts to make it easier.

C
S C I E N E

Figure 8.4: Think of a character string
as being like a string of letter beads.

First of all, there’s a special way of setting the inital value of character
strings. Instead of using curly brackets and a list of single-quoted
characters, we can just enclose the text in double-quotes:

char motto[10] = "Science!";

Second, there’s a special placeholder, “%s”, for printing character
strings all at once, instead of one character at a time:

printf ( "%s\n", motto );

Notice that we don’t have to use all of the elements of a character array.
In the example above, the text “Science!” is only eight characters long,
but we’ve defined motto to have ten elements. In fact, if we don’t
plan on ever putting more text into a character string, we can ask the
compiler to figure out its length automatically, by just leaving the length
blank:

char motto[] = "Science!";
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Of Course, we’ll run into trouble if we try to stuff more characters
into a character array than it will hold. This would create the same
problems we saw in Chapter 6 with other kinds of arrays.

In the following we’re going to look at several tiny programs that
illustrate some of the problems you might run into when you use
character strings in your programs. In each case, we’ll show you the
“right” way to do it

8.4. How Strings Are Stored

International Morse Code
1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.
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Figure 8.5: Morse Code replaces letters
with patterns of dots and dashes.
Source: Wikimedia Commons

Prior to the 1960s, the most widespread way of communicating data
electronically was morse code (see Figure 8.5). When a telegram was
sent, its text was encoded in morse code and transmitted through air
or a wire to its destination, where it was decoded back into text.

01000001 A      01010101 U

01000010 B      01010110 V

01000011 C      01010111 W

01000100 D      01011000 X

01000101 E      01011001 Y

01000110 F      01011010 Z

01000111 G

01001000 H      00110000 0

01001001 I      00110001 1

01001010 J      00110010 2

01001011 K      00110011 3

01001100 L      00110100 4

01001101 M      00110101 5

01001110 N      00110110 6

01001111 O      00110111 7

01010000 P      00111000 8

01010001 Q      00111001 9

01010010 R            

01010011 S      ...etc.

01010100 T

American Standard Code for
Information Interchange (ASCII)

00000000 = “NUL”

Figure 8.6: ASCII code replaces letters
with zeros and ones.

Morse code was fine for human telegraphers, but it was clumsy for
computers. In the 1960s the “American Standards Association” pub-
lished a new, more computer-friendly way of transmitting text. This
was called the American Standard Code for Information Interchange
(ASCII).

In ASCII, each character is represented by 8 bits of information (1
byte). When you store text in a file on disk, the text is stored as ASCII
characters. (Actually, other encodings like UTF-8 may be used these
days because they allow multi-national characters, but the principle is
the same. For simplicity, let’s just assume everything is ASCII.)

8.5. The Length of Strings
Take a look at Figure 8.7, where we define a 10-element character array
called name and put the word “Fred” into it. If we wanted to print the
text stored in name we might write a C statement like this:

printf ( "%s\n", name );

That looks straightforward enough, but it leads to a puzzle: The char-
acter array name has ten elements, but we’re only using four of them.
How does the printf function know when it gets to the end of the
text? In fact, as we noted in Chapter 6, C doesn’t prevent us from

https://commons.wikimedia.org/wiki/File:International_Morse_Code.svg
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reading or writing past the end of an array. Shouldn’t we have to tell
printf how many characters are in our text, or at least tell it how many
elements are in the name array? With other types of array, we haven’t
been able to just say “print the array”, so why are we able to do so with
character arrays?

F r e d \0

char name[10] = “Fred”;

0            1             2             3            4             5            6             7             8             9

char = 
1 byte

10 bytes

name

Figure 8.7: The end of a string is
indicated by a special non-printable
character, the “NUL” character, which
we represent by ’\0’ here (see Figure 8.6).
Its ASCII representation is “00000000”.

The answer is that the end of the text in a character array is marked by
a special ASCII character, the “NUL” character, which has the ASCII
code 00000000. When we define a character string as in Figure 8.7 we
need to be sure to leave room for the longest text it will ever contain
plus one extra element to hold the trailing NUL character.

Without the NUL character, printf would just keep on printing bytes
until it happened to find a NUL somewhere in memory or caused the
program to crash, since it wouldn’t know where the character array
ended. In C programs, we represent the NUL character by \0.

Each character of a string is stored in memory as ones and zeros,
according to the ASCII code. Figure 8.8 shows an example of what you
might find in memory if your program contained the statement “char
day[] = "Tuesday";”

01010100

01110101

01100101

01110011

01100100

01100001

01111001

00000000

day
T

u

e

s

d

a

y

\0

Figure 8.8: This is how the word
“Tuesday” would be represented as
ones and zeros in memory, stored in an
eight-element character array named
day.

Whenever you use nano to create a text file (one of the cpp files you’ve
been writing, for example), the things you type are stored as ASCII-
encoded characters in a file on the computer’s disk. If you could see
the actual bits, and you understood ASCII, you could read the file’s
contents.
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8.6. The strlen Function
Can we get our program to tell us the length of a character string? Sure
thing! We can use the strlen function for this. For example:

char name[20] = "Bryan";

int length;

length = strlen(name);

printf ( "This name is %d characters long.\n", length );

Some versions of the C compiler might give you an error message if you
try to use strlen directly as an argument to a function like printf
or in comparison with an integer in an “if” statement. That’s because
strlen doesn’t really return an int value. Instead of an int, strlen
uses a special data type named size_t.

If we tried to write a program containing a statement like this:

printf ( "This name is %d characters long.\n", strlen(name) );

the C compiler would complain that we’ve told printf to expect an
int (by using a %d), but strlen returns a size_t. The complaint would
look something like this:

program.cpp:6:62: warning: format '%d' expects argument of type 'int',

but argument 2 has type 'size_t {aka long unsigned int}' [-Wformat=]

printf ( "This name is %d characters long.\n", strlen(name) );

The cure for this is to either use a variable like length, as we did in
the first example above, or to explicitly tell the C compiler to convert
strlen’s value into an int. We could do that like this:

printf ( "This name is %d characters long.\n", (int)strlen(name) );

We’ve talked about this kind of re-casting of values in Chapter 2 and
Chapter 3.
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8.7. Comparing Strings
Imagine that we have two character strings, and we want to compare
them to see if they’re the same. We might try something like the
following:

Program 8.2: scomp.cpp (Why doesn’t this work?)

#include <stdio.h>

int main () {

char s[] = "junk";

char t[] = "junk";

if ( s == t ) {

printf ("They match.\n");

} else {

printf ("They don't match.\n");

}

}

Why doesn’t this work? Because “s” and “t” are arrays. Think about
it: if we had two int variables, x and y, we could compare their
values with “if (x==y)”. Similarly, if we had two arrays of int
elements , a[10] and b[10], we could compare two of their elements
with “if (a[1] == b[1])”. But what would we mean if we typed
“if(a==b)”?

It turns out that, in C, if you type just the name of an array, you get the
memory address of the beginning of the array1. Since “s” and “t” in 1 We’ll learn more about this later.

the example above are two different arrays, each of which has its own
allocated section of memory, each of them will have a different address.
So, “if(s==t)” will never be true.

If you compile and run Program 8.2 you’ll see that it always says “They
don’t match.” This is obviously not the right way to compare two
strings.

One way to solve the problem would be to write a “for” loop and
compare each character in the two strings, one by one. This would be
inconvenient though, especially if we had to do it often. Fortunately, C
provides us with a function that can compare strings for us. It’s called
“strcmp” (for “string compare”).
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If we have two character strings, s and t, and give them to strcmp

like this:

result = strcmp( s, t );

the value of the result will tell us whether the two strings are the same.
There are three possiblities:

result = 0 The two strings are identical.
result > 0 s is “greater” than t

result < 0 s is “less” than t

In this context “greater than” and “less than” refer to the dictonary
order of the two strings. If s would come before t in a dictionary,
strcmp says that s is less than t. According to strcmp, “aardvark” is
less than “zebra”.

Program 8.3 shows the right way to compare two strings.

Program 8.3: scomp.cpp (Doing it the right way.)

#include <stdio.h>

#include <string.h>

int main () {

char s[] = "junk";

char t[] = "junk";

if ( strcmp( s, t ) == 0 ) {

printf ("They match.\n");

} else {

printf ("They don't match.\n");

}

}

Notice that we need to add a new #include line before we can use
the strcmp function.

Instead of saying “strcmp(s,t) == 0” in our “if” statement, we
could have saved some typing by saying “!strcmp(s,t)”. When we
say “if (CONDITION)”, the CONDITION is true if it has a non-zero
value, and false otherwise. Because strcmp returns 0 if the strings are
equal, we need to use a ! (read “not”) to logically invert this into a true
value. You might read such an “if” statement as “if strcmp doesn’t

return a non-zero value. . . ”.
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Exercise 41: Comparing Strings

Create, compile, and run Program 8.3. Does it do the right
thing?

Try changing one of the strings, recompiling, and running
again. Does the program properly tell you that the two
strings are different now?

8.8. Reading Strings
We’ve used scanf and fscanf to read numbers. Now we’d like to
use these functions to read text. Can we do it?

There are some complications, and to understand them we’ll need to
know a little more about how scanf and fscanf work. Until now,
we’ve taken it on faith that we needed to put an ampersand (&) in front
of variable names when reading numbers with these functions. The rea-
son that’s true is because scanf and fscanf want the memory address

of a variable.2 If I have a variable named height, then “&height” will 2 We’ll learn why this is so when we
study functions in Chapter 9.be the address of the chunk of memory that the computer has assigned

to that variable.

As we saw in our bad string comparison example, the name of an array
is actually just the memory address of the beginning of the array. This
means we can leave off the “&” when we read a character array with
scanf.

There are still other complications, though, which we can illustrate with
Program 8.4. This program asks you to enter some text, and then just
tells you what you entered.

Program 8.4: sread.cpp (Not quite getting it right.)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

scanf( "%s", string );

printf( "You said %s\n", string );

}

The program defines a character array named string, and then uses
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scanf with the %s format specifier to read some text into this array.
Notice that the program omits the ampersand we’d use in scanf if we
were reading a number.

If you try giving this program a word like “Hello”, it seems to work
fine. In fact, any short, single word will work. But what if we give
it something longer, like “abcdefghijklmnopqrstuvwxyz”? Then
you’ll find that the program crashes with a “Segmentation Fault” error.
That’s because we’ve tried to go past the end of the string character
array, which only has room for ten characters. This is the same kind of
problem we had with numerical arrays in Chapter 6.

We can fix our program by just adding one letter: change “%s” to
“\%9s” in the scanf statement. This tells scanf to read no more than

nine characters. Why nine instead of ten? Because we need to leave room
for a NUL character at the end, to mark the end of the string. Now,
if we type “abcdefghijklmnoprstuvwxyz” the program will print
“abcdefghi” (just the first nine characters of the text we entered).

Program 8.5: sread.cpp (OK for some things.)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

scanf( "%9s", string );

printf( "You said %s\n", string );

}

Note that everything we’ve said about scanf applies to fscanf as
well.

Exercise 42: Safe String Reading

Create, compile and run Program 8.5. Try giving the pro-
gram some words without spaces, and then try giving it
sentences with spaces in them. Does it behave as expected?
What if you type a tab character instead of a space?

There’s still one problem left, though. Even the improved version of
the program has trouble when we enter text with spaces in it. If we
enter “this is a test”, the program says we typed “this”.

That happens because scanf stops reading text (%s) when it sees a
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“white space” character (a space or a tab). This may not be what you
want your program to do. If you need to read strings containing spaces,
a better choice is “fgets”. The fgets function reads a specified
number of characters from a file. Even though we’re reading from the
keyboard, not a file, we can still use fgets.

Remember that we saw in Chapter 7 that three “files” are automatically
opened whenever we run a program: stdout, stderr, and stdin.
The first two usually point to your display, and the third (stdin)
usually points to your keyboard. We can use fgets in our program by
telling it to read from stdin. That’s what Program 8.6 does.

Program 8.6: sread.cpp (Better, but see next section...)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets( string, 10, stdin );

printf("You said %s\n",string);

}

See next section for caveats.

The fgets function takes three arguments: The name of a character
string variable in which to store what we read, the size of that character
string, and a file handle pointing to an open file to read things from.
fgets will read, at most, one less than the size of the character string,
automatically leaving space for the trailing NUL character.

But what about. . . ?

So why does “%s” stop at white spaces? It’s so we can do things
like this:

char name[10];

int year;

printf ( "Enter your last name and birth year: ");

scanf("%9s %d", name, &year);

or like this:

char firstname[10], lastname[10];

scanf("%9s %9s", firstname, lastname);

If scanf didn’t stop at white spaces, the first example would try to
stick things like "Wright 1961" into "name". It would never know
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when you were done typing the first word, and had started typing
something else.

If you want the things you enter to be broken up into words, scanf
is a good choice. If you want everything to be put into one variable,
fgets is the thing to use.

8.9. Line Endings
There’s still a potential problem with Program 8.6 though, and it’s a
subtle one. To illustrate it, let’s make a small change to the program
and try running it again. The new version is Program 8.7.

Program 8.7: sread.cpp (Watch what happens now...)

#include <stdio.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets( string, 10, stdin );

printf("You said %s. You really did.\n",string);

}

If we ran Program 8.7 and entered the text hello, we’d see something
like the following:

Enter some text: hello

You said hello

. You really did.

What’s going on here? Shouldn’t the program have written “You said
hello. You really did.”, all on one line? The difference is due to the fact
that fgets interprets the “enter” key as an ASCII “newline” character,
and it puts that newline into string just like the other characters you
typed. In some circumstances that might be OK, but we’ll often want
to get rid of the extra newline.

Dealing with line endings can be especially tricky if your program
reads text from a file. For historical reasons, each of the three most
popular operating systems (Windows, OS X, and Linux) uses a different
way of indicating the end of a line in an ASCII file. OS X, for example,
uses the ASCII “CR” (“Carriage Return”) character, which we can write
as “\r” in C programs. Linux, on the other hand, uses the ASCII “LF”
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(“Line Feed”) character, which we can write as “\n”. Windows uses
both, putting “\r\n” at the end of each line.

To make our programs as portable as possible, it would be nice if they
could deal with any of these.

To eliminate such spurious characters we first have to find them. Let’s
start by looking at a handy C function for finding particular characters
in a string. Consider Program 8.8.

Program 8.8: findchar.cpp

#include <stdio.h>

#include <string.h>

int main () {

char welcome[] = "Testing, testing. Are you there?";

int i;

i = strcspn( welcome, ".,?" );

printf("The first punctuation is character number %d\n", i);

}

The strcspn function has a name that’s hard to remember3, but what 3 It’s an abbreviation for “string com-
plementary span”, but that’s no more
memorable.

it does is simple. You give strcspn a string and a list of characters
you’re interested in, then it steps through the string, one character at a
time, until it finds an interesting one. When it finds the first interesting
character it tells you its location.

Program 8.8 defines a character string named welcome. The program
uses strcspn to find the location of the first punctuation character in
this string. Remember that a character string is just an array of char
variables, and that array indices begin with zero. If you start with
zero and count characters, you’ll find that the “,” (the first punctuation
mark) is element number 7 of welcome, and that’s what Program 8.8
would tell you if you compiled and ran it.

In principle, we could use the strcspn to find \r and \n characters.
Once we’ve found them, we need to know how to get rid of them. That
turns out to be easy.



256 practical computing for science and engineering

Remember again that a character string is just an array of characters.
Once we know which array element holds a letter we want to change,
all we need to do is put a different character into that element.

Let’s get back to the most recent version of our sread program now
(Program 8.7). Take a look at Figure 8.9. At the top we see the contents
of string as Program 8.7 would see it right after the user types “hello”
and presses the enter key.

h e l l o \n \0
0            1             2             3            4             5            6             7             8             9

string

j e l l o \n \0
0            1             2             3            4             5            6             7             8             9

NUL marks the 
end of the string.

NUL marks the 
end of the string.

string[0] = 'j';string[0] = 'j';

Figure 8.9: Changing one character in a
string.

string is a 10-element character array. The next-to-last character is
“newline”, which we represent in C programs as \n. Following the
newline is an ASCII NUL character, represented by \0, which marks
the end of the string, as described in Section 8.5 above.

If we wanted to change “hello” into “jello”, we could say:

string[0] = 'j';

making the first letter (element number zero) of string a “j” instead
of an “h”, as shown at the bottom of Figure 8.9.

Now take a look at Figure 8.10. If we wanted to get rid of the newline
in string, we could replace character number 5. But what should
we replace it with? What if we put in another \0, as in the bottom
of Figure 8.10? Now the newline is gone, and the newly inserted \0

marks the new end of the string. (The second \0 is ignored.) We’ve
chopped the troublesome newline off the end of the string!

So, our two-part strategy for removing trailing \r and \n characters is
(1) use strcspn to locate them and (2) write an ASCII NUL character
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h e l l o \n \0
0            1             2             3            4             5            6             7             8             9

string

h e l l o \0 \0
0            1             2             3            4             5            6             7             8             9

string

Now the string 
ends here!

Now the string 
ends here!

string[5] = '\0';string[5] = '\0';

Figure 8.10: Replacing a newline with a
NUL.

in their place. Program 8.9 shows a final version of our sread program
that implements this strategy. As you can see, we only need to add two
lines to the program.

Exercise 43: Space, The Final Frontier

Now modify Program 8.5 so that it looks like Program 8.9.
Try it again with input that includes spaces or tabs. How
does it behave differently?

Program 8.9: sread.cpp (Now deals with spaces and line endings)

#include <stdio.h>

#include <string.h>

int main () {

char string[10];

printf ("Enter some text: ");

fgets(string,10,stdin);

string[ strcspn( string, "\r\n" ) ] = '\0';

printf("You said %s. You really did.\n",string);

}

If we ran Program 8.9 and typed “hello”, the result would look like
this, as the user would expect:

Enter some text: hello

You said hello. You really did.
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The strcspn function gives the location of the first \r or \n, then the
program puts a \0 at that spot. This would be safe even if the string
didn’t contain any \r or \n characters. In that case, strcspn returns
the location of the \0 that’s already at the end of the string, and the
program wouldn’t end up changing anything.

Note that in Program 8.9 we could
have done things in two explicit steps,
by defining an integer variable i and
saying:

i = strcspn( string, "\r\n" );

string[i] = '\0';

Either way is fine. Feel free to do it this
way if you find it easier to understand.

It’s generally a good idea to use strcspn in this way to trim off any
extra \r or \n characters. I recommend you do this whenever you use
fgets.

8.10. Assigning Values to Strings
Since strings are arrays, we also need to take care when assigning values
to them in our programs. Take a look at Program 8.10 for example. This
looks pretty straightforward. We have two character string variables, s
and t, and we want to set t equal to s, just like we’ve been doing with
numerical variables.

Program 8.10: sassign.cpp (This won’t work)

#include <stdio.h>

int main () {

char s[10] = "Testing";

char t[10];

t = s;

printf( "%s\n", t);

}

You’ll find that g++ refuses to compile this program though. If you try,
you’ll probably see an error message like this:

sassign.cpp: In function 'int main()':

sassign.cpp:6: error: invalid array assignment

Why does this happen? Remember that t and s are arrays, not single
values. The C compiler is telling you that it can’t figure out what you
want to do here.

What we’d like to do is make each element of the t array be the same
as the corresponding element of the s array. We could write a “for”
loop to go through all of the array elements and do that, but there’s an
easier way to do it with character arrays.

We can use the “spnrintf” function to “print” the value of one string
into another string. This is what we do in Program 8.11.
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Program 8.11: sassign.cpp (The right way.)

#include <stdio.h>

int main () {

char s[10] = "Testing";

char t[10];

snprintf( t, 10, "%s", s);

printf( "%s\n", t);

}

The snprintf function is like printf, but it takes two extra argu-
ments: the name of a string, and the number of characters. In Program
8.11 snprintf will write a maximum of ten characters into the char-
acter string named t. It’s important that snprintf lets us specify the
maximum number of characters, so we don’t write past the end of t.

We could also to things like this:

snprintf (t, 10, "Hello world!\n");

which would put the text "Hello world!" into t.

Internally, snprintf just does the same thing as looping through all
of the characters in the arrays, one by one, and setting their values.

Exercise 44: For Internal Use Only

Create, compile and run Program 8.11. Try modifying the
program by replacing “Testing” with something longer that
includes spaces. (You may need to increase the size of the s
and t character arrays.) Recompile the program and make
sure it does what you expect.

8.11. Summary of Good String Usage
In the preceding sections we’ve gone through a bunch of best practices
for using character strings. Let’s summarize what we’ve learned:

Figure 8.11: Unfortunately, String
Theory has nothing to do with character
strings, but this Calabi-Yau manifold is
too attractive to leave out.
Source: Wikimedia Commons

Comparing Strings

We can’t compare strings the same way we compare numbers. If we
try to do so, we’ll always be misled into thinking that the strings are

https://commons.wikimedia.org/wiki/File:CalabiYau5.jpg
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different, even if they’re not. To do it right, use strcmp to compare
strings. (You’ll need to add #include <string.h> to use strcmp.)
Remember that strcmp returns zero if the strings are equal. Here’s a
usage example:

if ( strcmp( s, t ) == 0 ) {

printf( "They're the same!\n" );

}

Reading Strings from the User

C provides us with a special format placeholder, %s, for reading strings.
Since a character string is an array, we need to take care not to go past
the end of the array. There are two good ways to read strings: one for
when you want each “word” (separated by spaces) to go into its own
variable, and another for when you want everything the user types
(including spaces) to go into a single variable.

• If you want to split the input wherever there’s a space, use scanf.
Always specify the number of characters by putting a number be-
tween % and s. The number should be one less than the length
of the character string array, to leave room for a NUL character at
the end. Here’s a usage example, suitable for reading text into a
10-character-long string:

scanf ( "%9s", string );

• If you want to put all of the input, spaces and everything, into one
variable, use the fgets function. Be sure that the size you give
it matches the actual size of the character string variable. fgets

will automatically leave room for the trailing NUL character. Also,
use strcspn to trim off trailing newlines. Here’s a usage example
suitable for a 10-character long string:

fgets ( string, 10, stdin );

string[ strcspn( string, "\r\n" ) ] = '\0';

Assigning Values to Strings

We can’t just assign values to character string variables the same way
we do with numerical variables. Instead, use snprintf to “print” text
into the variable. Here’s a usage example that would copy the contents
of the variable s into the 10-character-long variable t:

snprintf( t, 10, "%s", s);
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Writing past the end of a string array is a very common programming
bug. It often leads to crashes, and is responsible for many security flaws.
Sticking to the methods above will help you avoid these problems in
your programs.

8.12. Reading a Gradebook
Let’s look at a practical program that uses the string techniques we’ve
been talking about. In this example we’ll be reading students’ names
and grades from a gradebook file and calculating grade averages.

Take a look a Program 8.12. It reads names and columns of grades from
a file like this:

Figure 8.12: Albert Gleizes, Composition
pour Jazz (1915)
Source: Wikimedia Commons

Davis 9.2 9.8 9.8 10. 9.2 9.1

Gillespie 8.7 8.7 8.7 8.6 8.9 9.2

Monk 10. 9.0 9.5 9.0 9.1 9.8

Vaughan 9.9 9.9 9.8 8.5 9.0 9.8

Coltrane 9.0 9.1 8.9 9.9 9.7 8.6

Mingus 8.9 9.8 8.6 9.8 9.9 9.8

Parker 9.6 10. 9.1 9.1 9.8 8.9

Holliday 9.2 8.7 10. 8.9 9.8 9.0

Armstrong 8.6 8.6 9.0 9.2 8.6 8.7

Ellington 9.8 9.6 9.6 9.6 10. 10.

Fitzgerald 9.8 9.2 9.9 9.8 8.7 9.6

The first column is the student’s last name, and the other columns are
grades for each of six homework assignments.

Program 8.12 uses fscanf to read the students name and store it in
the 20-character-long string variable named lastname. To make sure
it doesn’t go past the end of lastname, the program tells fscanf to
use the format “%19s”, limiting the number of characters to 19 at most,
and leaving at least one space to store the terminating NUL character
marking the end of the string.

This program uses a technique similar to the one used in our census
program in Chapter 7 for reading the multi-column data in the file
grades.dat. A “for” loop reads ngrades numbers from each line
of the file. Unlike the census program, we don’t read the numbers into
an array, since this program doesn’t care which number was in which
column. We only want to add them up, so we can calculate the mean.

The last line of Program 8.12 prints out each student’s name and mean
grade. Notice that we tell printf to print only the first two decimal

https://en.wikipedia.org/wiki/File:Albert_Gleizes,_1915,_Composition_pour_Jazz,_oil_on_cardboard,_73_x_73_cm,_Solomon_R._Guggenheim_Museum,_New_York_DSC00542.jpg


262 practical computing for science and engineering

Program 8.12: grades.cpp

#include <stdio.h>

int main () {

int ngrades=6;

char lastname[20];

double sum, grade;

int i;

FILE *gradebook;

gradebook = fopen("grades.dat","r");

while ( fscanf( gradebook, "%19s", lastname ) != EOF ) {

sum = 0.0;

for ( i=0; i<ngrades; i++ ) {

fscanf(gradebook, "%lf", &grade);

sum += grade;

}

printf ( "%s %.2lf\n", lastname, sum/ngrades );

}

}

Read
all lines
from file

Get all
grades
from

each line

places of the numbers by using “%.2lf”. As we saw in Chapter 3, a
format like “%n.mlf” means “show m characters with n to the right
of the decimal place.” (We can omit the n if we just want to specify the
number of decimal places.)

If we ran Program 8.12 we’d see something like this:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

The program seems to be doing its job, but the output could be more
readable. It would be nice if things lined up in straight columns. If
we change the last printf statement we could make things a little
prettier:
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printf ( "%20s %.2lf\n", lastname, sum/ngrades );

We’ve changed %s into %20s. If we ran the modified program, the
result would look like this:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

What happened? When we say %20s we mean “make the output string
exactly 20 characters long, padding it on the front with spaces if there’s
not enough text to fill the full 20 characters.”

If we don’t like this right-justified style, we can move the text over to
the left by changing %20s into %-20s:

Davis 9.52

Gillespie 8.80

Monk 9.40

Vaughan 9.48

Coltrane 9.20

Mingus 9.47

Parker 9.42

Holliday 9.27

Armstrong 8.78

Ellington 9.77

Fitzgerald 9.50

Exercise 45: Reading and Writing Text

Here’s a challenge for you. Write a program named classes.cpp

that asks the user how many classes he or she has on each
day of the week. After collecting the data, the program
should write the name of each weekday and the number of
classes on that day into a data file named classes.dat
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The program should have a loop that asks the user to enter
the name of the day of the week and the number of classes
on that day. If the user enters “quit” as the day, the loop
should stop.

The program should start out something like this:

#include <stdio.h>

#include <string.h>

int main () {

char day[10];

int classes;

FILE *output;

output = fopen( "classes.dat", "w" );

It would be a good idea to use two separate scanf state-
ments to read the day name and the number of classes,
instead of trying to read both with the same scanf. (Can
you think of a reason why this is so?)

Here are some hints:

• Remember that you don’t need a & in front of the variable
name when you read a character string with scanf (but
you do when you read a number).

• You can test to see if a day contains the text “quit” like
this:

if ( strcmp( day, "quit" ) == 0 )

• You can write things into a file using fprintf, like this:

fprintf ( output, "%s %d\n", day, classes );

Compile and run your program. The file it creates (classes.dat)
should look like this:

Monday 4

Tuesday 2

Wednesday 3

Thursday 2

Friday 3
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This is similar to the data files we’ve graphed with gnuplot in
the past, except that one of the columns contains text. Start
up gnuplot and type the following to cause it to use the days
of the week as labels on the X axis:

set xrange [-1.5:5.5]

set yrange [0:6]

plot "classes.dat" using 2:xticlabels(1) with boxes

The first two commands set the range of the X and Y axes so
that the data will fit nicely on the graph. The third command
tells gnuplot to plot the second column of the data, and use
the first colum as the labels on the X axis. The result should
look something like Figure 8.13.

Sometimes you might want the X axis labels to be verti-
cal. You can do this by giving gnuplot the command “set
xtics rotate by 90”, and then typing “replot”. Give
it a try. What happens if you use -90 instead of 90?
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Figure 8.13: Your class schedule might
look something like this.

8.13. Reading Column Headers
It would be nice if the columns of our gradebook file had headers,
telling the name of each column’s assignment. Maybe something like
this:

Figure 8.14: Adi Holzer, Satchmo (Louis
Armstrong) (2002)
Source: Wikimedia Commons

HW1 HW2 HW3 HW4 HW5 HW6

Davis 9.2 9.8 9.8 10. 9.2 9.1

Gillespie 8.7 8.7 8.7 8.6 8.9 9.2

Monk 10. 9.0 9.5 9.0 9.1 9.8

Vaughan 9.9 9.9 9.8 8.5 9.0 9.8

Coltrane 9.0 9.1 8.9 9.9 9.7 8.6

Mingus 8.9 9.8 8.6 9.8 9.9 9.8

Parker 9.6 10. 9.1 9.1 9.8 8.9

Holliday 9.2 8.7 10. 8.9 9.8 9.0

Armstrong 8.6 8.6 9.0 9.2 8.6 8.7

Ellington 9.8 9.6 9.6 9.6 10. 10.

Fitzgerald 9.8 9.2 9.9 9.8 8.7 9.6

Program 8.13 on page 267 is designed to read this modified data file.
In addition to the things our previous program did, this new program
also calculates a class average for each assignment. To do this, it needs
to sum up the numbers in each column and divide the sum by the

https://en.wikipedia.org/wiki/File:Adi_Holzer_Werksverzeichnis_899_Satchmo_(Louis_Armstrong).jpg
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number of students. The sum for each column is stored in an element
of the new array named class_sum4. As the file is read, the students 4 Why do we use const when defining

ngrades here? Look back at page 172

in Chapter 6.
are counted by the variable nstudents.

But what about the column headers? Just as we have a class sum for
each column, we have a header for each column, and we’d like to save
those headers in an array so we can print them out later. But remember
that a character string is already an array char variables, so we’re in
need of an array of arrays.

That’s what the variable named assignment is for. It’s a six-element
array of 10-character strings. Once we’ve read the column headers into
it, we might imagine the array looking like Figure 8.15.

H W 1 \0

H W 2 \0

H W 3 \0

H W 4 \0

H W 5 \0

H W 6 \0

0    1    2    3    4    5     6    7    8    9 

0
 
 
 
 
1
 
 
 
 
2
 
 
 
 
3
 
 
 
 
4
 
 
 
 
5
 
 
 
 
 
6
 

Figure 8.15: An array of character strings
holding the column headers from our
gradebook file.

Since the column headers are in the first line of the file, they’re read
first. Program 8.13 uses a “for” loop to read the headers into elements
of the assigment array.

The program then proceeds more or less like Program 8.12, except that
the new program also keeps a running sum of each column, in the
class_sum array, and counts the number of students.

At the end, a new loop goes through all of the assignments, printing
out the column header and mean grade for each.
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Program 8.13: grades.cpp, Now With Headers!

#include <stdio.h>

int main () {

const int ngrades=6;

char lastname[20];

double sum, grade;

int i;

double class_sum[ngrades];

char assignment[ngrades][10];

int nstudents = 0;

FILE *gradebook;

gradebook = fopen("grades-with-headers.dat","r");

for ( i=0; i<ngrades; i++ ) {

fscanf( gradebook, "%9s", assignment[i] );

class_sum[i] = 0.0;

}

while ( fscanf( gradebook, "%19s", lastname ) != EOF ) {

sum = 0.0;

for ( i=0; i<ngrades; i++ ) {

fscanf(gradebook, "%lf", &grade);

sum += grade;

class_sum[i] += grade;

}

printf ( "%-20s %.2lf\n", lastname, sum/ngrades );

nstudents++;

}

printf( "\nClass averages:\n" );

for ( i=0; i<ngrades; i++ ) {

printf ( "%10s %.2lf\n", assignment[i], class_sum[i]/nstudents );

}

}
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8.14. Handling Errors
Up until now, we’ve been assuming that the files our programs want to
read really exist. But mistakes sometimes happen in the real world. We
might accidentally rename or delete a data file, or we might mis-type
the file’s name when we write it into a program. What happens if a
program tries to open a file that doesn’t exist? Let’s try it and see. Take
a look at Program 8.14.

Program 8.14: filecheck.cpp

#include <stdio.h>

int main () {

FILE *input;

input = fopen( "nosuchfile.dat", "r" );

// Do some stuff, then close the file...

fclose ( input );

}

If nosuchfile.dat doesn’t exist, the program will give us an error
message saying “Segmentation fault”5. That’s not very helpful, 5 This error is generated when fclose

tries to close input, which was never
really set because the file couldn’t be
opened.

and it might take us a while to figure out that we’d typed the file’s
name wrong, or put the file in the wrong place.

We can do better. Take a look at Program 8.15. This version of the
program checks to see if an error has occurred and prints out a more
informative error message. This program does several new things, so
let’s look at them one by one.

Program 8.15: filecheck.cpp, with error messages

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

int main () {

FILE *input;

input = fopen( "nosuchfile.dat", "r" );

if ( !input ) {

fprintf ( stderr, "Error opening file: %s\n", strerror(errno) );

exit(1);

}

// Do stuff, then close the file...

fclose ( input );

}
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First of all, there are many kinds of errors that a function like fopen
might encounter. For example:

• Maybe the file you’re asking for doesn’t exist.

• Maybe you don’t have permission to read or create the file.

• If you’re trying to create a new file, there might be no more room
left on the disk.

In order to tell us what happened, the function identifies each of
these conditions with an “error number”. Notice that we’ve added
“errno.h” to the list of #include statements at the top of the program.
Among other things, this defines a new variable named errno that
will always contain a number identifying the most recent error.

Having an error number is a step in the right direction, but words
would be even better. That’s what the strerror function does. It tells
us, in plain English, what a particular error number means. strerror
returns a character string that our program can print out to describe
the error. In order to use strerror we need to add “#include
<string.h>”.

Finally, we need to have some way to stop the program when we see an
error. There’s often no point in continuing after something goes wrong,
and doing so could even be dangerous. To stop a program immediately,
we can use the exit function. It takes a single argument (an integer)
that’s passed along to the operating system to indicate whether the
program finished successfully or died because of an error. A value of
zero indicates success, and anything else means failure6. exit requires 6 We won’t make use of these exit

values in this book, but they can be
handy when writing “scripts” that run
programs for you.

stdlib.h.

If we ran our improved program (with nosuchfile.dat still missing),
it would say:

Error opening file: No such file or directory

That’s much more informative than “Segmentation fault”! When
writing programs, think about what might go wrong and try to deal
with these situations gracefully.
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Figure 8.16: We all make mistakes. In
1890, palaeontologist Othniel Marsh
humiliated his rival Edward Cope by
pointing out that Cope had
reconstructed the skeleton of
Elasmosaurus with the head on the wrong
end!
Source: Wikimedia Commons8.15. Converting Characters to Numbers

As we noted in Section 8.4, the computer stores everything as ones and
zeros, and it uses ASCII codes to store characters. For example, the
ASCII code for an upper-case 'A' is 01000001. If we interpreted this as
a binary number, it would be equal to the decimal number 65.

There’s an ASCII code for each character on your keyboard, including
all the numbers. The ASCII code for the digit '1' is 00110001. Inter-
preted as a binary number, this would be equivalent to the decimal
number 49. Take a look back at Figure 8.6 to see the ASCII codes for
some other digits.

On the other hand, computers store integer numbers as a binary repre-
sentation of the number. For example, the number 1 would be stored as
00000001. Maybe you can see how this could create some confusion.
As far as the computer is concerned, character '1' is completely different
from the number 1.

Figure 8.17: Luigi Pirandello was the
author of the 1921 play Six Characters in
Search of an Author. I remember the 1976

PBS production, starring John
Houseman and Andy Griffith(!).
Source: Wikimedia Commons

Sometimes we’ll need to convert a character that represents a digit into
an actual number. How can we do that? The first clue is to notice that
the ASCII codes for all of the digits in Figure 8.6 are sequential. If we
converted these binary numbers into decimal, we’d see that '0', '1', '2',
and '3' are represented by the numbers 48, 49, 50, and 51.

The second clue is provided by a feature of C that we haven’t mentioned
before: C is perfectly happy to do math with char variables. It just
treats the character variable as though it had a value equivalent to the
decimal representation of its ASCII code. So, the computer would see
'1'+'2' as 49+50, giving a value of 99.

Using these two clues we can do a little math and determine the
numerical value of a character. Take a look at the figure below.

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

48          49           50           51           52          53           54          55           56           57

ASCII
number
(decimal)

'7'-'0' = 55-48 = 7

https://en.wikipedia.org/wiki/File:Cope_Elasmosaurus.jpg
https://commons.wikimedia.org/wiki/File:Luigi_Pirandello_1934b.jpg
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If we want to find the numerical value of the character '7' we just
need to subtract the character '0' from it. In a program, that might
look like this:

int n;

char c = '7';

n = c - '0';

printf( "The numerical value of %c is %d\n", c, n );

But what about. . . ?

What if we have a multi-digit number represented as a string? For
example, the string "186282"? In principle, we could go through
it one digit at a time, converting each character into a number and
multiplying it by the appropriate power of ten, then adding up
all the results. This would be tedious though, and it seems like
something we might need to do pretty often.

Fortunately, as we’ll see in Chapter 9, C provides us with two
functions that will do the work for us. They’re named atoi and
atof. The atoi function converts a string of digits into an integer.
The atof function converts a string that might contain decimal
points into a double. For example:

char ci = "12345";

char cd = "67.890";

int i;

double d;

i = atoi( ci );

d = atof( cd );

As we’ll see in Chapter 9, these two functions come in very handy
in one particular situation: Interpreting command-line arguments.

Let’s look at an example that uses this trick.

8.16. Multiplicative Persistence
In Number Theory there’s a fun property of numbers called multiplica-

tive persistence7. Take the number 39, for example. It’s represented by 7 See this YouTube video by Matt
Parker on the Numberphile channel:
https://www.youtube.com/watch?v=Wim9WJeDTHQ

the two digits 3 and 9. If we multiply 3 × 9 we get another number,
27. Multiplying 2 × 7 gives 14. Multiplying 1 × 4 gives 4. Now we’re
down to just one digit after three steps: 39 → 27 → 14 → 4. We say

https://www.youtube.com/watch?v=Wim9WJeDTHQ
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that 39 has a multiplicative persistence of 3, meaning that we can do
this procedure of multiplying the digits three times before we get to a
single-digit number.

Figure 8.18: Still I Persist in Wondering is
the name of an excellent story collection
by Edgar Pangborn.
Source: Goodreads

Try this with some other numbers. You’ll find that most numbers have
only a small persistence. 39 is actually the first one that gets as high as
3. The persistence of 77 is 4. The first number with a persistence of 5 is
679, and you have to go all the way to 6,788 to find a number that has a
persistence of 6. Mathematicians think that no base-10 number has a
multiplicative persistence greater than 11, but this remains unproven
(although it’s been checked for numbers up to 1020,000!).

Let’s write a program that tests the multiplicative persistence of a given
number. Take a look at Program 8.16.

Program 8.16: mpersist.cpp

#include <stdio.h>

#include <string.h>

int main () {

const int maxdigits = 10;

char number[maxdigits];

int length;

int product;

int i;

printf ("Please enter a number, up to %d digits long: ", maxdigits-1 );

fgets ( number, maxdigits, stdin );

number[ strcspn( number, "\r\n" ) ] = '\0';

length = strlen( number );

while ( length > 1 ) {

product = 1;

for ( i=0; i<length; i++ ) {

product *= number[i] - '0';

}

snprintf ( number, maxdigits, "%d", product );

length = strlen( number );

printf ( "%d %s\n", length, number );

}

}

The program stores a number in a character array. This lets us easily

https://www.goodreads.com/author/show/155249.Edgar_Pangborn
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get each digit of the number, since each digit is one element of the
array. The program uses strlen to find the string’s length. Notice
that the “while” loop keeps going as long as length is greater than
one. Each time around the loop, a “for” loop goes through all the
digits of the number, converting each digit to its numerical equivalent
by subtracting '0'. The variable named product keeps track of the
product obtained by multipying the digits together.

If we ran the program, we would see something like this:

Please enter a number, up to 9 digits long: 39

2 27

2 14

1 4

The first column is the number of digits, and the second column is the
current product.
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8.17. Pattern Matching
We’ve seen how strcmp lets us compare two strings to see if they’re
equal, but what if we want to know whether the string fits some fuzzier
pattern? For example, we might want to know if the string begins with
an upper-case letter, or we might want to check for any of the strings
“y”, “Y”, “yes”, or “YES”.

The GNU C compiler supports a powerful pattern-matching system
called “Regular Expressions”. Regular Expressions (sometimes called
“regexp” for short) are used in many computer languages. A little
knowledge about them will be useful no matter what language you
use.

Figure 8.19: Source: Wikimedia Commons

Regular Expressions are a way of specifying a pattern that you want to
match. The pattern is written as a group of symbols that can represent
particular characters, ranges of characters, or wildcards of various
kinds that will match any character. The Regular Expression language
is extensive, but here are some commonly-useful symbols and their
meanings:

Symbol Meaning

. Match any single character.

* Match zero or more of the preceding item.
+ Match one or more of the preceding item.
? Match zero or one of the preceding item.
{n,m} Match at least n, but not more than m, of the preceding item.
ˆ Match the beginning of the line.
$ Match the end of the line.
[abc123] Match any of the enclosed list of characters.
[ˆabc123] Match any character not in this list.
[a-zA-Z0-9] Match any of the enclosed ranges of characters.
this|that Match “this” or “that”.
\., \*, etc. Match a literal “.”, “*”, etc.

Regexp patterns can get confusing very quickly, but here are some
simple examples:

ˆY Match any string beginning with Y.
ˆ[Bb]ob Match any string beginning with bob or Bob.
100$ Match any string ending in 100.
ˆT.*day$ Match Tuesday, Thursday, or any other string

that begins with a T and ends with day.
ˆdata[0-9][0-9]\.dat Match data01.dat, data02.dat, or any other

string with data followed by two digits and .dat.

https://commons.wikimedia.org/wiki/File:Persian_Silk_Brocade_-_Bergamot_Armlet_-_Seyyed_Hossein_Mozhgani_-_1972.jpg
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Program 8.17 uses regular expressions to identify strings that begin with
upper-case letters. A string like Montana would match, but montana
wouldn’t.

The program uses two functions to accomplish this: regcomp and
regexec. The first function “compiles” a Regular Expression into an
internal form that’s easier for the computer to use. The second function
uses this compiled Regular Expression to test a string. In this case, the
Regular Expression we’re using is ˆ[A-Z], which matches any string
that begins with the upper-case characters A through Z.

Notice that we need to add #include <regex.h> in order to use
these functions. regex.h also defines a new type of variable, regex_t,
that’s used for storing the compiled version of a Regular Expression.

A complete description of the regcomp and regexec functions is
beyond the scope of this course, but Program 8.17 illustrates their basic
usage. In this example, regcomp compiles our expression and stores
the compiled version in the variable named reg. The “REG_NOSUB |

REG_EXTENDED” argument we give regcomp just specifies a couple of
options that you’ll probably want to use.

The program gives the regexec function the compiled Regular Expres-
sion (stored in the variable reg) and the name of a string variable to
test. The other three arguments we give regexec aren’t really used in
this case, but they should usually be set to the values shown here.

Program 8.17: match.cpp

#include <regex.h>

#include <stdio.h>

int main()

{

regex_t reg;

char string[100];

printf ("Enter a word: ");

scanf( "%99s", string );

regcomp( &reg, "^[A-Z]", REG_NOSUB | REG_EXTENDED );

if ( regexec( &reg, string, 0, NULL, 0 ) == REG_NOMATCH) {

printf ("Doesn't match.\n");

} else {

printf ("\"%s\" Matches!\n", string);

}

}
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8.18. Conclusion
Character strings aren’t particularly exciting, but it can be convenient
to be able to use them in your programs. When doing so though, be
careful not go past the end of your character arrays, and remember that
you need to use strcmp to compare strings. If you stick to the best
practices outlined above, you should be alright.

Figure 8.20: The author’s Uncle Buster,
playing a stringed instrument. Buster
was a character. (Character. String. See
what I did there?)
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Practice Problems

Figure 8.21: In 1755 Samuel Johnson
published his A Dictionary of the English
Language. It remained the most
respected English dictionary until more
comprehensive dictionaries were
published in the 20th Century.
Source: Wikimedia Commons

1. Write a program called dict.cpp that asks the user for two words
(reading them with scanf), and then tells you which word would
come first in the dictionary. If the two words are the same, the
program should tell you so. Assume the words are less than 100

characters long.

2. Write a program called hiname.cpp that asks users to enter their
first and last names, on a single line like “Bryan Wright”. Use a
single scanf statement to read the user’s names. Make the program
then say “Hi”, followed by the user’s first name, like “Hi Bryan!”.

3. Write a program called getpoem.cpp that asks users to enter the
first line of their favorite poem. Let the line be up to 100 characters
long. Make your program open a file named firstlines.dat and
write the line into the file. Be sure to open the file for “appending”,
by giving fopen an "a" as its last argument8. Try running the

8 See Chapter 5.

program several times and entering different lines. If you look at
firstlines.dat with nano, you should see all of the lines you’ve
typed in.

4. The following statement will get the current time (measured in
seconds since January 1, 1970) and put it into an integer variable
named start:

start = time(NULL);

Knowing this, write a program called type1.cpp that tests how
fast a user can type the phrase “I love programming!”. Make sure
the program tells the user what to do.Hints:

• Use a character string at least 30 characters long to capture what
the user types.

• Remember to add “#include <time.h>” for the time function

• Use fgets to read what the user types

• Check the time before typing and the time after typing, then look
at the difference to find out how long it took. Tell the user how
many seconds it took him or her to type the phrase.

• Don’t bother to check whether the user typed the right thing.
Assume the user is honest.

Figure 8.22: The stylish Olivetti
Valentine typewriter, designed by Ettore
Sottsass to be “sensual and exciting”.
Source: Wikimedia Commons

5. After completing Problem 4 modify the program so that it uses a
for loop to ask the user to type the phrase three times, then tells

https://commons.wikimedia.org/wiki/File:Samuel_Johnson_by_Joshua_Reynolds_2.png
https://commons.wikimedia.org/wiki/File:Olivetti_Valentine.jpg
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the user his or her average speed. Give the speed in three ways:
average number of seconds to type the phrase, number of characters
per second, and number of words per minute (where a standard
“word” is five characters or spaces). Be sure to allow for non-integer
speeds like “1.5 characters per second”. Call the new program
typing.cpp.

6. First, fetch a copy of Lewis Carroll’s book Alice in Wonderland by
typing either:

Figure 8.23: Source: Wikimedia Commons

wget http://tinyurl.com/y9nrg3xh

or

curl -L -O http://tinyurl.com/y9nrg3xh

After you’ve downloaded the file, rename it by typing:

mv y9nrg3xh alice.txt

Then, write a program named wordlength.cpp that reads alice.txt
and reports the average length of the words in the book. The pro-
gram should define a large (say, 100-character-long) character string,
then it should have a loop that repeatedly uses fscanf to read
words from the file. Use the strlen function to find each word’s
length (see Section 8.6).

Can you see why we often use 5 characters as the length of a standard
“word” when measuring text?

Hints: To find the average you’ll need to first add up the lengths of
all the words. I recommend you use a double variable to hold this
sum. If your program tells you the average word length is exactly an
integer, you’ve done something wrong.

7. After completing Problem 6 create a new version of your program
that also makes a histogram that shows the distribution of word
lengths. (See examples in Chapter 7.) To do this, you’ll need to add
an integer array that will keep track of how many words have a
given length. Call this array count and make it 50 elements long.
Each element of the array will contain the number of words that have
a length equal to that bin’s index. For example, count[5] will have
the number of 5-letter words. At the end of the program, print out
two columns showing the number of letters and how many words
had that many letters. Call your new program wordhist.cpp.

https://commons.wikimedia.org/wiki/File:Alice_par_John_Tenniel_22.png
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Notice that, by making our array 50 elements long, we limit ourselves
to words with a length between zero and 49 letters. Be sure your
program checks the word length to make sure it isn’t outside those
limits.
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Figure 8.24: If you plot a histogram of
the word lengths, you should see
something like this.

If your program also prints out the average word length (as in
Problem 6) make sure to put a # at the beginning of the line, so
gnuplot won’t be confused by it if you want to plot your results (see
Figure 8.24).

8. Write a program named charcount.cpp that counts how many
times each letter of the alphabet appears in a file full of text, treating
upper- and lower-case letters as different. Start out by downloading
a copy of Alice in Wonderland by Lewis Carroll. You can do this with
one of the two commands below:

wget http://tinyurl.com/y9nrg3xh

or

curl -L -O http://tinyurl.com/y9nrg3xh

Lewis Carroll, whose real name was
Charles Lutwidge Dodgson, was also
an accomplished mathematician who
made significant contributions to that
field.
Source: Wikimedia Commons

After you’ve downloaded the file, rename it for convenience by
typing:

mv y9nrg3xh alice.txt

Your program should take advantage of the fact that, in C, a character
is equivalent to the character’s numerical ASCII code. For example,
the character “A” is ASCII character number 65. If you have a
character variable named c, you can get the numerical ASCII code
for the character it contains by saying (int)c (that is, just “casting”
the character as an int). These numbers are in the range from zero
to 255.

At the top of your program, create a 256-element array of integers
named count, like this:

int count[256] = {0};

The = {0} is a trick we saw earlier in this chapter that sets all of
the array elements to zero initially. Your program should contain
a “while” loop that reads one character at a time from the file
alice.txt. Each time a character is read, add 1 to the element of
count that has an index corresponding to that character’s ASCII
code. You can do that with a line like this:

https://commons.wikimedia.org/wiki/File:LewisCarrollSelfPhoto.jpg
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count[ (int)c ]++;

After the “while” loop is finished, the program should have two
“for” loops to print its results. The first loop should print counts for
character numbers 65 through 90, which corresponds to all the upper-
case letters. The second loop should print counts for characters 97

through 122, the lower-case letters. Each line of the output should
be printed like this:

printf ( "%c %d\n", i, count[i] );

where i is the character number. Notice that if we print an integer
variable using %c the program will just print the character corre-
sponding to that number. So, for example, if the file contained the
character “A” 807 times, the program would print a line like this for
that character:

A 807

After you’ve written your program and tested it, try redirecting its
output into a file, like this:

./charcount > charcount.dat

Then you can use gnuplot to generate the graph in Figure 8.25. The
gnuplot command to do this is:

plot "charcount.dat" using ($0):2:xtic(1) with impulses

There are two bits of magic here: First, ($0) tells gnuplot to use the
line number as the x value. Second, xtic(1) tells gnuplot to use the
values in column 1 of the data file as the labels on the x axis.
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Figure 8.25: Number of each character
seen in Alice in Wonderland. Notice that
“e” is the most common, as is typical in
English-language text.
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9. First, fetch a copy of the file unixdict.txt by typing either:

wget http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

or

curl -L -O http://wiki.puzzlers.org/pub/wordlists/unixdict.txt

(whichever works on your computer). This file contains a long list of
over 25,000 English words. You can open the file with nano to see
them.

Write a program named longestword.cpp that reads this file and
finds the longest word. The program should print the word and its
length. Use the strlen function to find each word’s length (see
Section 8.6)

Use the strerror function, as described above in Section 8.14, to
print an error message if the file unixdict.txt can’t be found.

Figure 8.26: A dictionary from
1st-Century BCE Uruk, in Mesopotamia.
Source: Wikimedia Commons

Assume that no word is longer than 1,000 characters. Also (of course)
assume that all the words have more than zero characters.

Hints: You’ll need to define two character strings: one to hold the
word you’ve just read from the file, and another to keep track of the
word that has the maximum length so far. Also, you’ll find it simpler
if you do the following as soon as you read each word:

length = strlen(word);

then look at the value of length when deciding whether this word
is longer than the current record-holder. Use an integer variable to
keep track of the length of the current record-holder. the top of your
program might look something like this:

char word[1000];

char maxword[1000];

int length;

int maxlength;

https://commons.wikimedia.org/wiki/File:Dictionary_with_colophon-AO_7661-IMG_0190-white.jpg




9. Functions

9.1. Introduction
Despite what you may think after reading the preceding chapters, C is
really a very minimal language with only a small vocabulary of about
32 words. This is one reason C has been so successful.

Functions allow you to extend the
capabilities of the C compiler.

Different types of computer understand different binary instructions,
so programs that run on each kind of computer need to be created by a
compiler that knows that computer’s instruction set. Because making
a C compiler is relatively easy (compared to many other computing
languages), C is often the first language available when a new type of
computer is developed.

* auto * int
* break long

case register
* char * return
* const short
* continue signed

default sizeof
* do * static
* double struct
* else switch

enum typedef
extern union
float unsigned

* for * void
goto volatile

* if * while

Figure 9.1: The 32 words of the C
language, with an asterisk beside those
we’ve already covered or will cover in
this chapter.

Even though the C language is simple, it’s powerful because we can
extend its abilities by adding “functions” to it. We’ve already used
many of these: printf, for example, isn’t part of the C language. It’s
a separate function that has been added. The same is true of the other
reading and writing functions we’ve been using, and the math functions
like sqrt. All of these are found in standard “libraries” of functions
that are usually installed along with the C compiler. The functions
in these libraries are themselves written in C. They’re essentially pre-
compiled snippets of programs, ready to be plugged in where you need
them.

Just as you can extend a house by building an extra room, you can
build functions that extend the C compiler’s capabilities. In this chapter
we’ll learn how functions work, and see how to create functions of our
own.

C’s functions let us define simple words to do complicated things. This
is especially useful when we have to do a complicated operation over
and over again, but it can help us in other ways too. Functions can
be re-used in other programs, and using functions can help you avoid
programming mistakes.
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9.2. What’s a Function?
Let’s start out by reviewing the kind of functions you’ve used in math
class. Figure 9.2 shows the mathematical function f (x) = x2 + 3.
The function is like a machine that takes some raw materials and
processes them to produce an output. The function’s raw materials
are its arguments. The function in Figure 9.2 takes one argment, which
we’ve called x here. We could just as easily have written f (y) = y2 + 3.
The name we give the argument doesn’t matter. It’s just a placeholder.
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Figure 9.2: You’re probably familiar
with mathematical functions. A
function takes some arguments (inputs),
performs some operations on them,
then spits out a result.

When we write f (x) = x2 + 3 we’re defining a function. We’ve given
our function a name, f , we’ve specifed that it takes one argument (x),
and we’ve said what the function does with that argument to produce
an output (square the argument and add three to it). If we put in the
value 7, as in Figure 9.2, we’ll get out the value 52. We could try a range
of different input values and plot the corresponding output values on a
graph, as in the lower part of Figure 9.2.

Functions can have more than one argument. Consider the function
g(x, y) shown in Figure 9.3. This function takes two arguments (x and
y) and produces an output that combines them in a particular way.
Functions can have any number of arguments.

x

Out
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22

y

6

g(x,y) = x + 3y

Figure 9.3: A function that takes two
arguments, x and y. Given x=4 and y=6

as arguments, the function’s output
would be 22.

Functions can also make use of other functions, as illustrated in Figure
9.4. Here, the function h(x) is defined to be h(x) = i(x) + 5, where i(x)

is another function, defined as i(x) = 3x2. If we gave h(x) an input of
x=2, it would find i(2) = 3×4 = 12, and then add five to this to find that
h(2) = 17.

i(x) = 3x2

x

Out

2

17

h(x) = i(x) + 5

Figure 9.4: The function h(x) shown
above uses another function i(x).

A function in a C program has all the properties we described above:

• A function has a name

• The function takes arguments and uses them to produce an output

• The behavior of a function is described by defining the function

• Functions can have any number of arguments (in fact we’ll see that C
function sometimes take no arguments at all!)

• Functions can use other functions

As we’ll see below, C functions also have some properties that aren’t
present in mathematical functions.
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Let’s look at how we might define a function in a C program. Figure 9.5
shows a C function that takes an input value (an integer we call x) and
produces an output value that’s equal to x*x + 3. This is analogous
to the mathematical function we saw in Figure 9.2.

x

Out

7

52

int f( int x ) {

int result;

result = x*x + 3;

return ( result );

}

Figure 9.5: A C function named f that
does the same thing as the
mathematical function shown in Figure
9.2.

Program 9.1 shows how we might insert this function at the top of a
program, and use it to print some values of the function for various
values of its argument. We could plot the program’s output with gnuplot

to create a graph like the one shown in Figure 9.2.

Program 9.1: funcfun.cpp

#include <stdio.h>

int f ( int x ) {

int n;

n = x*x + 3;

return ( n );

}

int main () {

int i;

for ( i=0; i<10; i++ ) {

printf ( "%d %d\n", i, f(i) );

}

}

Function definition

Using the function

This looks different from anything we’ve written before. We’ve added
a new section above int main(). The new section defines a function
named f. It says that the function accepts one int argument, and
returns an int value. We then use this new function inside main(),
in our printf statement.

You’ll probably notice that the first line of our function definition looks
an awful lot like the int main() statement that we’ve been using in
all of our programs. That’s no coincidence. main is a function just like
sqrt, printf, or our new f function. It turns out that, in C, almost
everything is inside of some function. When we run a C program, the
computer looks for a function named “main” and does whatever that
function tells it to do. We’ll see later that we can even give arguments
to main, as we do with other functions.

Also notice that we’ve defined our new function above main. The
compiler needs to know about a function before we can use it. One way
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to ensure this is to define new functions at the top of the program. We’ll
see another way to do this later, in Chapter 11, where we’ll find out
that the line #include <stdio.h> tells the compiler about functions
like printf and scanf.

When we use a function in a program, it’s as though the program takes
a detour into the function and then comes back again with a value:

int main () {

  int i;

  for ( i=0; i<10; i++ ) {

    printf ( "%d %d\n", i, f( i ) );

  }

}

int f(int x) {

  ...

  return ( n );

}

Return to main...

Enter function...

Figure 9.6: The “flow” of the program
travels into the function, and then comes
back with a result.

Exercise 46: First Function

• Create, compile, and run Program 9.1. Redirect the pro-
gram’s output into a file by running it like this:

./funcfun > funcfun.dat

• Then use gnuplot to plot the program’s output, using the
gnuplot command:

plot "funcfun.dat" with lines

Does your result look like Figure 9.2?

• Now modify your program so that f (x) = x2 + 20. Com-
pile the program, and run it like this to produce a second
data file (funcfun2.dat):

./funcfun > funcfun2.dat

then use the following gnuplot command to plot both files
on the same graph:

plot "funcfun.dat" with lines, "funcfun2.dat" with lines
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9.3. Function Anatomy
The anatomy of a function definition looks like Figure 9.7. First we
need to specify what type of value the function will return. This can
be any of the types we use for variables: double, int, or char, for
example.

type name (type1 var1,  type2 var2, ...){
...
}

Type of data 
returned

Function 
Name

Type of 1st 
argument 1st argument Any number of arguments, 

but only one return value.

Any number of arguments, 
but only one return value.

Figure 9.7: The general form of a
function definition.The return value of a C function is like the value you get when you

evaluate a function in algebra. The C expression sqrt(4.0), for
example, would return the value 2.0. The type of value returned by
sqrt is a double.

By defining the type of value the function will return, you make it pos-
sible for the C compiler to check whether you’re putting that value into
an appropriate variable. If I write a statement like “x = sqrt(4.0);”
the compiler will check to see if x is a double variable and give me a
warning or an error message if it isn’t.

Next we give the new function’s name. This must be different from
the name of any other function in your program. Function names
can contain letters (upper- or lower-case), numbers and underscores.
As with variables (see Chapter 2), it’s best to start the name of your
function with a letter.

After the function’s name, we list any arguments and their types. Our
f (x) function takes just one argument, and it’s an integer. When we use
a function in our program, the C compiler checks to make sure we’re
giving it the right number of arguments, and that the arguments are of
the right type. If we’ve done something wrong, the compiler gives us a
warning or an error message. Return J. Meigs, Jr., Governor of Ohio,

US Postmaster General, and US Senator.
As far as I know, C’s ‘return”
statement wasn’t named for him, nor he
for it.
Source: Wikimedia Commons

At the end of our function, as in our f (x) function, we can optionally
return a value, but we aren’t obligated to return anything. Sometimes
a function just does something without returning a value. For example,

https://commons.wikimedia.org/wiki/File:Return_J._Meigs,_Jr._by_Witt.jpg
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we might want a function that just prints some text. If a function
doesn’t return a value, we specify the function’s type as “void”, like
this:

void howLong(int hours, int mins, int secs){

printf("This class is %d seconds long\n",

hours*3600 + mins*60 + secs);

}

Functions that do return a value use the return statement to do so. In
our f (x) example, the statement “return(n)” says that the function
is done, and sends its result, n, back to the main function. Functions
can only return one value.

Functions don’t need to have any arguments, either. The rand function
is an example of this. When defining a function that takes no arguments,
just put an empty pair of parentheses after the function name.

Finally, functions can’t be defined inside other functions. We couldn’t,
for example, define a new function inside main.

9.4. Functions that Use Other Functions

Figure 9.8: An adjustable voltage source
is connected to a resistor, causing
current to flow through the resistor.

Georg Simon Ohm (left), Alessandro
Volta (center), and André-Marie
Ampère, for whom the units of
resistance, electrical potential, and
current are named.
Source: Wikimedia Commons, 1, 2, 3

Consider the apparatus shown in Figure 9.8. Ohm’s law tells us that
the current (which we represent by the symbol i) flowing through the
resistor is given by:

i = V/R

where V is the voltage across the resistor and R is the resistance.
Another law (Joule’s Law) tells us that the power output of the resistor
(which we represent by p) is given by:

p = i2R

The power is a measure of how fast the resistor is emitting energy,
mostly in the form of heat. When we run a current through a resistor,
the resistor heats up.

If we know the voltage and resistance, we can calculate the current,
and then we can use the current to calculate the power. If we measure
resistance in ohms, voltage1 in volts, and current in amperes, the power 1 also called electrical potential

we calculate will be given in units of watts.

Let’s write a program that calculates the power output of the resistor at
various voltage settings. The result might look like Program 9.2.

https://commons.wikimedia.org/wiki/File:Georg_Simon_Ohm3.jpg
https://commons.wikimedia.org/wiki/File:Alessandro_Volta.jpeg
https://commons.wikimedia.org/wiki/File:Ampere_Andre_1825.jpg
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Program 9.2: ohm.cpp

#include <stdio.h>

double current ( double v, double r ) {

return ( v/r );

}

double power ( double v, double r ) {

double i, p;

i = current ( v, r );

p = i*i*r;

return ( p);

}

int main () {

double r = 100; // ohms.

double vmin = 0; //volts.

double vmax = 12; //volts.

double v, p, vstep;

int n;

v = vmin;

vstep = (vmax - vmin)/100.0;

for ( n=0; n<100; n++ ) {

p = power ( v, r );

printf ( "%lf %lf\n", v, p );

v += vstep;

}

}

Notice that we’ve defined two functions, current and power. The
current function tells us how much current will flow through the re-
sistor when a given voltage is applied across it. It takes two arguments,
v and r, and returns a value for the current. Because this is a very
simple function (it just divides v by r) we can do the calculation right
in the return statement. The current function just has one line in it!

But what about the power function. Shouldn’t it have current as one of
its arguments, instead of voltage? Sure, we could do it that way, but we
want our program to tell us the power for a given voltage, so why not
write our power function so that it does the calculation for us? Here
we’ve written the power function so that it takes voltage and resistance
as arguments, then internally uses the current function to calculate
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the current, before going on to calculate the power and return that.
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Figure 9.9: Power versus voltage for a
100 ohm resistor.

This makes our main program very simple. We just loop through
several voltage values and use the power function to find the power
value at each voltage. The program assumes the resistance is 100 ohms.
The program starts at the voltage vmin and goes up to the voltage
vmax in 100 steps. Notice that we calculate the size of each voltage step
(vstep) before starting the loop, and then add vstep to the voltage
each time we go around. If we used gnuplot to plot the program’s
output, we’d see a graph like Figure 9.9.

Three high-power 100 ohm resistors,
with power ratings of 10, 50, and 100

watts. Each has an aluminum case with
cooling fins to help dissipate heat.
Source: Wikimedia Commons

When you buy a resistor, you need to pay attention to the resistor’s
power rating. Some resistors can only tolerate a power output of 1

8 watt.
Trying to increase the power beyond that would cause the resistor to
burn or melt. Resistors that can tolerate more than one watt are often
called power resistors. Based on our program’s output (as graphed in
Figure 9.9) we’d need a power resistor that can tolerate at least 1.4 watts
if we intend to put 12 volts across it.

Exercise 47: Your Volt Counts!

Create, compile and run Program 9.2. Send the program’s
output into a file and plot the data using gnuplot.

9.5. Variable Scope
If we run two different programs, we don’t expect that the variables
in one program will interfere with the variables in the other. It would
be perfectly OK if one program had an int variable named number

and the other program had a double variable with the same name.
Variables don’t affect things outside the program they’re in. A program-
mer might say that the “scope” of a variable doesn’t extend outside the
program.

A scope of a different kind: UVa’s own
Professor Kathryn Thornton replaces
solar panels on the Hubble Space
Telescope.
Source: Wikimedia Commons

In fact, in C, the scope of a variable might not even extend to other
functions in the same program. Each variable in a C program has either
a “local” or a “global” scope. All of the variables we’ve seen so far have
local scope. This means that they can only be used inside the function
where they’re defined. Outside of that function, it’s as though these
variables don’t even exist. (See Figure 9.10 on Page 292.)

The scope of a variable is determined by where it’s defined. Variables
defined inside a function are local to that function. Take a look at
Program 9.3.

https://commons.wikimedia.org/wiki/File:Arcol_High_Power_Resistor.jpg
https://commons.wikimedia.org/wiki/File:Kathryn_Thornton_replacing_the_solar_arrays_of_the_Hubble_space_telescope_during_the_STS-61_mission_9400261.jpg
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Program 9.3: scope.cpp (This won’t work)

#include <stdio.h>

void printstuff () {

printf ( "The value of n is %d\n", n );

}

int main () {

int n = 100;

printstuff();

}

If you tried to compile this program, g++ would say:

scope.cpp: In function 'void printstuff():

scope.cpp:4: error: 'n' was not declared in this scope

The variable n is only defined inside main. As far as the printstuff
function knows, this variable doesn’t even exist.

On the other hand, variables defined outside of any function are global.
(See Figure 9.10.) They can be used anywhere in your program. Here’s
a modified version of the program above. All we’ve done is move one
line:

Program 9.4: scope.cpp, with a global variable

#include <stdio.h>

int n = 100;

void printstuff () {

printf ( "The value of n is %d\n", n );

}

int main () {

printstuff();

}

The variable n now has a global scope, meaning that every function in
your program has access to it. The program will now compile, and do
what you expect.
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double number;

int number;

main()

func2()

char number[100];

func1()

int height;

double height;

prog.cpp

Figure 9.10: The three variables named
number in prog.cpp are completely
independent. Each one only exists
inside the function where it’s defined.
Also notice that the int variable named
height has a global scope, and can be
used by any function. The function
func2, however, overrides the global
height, replacing it with a local
double variable that only exists within
that function.

But what happens if you define a global variable, and then define a
local variable with the same name? In that case, the local variable takes
precedence. Figure 9.10 illustrates this. The function func2 defines a
double variable named height, even though there’s already a global
int variable with the same name. Inside func2, the name height

will always refer to the local double variable, and the global variable
of the same name will be inaccessible.

It might be tempting to make all of your program’s variables global,
but avoid this temptation. In general you should use global variables
sparingly. If many functions can change a variable’s value it’s very
difficult to keep track of what’s going on. It’s much better to pass
values to functions explicitly, via arguments, rather than to define them
globally. For clearer code, it’s best to restrict variables to the smallest
possible scope. That being said, let’s look at how global variables might
profitably be used in a program.

9.6. Using Global Variables
Imagine that a rock is dropped from a balloon floating 1,000 meters
above the ground, and falls under the influence of earth’s gravity. We’ll
assume that the balloon is close enough to the earth so that we can use
a constant value of g = 9.8m/s2 for the rock’s acceleration2. After some 2 We’ll also ignore the effects of air

resistance.time, t, the rock’s speed will be:

v(t) = gt

and it will be at a height h, where:

h(t) = 1000 − 1
2

gt2

Program 9.5 tracks the falling rock for ten seconds. Every hundredth
of a second it prints out the rock’s current velocity and height. Two
functions named velocity and height calculate those quantities.
Notice that both functions are so trivial that they only contain a return
statement. Both functions need to know the acceleration of gravity, so
we store this in a global variable named g.
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Program 9.5: falling.cpp

#include <stdio.h>

double g = 9.8; // meters per second^2.

double velocity ( double t ) {

return ( g*t );

}

double height ( double t ) {

return ( 1000 - 0.5*g*t*t );

}

int main () {

double t = 0; // elapsed time, in seconds

int i;

for ( i=0; i<1000; i++ ) {

t += 0.01;

printf ( "%lf %lf %lf\n", t, velocity(t), height(t) );

}

}
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Figure 9.11: The height of a falling
stone dropped from 1,000 meters, as a
function of time.

Exercise 48: I’ve Fallen and I Can’t Get Up!

Create and compile Program 9.5, then run the program like
this:

./falling > falling.dat

The resulting file should contain three columns representing
time, velocity and height. Now plot the height data by
starting gnuplot and telling it:

plot "falling.dat" using 1:3 with lines

The phrase using 1:3 tells gnuplot to use the first column
(time) for the horizontal values on the graph, and the third
column (height) for the vertical values. Does your plot look
like Figure 9.11? What does a graph of velocity (instead of
height) versus time look like?
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9.7. Multiple Returns
Imagine that you’re a fighter pilot who’s been asked to fly his plane
along a very specific (and quite odd) path. After you take off, you’re
supposed to rise steadily to a height of 1,000 meters, and then fly
sinusoidally up and down for a while to evade enemy fire. After that,
you’re supposed to level off and fly at a constant height.

From the ground, your flight might look like Figure 9.12.
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Figure 9.12: Our quirky flight path,
which rises linearly for the first 250

meters, undulates for the next 250

meters, and then levels off. Fasten your
seatbelts!

Can we write a function that tells us the plane’s height as a function of
how far the plane has travelled horizontally? One complication is the
fact that our flight path has three distinct parts: takeoff, evasion, and
cruising. As we see from Figure 9.12 each of the first two parts covers a
horizontal distance of 250 meters.

The real “Red Baron”, Manfred von
Richthofen, the German WWI flying ace
who flew a red Fokker triplane.
Source: Wikimedia Commons

We might consider writing a function that has an “if” statement, like
this:

if ( x < 250 ) {

// Takeoff

...

} else if ( x >= 250 && x < 750 ) {

// Evasion

...

} else {

// Cruising

...

}

https://commons.wikimedia.org/wiki/File:Manfred_von_Richthofen.jpg
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Where x is the horizontal distance the plane has travelled.

Using such an “if” statement, we could define a “height” function
like this:

Aircraft sometimes do fly along odd
trajectories. NASA’s “Vomit Comet”
creates zero-gravity conditions by
temporarily flying along a parabolic
path. Commercial ventures like “Zero
Gravity Corporation” now use the same
technique offer the experience to
non-astronauts, like Physicist Stephen
Hawking.
Source: Wikimedia Commons, Wikimedia Commons

Program 9.6: redbaron.cpp

#include <stdio.h>

#include <math.h>

double height ( double x ) {

if ( x < 250 ) {

return( 1000 * x / 250 );

} else if ( x >= 250 && x < 750 ) {

return( 1000 + 250 * sin ( 2 * M_PI * (x-250) / 250 ) );

} else {

return( 1000 );

}

}

int main () {

int i;

double x = 0;

for ( i=0; i<1000; i++ ) {

x += 1.0;

printf ( "%lf %lf\n", x, height( x ) );

}

}

Notice that the height function contains more than one return state-
ment. That’s OK. The function will use whichever return statement
is appropriate, based on the value of x. It’s perfectly alright to have a
function use different return statements in different circumstances.

It’s important to remember that a return statement ends the work
done by a function. For example, if we had two lines like these in a
function:

return ( 1 );

return ( 2 );

The function would always return a value of 1, since the first return
would tell the function to stop working and return a value.

https://commons.wikimedia.org/wiki/File:Zero_gravity_flight_trajectory_C9-565.jpg
https://commons.wikimedia.org/wiki/File:Physicist_Stephen_Hawking_in_Zero_Gravity_NASA.jpg
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9.8. Circus Physics

Source: Wikimedia Commons

Consider the situation depicted in Figure 9.13. A circus performer, “La

Femme Melinite”, is launched from a cannon and flies throught the air,
landing in a pool some distance away. As her manager, we’d like to
make sure she doesn’t miss, so we need to tell the roustabouts where
to put the pool for a given cannon angle and initial velocity.

Figure 9.13: A human cannonball,
launched at an intial velocity V0, at an
angle θ from the horizontal.

Fortunately, we’ve had some Physics classes so we know how to find
the answer mathematically. The roustabouts, on the other hand, are all
English majors. We need to write a computer program that they can
use to find out where to put the pool each time they set up the circus.

The program will need to incorporate the mathematical facts of the
problem. For example, we know that the total “time of flight” will be
given by Equation 9.1, using the y-component of the initial velocity (see
Figure 9.14).

tpool =
2V0y

g
, g = the acceleration of gravity (9.1)

Figure 9.14: Using a little vector math,
we can find the x and y components of
V0.

In our program, we could write a function that does the calculation in
Equation 9.1. It might look like this:

double time_of_flight ( double v0, double angle ) {

double t;

t = 2.0 * v0 * sin(angle) / g;

return ( t );

}

https://commons.wikimedia.org/wiki/File:Poster_for_the_Cirque_d'Été_1887_'La_femme_Mélinite'_-_Gallica.jpg
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Program 9.7 is a little program that uses this function to tell us the time
of flight. Notice that we’ve used a global variable, g, to hold the value
of the acceleration of gravity. This value will be needed by several of
the functions we’ll be writing.

The Circus, by Georges Seurat (1891)
Source: Wikimedia Commons

Program 9.7: cannon.cpp

#include <stdio.h>

#include <math.h>

double g = 9.81; // Acceleration of gravity.

double time_of_flight ( double v0, double angle ) {

double t;

t = 2.0 * v0 * sin(angle) / g;

return ( t );

}

int main () {

double vinit;

double theta;

printf ( "Enter angle, in radians: " );

scanf ( "%lf", &theta );

printf ( "Enter velocity, in m/s: " );

scanf ( "%lf", &vinit );

printf ( "Time of flight is %lf sec.\n",

time_of_flight( vinit, theta ) );

}

When we show this program to the roustabouts we’re disappointed
to find that they don’t know how to measure angles in radians. No
problem, though. We’ll write a function that converts degrees into
radians, and let them enter the angle in degrees:

360
o

=

2π radians
double to_radians ( double degrees ) {

return ( 2.0 * M_PI * degrees / 360.0 );

}

The to_radians function just contains one line (a return statement)
and doesn’t even define any variables. Now, after our program reads the
angle, we can convert it into radians by saying “theta = to_radians(theta)”.

Our Physics education also tells us how to find the maximum height of

https://commons.wikimedia.org/wiki/File:Georges_Seurat_019.jpg
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La Femme Melinite’s trajectory. (We want to make sure she doesn’t hit
the canvas of the Big Top!)

tpeak =
tpool

2
(9.2)

h = V0ytpeak −
1
2

gt2
peak (9.3)

A circus tent.
Source: Wikimedia Commons

This lets us write a function max_height to tell us how high our
human cannonball will go.

double max_height ( double v0, double angle ) {

double tpeak;

double h;

tpeak = time_of_flight( v0, angle ) / 2.0;

h = v0*sin(angle)*tpeak - g*tpeak*tpeak/2.0;

return ( h );

}

The last and most important thing we’re interested in is the horizontal
distance she will travel. That’s given by Equation 9.4.

d = V0xtpool (9.4)

We can express this in C as follows:

double range ( double v0, double angle ) {

double d;

d = v0 * cos(angle) * time_of_flight( v0, angle );

return ( d );

}

Source: Wikimedia Commons

Putting all of these functions together with our earlier program, we get
Program 9.8.

https://commons.wikimedia.org/wiki/File:CircusTent02.jpg
https://commons.wikimedia.org/wiki/File:The_Orfords,_poster_for_Forepaugh_%26_Sells_Brothers,_1897.jpg
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Program 9.8: cannon.cpp, with distance and height

#include <stdio.h>

#include <math.h>

double g = 9.81; // Acceleration of gravity.

double to_radians ( double degrees ) {

return ( 2.0 * M_PI * degrees / 360.0 );

}

double time_of_flight ( double v0, double angle ) {

double t;

t = 2.0*v0*sin(angle)/g;

return ( t );

}

double max_height ( double v0, double angle ) {

double tpeak;

double h;

tpeak = time_of_flight( v0, angle ) / 2.0;

h = v0*sin(angle)*tpeak - g*tpeak*tpeak/2.0;

return ( h );

}

double range ( double v0, double angle ) {

double d;

d = v0 * cos(angle) * time_of_flight( v0, angle );

return ( d );

}

int main () {

double vinit;

double theta;

printf ( "Enter angle, in degrees: " );

scanf ( "%lf", &theta );

theta = to_radians( theta );

printf ( "Enter velocity, in m/s: " );

scanf ( "%lf", &vinit );

printf ( "Time of flight is %lf sec.\n",

time_of_flight( vinit, theta ) );

printf ( "Max height is %lf meters.\n",

max_height( vinit, theta ) );

printf ( "Range is %lf meters.\n",

range( vinit, theta ) );

}
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Let’s try our program out. Imagine that our flying lady is launched at
a speed of 60 miles per hour (the world record for a human cannonball
was set by someone travelling at about 70 mph). That’s approximately
equal to 27 meters per second. If the cannon is pointing upward at an
angle of 45°, our program tells us the following:

Enter angle, in degrees: 45

Enter velocity, in m/s: 27

Time of flight is 3.892331 sec.

Max height is 18.577982 meters.

Range is 74.311927 meters.

The Circus, Charles Demuth (1917)
Source: Wikimedia Commons

Note that the Big Top will need to be at least 20 meters tall: as high as
a six-story building! Also notice that she’ll be in the air for almost four
seconds. That’s not bad, considering that riders in the Vomit Comet
get only 25 seconds of weightlessness during each of the airplane’s
parabolic leaps (Figure 9.7).

9.9. Passing Values to Functions
The argument names we use when defining a function become local
variables inside that function, just like any other local variables that we
might define inside it. We can demonstrate that with Program 9.9.

Program 9.9: passing.cpp

#include <stdio.h>

void changenum ( int number ) {

printf ( "Multiplying %d by 1000...\n", number );

number = number * 1000;

printf ( "...the result is %d\n", number );

}

int main () {

int mynum = 1234;

changenum( mynum );

printf ( "My number is now %d\n", mynum );

}

If we ran this program, we’d see something like this:

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234

https://commons.wikimedia.org/wiki/File:Charles_Demuth_-_The_Circus_(1917).jpg
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What’s going on? Why isn’t the last number 1234000?

When we use the function, the computer copies the values of the
arguments we give it into the internal, local variables named in the
function definition. In Program 9.9, the value of mynum (1234) gets
copied into the changenum function’s local variable number. Nothing
we do to number has any affect on the variable mynum in main.

In fact, the local variables inside functions are, by default, non-existent
whenever the function isn’t being used. Let’s take a look at the com-
puter’s memory before, during, and after using the changenum func-
tion. Figure 9.15 shows what we might see.
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is running:
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After changenum 
is done:

changenum's variables get 
popped off the stack.

Figure 9.15: The stack before, during,
and after using the changenum
function.

When the function begins, the computer allocates some memory at
the top of the stack for each of the function’s local variables. When
the function finishes, the allocated memory is freed up for other uses
(perhaps by the next function that’s used). A function’s local variables
literally disappear when they’re not in use.

We can actually see that mynum and number are stored in different
locations by asking our program to print the memory address of each
of these variables. Program 9.10 does that by using &number and
&mynum to get the memory addresses, and C’s special placeholder for
printing memory addresses, “%p”.
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Program 9.10: passing.cpp

#include <stdio.h>

void changenum ( int number ) {

printf ( "number is at %p\n", &number );

printf ( "Multiplying %d by 1000...\n", number );

number = number * 1000;

printf ( "...the result is %d\n", number );

}

int main () {

int mynum = 1234;

printf ( "mynum is at %p\n", &mynum );

changenum( mynum );

printf ( "My number is now %d\n", mynum );

}

If we run Program 9.10 we’ll see something like this3: 3 The memory addresses are written as
hexadecimal (base-16) numbers.

mynum is at 0xbfd36ccc

number is at 0xbfd36cb0

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234

9.10. Static Variables
As we saw in the preceding section, a function’s local variables disap-
pear when the function isn’t in use, and are re-created each time we
use the function. What if we want to save the value of one of these
variables? Maybe, for example, we’d like to have a counter that tells
us how many times the function has been called. We could accomplish
that with a global variable, but there’s also another way to do it.

Source: Wikimedia Commons

Take a look at Program 9.11. It uses the word “static” to tell the
compiler that we want to retain the value of a variable even when the
function isn’t being used. Static variables don’t live on the stack with
other variables. They have their own place in memory, where they
don’t get wiped out every time the function is called.4 4 The non-static variables we’ve been

using so far are formally called “auto-
matic” variables. If we wanted to, we
could explicitly use the word “auto” in
front of the variable definition to show
this, but that’s seldom done.

https://commons.wikimedia.org/wiki/File:Static_slide.jpg
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Program 9.11: counter.cpp

#include <stdio.h>

void myfunc () {

static int count = 0;

if ( count == 0 ) {

printf ( "This is the first time we've used this function\n" );

} else {

printf ( "We've already used this function %d times\n", count );

}

count++;

}

int main () {

int i;

for ( i=0; i<5; i++ ) {

myfunc();

}

}

Notice that we can still intialize a static variable. In Program 9.11

we set the initial value of count to zero. This is only done once, the
first time the function is used. The variable won’t be reset to zero every
time we call the function.

If we ran this program, we’d see something like this:

This is the first time we've used this function

We've already used this function 1 times

We've already used this function 2 times

We've already used this function 3 times

We've already used this function 4 times

If we had omitted the word “static”, the variable count would be
wiped out and reset to zero every time we used the function, so it would
just keep repeating “This is the first time we’ve used this function”.

9.11. Passing Addresses
What if we really want one function to be able to change the value of a
variable in another function? To do that, we need to know where to find
the variable in the computer’s memory. As we’ve seen before, we can
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use an & in front of a variable’s name to get its memory address. But
how do we tell the computer to stick a value into a particular memory
address? C provides another symbol, “*” that we can use to help us do
this.

Program 9.12 is a modified version of Program 9.9. In the new version,
instead of giving changenum the value of mynum, we give it the address

of mynum.

Looking for the right (memory)
address?
Source: Wikimedia Commons

Program 9.12: passing.cpp

#include <stdio.h>

void changenum ( int *number ) {

printf ( "Multiplying %d by 1000...\n", *number );

*number = *number * 1000;

printf ( "...the result is %d\n", *number );

}

int main () {

int mynum = 1234;

changenum( &mynum );

printf ( "My number is now %d\n", mynum );

}

Memory addresses can be stored in special variables called “pointers”.
In our new definition of changenum, we say that this function should
get a “pointer to an integer” (int *) as its argument. Pointers “point”
at the memory location where some data is stored. The * means that
this variable is a pointer.

Inside changenum we use the * operator in another way. The ex-
pression “*number = ...” means “set the variable at this memory
location to ...”5. 5 Programmers call & the “referencing

operator” and * the “dereferencing
operator”.

If we ran Program 9.12 we’d see this, showing that we have actually
changed the value of mynum:

Multiplying 1234 by 1000...

...the result is 1234000

My number is now 1234000

https://commons.wikimedia.org/wiki/File:Stamp_US_1973_8c_mailman.jpg
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9.12. Bouncing Molecules
In 1827, botanist Robert Brown noticed something odd while looking at
pollen grains in water, through a microscope. The pollen grains were
very small, but he saw that they emitted even smaller particles that
we now know were bits containing starch and fat. This in itself was
interesting, but Brown was also fascinated by the fact that these tiny
particles moved around continously, as though they were alive.

Robert Brown, botanist, by Henry
William Pickersgill (1782-1875).
For much more information about
Brown’s work, see this modern-day
recreation of it by researchers at
Hamilton College.
Source: Wikimedia Commons

On further experiments with inorganic matter like bits of glass and
granite, he found that those particles displayed the same behavior.
What caused them to move? Today we know that the particles Brown
observed were being jostled by water molecules, and we call this phe-
nomenon “Brownian Motion”.

Program 9.13 simulates the motion of a tiny particle floating on the
surface of some water. It begins by picking a random starting position
for the particle by setting the x and y coordinates of the particle’s
position to random numbers between zero and one.

The program then tracks the particle through 10,000 collisions. Each
collision moves the particle by some random amount. The function
move takes the particle’s current x and y coordinates and changes them
to new values by adding a random amount between -0.5 and 0.5. Notice
that we give move the addresses of x and y, making it possible for the
function to change the values of these variables, as described in Section
9.11 above.

The program prints each new position, so we could plot the particle’s
path if we wanted to. Figure 9.16 shows the path of a typical particle.
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Figure 9.16: The path of a typical particle
in our brownian motion simulation.
For a deeper investigation of the
mathematics of random walks, see this
video from the PBS show “Infinite
Series”:
https://www.youtube.com/watch?v=stgYW6M5o4k

http://physerver.hamilton.edu/Research/Brownian/index.html
http://physerver.hamilton.edu/Research/Brownian/index.html
https://commons.wikimedia.org/wiki/File:Robert_brown_botaniker.jpg
https://www.youtube.com/watch?v=stgYW6M5o4k
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Program 9.13: brownian.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

void move ( double *x, double*y ) {

*x = *x + rand()/(1.0+RAND_MAX) - 0.5;

*y = *y + rand()/(1.0+RAND_MAX) - 0.5;

}

int main () {

double x, y;

int i;

srand(time(NULL));

// Pick a random initial position:

x = rand()/(1.0+RAND_MAX);

y = rand()/(1.0+RAND_MAX);

// Move around:

for ( i=0; i<10000; i++ ) {

move( &x, &y );

printf ( "%lf %lf\n", x, y );

}

}



functions 307

9.13. Passing Arrays to Functions
Sometimes we want a function to operate on an array. We can do that,
as shown in Program 9.14, which finds the biggest element of an array
of doubles. We could use this to find the most heavily-laden coal car
in our coal train example from Chapter 6, for example.

Source: Wikimedia Commons

Program 9.14 fills an array with random values, and then uses the
function maxelement to find the element that contains the largest
value.

Program 9.14: findmax.cpp

#include <stdio.h>

#include <stdlib.h>

int maxelement ( int size, double array[] ) {

double max;

int imax;

int i;

for ( i=0; i<size; i++ ) {

if ( i == 0 ) {

max = array[i]; // Use first number as first guess.

} else {

if ( array[i] > max ) {

max = array[i];

imax = i;

}

}

}

return ( imax );

}

int main () {

double array[100];

int i;

for ( i=0; i<100; i++) {

array[i] = rand();

printf ( "%d %lf\n", i, array[i] );

}

printf ( "The biggest element is number %d\n",

maxelement( 100, array ) );

}

Notice that we tell the compiler that one of maxelement’s arguments
will be an array by putting [] after the variable name. Also notice that
we need to tell the function how big the array is. The size argument
to maxelement tells the function how many elements are in the array.

https://commons.wikimedia.org/wiki/File:Coal_train_approaching_the_Wearmouth_Rail_Bridge,_Sunderland,_1994_-_geograph.org.uk_-_137748.jpg
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Exercise 49: Dot Products

Imagine you have two 3-dimensional vectors, A and B. Each
of these can be represented as 3-element array in C. In
mathematics, the “dot product” of two 3-d vectors is

A · B = ∑
i

AiBi (9.5)

or, writing out the sum:

A · B = A0B0 + A1B1 + A2B2 (9.6)

Write a function that takes two 3-element double arrays as
arguments and returns their dot product as a double value.

Test your function with a program that multiplies these two
arrays together and prints out their dot product:

double a[3] = { 1.0, 2.0, 3.0 };

double b[3] = { 4.0, 5.0, 6.0 };

9.14. The Chaos Game
Let’s write another program that passes arrays to a function. This
program will play “The Chaos Game”. the rules of this game are:

In Discordianism, Eris is regarded as
the goddess of chaos. She says “I am
the substance from which your artists
and scientists build rhythms. I am the
spirit with which your children and
clowns laugh in happy anarchy. I am
chaos. I am alive, and I tell you that you
are free.” (from the Principia Discordia).
Source: Wikimedia Commons

1. Pick three reference points on a piece of paper and label them P1,
P2, and P3.

2. Draw another point (let’s call it b) anywhere on the paper.

3. Randomly choose one of the reference points. For example, you
could roll a 6-sided die and pick P1 if you get 1 or 2, P2 if you get 3

or 4, and P3 if you get 5 or 6.

4. Draw a new point halfway between b and the reference point you
picked. This point becomes the new b.

5. Go back to step 3 and repeat.

Doing this by hand would get boring pretty quickly, so let’s write a
computer program to do it for us. Program 9.15 repeats steps 3 and 4

10,000 times, printing the new coordinates of b each time.

http://www.ology.org/principia/
https://commons.wikimedia.org/wiki/File:Eris_Antikensammlung_Berlin_F1775.jpg
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At the top of the program we define our three reference points. Each
point is represented by a 2-element array containing the point’s x and y

coordinates. The function movehalf takes the point b (also represented
by a 2-element array) and moves it half of the way toward one of our
reference points.

Notice that we give b to movehalf as an array. You might remember
that, in Chapter 8, we learned that C programs interpret an array’s
name (without an element number after it) as the memory address of
the array. This means that when we give a function an array as one
of its arguments, the function is able to change the values of the array
elements, just as when we give a function the memory address of a
single variable (which we saw above, in Section 9.11).

The main function picks random starting values for the coordinates
of our point b, then uses the rules of the Chaos Game to move this
point around. Instead of rolling a die, the program generates a random
number between zero and one. If this number is less than 1/3 the
program moves the point halfway to point P1. If it’s between 1/3 and
2/3 it moves toward P2. If it’s between 2/3 and 1, it goes toward P3.

We could save the program’s output in a file by typing “./chaos >

chaos.dat”, and then we could graph these points with the gnuplot

command “plot "chaos.dat" with dots”. The result is shown
in Figure 9.17.
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Figure 9.17: A “Sierpinski Triangle” (or
“Sierpinski Gasket”) drawn by playing
The Chaos Game. Telling gnuplot to use
“dots” causes it to draw small points
instead of symbols. For more on The
Chaos Game see this Numberphile video:
https://www.youtube.com/watch?v=kbKtFN71Lfs

https://www.youtube.com/watch?v=kbKtFN71Lfs
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You might well be surpised by this result! The shape you see is called a
Sierpinski Triangle (or Sierpinski Gasket). Since we picked a random
direction each time, you might have expected the points to be spread
evenly around the page. In fact, no matter where you start on the page,
the points will eventually be “attracted” to the red areas on the graph.
This shape is an example of a “chaotic attractor”. Even though we can’t
predict where a given point will land on the graph, the overall pattern
of all the points is very orderly and well-defined. This is an example of
order emerging spontaneously from randomness. Such phenomena are
common in the natural world, where simple underlying rules can lead
to intricately beautiful structures.

Program 9.15: chaos.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

double p1[2] = {0,0};

double p2[2] = {0.5,1.0};

double p3[2] = {1.0,0.0};

void movehalf ( double b[], double point[] ) {

b[0] = b[0] + 0.5*( point[0] - b[0] );

b[1] = b[1] + 0.5*( point[1] - b[1] );

}

int main () {

double r, b[2];

int i;

srand(time(NULL));

b[0] = rand()/(1.0+RAND_MAX);

b[1] = rand()/(1.0+RAND_MAX);

for ( i=0; i<10000; i++ ) {

r = rand()/(1.0+RAND_MAX);

if ( r < 1.0/3 ) {

movehalf( b, p1 );

} else if ( r < 2.0/3 ) {

movehalf( b, p2 );

} else {

movehalf( b, p3 );

}

printf ( "%lf %lf\n", b[0], b[1] );

}

}
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9.15. Command-Line Arguments
If main is just a function, can we give it arguments? Yes we can, but
they must always be a particular pair of arguments. It turns out that the
arguments given to main contain anything you type on the command
line after the name of your program. These extra things are called
“command-line arguments”.

Take a look at Program 9.16. This program uses several new concepts.
First, notice that main now has two arguments, int argc and char

*argv[]. The main function must always have either these two argu-
ments or none at all. The first argument, argc, tells the program how
many arguments you typed on the command line when you ran the
program. The second argument is an array of character strings, each
element of which contains one of the command-line arguments.

Program 9.16: args.cpp

#include <stdio.h>

int main ( int argc, char *argv[] ) {

int i;

for ( i=0; i<argc; i++ ) {

printf ( "argv[%d] = \"%s\"\n", i, argv[i] );

}

}

Let’s see what happens when we run the program. If we just type
./args the program says:

argv[0] = "./args"

argv[0] will always contain the name of the program itself, as it’s
typed on the command line. Now look what happens if we type
./args hello 1 2 3 on the command line:

argv[0] = "./args"

argv[1] = "hello"

argv[2] = "1"

argv[3] = "2"

argv[4] = "3"

We could use these command-line arguments to control our program’s
behavior if we wanted to.

Notice, however, that all of the elements of argv are character strings,
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not numbers. In the example above, argv[1] is equal to the character

string "1", not the number 1. We can see how these differ by looking
at how each value is stored in the computer’s memory:

00000001

00110001

int  x =  1;

char x = '1';

What's inside “x”:

The ASCII code for 

the character '1'.

The ASCII code for 

the character '1'.

C’s standard libraries provide a pair of functions for converting strings
to numbers: atof and atoi. The atof function converts a character
string into a floating-point number (a double), and atoi converts a
string into an int. In order to use these functions, we need to add
#include <stdlib.h> at the top of the program. In the next section
we’ll look at a program that uses these functions.

Here’s a simple program that illustrates the use of atoi to convert
a command-line argument into an int. The program counts up to a
number given on the command line. For example, if you said:

./countto 10

the program would count to ten.

Program 9.17: countto.cpp

#include <stdio.h>

#include <stdlib.h>

int main ( int argc, char *argv[] ) {

int i,n;

n = atoi( argv[1] );

for ( i=0; i<=n; i++ ) {

printf ( "%d\n", i );

}

}

Convert argu-
ment to int
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9.16. Command-Line Cannon
Let’s use command-line arguments to write an improved version of
our earlier “cannon” program. Program 9.18 shows a modified version
of Program 9.8, omitting the definitions for functions other than main.
(The other functions will be the same for both programs.)

The new version of the program lets us enter the angle and intial
velocity on the command line when we run the program, instead of
asking the user for these values. For example, we could type:

./cannon 45 27

to point the cannon at a 45°angle and specify an initial velocity of 27

m/s.

Program 9.18 first checks to see if you’ve given it the right number of
command-line arguments by looking at the value of argc. We want to
make sure the user has given values for theta and vinit. If not, the
program prints out a friendly usage message and stops the program.

We can stop the program at any time by using the “exit” function,
which is part of C’s standard library of functions. exit takes one
argument: an integer number specifying the exit status of the program.
This can be any number you like, but usually anything other than zero
means that the program failed. You can put an “exit(0);” statement
at the end of your programs, but it’s not necessary.

Notice that we check to make sure argc is equal to 3. Why 3? Won’t
there be only two arguments, theta and vinit? The argv array
actually contains one extra thing: the name of the program itself. If we
type “./cannon 45 27”, the elements of argv look like this:

argv[0] = "./cannon";

argv[1] = "45";

argv[2] = "27";

Program 9.18 uses atof to convert the command-line values of theta
and vinit into numbers.

Finally, program 9.18 uses the program name as part of the friendly
error message it prints if the user doesn’t supply enough command-line
arguments.
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Program 9.18: cannon.cpp, with command-line arguments

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

// Other functions go here....

int main ( int argc, char *argv[] ) {

double vinit;

double theta;

if ( argc != 3 ) {

printf ( "Syntax: %s theta vinit\n", argv[0] );

exit(1);

}

theta = atof( argv[1] );

theta = to_radians( theta );

vinit = atof( argv[2] );

printf ( "Time of flight is %lf sec.\n",

time_of_flight( vinit, theta ) );

printf ( "Max height is %lf meters.\n",

max_height( vinit, theta ) );

printf ( "Range is %lf meters.\n",

range( vinit, theta ) );

}
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Exercise 50: Hang Time

Write a program like Program 9.18 using the time_of_flight
function from Program 9.8. The program should accept two
command-line arguments, theta and vinit, and it should
print the time of flight based on the values supplied by the
user.

Keeping the angle at 45°, run your program repeatedly to
find the minimum initial velocity (to the nearest m/s) the
acrobat would need if she wanted to remain in the air for at
least 25 seconds (matching a ride on the Vomit Comet).

9.17. Passing Functions to Other Functions
We’ve written a lot of programs that print a list of x and y values. The
“Red Baron” program (Program 9.6) earlier in this chapter is a recent
example. These programs loop through a bunch of x values, compute
the y value for each, and print the results. The value of y is given
by some function of x. The function might be something simple like
sqrt(x) or it might be something complicated, like the Red Baron’s
flight path.

George Clinton, “the Godfather of
Funk”.
Source: Wikimedia Commons

No matter what the function is, though, we often do the same thing
with it: calculate its value for several x values and print the result.
Wouldn’t it be nice if we had a function that would accept the name of
a “y-generating” function, and print a list of x and y values using it?
Let’s make one!

Take a look at Program 9.19. As you can see, its main just contains one
statement. This statement uses the function plotit to produce a list
of 100 x and y values for y =

√
x, with values of x ranging between

zero and 500. The first argument to plotit is the address of the sqrt
function. Just as we passed the addresses of variables to a function in
Section 9.11, we can also pass the address of a function.

At the top of the program is the plotit function. To tell plotit to
expect a function address, we write one of its arguments as:

double (*func)(double)

which means “this argument will be the address of a function that takes
a double as its only argument and returns a double”. This kind of

https://commons.wikimedia.org/wiki/File:George_Clinton_in_Centreville.jpg
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argment is called a “function pointer” because it points to the memory
address of a function. In general, such an argument will have this form:

type (*name) (type1, type2, ...)

Type of data 
returned

Function 
Pointer

Type of 1st 
argument

Type of 2nd 
argument

Figure 9.18: General form of a function
pointer.

Inside plotit, we can use the name func to refer to the function, no
matter what it really is.

When we use the plotit function, we give it the address of the
function to be plotted by writing the function’s name, just as we do for
arrays.

We could replace sqrt with cos to get a list of values for y = cos(x),
or we could use exp to get y = ex. We can use any function that takes
a double as its only argument and returns a double.

Program 9.19: funcplot.cpp

#include <stdio.h>

#include <math.h>

void plotit ( double (*func)(double), int nsteps, double xmin, double xmax ) {

int i;

double x, step;

step = (xmax - xmin)/nsteps;

x = xmin;

for ( i=0; i<nsteps; i++ ) {

printf ( "%.10e %.10e\n", x, func(x) );

x += step;

}

}

int main () {

plotit( sqrt, 100, 0, 500 );

}

Finally, notice that plotit uses the format %.10e when printing
numbers. As we’ve seen before, the .10 tells printf to print ten
decimal places. The plotit function uses e instead of lf to tell
printf to print the numbers in scientific notation. This gives our
function the ability to print a wide range of numbers.



functions 317

9.18. Using qsort for Sorting
In Chapter 6 we looked at the “Bubble Sort” algorithm, which we used
for sorting the elements of an array. Now let’s look at a faster, more
flexible way of sorting array elements.

Licorice Allsorts are among the author’s
favorite candies. Yum!
Source: Wikimedia Commons

The C standard libraries contain a function named qsort (for “Quick
Sort”) that can be used to sort any kind of array. To use it, we give
qsort the name of the array to be sorted, and the address of a function
(written by us) for comparing any two array elements. When the
function compares two elements (let’s call them element a and element
b) it should return zero if the two elements are the same, −1 if a is less
than b, or 1 if a is greater than b.

Since qsort can be used to sort any type of array, we can’t assume that
the array elements will be ints or doubles or any other specific type.
Because of this, qsort passes a and b to our comparison function as
void variables (variables without any specific type), and it’s up to the
comparison function to figure out how to use them.

Here’s what a comparison function for comparing two integers might
look like:

int compare_int(const void *i1, const void *i2){

int a, b;

a = *(int *)i1;

b = *(int *)i2;

if ( a<b ) {

return (-1);

} else if ( a>b ) {

return (1);

} else {

return (0);

}

}

As you can see, the two arguments given to the comparison function
are the addresses (notice the asterisks) of two void variables (meaning
variables of any type). The function first needs to convert those into
integers. It does this by converting the void addresses into int ad-
dresses, then it puts another asterisk on the left to get the actual integer
values stored at those addresses and store them in the variables a and
b. Then it’s just a straightforward “if” statement to compare the two

https://en.wikipedia.org/wiki/Liquorice_allsorts
https://commons.wikimedia.org/wiki/File:Liquorice_Allsorts_in_a_glass_bowl.jpg
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numbers and return zero, −1, or 1, whichever is appropriate.

Program 9.20 reads an unsorted list of integers from a file and uses
the qsort function to sort them. The unsorted numbers are in a file
named unsorted.dat. The program will read as many numbers as
are in the file, up to a maximum of 1,000 numbers. After the numbers
are sorted, the program prints them in their sorted order, from smallest
to largest.

Program 9.20: sortit.cpp

#include <stdio.h>

#include <stdlib.h>

int compare_int(const void *i1, const void *i2){

int a, b;

a = *(int *)i1;

b = *(int *)i2;

if ( a<b ) {

return (-1);

} else if ( a>b ) {

return (1);

} else {

return (0);

}

}

int main ( int argc, char *argv[] ) {

FILE *input;

const int nmax = 1000;

int i, n=0, numbers[nmax];

input = fopen( "unsorted.dat", "r" );

while ( n<nmax &&

fscanf( input, "%d", &numbers[n] ) != EOF ) {

n++;

}

fclose ( input );

qsort( (void *)numbers, n, sizeof(int), compare_int );

for ( i=0; i<n; i++ ) {

printf( "%d\n", numbers[i] );

}

}



functions 319

Program 9.20 gives the qsort function four arguments:

Coat of arms of “Sort”, a town in
Catalonia, Northwest Spain. Its name
means “luck” in the Catalan language.
Source: Wikimedia Commons

1. The name of the array to be sorted, cast as a “(void *)”. This
gives qsort the memory address of the array, without specifying
any particular variable type.

2. The number of elements to be sorted. Note that this doesn’t have
to be all of the elements in the array. In the example above, if
unsorted.dat only contained 100 numbers, then n would be 100,
even though the array has 1, 000 elements.

3. The size (in bytes) of each element of the array. Since qsort doesn’t
know what kind of elements it’s sorting, we need to tell it how big
they are. Here we use the sizeof statement that we introduced in
Chapter 6.

4. Finally, we give qsort the name of our comparison function. In this
case, it’s just the compare_int function we wrote above.

When our comparison function compares two elements, we’re free to
define what we mean by “greater than”, “less than”, or “equal”. Why
would we need this flexibility? Imagine, for example, that we had a coal
train with many cars, each with a different amount of coal, and each
destined for a different customer. We might have an array of customer
IDs. We could just sort the array in order of increasing ID number, but
we might sometimes want to sort the list of IDs based on how much
coal they ordered, or by how many miles it is from the coal mine to the
customer. The qsort function gives us the flexiblity to do that6. 6 Later on, in Chapter 12, we’ll see that

C lets us define our own, complicated,
variable types. The qsort can even be
used with those, since we get to define
our own comparison function.

https://commons.wikimedia.org/wiki/File:Escut_de_Sort.svg
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9.19. Conclusion
Writing your own functions in C is easy, and can be beneficial in several
ways. Using functions can help you:

• Avoid duplicating the same code many times within a program.

If you find yourself typing the same set of statements again and
again, it’s time to think about creating a function to replace them.

• Make your program easier to modify.

After you’ve encapsulated a task within a function, you can easily
modify it to make it better, without having to modify the rest of your
program.

• Re-use your code in other programs.

Once you’ve written your function, you can re-use it in other pro-
grams.

• Catch programming mistakes.

The compiler makes some syntax checks when a function is called,
so this is an opportunity to catch mistakes.

• Avoid accidentally changing variables.

As we’ve seen, variables inside a function are independent from
variables of the same name in other functions.

I encourage you to get into the habit of writing code that breaks work
up into bite-sized functional chunks. Modularizing your programming
jobs keeps you from reinventing solutions, and helps unclutter the
visual flow of your programs, making it easier to see what the program
is doing.

Later, we’ll be learning how to create your own libraries of pre-compiled
functions that you can reuse again and again.
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Practice Problems

“Functional” is a solo piano piece
composed by Thelonious Monk, “the
genius of modern music”.
Source: Wikimedia Commons

1. As we saw in Chapter 7, a Normal (or Gaussian) curve is described
by the equation:

P(x) = Ae
− (x−x)2

2s2

If we let A = 1, x = 10, and s = 1 the equation gets simplified to:

P(x) = e−
(x−10)2

2

Write a program named gauss.cpp that contains a function named
P that returns the value of P(x) from the simplified equation above.
Note that you’ll need to include math.h at the top of your program
so you can use the exp and pow functions. The function should take
one double argument (the value of x) and return a double value.

In the main part of your program, create a loop that steps through
200 values of x, from zero to 19.9 in steps of 0.1. For each value of x,
print x and P(x).
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Figure 9.19: Your gauss.cpp
program’s output should look like this
if you plot it with gnuplot.

If you put the program’s output into a file and plot it with gnuplot

you should see something like Figure 9.19.

2. Write your own version of Program 9.17 (countto.cpp) that adds a
check to make sure the user has supplied a number on the command
line. If the user doesn’t give a number, the program should print
a friendly message describing how to run the program, then exit
without doing anything else. See Program 9.18 for an example that
shows how to use the exit function.

The Trylon and Perisphere were two
buildings made for the 1939 New York
World’s Fair. The Perisphere had a
diameter of 180 feet. You could travel
through it on a moving sidewalk and
look down a diorama depicting a
utopian city.
Source: Wikimedia Commons

3. Write a program named sphere.cpp that calculates the volume
of a sphere, given its radius. Remember that the formula for the
volume of a sphere is V = 4

3 πr3. Use command-line arguments,
as described in Section 9.15 above, to allow the user to specify the
radius on the command line. For example, for a sphere of radius 3.5,
the user should be able to run the program like this:

./sphere 3.5

The program should just print out the calculated volume with no
commentary. So, if the sphere’s radius is 3.5, the program should
print 179.594380.

Make sure the program checks to see if the user has specified the
radius, and print an error message and exit if they haven’t. See
Program 9.18 for an example of this.

Hints: Since the radius can, in general, contain decimal places
you’ll need to use atof to convert the command-line argument
to a number. See Program 9.18 for an example.

https://en.wikipedia.org/wiki/Thelonious_Monk
https://commons.wikimedia.org/wiki/File:Thelonious_Monk,_Minton's_Playhouse,_New_York,_N.Y.,_ca._Sept._1947_8William_P._Gottlieb_06241).jpg
https://commons.wikimedia.org/wiki/File:US_853.jpg
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4. Write a program named compare.cpp that contains a C function
named “similar” that compares two double numbers and returns
an integer value of 1 if the numbers differ by less than 0.0001, or 0 if
they’re farther apart. The program should ask the user for the two
numbers to compare, and read them in with scanf. The program
should use your function to compare the numbers, and tell the user
(in clear, friendly words) if they’re within 0.0001 of each other.

5. The formula for computing the amount of money in a savings ac-
count is:

Mnow = Morig
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Figure 9.20: Bank balance over 20 years,
starting with $1,000, with 5% interest
compounded 4 times per year.

where Mnow is the amount of money you currently have, Morig is
the amount you originally deposited, r is the interest rate the bank
is paying you, n is the number of times per year that the interest
is added to your account, and t is the number of years since you
originally deposited the money.

Write a program named lucre.cpp containing a function named
mnow that begins like this:

double mnow ( double morig, double rate, int ntimes, int years )

where the arguments correspond to Morig, r, n, and t, in that order.
the function should use these arguments to compute Mnow.

Your program should ask the user for the original amount of money
in her/his account, then print how much money will be in the
account each year for the next 20 years, assuming an interest rate
of 0.05 (5%) with interest added 4 times per year. Use your mnow
function to do the calculations. The program’s output should be two
columns: year number (0, 1, 2, ...etc.) and Mnow for that year.

6. Write a program named volumes.cpp that calculates the volumes
of some common shapes. Define three functions named vsphere,
vbox, and vcone to calculate the volume of a sphere, a box, and a
cone, respectively. Your definition of the vsphere function should
start like this:

h

r

Figure 9.21: The volume of a cone is
1
3 πr2h, where r and h are as shown in
the diagram above.
The volume of a sphere is 4

3 πr3.
The volume of a box is just length ×
width × height.

double vsphere ( double r )

where r is the sphere’s radius. The definition of vbox should start
like this:

double vbox ( double l, double w, double h )

where l, w, and h are the length, width, and height of the box. The
definition of vcone should start like this:

double vcone ( double r, double h )
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where r is the radius of the cone’s base and h is the cone’s height.
See Figure 9.21 for the formulas you’ll need.

Your program should ask the user to specify which shape to use like
this:

Enter the type of shape (1=sphere, 2=box, 3=cone):

then the program should ask the user for the dimensions of the
shape, calculate its volume using the appropriate function, and tell
the user the result.

7. Create a program that adds two numbers: Write a program named
add.cpp that accepts two integers as command-line arguments (see
Section 9.15 above). The program should add the two numbers and
tell you what their sum is. For example, if you type this:

./add 23 52

The program should print “75”.
Speaking of adders, the harmless
Eastern Hognosed Snake (Heterodon
platyrhinos) is sometimes called a “puff
adder” because it tries to frighten you
by spreading its head like a cobra and
hissing. If that doesn’t work, it will roll
over onto its back and play dead. If you
turn it upright, it will roll over again
just to prove that it’s really dead.
(“Don’t bother me! I’m busy being
dead!”)

8. Write a program named maxnum.cpp that accepts a list of numbers
on the command line and tells you which of the numbers is the
largest. The program should accept numbers with decimal places,
so you’ll need to use double variables and the atof function. (See
Section 9.15 above for information about using command-line ar-
guments.) You should be able to run your program like this, for
example:

./maxnum 12 13 128 765 2 4 3 -78

Maximum number is 765.000000.

Make sure your program can deal properly with negative numbers.
If it’s given the numbers -2 and -5, it should tell you that the largest
number is -2.

9. Write a program named testprime.cpp that checks to see if a
given integer is prime. (Remember that a prime number is one that
can only be divided evenly by itself and 1.) The program should
accept the number to be tested on the command line. For example:

./testprime 8675309

Tommy Tutone, the band responsible
for the 1981 hit song 867-5309/Jenny.
Source: Wikimedia Commons

The program should say something like “8675309 is prime” or
“8675309 is NOT prime”. The program should check the value of
argc to make sure the user has supplied a number to be checked. If
not, the program should tell the user what to do, and use exit(1) to
stop. See Section 9.15 above for information about using command-
line arguments.

If we call the number to be checked n, then your program should
look to see if n can be divided by any of the numbers from 2 to

https://en.wikipedia.org/wiki/Heterodon
https://en.wikipedia.org/wiki/File:Tommy_Tutone_band_Greenville_2017.jpg
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n-1, inclusive. You can use the % operator to check each number.
Remember that n%i will be zero if n can be evenly divided by i.
Refer to Chapter 4 for more information about the % or “modulo”
operator.

Note that your program will only be able to work on numbers that
are small enough to fit into an integer variable. On most computers,
the biggest number that can fit into an int will be 2,147,483,647.

Teacher and astronaut Christa
Macauliffe experiencing weightlessness
in NASA’s “Vomit Comet”. She died
tragically in 1989, when the space
shuttle Challenger exploded shortly after
launch.
Source: Wikimedia Commons

10. Write a new version of Program 9.6 (redbaron.cpp) that uses a differ-
ent function for the flight path. Instead of the complicated function
in Program 9.6, use:

h(x) = 10000 − (x − 3000)2

10000

and modify the “for” loop so that it does 6,000 steps instead of
1,000, tracking the plane over a distance of 6,000 meters.

Run your program and redirect the output into a file, then plot the
file using gnuplot. What shape does it make? The graph should
approximate the path followed by a “zero-G” aircraft near the top of
its trajectory (see Figure 9.7).

11. In physics and math we often want to go through a list of numbers
“cyclically”. By this I mean that when we get to the end of the list we
start back at the beginning again. For example, if our list contained
the numbers 1, 2, 3 we could start at any of the numbers and write
them down, in order, starting back at the beginning if necessary,
until we’d written them all.

We could write this cyclic list in any of the following equivalent
ways:

1 2 3

2 3 1

3 1 2

Notice that the list rotates in a particular direction, clockwise in this
case, as shown in Figure 9.22.

1

23

Figure 9.22: A cyclic list of numbers.

Imagine that we have three variables, i, j, and k with initial values
i=1, j=2, and k=3. Write a function named rotate that uses the
techniques described in Section 9.11 above to change the values of
these variables, moving the value of i to j, the value of j to k, and
the value of k to i. The function should start out like this:

void rotate ( int *i, int *j, int *k )

Use your function in a program named cycle.cpp that prints out
the initial values of i, j, and k, then uses your rotate function to
“rotate” the values of the three variables three times, printing out
their new values after each rotation.

https://commons.wikimedia.org/wiki/File:Christa_McAuliffe_Experiences_Weightlessness_During_KC-135_Flight_-_GPN-2002-000149.jpg
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12. Sometimes a program needs to accept a file name on the command
line. Write a program named randfile.cpp that can be run like
this:

./randfile random.dat

When the program is run like this, it should generate 1,000 random
numbers and write them into a new file named random.dat. You
can just use the rand function to generate each random number.

The program should check to make sure the user has supplied a file
name, and print an error message and exit if not. (See Program 9.18

for an example of this.)

Hint: The command-line arguments argv[1], etc., are character
strings, so you don’t need to do any conversion with atoi or atof.
In this program, you can just put argv[1] in place of the file name
in your fopen statement.

The fascinating properties of
strings.(Sitzendes Mädchen mit einer
Katze, 1903, by Albert Anker.)
Source: WikiArt

13. A character string is just an array of characters. As we saw in
Chapter 8, C provides us with a handy strlen function that can tell
us the length of the text stored inside a character string. The strlen
function does this by looking for the special “NUL” character that
terminates the string.

Complete the following program (named fakestrlen.cpp) by
adding a function named mystrlen that does the same thing the
built-in strlen function does.

#include <stdio.h>

int mystrlen ( char string[] ) {

// Insert your function here.

}

int main () {

char string1[] = "Help, I'm trapped in a computer!";

char string2[] = "Just kidding!";

char string3[] = "They made me say that!";

printf ( "String 1 length is %d\n", mystrlen( string1 ) );

printf ( "String 2 length is %d\n", mystrlen( string2 ) );

printf ( "String 3 length is %d\n", mystrlen( string3 ) );

}

Hints: Your function should use a while loop that starts with the
first character of the string (character number zero) and checks each
character to see if it’s the NUL character, which is written as '\0'
in C. The loop should continue for as long as the current character
isn’t a NUL. When the loop is done, the function should return the
number of the current character.

https://www.wikiart.org/en/albert-anker/sitzendes-m-dchen-mit-einer-katze-1903
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14. Hot objects tend to emit heat and light in a range of wavelengths.
The temperature of the object determines which wavelengths are
emitted the most. In 1900 Max Planck wrote down the modern
mathematical description of these emissions (known as “black body
radiation”). The relationship between the intensity, I of radiation at
a given wavelength, λ, depends on temperature, T, like this:
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Figure 9.23: I(λ) for several
temperatures. Notice that the peak of I
moves to the left as temperature
increases. This shows that hotter objects
emit more high-frequency radiation.
(Low wavelengths correspond with high
frequencies, and vice versa.)

I(λ) = 2hc2

λ5
1

exp( hc
λkT )−1

where exp is the exponential function and the physical constants are
(in SI units):

Symbol Name Value
The speed of light in a vacuum c 2.99792458 × 108

Planck’s constant h 6.62606896 × 10−34

Boltzmann’s constant k 1.3806504 × 10−23

Write a function named intensity that begins like this:

double intensity ( double lambda )

where lambda is λ and the function returns the value of I(λ) from
the equation above. Use a global variable named t to set the temper-
ature to 5,000 Kelvin.

Use this function in a program named planck.cpp. The program
should also contain the function named plotit that we used in
Section 9.17. Have your program use the plotit function to print
100 values of I(λ), with λ going from 0.1e-6 meters to 3e-6 meters.
If you plot your results with gnuplot you should see a curve like the
largest curve in Figure 9.23.

Detail from Vanitas by Adriaan Coorte.
Source: Wikimedia Commons

15. Using the technique shown in Program 2.4 (diceroll.cpp) in Chapter
2, write a program that emulates a die with an abritrary number of
sides. Call the new program unidie.cpp. The user should be able
to specify the minimum and maximum numbers on the die by giving
the program command-line arguments. The program should contain
a function named roll that takes min and max as arguments and
returns a random integer between min and max, inclusive. Make
sure the program checks to see if the user has provided the necessary
command-line arguments, and takes apprpriate action if not. When
the program is run, it should print out the random number “rolled”
by the die.

https://commons.wikimedia.org/wiki/File:WLANL_-_zullie_-_Vanitas,_Adriaan_Coorte_(1).jpg


10. Numerical Integration

10.1. Introduction
Sometimes a problem in Science or Engineering allows us to find an
elegant solution that represents a simple, exact answer. Mathematics
tells us that the area of a circle is exactly πr2. We know that the distance
travelled by a uniformly accelerating body is v0t + 1

2 at2.

Isaac Newton in 1689.
Source: Wikimedia Commons

Calculus (first called the “calculus of
infinitesimals”) was co-invented in
the 17th Century by Gottfried Wilhelm
von Leibniz in Germany and Isaac
Newton in England. The two argued
bitterly over which of them deserved
credit. The Royal Society of London
formed a committee chaired by Newton
to investigate the dispute, and its
report (written by Newton) ruled,
unsurprisingly, in favor of Newton.
Today mathematicians give both men
equal credit.

Gottfried Wilhelm von Leibniz, circa
1700.
Source: Wikimedia Commons

Elegant answers aren’t always available, though. Often, a simple math-
ematical solution eludes us. This can happen because of some inherent
feature of the problem that makes it mathematically difficult, or because
the sheer size of the problem makes it intractible, or because we only
have a little bit of data.

For problems like this, we need to apply brute force. We chip away
at the problem, hoping to find an approximation that’s good enough
to satisfy our immediate needs. Fortunately, we often find that, by
working hard enough, we can make our approximation as close to the
true answer as we like.

One place this kind of problem crops up is in the evaluation of integrals.
As you know if you’ve taken Calculus, the evaluation of integrals can
be difficult. Much of what you learn in Calculus class consists of tricks
for evaluating various kinds of integrals.

An integral is conceptually simple, though: it’s just adding things up.
Mathematician Gottfried Leibniz introduced the integral sign,

∫

, which
is a stretched-out “S”, for “Sum”.

Since computers can add things very quickly and accurately, you’d think
they’d be good at integration. In this chapter, we’ll look at a couple of
ways computers can help you deal with tricksy integralses. Techniques
like this are called “numerical integration”, since they compute the
approximate values of definite integrals by using numbers, instead of
finding an exact, symbolic, value.

https://commons.wikimedia.org/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg
https://commons.wikimedia.org/wiki/File:Gottfried_Wilhelm_Leibniz_c1700.jpg
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10.2. Integrals
Imagine that you own a power company1. Being a good businessman, 1 Maybe you do. How would I know?

you keep a close eye on how much power your customers are using.
Over the last year, you’ve observed that there’s a lot of variation in
power consumption over the course of a day. Figure 10.1 shows some
of the data you’ve collected.

Kernkraftwerk Beznau, a nuclear power
plant in Aargau, Switzerland. As a
graduate student, I used to take a
shortcut through the plant’s parking lot
every day on my way to and from work.
I wonder how the guards there today
would react to a scruffy, backpack-laden
student walking by in the night. Would
they wave and say “guten abend!” as
they did to me?
Source: Wikimedia Commons
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Figure 10.1: Average hourly power
consumption on a New England power
grid. The shaded region shows times
between 9 am and 5 pm.
Source: eia.gov

In the early morning, people are asleep and power usage is low. Usage
picks up during the day, falls off a little during commuting time, then
surges at night as people turn on their lights, TVs, ovens, and popcorn
poppers.

Figure 10.1 shows power usage on the vertical axis and hour of the day
on the horizontal axis. Power is the rate at which energy is flowing,
and it’s measured in watts (or megawatts in this case). This power data
is interesting, but if we want to know how much coal or gas or sunlight
our energy company needs, we have to know how much energy people
are consuming. How can we determine that? To figure that out, let’s
start with a simpler example.

A microwave oven might draw 1 kilowatt of power while it’s running.
If the microwave runs for half an hour, the amount of energy it uses is:

1 kilowatt × 1
2

hour = 0.5 kilowatt-hours

https://commons.wikimedia.org/wiki/File:Kkw_beznau.jpg
http://www.eia.gov/todayinenergy/detail.cfm?id=4190
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Kilowatt-hours is a unit of energy. When we do the calculation above,
it’s equivalent to determining the shaded area shown in Figure 10.2.
Mathematically, we could express it like this:

E = P(t)∆t

where E is energy, P(t) = 1000 watts (a steady, unvarying power con-
sumption), and ∆t is the amount of time the microwave oven is running.
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Figure 10.2: If we assume that the
microwave oven uses a constant amount
of power while it’s running, the energy it
consumes is equal to the shaded area in
this graph, which is the power (P, in
watts) multiplied by the amount of time
(∆t, in hours).

Unfortunately for our power company, Figure 10.1 shows that our
customers don’t use the same amount of power all the time, so we
can’t just do a simple multiplication to find out how much energy they
use. If we want to know how much energy is used between 9 am and
5pm, we need to determine the size of the shaded area in Figure 10.1.
Mathematically, that’s equivalent to evaluating the following integral
equation:

E =
∫ 5pm

9am
P(t)dt

Scottish inventor and entrepreneur
James Watt, most famous for the
invention of the steam engine, for
whom the unit of power is named.
Source: Wikimedia Commons

The important thing to remember is that the integral is just the area un-
der the curve defined by the P(t) function. As we saw in the microwave
oven example, this is sometimes trivial to calculate. In calculus class
we learn some mathematical tricks to evaluate the integrals of more
complicated functions.

https://commons.wikimedia.org/wiki/File:Bust_of_James_Watt.JPG
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In the following, we’ll see how to use a computer program to estimate
the value of such integrals without using any tricks. To do so, we’ll
combine a little modern computing power with the basic principles
that Newton and Leibniz used when they invented calculus way back
in the 1600s.

The integral here is called a “definite
integral” because it only covers a range
between two limits (9 am and 5 pm
in this case). The techniques we’ll
talk about in this chapter are all for
finding approximate values for definite
integrals.

10.3. Slicing up the Problem
If Newton and Leibniz had been familiar with microwave ovens and
power plants, they’d have approached the problem this way: slice up
the area into manageable bits.

We can slice a function up so that each
slice is approximately rectangular.
Source: Wikimedia Commons

The inventors of calculus realized that the area under a curve could be
approximated by the total area of a row of rectangles, as in Figure 10.3,
like slices from a loaf of bread. As in the microwave oven example, the
area of each rectangle is easy to calculate.
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Figure 10.3: The area under the smooth
curve is approximately the same as the
total area of a row of rectangles of
various heights.
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Figure 10.4: More slices give a better
approximation.

If we want a better approximation, we can just use thinner slices, as
in Figure 10.4. Mathematicians have found that in some cases we can
arrive at the exact area under the curve by mathematically determining
what the area would be if the width of the slices went to zero. Sometimes
we can’t calculate this limit, though. In those cases, we have to be
satisfied with an approximation, but that’s not so bad, because we can
often make our approximation as accurate as we want by choosing the
width of our slices.

https://commons.wikimedia.org/wiki/File:Vegan_no-knead_whole_wheat_bread_loaf,_sliced,_September_2010.jpg
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Now that you have some experience writing programs, you can proba-
bly already see how we might do this with a computer. If we wanted to
add up the areas of the rectangles shown in Figure 10.5 we could use a
“for” loop. It might look something like this:

deltax = (xmax-xmin)/nslice;

x = xmin;

for ( i=0; i<nslice; i++ ) {

height = f(x);

area += deltax * height;

x += deltax;

}

where nslice is the number of slices, and deltax is the width of
each slice. There are several different ways we could make the slices,
but for now let’s put the upper left-hand corner of each rectangle so
that it just touches the curve we’re trying to approximate. The function
f(x) gives the height of the curve at each value of x. The height of the
first rectangle is f(xmin), so its area is f(xmin) times deltax. Each
time around the loop we add the area of the current rectangle to to the
total area, then move right by a distance deltax and do it again, until
we get to the last rectangle.

xmin

Δx

f(xmin+Δx)

f(xmin)

f(xmin+2Δx)

x

f(x)

xmax

Figure 10.5: Approximating the area
under the curve, between xmin and
xmax, with three rectangles of width ∆x.

Let’s apply this technique to our power company. Imagine that we’ve
asked our minions to give us a data file containing two columns of data:
The hour of the day (in 24-hour time) and the average amount of power
used at that hour (in megawatts). The file might look like Figure 10.6.



332 practical computing for science and engineering

Program 10.1 is designed to read this file and estimate the area under
the power curve between 9 am and 5 pm. Notice that we’ve placed the
slices as shown in Figure 10.5, which means that each rectangle starts
on the hour and covers the time until the next hour begins. This means
that we don’t want to include the 5:00 measurement (hour 17) in the
total area, since we’re assuming that this measurement is an estimate
of the power used between 5 pm and 6 pm, which is outside the range
we’re interested in. (See Section 10.5 for more about this.)

Figure 10.6: The contents of the file
“power.dat”, containing hourly power
measurements from our power
company:

1 10110.66

2 9636.32

3 9376.79

4 9283.72

5 9433.38

6 10025.68

7 11181.30

8 12193.26

9 12855.83

10 13332.67

11 13685.37

12 13871.35

13 13918.52

14 13935.75

15 13867.86

16 13833.21

17 13976.59

18 14238.24

19 14253.39

20 14163.90

21 13948.21

22 13220.34

23 12059.76

24 10920.85

Also notice that, even though each slice has a width of 1 hour, the
program goes ahead and explicitly multiplies by this width, just to
make it clear that we’re calculating the area of the rectangular slice by
multiplying its height times its width. If our data were at half-hour
intervals, we’d change the 1.0 to 0.5.

Program 10.1: power.cpp

#include <stdio.h>

int main () {

int hour[24];

double power[24];

FILE *input;

int i;

double area=0.0;

input = fopen("power.dat","r");

for ( i=0; i<24; i++ ) {

fscanf( input, "%d", &hour[i] );

fscanf( input, "%lf", &power[i] );

}

fclose ( input );

for ( i=0; i<24; i++ ) {

// Don't include the 5pm hour:

if ( hour[i] >= 9 && hour[i] < 17 ) {

area += power[i] * 1.0; // 1 hour.

}

}

printf ( "Total energy from 9am-5pm is %lf Mw-hours\n", area );

}

Exercise 51: Power to the People!

Using nano, create the file power.dat by entering the data
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from Figure 10.6. Create, compile and run Program 10.1.
Make a note of the result, for later use.

By looking at Figure 10.1, make a rough estimate of the 9

to 5 power usage by multiplying the curve’s approximate
height, in megawatts, by 8 hours (the interval between 9 am
and 5 pm). Is your rough estimate consistent with Program
10.1’s estimate?

10.4. Trapezoids
The technique above would probably work fine if we used enough
slices, but as you can see from Figure 10.5 the rectangles might not fit
the curve very well if we only use a small number of slices, or if the
curve goes up and down a lot over distances narrower than the width
of a slice.

In the preceding section, we placed our rectangles on the right-hand
side of the curve. Mathematicians call a this a “Right Riemann Sum”.
We could alternatively have chosen to put them on the left-hand side,
as shown in the middle graph of Figure 10.7 (called a “Left Riemann
Sum”). Neither of these rectangular sums fits the curve particularly
well, but what if we averaged the two? That’s what’s shown in the
bottom graph.

Figure 10.7:
Top: Right Riemann Sum
Middle: Left Riemann Sum
Bottom: Trapezoid Sum
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The slices in the last graph aren’t rectangles. Instead, they’re “trape-
zoids”. A trapezoid is a four-sided figure with two or more parallel
sides (unlike a rectangle which must have two pairs of parallel sides).
We can use trapezoidal slices to estimate the area under the curve much
more efficiently than with rectangular slices. These new slices are the
same width as the rectangular ones, but their top edge has both corners,
right and left, on the curve.



334 practical computing for science and engineering

xmin

Δx

f(xmin+Δx)

f(xmin)

f(xmin+2Δx)

x

f(x)

xmax

f(xmin+3Δx)

Figure 10.8: Approximating the area
under the curve, between xmin and
xmax, with three trapezoids of width ∆x.
Compare this with Figure 10.5, which
uses rectangles.

Figure 10.8 shows how we might slice up an area into trapezoidal
sections. As before, we can add up the areas of the slices to get an
estimate of the area under the curve, but to do this we’ll first need to
know how to find the area of a trapezoid.

It turns out that this isn’t so hard. The area of a rectangle is its height
times its width, but the area of a trapezoid is its average height times its
width. You can see why this is so by looking at Figure 10.9.

f (xmin+Δ x)

f (xmin)

f (xmin)+ f (xmin+Δ x)

2

Chop off
this...

...and put
it here

Δ x Δ x

Figure 10.9: How to find the area of a
trapezoidal slice.

Once we know how to find the area of a trapezoid, it’s easy to modify
Program 10.1 so that it uses this shape instead of rectangles. We only
need to change one line. The result is Program 10.2
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Program 10.2: power.cpp, with trapezoids instead of rectangles

#include <stdio.h>

int main () {

int hour[24];

double power[24];

FILE *input;

int i;

double area=0.0;

input = fopen("power.dat","r");

for ( i=0; i<24; i++ ) {

fscanf( input, "%d", &hour[i] );

fscanf( input, "%lf", &power[i] );

}

fclose ( input );

for ( i=0; i<24; i++ ) {

// Don't include the 5pm hour:

if ( hour[i] >= 9 && hour[i] < 17 ) {

area += 0.5 * (power[i] + power[i+1]) * 1.0; // 1 hour.

}

}

printf ( "Total energy from 9am-5pm is %lf Mw-hours\n", area );

}

The hammer dulcimer has a trapezoidal
shape. The American folk band
“Trapezoid” took its name from the
shape of this instrument.
Source: Wikimedia Commons

Program 10.2 multiplies the width of each trapezoid by its average
height. The average height is:

power[i]+ power[i+1]

2

This way of approximating the value of an integral is called the “trape-
zoid rule”.

Exercise 52: More Power to You!

Modify your power.cpp program so that it looks like Pro-
gram 10.2. Compile and run it. How does the result compare
with the result from the previous version? Does this agree
with what you’d expect after looking at Figure 10.7?

https://commons.wikimedia.org/wiki/File:Oprekelj_-_ugla%C5%A1evanje.jpg
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10.5. Fencepost Problems
Consider the cheery scene below. It shows a section of fence with six
panels. Notice that this requires seven fenceposts.

When we look at data we need to think about whether we’re interested
in the measurements themselves or the intervals between them. There
will always be one more fencepost than the number of panels, so if
we’re interested in the intervals between measurements we need to be
careful not to overcount.

Imagine that each of the fenceposts represents a measurement of our
power plant’s output at a particular time of day. Notice that Programs
10.1 and 10.2 are careful to stop before the 5pm measurement. These
programs add up the energy produced during the intervals between
measurements.

This subtlety occurs often in programming. It’s called a “fencepost
problem”. Whenever you write a program that works its way through a
number of measurements, always stop and think about whether you’re
interested in the measurments or the “in-betweens”.

Figure 10.10: A fencepost problem. Are
we interested in the number of panels or
the number of crows?
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10.6. Uneven Slices
In the preceding examples we’ve assumed that our measurements were
evenly spaced. What if they’re not, though? To explore that possibility,
let’s take a road trip!

In October 1925 Harry Lillis “Bing”
Crosby and his pal Al Rinker set out
from Spokane, Washington, bound for
Los Angeles in Al’s beat-up Ford Model
T. Over the next three weeks they made
their way down the coast, stopping
whenever the car broke down and
working a day or two to earn some
money. The car survived until the
outskirts of LA, where its engine finally
died. They were taken in by Al’s sister,
the singer Mildred Bailey, who helped
the boys find jobs performing in LA.
Within a year they were hired by
internationally-known bandleader Paul
Whiteman. The rest, as they say, is
history.
Source: Wikimedia Commons

Your car’s odometer tells you how far you’ve driven, but modern cars
don’t measure distance directly. Instead, they use your velocity and a
little bit of calculus to determine how many miles you’ve gone.

A mathematician would say that velocity is the time derivative of
position, and she might write that relationship like this:

v =
dx

dt

where dx represents a small change in position, dt is a small change in
time, and v is the velocity. If the velocity doesn’t change, then this is
the same as saying that velocity is equal to distance divided by time.
If we know the velocity and the time, we can calculate the distance as
distance = velocity × time.

If the velocity isn’t constant, things get more complicated. In that case,
our mathematician friend would tell us that we could find the distance
like this:

distance =
∫ t1

t0

v(t)dt

where v(t) is a function that tells us the velocity at a given time. The
times t0 and t1 are when our trip starts and ends, repectively.

That looks complicated, but it’s just like what we’ve been doing earlier
in this chapter. If we’re given some data about the car’s velocity at
various times, we can write a computer program to do the integral
above and estimate the distance we’ve traveled.

Imagine we’re going on a long trip. When we start, our velocity is
zero. Then we pull out onto the highway and start driving. We can’t
drive at a constant speed, though. Sometimes traffic will slow us down.
Sometimes we’ll be driving on roads with higher or lower speed limits.
Sometimes we’ll be zoned out listening to our favorite tunes and find
that we’ve spent the last ten miles drifting along behind a spluttering
jalopy. Eventually, we’ll reach our destination and our velocity will go
back to zero again.

If we noted the time and our speed occasionally, the data might look
like the large dots in Figure 10.11. We’re lazy and easily distracted, so
we haven’t done the measurements at regular intervals.

https://commons.wikimedia.org/wiki/File:The_Rhythm_Boys_-_Radio_Mirror,_October_1943.jpg
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Figure 10.11: The large dots represent
measurements of our speed. If we could
have constantly monitored the speed it
might have looked like the dashed curve.
The whole trip takes about six and a half
hours.

As you can see from the figure, we can draw trapezoids that connect
the dots, just as we did with the power plant data. The only difference
is that these trapezoids aren’t all the same width. That’s not a problem.
We just need to take the width into account when we calculate the area
of each trapezoid. Adding all of the areas together gives us the total
area of the shaded region in Figure 10.11. The size of this shaded area
is approximately equal to the distance we’ve traveled, as given by the
integral equation our mathematician friend gave us above.

0.0 0.0

0.5 46.7

0.8 62.1

0.9 70.1

1.5 74.1

1.7 69.3

1.9 74.8

2.1 78.9

3.2 76.8

4.0 73.9

4.5 60.9

4.8 65.6

4.9 58.1

6.0 64.3

6.3 37.1

6.5 0.0

Figure 10.12: The file roadtrip.dat,
used by Program 10.3. The first column
is time, in hours. The second column is
our speed, in miles per hour, at that
time.

Program 10.3 does the work for us. It’s similar to Program 10.2, but
it doesn’t assume that there’s a particular number of measurements.
The power plant program knew that there were 24 hours in a day, so it
could assume there would be 24 measurements to read from its data
file. On our road trip we just took some measurements at random times.
On the next trip we might take more or fewer. Because of this, the new
program doesn’t start by reading all of the data into a fixed-size array.
Instead, it uses a different strategy that just focuses on measurements
one or two at a time, as they’re read from the data file.

For each of the trapezoids in Figure 10.11 we need two pairs of time
and speed measurements2. The difference in the two times tells us 2 See Section 10.5.

the width of the trapezoid. The average of the two speeds tells us the
average height of the trapezoid. Program 10.3 waits until it has read
the first two lines from the data file, then does these calculations to find
the area of the first trapezoid. Then it continues on, doing the same for
each subsequent pair of data points. Notice that, at any point in our
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trip, the area we’ve accumulated so far will be equal to the distance
we’ve traveled so far. To emphasize this, the program prints out the
updated time and distance each time it reads a new data point from
the file.

Program 10.3: roadtrip.cpp

#include <stdio.h>

int main () {

double hour, velocity;

double oldhour, oldvelocity;

double height, width;

double area=0.0;

int nmeasurements=0;

FILE *input;

input = fopen("roadtrip.dat","r");

while ( fscanf( input, "%lf %lf", &hour, &velocity ) != EOF ) {

if ( nmeasurements != 0 ) {

height = 0.5 * (oldvelocity+velocity);

width = hour - oldhour;

area += height*width;

printf ( "Distance after %lf hours is %lf miles\n",

hour, area );

}

oldhour = hour;

oldvelocity = velocity;

nmeasurements++;

}

fclose ( input );

printf ( "Total distance is %lf miles\n", area );

}

Notice that the program uses two variables, oldhour and oldvelocity,
to remember the previous data point’s values. To make the program
wait until there are at least two data points, we use the variable
nmeasurements to count the number of points we’ve read so far,
and test this value before we start doing any calculations. After the first
trip around the loop, oldhour and oldvelocity have been set and
we’re ready to calculate the area of the first trapezoid during the next
trip around the loop.

Remember that our result is only an estimate of the distance we’ve
traveled. The estimate would be more accurate if we recorded more
speed measurements during our trip. (If we’d only written down the
speed at the beginning and end of the trip, the program would tell us
that the distance was zero!)
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10.7. Integrating Functions
In the exercises above, we’ve been finding the integral of a curve defined
by data points, instead of being defined by some mathematical function.
This is one common reason people use numerical integration: they have
some data points, but don’t know the underlying mathematics that
generated them. You can’t use calculus to compute the integral of a
function if you don’t know what that function is!

But what if you do know the function? As noted before, integration can
be hard, and much of what we learn in calculus class is a set of tricks
for finding the values of certain integrals. Sometimes, though, there
are no applicable tricks that will let write down a value for a particular
integral in terms of elementary functions (trigonometric functions,
logarithms, etc.), or even “special” functions (the error function, the
gamma function, etc.). Integrals of some seemingly simple expressions
like sin(sin(x)) turn out to be impossible to evaluate.

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

s
in

(x
)

x

x=π

  Area
    of
Interest

Figure 10.13: sin(x)

Happily, in these cases the poor beleaguered mathematician can turn
to numerical integration. As long as we can find the value of a function
at any point within the range we’re interested in, we can numerically
approximate the value of the definite integral of the function over that
range.

Let’s look at an example where we can find the value of the integral
mathematically. That will allow us to compare an exact mathematical
solution to an approximate solution computed by the trapezoid rule.
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Figure 10.14: The integral of the sine
function between 0 and π has a value
of 2 (the area under the curve in the top
graph). The bottom graph shows this
area approximated by five trapezoidal
slices.

For example, in calculus class we learned how to integrate the sine
function (see Figure 10.13):

∫ B

A
sin(x)dx = cos(A)− cos(B)

This tells us that the area under the sine curve between 0 and π is
exactly cos(0)− cos(π) = 2, as shown in the top graph of Figure 10.14.
Let’s use the trapezoid rule to find this same area, and see how close it
gets to the true answer.

That’s what Program 10.4 does. Notice that, instead of using sin(x)

directly, the program uses a function we define ourselves, named func.
If we ever want to use this program to integrate something other than
sin(x), we’ll only need to change this function definition. We can put
anything we want to inside func. It could be as simple as sin(x) or
as complicated as the “Red Baron” flight path we used in Chapter 9.
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Program 10.4: integrate.cpp

#include <stdio.h>

#include <math.h>

double func( double x ) {

double value;

value = sin(x);

return(value);

}

int main () {

double x, delta, area=0;

double height;

double xmin=0.0, xmax=M_PI;

int i, nsteps=5;

delta = (xmax-xmin)/nsteps;

x = xmin;

for ( i=0; i<nsteps; i++ ) {

height = ( func(x) + func(x+delta) ) / 2.0;

area += delta * height;

x += delta;

}

printf ( "Integral from %lf to %lf is %lf\n",

xmin, xmax, area );

}

Slicing an onion in preparation for
integrating it into dinner.
Source: Wikimedia Commons

The program specifies how many slices we want to use by setting the
value of nsteps. (It’s set to 5 here.) The variables xmin and xmax

set the range over which we want to integrate. Notice that we use the
symbol M_PI from math.h to set xmax, so we don’t have to type out a
long string of π’s digits.

Most of the program’s work is done in the “for” loop that works its
way through the slices, one at a time, adding each area to the total area.
As we go through the slices, we need to keep track of where we are
on the x axis. Before we start the “for” loop, we set the value of x
to xmin, and then we add the slice width (delta) to this when we’re
ready to go to the next slice.

To find the area of each slice, we multiply its average height by its
width (delta). See Figures 10.8 and 10.9.

https://commons.wikimedia.org/wiki/File:Matlagning_(2).jpg
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Exercise 53: Sines of the Times

1. Create, compile, and run Program 10.4. How close does
its approximation come to the true value of the area?

2. Now change nsteps to 10, recompile, and run again. Is
the answer closer to the true value? Try nsteps values
of 100 and 1000. Does the program take noticeably longer
if you use these large values for nsteps?

3. Now modify your program so that, instead of sin(x),
it finds the area under the curve sin(sin(x)) between
0 and π. (See Figure 10.15.) Remember that it’s not
possible to find an exact value for this integral mathemat-
ically. Does the computer have any trouble finding an
approximate solution? Write down this solution for later.
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Figure 10.15: sin(sin(x)) and sin(x)

So far, this looks pretty good! We can come up with approximate values
even for integrals that are impossible to solve exactly. Will this always
work? Unfortunately, there are some pitfalls to look out for.

Figure 10.16 illustrates one potential problem. If the function we’re
integrating varies rapidly compared to the size of our slices, we may
miss important features, possibly causing our estimate of the area to
differ greatly from the true value.

Figure 10.16: When integrating a
function with sudden spikes or dips, we
need to be careful to use a small
enough slice width so that we avoid
“stepping over” interesting features and
missing them.

Imagine what would happen if the spike in Figure 10.16 was very high.
Even worse, what if the function goes to infinity at some values of
x? Even mundane functions like tan(x) or 1/x have infinities that we
need to loook out for. The tangent of x goes to positive infinity as we
approach π/2 from the right, and to negative infinity as we approach
from the left!

If our program tried to find the value of the function at one of these
x values, it would crash, but if we avoid these x values we may be
missing a large part of the area we’re trying to estimate. The area in
the region around such points might even be infinite!
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Figure 10.17: Functions like 1/x and
tan(x) go to infinity at some values of x.
Our program would obviously have
trouble if we included these x values in
the range over which we tried to
integrate.

The trapezoid rule works well for a wide range of well-behaved func-
tions, but it’s important to be aware of the shape of the function you’re
integrating, and look out for problems like this. Even with ill-behaved
functions, though, we can still use the trapezoid rule to find the inte-
gral over regions that don’t include problematic points. We could, for
example, integrate tan(x) between 0 and 1 with no problem.
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But what about. . . ?

Wait a minute. Doesn’t Program 10.4 calculate func(x) for the same values of x multiple times?

Take a look at Figure 10.8 again. If Program 10.4 were calculating the area of the first slice it would use
func(xmin) for the height of the trapezoid’s left-hand side and func(xmin+delta) for the right-hand
side. For the second slice, it would use func(xmin+delta) for the left and func(xmin+2*delta)

for the right. On the third slice the program would use func(xmin+2*delta) for the left and
func(xmin+3*delta) for the right.

It takes the computer some time to process the statements inside a function. The program would run
faster if we didn’t have to calculate each of the middle func values twice. If func were more complicated,
or if we had a lot of slices, the amount of time saved could be large.

We can do a little algebra and eliminate the duplication. If we have n slices we could write the sum of
their areas like this:

A = ∆x
f (xmin) + f (xmin + ∆x)

2
+

∆x
f (xmin + ∆x) + f (xmin + 2∆x)

2
+ ... +

∆x
f (xmin + (n − 1)∆x) + f (xmax)

2

Collecting terms, we can rewrite the equation like this, so that we only calculate the value of f (x) once
for each value of x:

A = ∆x

[

f (xmin) + f (xmax)

2
+

n−1

∑
i=1

f (xmin + i∆x)

]

To take advantage of this, we could replace the loop in Program 10.4 with a loop like this:

double sum = 0;

...

for ( i=1; i<nsteps; i++ ) {

sum += func(x+delta);

x += delta;

}

area = delta*( (func(xmin) + func(xmax))/2.0 + sum );

There! We fixed it.
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10.8. Negative Areas
Summer is here and it’s time to fill the ol’ backyard pool! Let’s turn on
the faucet. How long will it be before we can dive in? If we know how
fast water is going into the pool, we should be able to calculate how
much water has accumulated after a given amount of time. If the flow
rate is given by a function r(t), then the amount of water at time t is:

amount of water =
∫ t

t0

r(t)dt

The function r(t) might look like the blocky solid line in the top graph
of Figure 10.18.
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Figure 10.18: Filling a pool. The top
graph shows the flow rate. Notice that a
leak corresponds to a negative flow rate
(water is flowing out of the pool instead
of into it). The bottom graph shows how
much water has accumulated in the pool
Right before the leak the pool contained
about 8,000 gallons of water, but the leak
drained some of that off.



numerical integration 345

The amount of water in the pool is given by the integral of this curve,
which is just the shaded area between the curve and the x axis in the
top graph of Figure 10.18.

This figure shows the pool being filled for a while at a constant rate of
17 gallons per minute. Eventually, we accumulate about 8,000 gallons
of water, as shown in the bottom graph, which shows the integral of
r(t) up to a given time.

Uh oh! after filling the pool, it sprang a leak! This let water run out of
the pool at a rate of 7 gallons per minute until we found the leak and
patched it. If r(t) is the rate of water going into the pool, that means
that r(t) had a negative value while the pool was leaking, as shown in
the top graph of Figure 10.18.

If we used a computer program to slice up this curve and calculate its
area, we’d find that the leak would contribute a negative amount to the
sum because the height of the slices in this region would be negative.
This is actually what we expect: The first part of the curve shows water
flowing into the pool, and the second part of the curve shows water
flowing out. To find out how much water we have at the end, we need
to subtract the water that escaped through the leak.

The important thing to know is that we don’t have to modify our
programs in any way because of this. It just gets taken care of automat-
ically when we multiply the height of a slice times its width. When
the function we’re integrating has a negative value, it contributes a
negative amount to the total area.
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10.9. A General-Purpose Trapezoid Integration

Function
We can use the trick we learned in Section 9.17 of Chapter 9 to cre-
ate a general-purpose function that can integrate anything using the
trapezoid rule. Take a look at the function trapint defined below:

You carry a “trapezoid bone” in your
wrist.
Source: Wikimedia Commons

double trapint ( double (*f)(double),

double xmin, double xmax,

int nsteps ) {

double x, delta, area=0;

double height;

int i;

delta = (xmax-xmin)/nsteps;

x = xmin;

for ( i=0; i<nsteps; i++ ) {

height = ( f(x) + f(x+delta) ) / 2.0;

area += delta * height;

x += delta;

}

return( area );

}

“trapint” estimates the integral of the function “f” between xmin

and xmax using the trapezoid rule. The argument nsteps specifies
the number of trapezoids.

Notice that the first argument given to trapint is the name of the
function we want to integrate. We could say cos, for example, to
compute the area under some section of the cosine function, or sqrt
to do the same for the square root function. But we aren’t limited to
the built-in functions. We also use trapint with a function we write
ourselves. The only restriction is that the function we use must return
a double value and take one double argument.
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Figure 10.19: The integral of cos(x)
between zero and π/2, approximated
by trapezoids.

Here’s how trapint might be used in a program:

area = trapint( cos, 0, M_PI/2.0, 5 );

The line above would calculate an estimate of the area under the cosine
function between zero and π

2 radians, using five trapezoidal slices. (See
Figure 10.19.)

https://commons.wikimedia.org/wiki/File:Carpus.svg
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Thomas Simpson, 1710-1761.
Source: University of St. Andrews

But what about. . . ?

Are trapezoids the best possible shape for numerical integration?
Not necessarily. There are other techniques that work better in
some circumstances. Sometimes these techniques will give a more
accurate estimate of the area. Sometimes they’ll give you an esti-
mate more quickly.

One common alternative to the “trapezoid rule” is called “Simp-
son’s rule”, named after 18th-Century British mathematician
Thomas Simpson. Instead of connecting two data points with
a straight line to make the top of each slice, Simpson’s rule draws
a section of a parabola through three adjacent points.

 16

 17

 18

 19

 20

 21

 0.8  1  1.2  1.4  1.6  1.8  2  2.2

In the graph above, the dashed line represents a section of a
parabola that approximates the shape of the curve. This parabola
forms the top of slice. As you can see, Simpson’s rule often fits a
curve better than the trapezoid rule. The area of the slice can be
determined from the parameters of this parabola and the width of
the slice.

There are many other numerical integration schemes. One of them
is the Monte Carlo method we’ll talk about in a later section of this
chapter. It doesn’t use slices at all!

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Simpson.html
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10.10. Estimating Volume
The integrals we’ve used so far measure 2-dimensional areas. Some-
times we’ll also need to estimate 3-dimensional volumes. We know
nice mathematical formulas that tell us the volume of some simple
geometrical shapes: a sphere, a rectangular box, or a cone, for example.

But sometimes we want to find the volume of a more complicated
shape. That’s OK. We can estimate the shape’s volume even if we don’t
have a formula that will give us an exact value. One way to do this is by
breaking the complicated shape up into simpler shapes, then adding up
their volumes. The best way of doing this will depend on the particular
shape we’re dealing with, but let’s look at a technique that will work
with one group of common shapes.

Figure 10.20: This vase has a
cylindrically symmetric shape.

Imagine that we’re given a shape that’s cylindrically symmetric about
some axis, like the lovely vase in Figure 10.20. By cylindrically symmet-
ric, I mean that the vase would look the same if we rotated it around on
the table. A cylinder or a cone would also be cylindrically symmetric
shapes.

Because of the vase’s symmetry, we could describe its shape completely
by just specifying the shape of its sides. This might be easier to see if
we lay the vase on its side, as in Figure 10.21. Now we can see that
this is similar to the 2-dimensional problems we did earlier. The curve
of the vase’s side could be approximately sliced into something like
trapezoids, and we could add up the volumes of these shapes to get an
estimate of the vase’s total volume.

We’re not calculating areas here, though. Now we’re calculating vol-
umes. The slices of our vase won’t be trapezoids, they’ll be some
3-dimensional shape. As you can see from Figure 10.22, the slices will
be truncated cones.
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Figure 10.21: We can graph the curves
that define the shape of the vase, and
approximate them with simpler shapes.

Figure 10.22: The vase’s volume could be
sliced into a bunch of truncated cones
that approximate its shape. The diameter
of the top is 2r2 and the diameter of the
bottom is 2r1, where r2 and r1 are the
radius of top and bottom.
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Fortunately there’s a formula that will tell us the volume of a truncated
cone, given its height, h, and the radius of its top and bottom circles,
r1 and r2. (Notice that in this case it doesn’t matter which is top and
which is bottom. The volume would be the same if we flipped the
shape over.) The formula is:

Volume =
1
3

π(r2
1 + r1r2 + r2

2)h

The values of r1 and r2 for each truncated cone are given by the height
of the curve in Figure 10.21. For a real vase, we could get these values
by just measuring the diameter of the vase at a few points. The data
might look like this:

0.0 3.2

1.2 4.9

2.5 4.1

3.7 1.8

4.9 1.1

6.2 3.0

where the first column is the height above the tabletop and the second
column is the vase’s diameter at that height. If we put these data into
a file named vase.dat we could write a program like Program 10.5
(vase.cpp) to read the file and estimate the vase’s volume.

Notice that this program looks a look like our earlier roadtrip.cpp
program (Program 10.3). It uses the same strategy for reading an
unknown number of data points from a file and using the intervals
between them. The main difference is that now we’re calculating the
volumes of truncated cones, using the formula above, whereas in the
earlier program we were calculating the areas of trapezoids.

We could use this this new program to estimate the volume of any
cylindrically-symmetric shape, based on some measurements of height
and diameter stored in a data file.
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Program 10.5: vase.cpp, Estimating volume based on measurements

#include <stdio.h>

#include <math.h>

int main () {

double height, diameter;

double oldheight, olddiameter;

double h,r1,r2;

double volume=0.0;

int nmeasurements=0;

FILE *input;

input = fopen("vase.dat","r");

while ( fscanf( input, "%lf %lf", &height, &diameter ) != EOF ) {

if ( nmeasurements != 0 ) {

r1 = olddiameter/2.0;

r2 = diameter/2.0;

h = height-oldheight;

volume += M_PI*( r1*r1 + r1*r2 + r2*r2 )*h/3.0;

}

oldheight = height;

olddiameter = diameter;

nmeasurements++;

}

fclose ( input );

printf ( "Total volume is %lf\n", volume );

}
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Sometimes the volume we need to estimate won’t belong to a physical
object like a vase that we can take measurements from. We might be
given a mathematical function that describes a shape in 3-dimensional
space, and asked to find the volume inside it. This would be analogous
to the 2-dimensional integration of a function that we did earlier, in
Program 10.4.

Program 10.6 (vase-func.cpp) uses a function to describe the shape
of the vase’s side, then divides the vase’s height up into five truncated-
cone-shaped slices and adds up their volumes. It works just like
Program 10.4, but calculates the volumes of truncated-cone-shaped
slices instead of the areas of trapezoids. The function func at the top
defines the shape of the vase’s side, and the values xmin and xmax are
the bottom and top of the vase, respectively.

Again, this program could be used to estimate the volume of any
cylindrically-symmetric shape. We’d just need to change the definition
of func and xmin and xmax appropriately.

Program 10.6: vase-func.cpp, Estimating volume based on a function

#include <stdio.h>

#include <math.h>

double func( double x ) {

double value;

value = 1.5 + sin(x);

return(value);

}

int main () {

double x, volume=0;

double xmin=0.1, xmax=2.0*M_PI;

double r1, r2, h;

int i, nsteps=5;

h = (xmax-xmin)/nsteps;

x = xmin;

for ( i=0; i<nsteps; i++ ) {

r1 = func(x);

r2 = func(x+h);

volume += M_PI*( r1*r1 + r1*r2 + r2*r2 )*h/3.0;

x += h;

}

printf ( "Integral from %lf to %lf is %lf\n",

xmin, xmax, volume );

}
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10.11. Monte Carlo Integration

Figure 10.23: Chickens, finding the
approximate value of an integral.
Source: Wikimedia Commons

Did you know that chickens can do calculus? It’s true. Let’s say we
wanted to find the area of the shaded shape in Figure 10.24. This could
be any shape, possibly one whose area can’t be exactly determined
mathematically. But, we’re smart chicken-farming programmers, so we
know how to find an approximate value for the area.

Figure 10.24: The ratio of pecks inside
the shape to pecks outside the shape is
approximately equal to the ratio of the
shape’s area to the area of its enclosure.

We walk into our chickenyard and draw the shape on the ground, then
go away and let the chickens walk about, pecking at the ground. We
watch from a distance and count how many times they peck anywhere
in the yard, and keep a separate count of the number of times they peck
inside the shape we’ve drawn.

Now we’re all set to estimate the area of the weird shape we’ve drawn.
We know the dimensions of our chickenyard, and can calculate its area.
We know the total number of pecks in the chickenyard, and we know
how many of those pecks were inside the weird shape. To keep things
clear, let’s define some variables to represent these things:

Atotal = The total area of the chickenyard
ntotal = The total number of pecks

nshape = The number of pecks inside the shape
Ashape = The unknown area of the shape

If the total number of pecks is large and evenly spread through the
chickenyard we’d expect that the following will be true:

Ashape

Atotal
=

nshape

ntotal

https://commons.wikimedia.org/wiki/File:Kluck_Kluck_(Boston_Public_Library).jpg
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Or, rearranging a little, we could say that

Ashape = Atotal

nshape

ntotal
(10.1)

We know all of the things on the right-hand side of this equation, so
we just need to plug them into a calculator to find Ashape.
Thanks Chickens!

"A balmy, restful peacefulness seemed to
reign everywhere. Even the old hen seemed
well satisfied. She scratched among the
stones and called to her chickens when she
found a treasure; and all the while clucked
to herself with intense inward satisfaction.
Waldo, as he sat with his knees drawn up to
his chin and his arms folded on them, looked
at it all and smiled. An evil world, a
deceitful, treacherous, mirage-like world, it
might be; but a lovely world for all that, and
to sit there, gloating in the sunlight, was
perfect. It was worth having been a little
child, and having cried and prayed, so one
might sit there."
—The Story of an African Farm, Olive
Schreiner (1883).
Source: Wikimedia Commons

Fortunately for those who live in apartments, we don’t need chickens in
order to use this technique. We can do the same thing with a computer
program.

As we’ve seen before, we can use the rand function to generate random
numbers. Instead of letting chickens peck, we can write a program that
generates pecks at random locations. Beyond that, the only thing our
program will need will be some way of knowing whether a particular
point lies inside the shape we’re interested in.

Let’s try doing it with a shape whose area we know exactly, so we can
see if our pecking technique really does do a good job of estimating the
area. Figure 10.25 shows a circular area inside a square chickenyard.
The circle has a radius of 1, and we know that the area of a circle is πr2,
so the area of this circle should be exactly π.
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Figure 10.25: A circular area with a
radius of 1, inside a square 1 × 1
“chickenyard”.

https://commons.wikimedia.org/wiki/File:Olive_Schreiner02.jpg
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Program 10.7 estimates the area of the circle by simulating chicken
pecks. It generates 1,000 random peck positions inside the chicken
yard, then checks each peck to see if it’s inside our area of interest. The
program keeps track of the number of pecks inside the area. After it’s
done pecking, the program calculates the area by using Equation 10.1,
above.

Figure 10.26: A 3-d version of our
pecking scheme.

Note that each random peck position is created by generating random
values for x and y. We do this by multiplying the width or height of the
chickenyard by a random number between 0 and 1, and then adding
the result to the minimum x or y value.

The function inside tells the program whether a given peck lies inside
the area we’re interested in. it checks to see if

√

x2 + y2 is less than or
equal to the circle’s radius. If the peck is inside, the function returns
the value “1”. Otherwise, it returns a “0”.

The inside function is the only part of the program that’s specific to
a circle. If we wanted to find the area of a different shape, we’d only
need to rewrite this function.

The program could be extended to three dimensions by adding a z

coordinate, and used to estimate volumes. In that case, we’d generate
random x, y, and z coordinate for each “peck”, and keep track of how
many landed inside a 3-d shape we were interested in (see Figure 10.26).

The Monte Carlo Casino, in the
Principality of Monaco
Source: Wikimedia Commons

The technique described in this section is known as “Monte Carlo
integration”. It takes its name from the gambling resort of Monte Carlo,
on the French Riviera. Like the dice-rolling gamblers at Monte Carlo,
our pecking program does its job by generating random numbers.

Consider the case of an 11-dimensional
integral in String Theory. This might be
utterly impossible to solve exactly, but
by generating thousands of sets of 11

coordinate values, we could estimate its
value by Monte Carlo methods.
Source: Wikimedia Commons

The Monte Carlo technique has several virtues:

• As we mentioned above, the Monte Carlo method can easily be
extended to higher dimensional problems.

• To use this technique you only need two things:

– You need a way to determine whether a point is inside the shape
you’re interested in, and

– You need to be able to draw a “chickenyard” of a known area that
completely encloses the shape.

• Although other methods are often more efficient for integrating 2-d
functions, the Monte Carlo technique is quite efficient for higher-
dimensional integrals.

https://commons.wikimedia.org/wiki/File:Le_casino_de_Monte-Carlo.JPG
https://commons.wikimedia.org/wiki/File:Calabi_yau.jpg
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Program 10.7: peck.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

int inside ( double x, double y ) {

double radius = 1.0;

if ( sqrt( x*x + y*y ) <= radius ) {

return ( 1 );

} else {

return ( 0 );

}

}

int main () {

double xmin = -1, xmax = 1;

double ymin = -1, ymax = 1;

double atotal;

double ashape;

double xrange, yrange, x, y;

int ntotal = 1000;

int peck;

int nshape=0;

xrange = xmax - xmin;

yrange = ymax - ymin;

srand(time(NULL));

for ( peck=0; peck<ntotal; peck++ ) {

x = xmin + xrange*rand()/(1.0+RAND_MAX);

y = ymin + yrange*rand()/(1.0+RAND_MAX);

if ( inside( x, y ) ) {

nshape++;

}

}

atotal = (xmax-xmin) * (ymax-ymin);

ashape = atotal * nshape/ntotal;

printf ( "The area of the shape is %lf\n", ashape );

}
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Figure 10.27: Integrating sin(sin(x))
using the Monte Carlo method.

Exercise 54: Chicken Pot Pi

Create, compile, and run Program 10.7. Does it give a good
approximation of the value of π? Try increasing the number
of pecks to 100,000. Does this improve the program’s results?

Now try integrating the sin(sin(x)) function again, this
time using the Monte Carlo technique. To do this, make a
modified version of Program 10.7 as follows:

• Copy peck.cpp to peck2.cpp:

cp peck.cpp peck2.cpp

• Change the inside function so it looks like this:

int inside ( double x, double y ) {

if ( y <= sin(sin(x)) ) {

return ( 1 );

} else {

return ( 0 );

}

}

• Change the limits of the “chickenyard” to these values:

double xmin = 0, xmax = M_PI;

double ymin = 0, ymax = 1;

Compile and run your new peck2.cpp program. Does
its result agree with the value you got earlier using the
trapezoid rule to integrate sin(sin(x))?

sin(x)dx = 2
Figure 10.28: A chickintegral
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10.12. Conclusion

As Mick Jagger says, “You can’t always
get what you want, but if you try
sometimes you just might find you get
what you need.”
Source: Wikimedia Commons

The trapezoid rule and Monte Carlo integration techniques are both
useful tools for dealing with recalcitrant integrals. They let a program-
mer find approximate values for the area under a curve defined by data
points, and find arbitrarily precise approximations to a wide array of
definite integrals of functions, many of which can’t be solved exactly.

https://commons.wikimedia.org/wiki/File:Rolling_Stones_04.jpg
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Practice Problems
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Figure 10.29: A graph of the cosine
function. The region between x = 0 and
x = π/4 is shaded.

1. Copy Program 10.4 into a new program named cosarea.cpp and
modify it so that it estimates the integral of the cosine function
between x = 0 and x = π/4 using ten slices. (See Figure 10.29.) The
answer answer should be about 0.7.

Figure 10.30: A cross-section of the Rio
Grande near Bernalillo, NM. (Trout not
to scale.)
Data from: J.E. Veenhuis, 2002, Summary of Flow Loss between
Selected Cross Sections on the Rio Grande in and near Albuquerque,
New Mexico: U.S. Geological Survey Water-Resources Investigations
Report 02-4131.

2. Figure 10.30 shows the shape of the Rio Grande river bed near
Bernalillo, New Mexico. Researchers measured the depth of the
water at various positions as they waded across the river from one
bank to the other. The resulting graph shows what a slice through
the river would look like. We can use this data to estimate the cross-
sectional area of the river. It would just be the shaded area shown in
Figure 10.30, which is the area between the water’s surface and the
streambed. The data collected by the researchers is shown in Figure
10.31.
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Figure 10.31: Rio Grande cross-section
data. The first column is distance and
the second column is water depth, both
measured in feet.

Using Program 10.3 as a starting point, write a program named
riogrande.cpp that finds the river’s cross-sectional area. The pro-
gram should read a data file named rio-grande.dat that contains
the data in Figure 10.31. At the end, the program should print an
estimate of the area, in square feet. (Note that the answer will be
negative since all of the heights are below the water surface. You can
just ignore the minus sign.)

Your program should come up with an area of about 480 square
feet. If we know this area, and we measure how fast the water is
flowing (by dropping in a leaf and timing it between two points, for
example) we can calculate the flow rate of water through the river.
For example, if the water is flowing at 2 feet per second, that would
mean that the flow rate is 480 × 2 = 960 cubic feet per second. That’s
over 7,000 gallons per second!

The Rio Grande near Bernalillo, New Mexico.Source: Wikimedia Commons

https://pubs.usgs.gov/wri/wri02-4131/
https://pubs.usgs.gov/wri/wri02-4131/
https://pubs.usgs.gov/wri/wri02-4131/
https://pubs.usgs.gov/wri/wri02-4131/
https://en.wikipedia.org/wiki/File:BosqueNM.jpg
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3. The Lorentzian function is often used to describe the shape of lines
in a spectrum. It can be written as:

1

πγ

[

1 +
(

x−x0
γ

)2
]

where x0 and γ are parameters that control the shape of the function.
Figure 10.32 shows a Lorentzian function with x0 = 0 and γ = 2,
over the range x = −10 to x = 10, divided into five or six slices.
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Figure 10.32: A Lorentzian function
divided into five and six slices.

Write a program named lorentzian.cpp that estimates the area
under this curve. Look at Program 10.4 for inspiration. The program
should ask you (using scanf) how many slices you want to use, and
it should print the estimated area when it’s done.

If you start out with a small number of slices (two, for example)
and try the program several times with increasing numbers of slices,
you should see that the estimates of the area jump up and down
at first, then settle into a value of around 0.87. Figure 10.32 shows
why this happens. For a small number of slices, odd numbers
tend to underestimate the curve’s area, and even numbers tend to
overestimate it.

(Note: The symbol γ is the Greek letter gamma, but you’ll run into
trouble if you try to have a variable named gamma in your program.
This is because C’s math library contains a function named gamma.
If you give a variable the same name, the compiler will get confused.
Instead, you might use g to represent γ in your program.)

Figure 10.33: A sphere in a box. The
“pecks” are represented by dots.

4. Program 10.7 (peck.cpp) estimates the area of a circle using the
Monte Carlo method. Copy this program into a new file named
sphere-peck.cpp and modify the new program so that it esti-
mates the volume of a sphere.

To do this, you’ll need to add a z dimension to go along with the x
and y dimensions that are in the old program. That means adding
variables named z, zmin, zmax, zrange.

The volume of the “chickenyard” will be the box surrounding the
sphere, as shown in Figure 10.33. The volume of a box is just its
height × width × depth.

You’ll need to modify your inside function so that it takes three
arguments instead of just two. The distance of a “peck’ from the
origin will be

√

x2 + y2 + z2.

The real volume of the sphere is 4
3 π or approxmiately 4.19. Your

program should come up with a value similar to this if you use a
thousand or more pecks.



numerical integration 361

5. Find the approximate area under the curve y = 1 − x2 between
x = −1 and x = 1 (see Figure 10.34) using two different techniques:
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Figure 10.34: A parabolic area between
x = −1 and x = 1.

(a) Copy Program 10.4 into a new file named parabola.cpp. Mod-
ify the new program so that, instead of finding the integral of the
sine function, it finds the integral of 1 − x2 over the range from
x = −1 to x = 1.

To do this, you’ll need to change the func function and you’ll
need to change the values of xmin and xmax.

Compile and run your program. It should find that the area is
approximately 4

3 . If the result you get initially isn’t very close, try
increasing the value of nsteps (the number of slices).

(b) Copy Program 10.7 into a new file named parabola-peck.cpp.
Modify the program so that it finds the integral of 1 − x2 over the
range from x = −1 to x = 1.

To do this, you’ll need to modify the inside function. The
function should return a 1 for points in the shaded region of Figure
10.34 and zero otherwise. (Hint: Check to see if y < 1-x*x.)
You’ll also need to change the bounds of your chickenyard, since
ymin should now be zero.

Compile and run your program. It should find that the area is
approximately 4

3 . If the result you get initially isn’t very close, try
increasing the value of ntotal (the number of pecks).
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6. There’s a set of special functions named “Bessel functions” that are
used in describing the shape of a vibrating drumhead (see Figure
10.35). In C, the first Bessel function is called j0. Find the approxi-
mate area under the curve y = j0(x) + 1 between x = 0 and x = 16
(see Figure 10.36) using two different techniques, while looking to
see which technique gives a good answer more quickly:

Figure 10.35: The shape of a vibrating
drumhead can be described with the
help of Bessel functions.
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Figure 10.36: The function j0(x) + 1
between x = 0 and x = 16.

(a) Copy Program 10.4 into a new file named bessel.cpp. Modify
the new program so that, instead of finding the integral of the
sine function, it finds the integral of j0(x) + 1 over the range from
x = 0 to x = 16.

Instead of setting nsteps equal to 5, modify the program so
that it tries many different values of nsteps. Make a loop that
tries each value of nsteps between 1 and 1,000. For each value,
print nsteps and the estimated area. The result should be two
columns of numbers, separated by a space.

Remember to reset your estimate of the area to zero whenever
you change to a new value of nsteps. You’ll need to modify the
func function and you’ll need to change the values of xmin and
xmax.

Compile and run your program. When nsteps is large, you
should find that the area is approximately 17.1. Notice that the
program’s estimate of the area is very different from this when
nsteps is small, but it rapidly appraches the correct value.

(b) Copy Program 10.7 into a new file named bessel-peck.cpp.
Modify the program so that it finds the integral of j0(x) + 1 over
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the range from x = 0 to x = 16.

Instead of setting ntotal to 1,000, try different values of ntotal.
Make a loop that tries each value of ntotal between 1 and 1,000.
For each value, print ntotal and the estimated area. The result
should be two columns of numbers, separated by a space.

Remember to reset nshape to zero whenever you change the
value of ntotal. You’ll need to modify the inside function. The
function should return a 1 for points in the shaded region of Figure
10.36 and zero otherwise. (Hint: Check to see if y<j0(x)-1.)
You’ll also need to change the bounds of your chickenyard, since
xmin and ymin should now be zero, and xmax should be 16.

Compile and run your program. It should find that the area is
approximately 17.1. Notice that the program eventually gets close
to this value, but not until ntotal is pretty large.

If we ran our two programs like this:

./bessel > bessel.dat

./bessel-peck > bessel-peck.dat

we could compare the two output files by plotting them with gnu-

plot. The result is shown in Figure 10.37. The vertical axis shows
our estimate of the area and the horizontal axis shows how many
slices or pecks we needed to get that estimate. As you can see, the
Monte Carlo program bessel-peck.cpp eventually gets close to
the right answer, but it takes many “pecks” to get there. The other
program (bessel.cpp) gets close to the right answer after only a
few trapezoidal slices, and stays there from then on.
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Figure 10.37: A comparison of area
estimates for different values of nsteps
or ntotal. Notice that the x axis is
logarithmic, so we can pack a large
range into it while still being able to see
the small values. In gnuplot you can do
this by saying set log x before you
use the plot command.
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Figure 10.38: The intersection of two
parabolas.

7. Consider the graph displayed in Figure 10.38. It shows two parabolas,
with the area between them shaded. The parabolas are described by
these two equations:

y = 1 − x2 Top parabola

y = x2 − 1 Bottom parabola

(a) Can you write a program that estimates this area using the Trape-
zoid Rule? Call the program 2parabola.cpp. You might look
at Program 10.4 as an example to get you started.

(b) Can you write a program that estimates the area using Monte
Carlo methods? Call this program 2parabola-peck.cpp. Look
at Program 10.7 for inspiration.

Both programs should find that the area is about 8
3 (≃ 2.67).



11. Libraries

11.1. Introduction

“Pay no attention to the man behind the curtain!”

—The Wizard of Oz

Ah, but we must, dear Wizard. The time has come to lift the veil that’s
hidden some of C’s inner workings. In particular, we’ll now take a look
at the place where the C compiler finds all of those functions we’ve
been using: things like printf, sqrt, and rand. We’ve seen that we
can write our own functions, but where do these “built-in” functions
live. Somewhere over the rainbow?

The Wonderful Wizard of Oz, by L. Frank
Baum (1900). In 1902 it was made into a
Broadway musical, and a film in 1939.
Source: Wikimedia Commons

As we’ll see, these functions are collected in “libraries”. This kind of
library contains pre-compiled snippets of code that g++ can plug into
your programs.

Some programmer long ago wrote a function called sqrt, just as
you’ve written functions in your own programs. This function was then
converted into binary instructions that a computer can understand, and
stored in a library for later use. When g++ compiles a program that
uses the sqrt function, it finds this chunk of binary instructions in the
library and inserts it into your program.

If you write a program that uses a function named flyingmonkeyspeed,
g++ first looks at your cpp file to see if you’ve written your own func-
tion with that name. If not, g++ then looks through a standard list of
libraries to see if one of them contains a function with that name. If no
function is found in either place, g++ gives you an error message.

Source: Wikimedia Commons

In this chapter we’ll explore libraries and other strange creatures related
to the inner workings of the g++ compiler. Let’s take a stroll down the
Yellow Brick road and see what we find.

http://www.gutenberg.org/ebooks/43936
https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_006.png
https://commons.wikimedia.org/wiki/File:BauW170B.jpg
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11.2. The g++ Assembly Line
L. Frank Baum’s The Wonderful Wizard of Oz, published in 1900, was
an American fairy tale that celebrated the ingenuity and inventiveness
that was in the air at that time. Orville and Wilbur Wright were
making manned glider flights at Kitty Hawk. The Automobile Club
of America held the first automobile race in the United States. Henry
Ford would found the Ford Motor Company three years later, based on
revolutionary principles of assembly line production.

The dark side of Henry Ford: Ford was
an outspoken antisemite, and mandated
the distribution of a copy of the rabidly
antisemitic newspaper, The Dearborn
Independent, with each Ford automobile
sold. In Germany, Nazi leaders cited
Ford’s influence on their movement.
Ford is mentioned favorably in Hitler’s
Mein Kampf and, in a 1931 interview,
Hitler said that Ford was his
"inspiration".
Source: Wikimedia Commons

Ford’s assembly lines are a good analogy for what we’ll be talking
about in this chapter. To understand why, we’ll need to look inside
g++.

We’ve learned that g++ takes a line like this:

printf ("Hello, world!\n");

and translates it into instructions the computer can understand, like
this:

1001110001010111011110001001111001.......

g++ actually does this job in three discrete steps, called “preprocessing”,
“compiling”, and “linking”, and interesting things happen at each stage.

When you type g++ -Wall -o hello hello.cpp you can imagine
your program travelling along an assembly line. At each stop along the
assembly line, the program is modified or translated in some way, until
a shiny new binary program pops out at the far end, ready to be run.

g++ Assembly Line

Pre-
Processing Compiling Linking

Figure 11.1: g++ does its work in several
stages.

So far, we’ve only talked about the middle step, where g++ translates C
language statements into binary. Now let’s look at the other two steps,
starting with “preprocessing”.

https://commons.wikimedia.org/wiki/File:Henry_ford_1919.jpg
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11.3. Preprocessing
You might be surprised to learn that the #include statements we’ve
been putting at the top of our programs aren’t really part of the C
language at all. Instead, they belong to a separate “C preprocessor
language”. All of the statements in this language begin with #. The
C preprocessor provides you with some handy shortcuts that make
writing C programs easier. The most useful of these is #include.

When you compile a program, g++ begins by running your file through
the preprocessor. When the preprocessor sees #include <stdio.h>

it searches through a predefined list of directories1, looking for a file 1 Remember that “directory” is just
another word for “folder”.named stdio.h. When it finds the file, the preprocessor inserts this

file’s contents into your program just as though you had typed them
directly in at the spot where you said #include <stdio.h>. If
stdio.h can’t be found (maybe you typed its name wrong?) you’ll
get an error message.

Figure 11.2: The C preprocessor takes
the contents of stdio.h and inserts
them into your program.The “.h” in the name of files like stdio.h stands for “header”. The

content of these files, when #include’ed, acts as a header at the top
of your program that defines some symbols (like M_PI from math.h),
or prepares your program to use some functions.

There are a couple of variations on the #include statement, and how
they behave might vary slightly from one C compiler to another. In
general:



368 practical computing for science and engineering

• #include "file.h", with quotes around the file name, first looks
for file.h in the same directory as the program, then searches through
the predefined list of directories.

• #include <file.h>, with angle brackets2 around the file name, 2 Also known as “less than” and
“greater than” symbols.only looks through the predefined list of directories.

As you’ve probably guessed by now, you can write your own header
files to be included in your program. If you do this, best practice is to
use #include "file.h" for your own files, and reserve #include
<file.h> for system files.

But what about. . . ?

Can you find out where g++ will look for files like stdio.h?

The list of directories that are searched will vary from one kind of
computer to another, but you can see the list by typing the follow-
ing magic command, which invokes the preprocessor (named cpp)
directly:

echo | cpp -xc++ -Wp,-v -P

The output should look something like this:

#include "..." search starts here:

#include <...> search starts here:

/some/directory/some/where

/some/other/directory

/maybe/another/directory

End of search list.

If you want to spy on what a program looks like after be-
ing run through the preprocessor, type “cpp -P hello.c >

hello.out” and look at hello.out with nano. Near the bot-
tom of the file you’ll see the C statements from your original
program, but most of the file will be the contents of stdio.h.

11.4. Some Handy Random-Number Functions

Source: Wikimedia Commons

Let’s look in on Dorothy and see how she’s progressing down the
Yellow Brick Road. Hmm. It looks like she’s still in Munchkinland.
Those pesky little Munchkins are swarming around her, dancing and
singing and generally getting underfoot. Sheesh! How’s she ever
supposed to make it to the Emerald City? And the Wicked Witch is
looking for her, too. That swarm of Munchkins is like a big, neon,

https://commons.wikimedia.org/wiki/File:Munchkins.png
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“Come and Get Me!” sign.

Oh well. Since we’re programmers, this whole situation just begs to
be simulated. Let’s try to make a model of the Munchkin distribution
around Dorothy.

We’ll probably need some random numbers to do that. Until now, we’ve
been using the rand function directly, but we know how to write our
own functions now, so let’s write one that makes it easier to generate
one sort of random numbers we’re often interested in. Take a look at
the function rand01 below.

double rand01 () {

static int needsrand = 1;

if ( needsrand == 1 ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}
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Figure 11.3: Histogram of 100,000

pseudo-random numbers generated by
rand01.

The function rand01 generates a pseudo-random real number be-
tween zero and one (see Figure 11.3). The most important part of
the function is just a return statement that sends back the value
rand()/(1.0+RAND_MAX). We’ve used this in lots of programs al-
ready, but it’s much easier to type rand01 than “rand()/(1.0+RAND_MAX)”.

The function also saves us work in another way. Remember how
we used the srand function to initialize the pseudo-random number
generator so we get a different set of numbers each time we run the
program? The rand01 function takes care of that for us.

To make sure it only uses srand once, the function defines a variable
called “needsrand” (“need srand”) that starts out with a value of
1. The first time rand01 is used, it invokes srand and then sets
needsrand to zero. The next time rand01 is used it checks the value
of needsrand and discovers that it doesn’t need to use srand again.

Notice that needsrand is defined as “static”. As we discussed in
Chapter 9, variables inside functions are wiped out when the func-
tion finishes unless we declare them static. Since we want to use
needsrand to remember what we did the last time rand01 was used,
this variable needs to be static.
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Let’s assume that the Munchkins are swarming around Dorothy, each
trying to get as close to her as possible, and elbowing each other out of
the way occasionally. We might assume that the density of Munchkins
would be highest near Dorothy, and fall off like a Normal curve at
larger distances from her.

Figure 11.4: A Normal (bell-shaped)
distribution. It resembles a
slightly-melted witch’s hat.

How can we generate pseudo-random numbers distributed like this? It
turns out that there’s a handy statistical trick for generating numbers
in an approximately Normal distribution3. All we need to do is take 3 Why does this magic work? Unfor-

tunately, that’s beyond the scope of
this book, but in general it relies on the
Central Limit Theorem, mentioned in
Chapter 7

12 numbers generated by rand01, add them up, and subtract 6. The
numbers obtained this way will be distributed approximately like a
Normal distribution with a mean value of 0 and a standard deviation
of 1 (see Figure 11.5.). That’s what this function named normal does:

double normal () {

int nroll = 12;

double sum = 0;

int i;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}
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Figure 11.5: Histogram of 100,000

pseudo-random numbers generated by
normal.

With those two functions, we’re ready to simulate the distribution
of Munchkins around Dorothy, as they might appear when viewed
through the Wicked Witch’s crystal ball. That’s what Program 11.1
does.
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Program 11.1: munchkin.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

const int nmunchkin=1000; // Munchkin population.

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}

void xydump ( int npoints, double x[], double y[], char filename[] ) {

FILE *output;

int i;

output = fopen( filename, "w" );

for ( i=0; i<npoints; i++ ) {

fprintf( output, "%lf %lf\n", x[i], y[i] );

}

fclose ( output );

}

int main () {

int i;

double x[nmunchkin], y[nmunchkin];

double r, theta;

char filename[] = "munchkin.dat";

for ( i=0; i<nmunchkin; i++ ) {

r = normal();

theta = 2.0*M_PI*rand01();

x[i] = r*cos(theta);

y[i] = r*sin(theta);

}

xydump( nmunchkin, x, y, filename );
}
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Figure 11.6: The view from the Witch’s
Munchkin-Scope.
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Notice that, for convenience, we’ve also created a function named
xydump that writes the x and y coordinates of the Munchkin’s positions
into a file. When plotted with gnuplot, the result looks like Figure 11.6.
(For this figure, I’ve turned on a grid by giving gnuplot the command
“set grid”.)

Program 11.1 gets the x and y coordinates by generating a random
distance from Dorothy (r), with a Normal distribution centered on
her, and a random angle (theta). A little trigonometry turns these
numbers into the Cartesian coordinates x and y.

11.5. Making a Header File
Program 11.1 contains several functions that might be useful in other
programs. We often need random numbers, and we often dump data
into a file. We could always just copy the functions into the next
program we write, but let’s think about how we might make it easier
to re-use these functions.

Dynamism of a Man’s Head, by Umberto
Boccioni (1913).
Source: Wikimedia Commons

Take a look at Program 11.2. This program does the same thing as
Program 11.1, but it’s a lot shorter! That’s because we’ve shoveled all
of the functions (and our nmunchkins variable) into a new header file
that we call munchkin.h.

Speaking of heads, Thomas M. Disch’s
short story “Fun with Your New Head”
is well worth reading.

Program 11.2: munchkin.cpp, with new header file

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "munchkin.h"

int main () {

int i;

double x[nmunchkin], y[nmunchkin];

double r, theta;

for ( i=0; i<nmunchkin; i++ ) {

r = normal();

theta = 2.0*M_PI*rand01();

x[i] = r*cos(theta);

y[i] = r*sin(theta);

}

xydump( nmunchkin, x, y, "munchkin.dat" );

}

https://commons.wikimedia.org/wiki/File:Dynamism_of_a_Man%27s_Head_by_Umberto_Boccioni,_1913.jpeg
https://en.wikipedia.org/wiki/Under_Compulsion
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Notice that we’ve used #include "..." instead of #include <...>,
since this is a header file we’ve written ourselves (not a system file)
and we’ll keep it in the same directory where we keep munchkin.cpp.
The file munchkin.h just contains the stuff we left out when we went
from Program 11.1 to Program 11.2. It looks like this:

“I’ve got a header, but I’m still a
no-brainer!”
Source: Wikimedia Commons

Program 11.3: munchkin.h

const int nmunchkin=1000; // Munchkin population.

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}

void xydump( int npoints, double x[], double y[], char filename[] ) {

FILE *output;

int i;

output = fopen( filename, "w" );

for ( i=0; i<npoints; i++ ) {

fprintf( output, "%lf %lf\n", x[i], y[i] );

}

fclose ( output );

}

We can compile Program 11.2 by typing g++ -Wall -o munchkin

munchkin.cpp, just like any other program we’ve written. During the
preprocessing phase, g++ replaces “#include "munchkin.h"” with

https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_009.png
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the contents of munchkin.h, and then proceeds just as though we’d
typed those things directly into our program when we wrote it.

This is clearly one way that we could re-use our functions in another
program. The next time we write a program that needs these functions,
we can just add the line #include "munchkin.h" at the top and
we’ll have them.
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Figure 11.7: Exercise 55 should produce
a graph like this.

Exercise 55: Munchkin Functions

Create the file “munchkin.h” (Program 11.3). Write a
program named normaltest.cpp that uses #include

"munchkin.h" to obtain the Munchkin functions we’ve
written.

By using the normal function, have the program write out
10,000 pseudo-random numbers distributed in a Normal
distribution.

Run the program like this:

./normaltest > normaltest.dat

then plot normal.dat using the gnuplot command plot

"normal.dat". The result should look like Figure 11.7.

11.6. Some Statistical Functions
Let’s see how far Dorothy has gotten while we were simulating Munchkins.

Oh no! She’s about to cross the poppy field! I wonder if she’ll make it
across without falling asleep? It looks like another simulation is called
for.

When Baum wrote The Wonderful
Wizard of Oz poppies brought to mind
the soporific qualities of opium. By the
time the book had become the 1939 film,
poppies brought to mind the darker
memories of World War I’s Flanders
Fields.
Source: Wikimedia Commons

Program 11.4 is the result. It simulates 1,000 runs through the poppy
field. During each run, the time spent in the field is broken up into
1-minute segments. Using a “poppytoxicity” that tells us the proba-
bility of falling asleep after one minute’s exposure to the poppies, and a
random number (like rolling dice), the program tests to see if Dorothy
fell asleep during each 1-minute segment. Every time she makes it
all the way across the poppy field, the program increments a counter
variable named nsuccess.

At the end, the program tells us the maximum distance covered in any

https://commons.wikimedia.org/wiki/File:If_Ye_Break_Faith_-_Victory_bonds_poster.jpg
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run, the mean distance of all runs, and the standard deviation of the
run distances.

The program uses the random-number functions from our previous
program by include’ing munchkin.h. You’ll notice that the pro-
gram uses several variables that aren’t visibly defined: dorothyspeed,
poppytoxicity, and poppyfieldsize. At the bottom of the pro-
gram there are also references to some new functions: maxelement,
mean, and stddev. These missing things are all defined in a new
header file named poppy.h.

The variables defined there look like this:

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

Notice that we’ve declared each of these variables (and nmunchkin

in munchkin.h) to be “const”. This tells the compiler that these
numbers are constants, and shouldn’t change. If we accidentally tried
to change one of these values somewhere in our program, the compiler
would give us an error message.

Zwei Schlafende Maedchen auf der
Ofenbank, by the Swiss artist Albert
Anker (1895).
Source: Wikimedia Commons

We also define some useful new functions in poppy.h (see “Program”
11.5). The first of these is mean, which tells us the mean value of an
array of values. Similarly, the function stddev tells us the standard
deviation of the values. These functions use techniques we talked about
in Chapter 7. The last new function is maxelement, which finds the
element number of the biggest value in an array. This is a function
we’ve used already, in Program 9.14 in Chapter 9.

Poor Dorothy! With the running speed, toxicity, and field size we’ve
given it, the program says she’s very unlikely to make it across the field.
On average, she would only make it about 6% of the way across, and
even in the luckiest case she only gets 2

3 of the way:

0 trials ended in success.

Max distance = 0.666667 miles

Mean distance = 0.061200 miles

Std. Dev. = 0.091728 miles

https://commons.wikimedia.org/wiki/File:Anker_Zwei_schlafende_M%C3%A4dchen_auf_der_Ofenbank.jpg
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Program 11.4: poppy.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "munchkin.h"

#include "poppy.h"

int main () {

double delta;

double distance;

double trial[1000];

int i;

int nsuccess = 0;

delta = dorothyspeed/60.0; // Distance covered in 1 min.

for ( i=0; i<1000; i++ ) {

distance = 0;

while (1) {

if ( rand01() <= poppytoxicity ) {

break;

}

distance += delta;

if ( distance >= poppyfieldsize ) {

nsuccess++;

break;

}

}

trial[i] = distance;

}

printf ("%d trials ended in success.\n", nsuccess );

printf ( "Max distance = %lf miles\n", trial[ maxelement(1000,trial) ] );

printf ( "Mean distance = %lf miles\n", mean(1000,trial) );

printf ( "Std. Dev. = %lf miles\n", stddev(1000,trial) );

}
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Program 11.5: poppy.h

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

double mean ( int nelements, double array[] ) {

int i;

double sum=0;

for ( i=0; i<nelements; i++ ) {

sum += array[i];

}

return ( sum/(double)nelements );

}

double stddev ( int nelements, double array[] ) {

int i;

double sum=0;

double average;

average = mean( nelements, array );

for ( i=0; i<nelements; i++ ) {

sum += pow(array[i]-average, 2);

}

return ( sqrt( sum/(nelements-1) ) );

}

int maxelement ( int nelements, double array[] ) {

double max=0;

int i, imax;

for ( i=0; i<nelements; i++ ) {

if ( array[i] > max ) {

max = array[i];

imax = i;

}

}

return ( imax );

}
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Exercise 56: Run Dorothy Run!

Create the files poppy.cpp (Program 11.4) and poppy.h

(Program 11.5).

Compile and run the program to verify that your results
match those obtained above. Then modify poppy.h by
increasing Dorothy’s speed. Re-compile the program and
run it again. How fast does Dorothy need to run in order
to have about a 50/50 chance of making it across? (In other
words, in order to make it across successfully in 50% of the
1,000 trials.)

11.7. Some Histogram Functions
We can imagine that we might continue like this through our whole
programming career, creating new functions and saving them in header
files for later use. But what if we had thousands of functions, some of
them long and complex. That’s the case with C’s collection of standard
functions.

It could take g++ several minutes to compile the contents of a very
long header file, or a bunch of header files, containing thousands of
functions. We don’t want to wait that long to compile our program,
especially if we only need one or two functions from our collection.

Let’s try writing a new program, and use it as an opportunity to explore
another way of saving functions for later use. What shall we write?
We’ll look to Dorothy again for inspiration.

Thanks to Glinda the Good, Dorothy has made it out of the poppy field,
but now (gasp!) she’s being chased by a swarm of flying monkeys.

The swarm contains some energetic young monkeys who always want
to race ahead, and some lazy monkeys who always lag behind. When
they start out chasing Dorothy they’re all flying together, but after a
mile or two they’ve spread out, with the fast flyers in front and the
slower ones at the rear.

For some reason, the town of Motala,
Sweden, has on its coat of arms two
flying monkeys and a propeller. This
clearly deserves an explanation, but I
can offer none.
Source: Wikimedia Commons

Let’s write a program to make a histogram of the spatial distribution of
the flying monkeys after they’ve flown for an hour. We’ll need to use
our random-number functions to set the speeds of the monkeys, and

https://commons.wikimedia.org/wiki/File:Motala_stad_vapen.svg
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we can use our statistical functions to check the mean speed to make
sure it looks reasonable. The result is Program 11.6.

The first thing you’ll notice is that the program include’s the file oz.h
instead of either of the header files we’ve written so far. Among other
things, this file contains definitions for some new constants that we’ll
be using:

const int nmonkeys = 1000; // Number of flying monkeys in swarm.

const double meanmonkeyspeed = 25; // mph, same as an unladen European swallow.

const double monkeyspeedspread = 5; // mph, std. dev. of monkey speeds.

The program starts out by setting the speeds of the monkeys. It does this
by starting with the mean monkey speed4, then adding or subtracting 4 By this we mean mean monkey speed,

not mean monkey speed, although the
latter might be appropriate too.

some random amount based on our normal function. The program
also initializes the position of each monkey to “0 miles” at this point.

In the program’s second loop it steps through 60 minutes of time,
minute by minute. In each “time slice” the program moves each monkey
forward by an amount based on that monkey’s speed.

After 60 minutes have passed, we make a histogram5 of the monkeys’ 5 If you’ve forgotten how histograms
work, take another look at Chapter 7.current positions. We start out by using a new function (which we’ll

see soon) named resethist to set all of this histogram bins to zero.

The program then loops through all of the monkeys and drops a “virtual
marble” into the appropriate histogram bin for each, using another
new function named addtohist. When it’s all done with this, the
program dumps the histogram data into a file, using our last new
function histdump.

The output file (monkey.dat) will contain two columns: the distance
travelled, and the number of monkeys that have travelled that distance.
We could plot this with gnuplot and get a graph similar to Figure
11.8.

11.8. Linking
Okay, so that’s a pretty picture (if you’re into that kind of thing), but
how did we get Program 11.6 to compile? Did we just pack all of our
functions and constant definitions into the header file named oz.h?

No, we did something a little fancier. We created a library of Oz-related
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Program 11.6: monkey.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "oz.h"

int main () {

double speed[nmonkeys]; // Speed of each monkey.

double position[nmonkeys]; // Total distance flown by each monkey.

int minute;

int monkey;

double xmin, xmax;

int nbins = 50;

int bin[nbins];

char filename[]="monkey.dat";

for ( monkey=0; monkey<nmonkeys; monkey++ ) {

speed[monkey] = meanmonkeyspeed + monkeyspeedspread*normal();

if ( speed[monkey] < 0.0 ) {

speed[monkey] = -speed[monkey]; // "Hey buddy, turn around!"

}

position[monkey] = 0.0;

}

printf ( "Min speed = %lf\n", speed[ minelement(nmonkeys,speed) ] );

printf ( "Max speed = %lf\n", speed[ maxelement(nmonkeys,speed) ] );

printf ( "Mean speed = %lf\n", mean( nmonkeys, speed ) );

for ( minute=0; minute<60; minute++ ) {

for ( monkey=0; monkey<nmonkeys; monkey++ ) {

position[monkey] += speed[monkey]/60.0;

}

}

resethist(nbins,bin);

xmin = position[ minelement(nmonkeys,position) ];

xmax = position[ maxelement(nmonkeys,position) ];

for ( monkey=0; monkey<nmonkeys; monkey++ ) {

addtohist( nbins, bin, xmin, xmax, position[monkey] );

}

histdump ( nbins, bin, xmin, xmax, filename );

}
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Figure 11.8: The distribution of the
monkey swarm after flying for one hour.

functions.

Before talking about libraries, we need to return to the g++ “assembly
line”. (Refer back to Figure 11.1.)

After preprocessing your hello.cpp file, the main work of the com-
piler happens. g++ takes the preprocessed C code and converts it into
a binary form that’s digestible by the CPU. But what about functions
that aren’t defined in our program, like “printf”? How can the C
compiler write CPU instructions for these functions? In fact, it can’t:
instead, it just inserts placeholders in the code for now.

Source: Wikimedia Commons

The placeholders referring to things that aren’t in your hello.cpp file
are resolved in the final step, which is called “linking”. In this stage,
g++ invokes another program, called “ld”, which looks through a set
of standard libraries, trying to find a function called printf. We’ll talk
about how libraries are created soon, but for now you just need to know
that a library contains pre-compiled chunks of code that correspond to
functions like printf. The linker copies any chunks it needs from the
libraries, and inserts them into the appropriate places in your program.

There are three important things to note about linking:

• First, the chunks of code in the libraries are pre-compiled, so they’re
already binary code that’s ready to be used by your CPU.

https://commons.wikimedia.org/wiki/File:SanDiegoCityCollegeLearningResource_-_bookshelf.jpg
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Figure 11.9: g++ looks through libraries
to find any missing functions.

• Second, if the linker can’t find a chunk of code corresponding to a
function that you’ve used, it will spit out an error message telling
you that it has run into an unresolved reference (your program
refers to a function that can’t be found). This may mean that you
need to tell the compiler to look elsewhere, in other libraries besides
the standard ones. (Or it may mean that you have a typo in your
program!)

• Third, the linker only copies the functions that your program really
uses. It doesn’t insert a copy of the whole library into your program.

“I heart libraries!”
Source: Wikimedia Commons

11.9. Creating a Library
It’s very easy to create a library of your own. Say, for example, that we
have a file called oz.cpp that contains a lot of spiffy Oz-related functions
that we’ve written. The file doesn’t contain a complete program (there’s
no “main()”), it just contains the Oz functions. It might look like
Program 11.7.

oz.cpp contains all of the Munchkin, poppy, and flying monkey func-
tions that we’ve written so far in this chapter.

The first step in turning this into a library is to convert our C code into
binary code. This isn’t a whole program, so we’re going to skip the
“linking” step that g++ did in the example above. We can do this by
typing:

g++ -Wall -c oz.cpp

https://commons.wikimedia.org/wiki/File:Tin_Woodman.png
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This tells g++ to just do the pre-processor and compile steps and then
stop. It produces an output file called oz.o, where the .o stands for
“object”. An object file contains binary code that has been compiled,
and is ready to be inserted into a program.

Pre-
Processing Compiling Linking

oz.cpp

oz.o

Figure 11.10: An “object” file is created
by converting your C code into binary,
but not plugging in any functions from
libraries.

The “ar” command6 can be used to pack object files into a library and 6 “ar” is short for “archive”.

index them for later use. For example, we could create a new library
containing our Oz functions:

ar -csr liboz.a oz.o

where “c” means “create the library if it doesn’t exist”, “s” means
“generate an index”, and “r” means “replace anything of the same
name that is already in the library”.

By default, g++ looks for functions like printf in a set of system
libraries that are installed along with g++. A library named libm.a

contains most of the math functions, and libc.a contains most other
things. The library libstdc++.a contains many C++-specific func-
tions.
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Program 11.7: oz.cpp

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

double rand01 () {
static int needsrand = 1;
if ( needsrand ) {

srand(time(NULL));
needsrand = 0;

}
return ( rand()/(1.0+RAND_MAX) );

}

double normal () {
int nroll = 12;
double sum = 0;
int i;
for ( i=0; i<nroll; i++ ) {

sum += rand01();
}
return ( sum - 6.0 );

}

void xydump( int npoints, double x[], double y[], char filename[] ) {
FILE *output;
int i;
output = fopen( filename, "w" );
for ( i=0; i<npoints; i++ ) {

fprintf( output, "%lf %lf\n", x[i], y[i] );
}
fclose ( output );

}

double mean ( int nelements, double array[] ) {
int i;
double sum=0;
for ( i=0; i<nelements; i++ ) {

sum += array[i];
}
return ( sum/(double)nelements );

}

double stddev ( int nelements, double array[] ) {
int i;
double sum=0;
double average;
average = mean( nelements, array );
for ( i=0; i<nelements; i++ ) {

sum += pow(array[i]-average, 2);
}
return ( sqrt( sum/(nelements-1) ) );

}

int maxelement ( int nelements, double array[] ) {
double max=0;
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int i, imax;
for ( i=0; i<nelements; i++ ) {

if ( array[i] > max ) {
max = array[i];
imax = i;

}
}
return ( imax );

}

int minelement ( int nelements, double array[] ) {
double min = 1.0e+30;
int i;
int imin;
for ( i=0; i<nelements; i++ ) {

if ( array[i] < min ) {
min = array[i];
imin = i;

}
}
return ( imin );

}

void resethist (int nbins, int bin[]) {
int i;
for ( i=0; i<nbins; i++ ) {

bin[i] = 0; // Reset all bins to zero.
}

}

void addtohist ( int nbins, int bin[], double xmin, double xmax, double value ) {
int binno;
double binwidth;
binwidth = (xmax-xmin)/(double)nbins;
binno = (value-xmin)/binwidth;
if ( binno >= 0 && binno < nbins ) {

bin[binno]++; // Increment the appropriate bin.
}

}

void histdump ( int nbins, int bin[], double xmin, double xmax, char * filename ) {
FILE *output;
int i;
double binwidth;
binwidth = (xmax-xmin)/(double)nbins;
output = fopen( filename, "w" );
for ( i=0; i<nbins; i++ ) {

fprintf ( output, "%lf %d\n", xmin+binwidth*(double)i, bin[i] );
}
fclose ( output );

}
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11.10. Using Your New Library
Now we have our new library, liboz.a, and we can use it when we
compile programs. Say, for example, that we want to use one of our
fancy new Oz functions in the monkey.cpp program. If liboz.a is
in the current working directory, we might type:

g++ -Wall -o monkey monkey.cpp -L. -loz

The “-L” qualifier tells g++ to look in an additional directory when
trying to find libraries. (In this case, the directory is “.”, which means
the current working directory.) The “-l” qualifier says to link the
program with the following library, where we leave off the “lib” prefix
and the “.a” suffix on the library’s name7. 7 In the early days of the GNU

project there was a library called
“libiberty.a”, so you could type
“-liberty”.

g++ Assembly Line

Pre-Processing Compiling Linking

.A.A

Figure 11.11: The g++ assembly line
processing monkey.cpp.

Exercise 57: Monkey Swarm

Create the files oz.h (Program 11.8), oz.cpp (Program
11.7), and monkey.cpp (Program 11.6).

Use oz.cpp to create a library named liboz.a. Compile
the monkey.cpp program using this new library. Run the
program. It should produce the file monkey.dat containing
a histogram of the monkey positions after 1 hour of flying.

Plot the histogram using the gnuplot command plot "monkey.dat"

with boxes". The result should look like Figure 11.8.
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But what about. . . ?

Can you look at a library and see what’s inside it?

You can add more than one object file to a given library. The
command “ar -t libsomething.a” will show you the names
of the object files that were put into the library. Many of C’s built-in
functions live in a library called libc.a. The location of this file
will vary from one type of computer to another, but if you can
find it, try using “ar” to list the object files it contains. You’ll see
thousands of them.

To see the names of functions and symbols in the library’s index,
you can use the “nm” command. Each name will be shown with a
one-letter symbol. The names of the functions in this library will be
identified by a “T”. The nm command is often useful when you’re
trying to figure out which library contains a particular function.

11.11. Function Prototypes
You might have noticed that we still haven’t looked inside the header
file “oz.h” that’s used in monkey.cpp and oz.cpp. Here’s what it
looks like:

Program 11.8: oz.h

const int nmunchkin=1000; // Munchkin population.

const double dorothyspeed = 4; // Dorothy's walking speed, mph

const double poppytoxicity = 0.5; // Prob. of sleep after one minute's exposure.

const double poppyfieldsize = 1.0; // Width of poppy field, in miles.

const int nmonkeys = 1000; // Number of flying monkeys in swarm.

const double meanmonkeyspeed = 25; // mph, same as an unladen European swallow.

const double monkeyspeedspread = 5; // mph, std. dev. of monkey speeds.

double rand01 ();

double normal ();

void xydump( int npoints, double x[], double y[], char filename[] );

double mean ( int nelements, double array[] );

double stddev ( int nelements, double array[] );

int maxelement ( int nelements, double array[] );

int minelement ( int nelements, double array[] );

void resethist (int nbins, int bin[]);

void addtohist ( int nbins, int bin[], double xmin, double xmax, double value );

void histdump ( int nbins, int bin[], double xmin, double xmax, char filename[] );
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It’s probably not surprising that this file contains all of the constant
definitions that we’ve been using, but what’s the other stuff there for?

The second half of oz.h contains “function prototypes”. These are
one-line statements that define the syntax for using a function. They
say what kind of value the function returns, how many arguments it
wants, and what types of arguments.

By including oz.h at the top of our monkey.cpp file, we give g++ the
information it needs to make sure we’re using these functions correctly.

Why is this necessary now that we’re using a library? Until now, we’ve
been defining our functions right at the top of our programs. The
function definition itself tells g++ the function’s syntax. Now that we’ve
moved the function definitions into a library, we need to create these
function prototypes to give g++ that information.

Function prototypes make up much of the header files we’ve been using.
Files like stdio.h and math.h contain prototypes for functions like
printf and sqrt. “Don’t be afraid to make your own

libraries!”
Source: Wikimedia Commons

11.12. Static versus Dynamic Libraries
There are actually two different kinds of libraries: static and dynamic
libraries. Much of what we’ve said so far applies only to static libraries.
A static library has a name like "libsomething.a", with ".a" standing for
"archive". Static libraries are used by the linker as we described above.

Dynamic libraries are slightly different. When a program uses dynamic
libraries, the binary code for the functions you use isn’t physically
inserted into the binary file created by the linker. Instead, a reference
is inserted into the file. This reference says that, when the program is
run, the function should be loaded as needed from a dynamic library.
Dynamic library files usually have names ending in “.so”, “.dll”, or
“.dylib”, depending on what kind of computer you’re using.

Why would you want to use dynamic libraries instead of static libraries?
There are several reasons:

• Dynamic libraries save disk space. If every program contained
its own copy of “printf” a lot of space would be wasted. With
dynamic libraries, there’s only one copy of these functions.

https://commons.wikimedia.org/wiki/File:Cowardly_Lion.png
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• Dynamic libraries make upgrades easy. Imagine that there’s a serious
bug in an old version of a library, and you want to install a newer
version. If it’s a static library, it’s not sufficient to just install the new
“libsomething.a” file. Programs that were compiled with the old
static library will still have buggy functions inside them. In order to
give all of your programs the benefit of the new library, you’d need
to recompile all of them, so that the new, un-buggy functions from
the library would be copied into the new binary files.

With Dynamic libraries all you need to do is install a new “libsomething.so”
(or “.dll” or “.dylib”) file. Any programs that use the library will
automatically, immediately, see the benefit of the upgrade, without
your needing to do anything else. This can be very important if the
bug is a security hole.

• Dynamic libraries save memory. When you run a program, it gets
copied into memory. Just as with disk space, multiple copies of
library functions waste memory. When programs use dynamic
libraries, the operating system is smart enough to load only one
copy of each library into memory. This copy is shared by all of the
programs that need that library.

Buddy Ebsen (right), later the star of
The Beverly Hilbillies, originally had the
role of the Tin Man in the 1939 movie
version of The Wizard of Oz. He resigned
because of health problems, possibly
due to the aluminum dust that was part
of his costume.
Source: Wikimedia Commons

For all of those reasons, most of the programs installed on your com-
puter use at least some dynamic libraries.

OK, so dynamic libraries sound great. But what’s the down side?
Well, here’s one: What happens if you copy your program to another
computer that doesn’t have all of the dynamic libraries that the program
needs?

When compiling a program with dynamic libraries, it’s also possible
to specify a particular version of a library, or even to say where we’re
going to expect to find the library on disk. These things can also make
a binary file un-portable if another computer has a different version of
a library, or if the library is stored in a different location on disk.

The procedures for creating and using shared libraries will vary sig-
nificantly from one kind of computer to another, so we unfortunately
won’t be able to cover them here.

https://commons.wikimedia.org/wiki/File:The_Wonderful_Wizard_of_Oz,_006.png
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11.13. Conclusion
Whew! That was quite an adventure, but Dorothy has finally clicked
her ruby slippers8 together three times, and returned safely home to 8 Silver slippers in the original book.

Kansas. Even better, we now know how to create our own libraries.

Creating libraries of functions can make it easier for you to re-use
functions you’ve written. As you go further in programming, you’ll
also discover many useful libraries that have been written by other
programmers. For example:

• The GNU Scientific Library is a rich collection of functions relevant
to math, science, and engineering.

• LAPACK (Linear Algebra PACKage) is standard library for dealing
with problems in “linear algebra” (matrices and such).

• FFTW (“The Fastest Fourier Transform in the West”) is the go-to
library for Fourier transforms.

• libjpeg is a free library for reading and writing jpeg files.

The details of installing and using these will depend on the kind of
computer you’re using, and which C compiler you use.

Figure 11.12: Dorothy’s ruby slippers, in
the Smithsonian National Museum of
American History.
Source: Wikimedia Commons

http://www.gnu.org/software/gsl/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://libjpeg.sourceforge.net/
https://commons.wikimedia.org/wiki/File:Smithsonian_National_Museum_of_American_History_-_Dorothy_Ruby_Slippers_(6269207855).jpg
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Practice Problems
1. In Program 11.6 we introduced the histogram functions addtohist,

resethist, and histdump. In Program 11.1 we introduced the
function normal, which generates pseudo-random number dis-
tributed “normally”. These functions were then included in liboz.a.
In order to use the histogram functions in a program, you need to
first define a variable that will be the histogram’s bins. You might
do something like this:

const int nbins=50;

int bin[nbins];

The lines above would define a 50-element array named bins.

Write a program named testnormal.cpp that uses these functions.
The program will need a line like:

#include "oz.h"

to get the necessary header file. Have the program define a 50-
element array like bin above, and have it use resethist to reset
all of the values in the array to zero.

Then have the program generate 1,000 pseudo-random numbers,
using the normal function. Each time a number is generated, add
it to the histogram using the addtohist function. Tell addtohist
that the minimum and maximum values to be histogrammed are -3
and 3, respectively.

After generating all of the numbers and adding them to the his-
togram, dump the histogram’s contents into a file using the histdump
function. Call the output file testnormal.dat.

Compile your program, linking it against the liboz.a library so
that it can find the necessary functions.

After running your program, use gnuplot like this to see the his-
togram:

plot "testnormal.dat"

Does it look like a “normal” distribution?

2. In Chapter 9 we used two functions named to_radians, to convert
degrees into radians, and time_of_flight, to find the time of
flight of a projectile fired with a given angle and speed.

Add these functions to oz.cpp, and add prototypes for them to
oz.h. You’ll also need to add the following to oz.cpp:

const double g = 9.81; // Acceleration of gravity.

Re-build the liboz.a library.
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Test your newly-rebuilt library by compiling the following program
named oztest.cpp:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "oz.h"

int main () {

double angle = 45.0; //degrees.

double v0 = 27.0; // m/s.

printf ( "%lf\n", time_of_flight( v0, to_radians(angle) ) );

}

The result should match what we saw when using the same angle
and speed in Chapter 9: about 3.9 seconds.



12. Structures

12.1. Introduction
Before the widespread use of fingerprinting, investigators in Europe
and the U.S. used a system called the portrait parlé to identify criminals.
Introduced in the 1880s by Alphonse Bertillon, this was a detailed
written description of a person’s physical characteristics. You’ll find
many references to the portrait parlé in Victorian detective fiction by
writers like Gaston Leroux.

A “Bertillon card” describing the
physical characteristics of Alphonse
Bertillon himself.
Source: Wikimedia Commons
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44 101.07

Ru
Ruthenium

76 190.23

Os
Osmium

108 277

Hassium

27 58.933

Co
Cobalt

45 102.91

Rh
Rhodium

77 192.22

Ir
Iridium

109 268

Meitnerium

28 58.693

Ni
Nickel

46 106.42

Pd
Palladium

78 195.08

Pt
Platinum

110 281

Darmstadtium

29 63.546

Cu
Copper

47 107.87

Ag
Silver

79 196.97

Au
Gold

111 280

Roentgenium

30 65.39

Zn
Zinc

48 112.41

Cd
Cadmium

80 200.59

Hg
Mercury

112 285

Ununbium

31 69.723

Ga
Gallium

13 26.982

Al
Aluminium

5 10.811

B
Boron

49 114.82

In
Indium

81 204.38

Tl
Thallium

113 284

Ununtrium

6 12.011

C
Carbon

14 28.086

Si
Silicon

32 72.64

Ge
Germanium

50 118.71

Sn
Tin

82 207.2

Pb
Lead

114 289

Ununquadium

7 14.007

N
Nitrogen

15 30.974

P
Phosphorus

33 74.922

As
Arsenic

51 121.76

Sb
Antimony

83 208.98

Bi
Bismuth

115 288

Ununpentium

8 15.999

O
Oxygen

16 32.065

S
Sulphur

34 78.96

Se
Selenium

52 127.6

Te
Tellurium

84 209

Po
Polonium

116 293

Ununhexium

9 18.998

F
Flourine

17 35.453

Cl
Chlorine

35 79.904

Br
Bromine

53 126.9

I
Iodine

85 210

At
Astatine

117 292

Ununseptium

10 20.180

Ne
Neon

2 4.0025

He
Helium

18 39.948

Ar
Argon

36 83.8

Kr
Krypton

54 131.29

Xe
Xenon

86 222

Rn
Radon

118 294

Ununoctium

1

2

3

4

5

6

7

1 IA

2 IIA

3 IIIA 4 IVB 5VB 6VIB 7VIIB 8VIIIB 9VIIIB 10VIIIB 11 IB 12 IIB

13 IIIA 14 IVA 15VA 16VIA 17VIIA

18VIIIA

57 138.91

La
Lanthanum

58 140.12

Ce
Cerium

59 140.91

Pr
Praseodymium

60 144.24

Nd
Neodymium

61 145

Pm
Promethium

62 150.36

Sm
Samarium

63 151.96

Eu
Europium

64 157.25

Gd
Gadolinium

65 158.93

Tb
Terbium

66 162.50

Dy
Dysprosium

67 164.93

Ho
Holmium

68 167.26

Er
Erbium

69 168.93

Tm
Thulium

70 173.04

Yb
Ytterbium

71 174.97

Lu
Lutetium

89 227

Ac
Actinium

90 232.04

Th
Thorium

91 231.04

Pa
Protactinium

92 238.03

U
Uranium

93 237

Neptunium

94 244

Plutonium

95 243

Americium

96 247

Curium

97 247

Berkelium

98 251

Californium

99 252

Einsteinium

100 257

Fermium

101 258

Mendelevium

102 259

Nobelium

103 262

Lawrencium

Alkali Metal
AlkalineEarth Metal
Metal
Metalloid
Non-metal
Halogen
NobleGas
Lanthanide/Actinide

Z mass

Symbol
Name

Each chemical element has many
properties: Atomic number, atomic
mass, ionization energies, and so forth.
Source: Wikimedia Commons

Even black holes, perhaps the most
featureless bodies in the universe, have
at least three properties: mass, angular
momentum, and charge.
Source: Wikimedia Commons

Anything studied by researchers will probably have more than one
interesting property. In Chapter 6 we saw that researchers often make
several measurements at the same time. For example, a census-taker
visiting a house might record the number of children, the household
income, the size of the house, and so forth. We could store each of these
quantities in a separate variable, but we know that they’re all actually
properties of a single household. It might be convenient if that reality
could be reflected in our programs.

Also, in Chapter 9 we learned that C functions can only return a single
value. It would sometimes be useful to return several related values at
once. Imagine, for example, that we were working with 3-dimensional
vectors, which have x, y, and z components. Wouldn’t it be great if
we had a function that could add two vectors and return all three
components of their sum?

Fortunately, C allows us to do both of these things through a mechanism
called “structures”. Structures let us store several related measurements
in one convenient place. Let’s look at how to create and use structures
by working through some examples.

https://en.wikipedia.org/wiki/File:Bertillon,_Alphonse,_fiche_anthropom%C3%A9trique_recto-verso.jpg
https://commons.wikimedia.org/wiki/File:Periodic-table-of-chemical-elements.svg
https://commons.wikimedia.org/wiki/File:BlackHole.jpg
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12.2. The “struct” Statement
If we were comparing Virginia with other states, we might write a
program that had variables like this:

int va_population;

double va_area;

double va_income;

It’s tedious to create all of these variables, and could rapidly become
confusing as we added more properties of the state, or more states. C
provides us with a better way to do it, by allowing us to create custom-
made variables that pack several properties together in one place. This
is done with the “struct” statement:

struct {

int population;

double area;

double income;

} va;

The statement above defines a new variable, va, that has, packed within
it, several values of different types. The variable va isn’t an int or a
double or any of the other types we’ve used so far. It’s a “structure”.
This structure is a completely new, custom-made type that contains
whatever we want it to contain.

Once we’ve defined our va variable, we can set its properties like this:

va.population = 8326289;

va.area = 42774.2;

va.income = 61044;

The dot operator (“.”) singles out one of the properties of the structure.
Similarly, we can use the properties of the structure in just the same
way we’ve used variables in the past:

if ( va.population < 8491079 ) {

printf ("Virginia has fewer people than New York City\n");

}

We could even define an array of such structures, just as we’ve defined
arrays of int or double variables:

struct {

char name[20];

int population;
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double area;

double income;

double birthrate;

double deathrate;

} state[50];

Here we’ve defined an array of 50 structures, one for each of the 50

states. We’ve also added some more properties, such as the state’s
name. We can set the properties of an individual state by referring to it
by its element number:

snprintf( state[0].name, 20, "Virginia" );

state[0].population = 8326289;

state[0].area = 42774.2;

state[0].income = 61044;

...etc.

This would make it easy to loop through all of the states:

for ( i=0; i<50; i++ ) {

printf ( "Pop. of %s is %d\n", state[i].name, state[i].population );

}

What if we wanted to use the same structure for other variables? Say, for
example, we wanted to store census data for a group of 100 countries.
We could just re-type the structure definition:

struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} state[50];

struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} country[100];
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There’s a better way to do it, though. Instead of re-typing the “struct”
statement, we can use “typedef” to define a name for this kind of
structure.

12.3. Using “typedef”
If we want to re-use our structure, we can do something like this:

typedef struct {

char name[20];

int population;

double area;

double income;

double birthrate;

double deathrate;

} census;

census state[50];

census country[100];

The statements above define a new variable type named “census”. We
can use this new type to define variables, just like the int and double

types we’ve used before. In the example above, we define two census

arrays, one of 50 states and one of 100 countries.

typedef and struct are so often used together that many textbooks
lump them into a single statement, “typedef struct”, but they can
be used separately too.

For example, typedef can be used to define an alternative name for
any variable type. For example:

//Define aliases for some types:

typedef int funds;

typedef double weight;

typedef int days;

//Use these aliases to define some variables:

funds bank_balance;

weight fish_per_month[12];

days til_christmas;

This may make it easier for you to re-define your variables later on. Say,
for example, that you’ve made so much money that you now need to
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use a “long int”1 to count your fortune! If your program uses the 1 In C, “long int” is a variable type
that can hold larger number than a
plain,old int is capable of holding.

“funds” type for all of your accounting variables, then you’ll only need
to change one line: the typedef statement that defines “funds”.

12.4. Using Vectors in Programs
A “vector” is something that has both a magnitude and a direction.
Physical properties like velocity and acceleration are vectors. Even
though an eastbound car and a westbound car may have the same
speed, their velocities are different, since they’re going in different
directions.

In many fields of science and mathematics, it’s very useful to be able
to define and use vectors in computer programs. Vectors are often
represented by their x, y, and z components in a Cartesian coordinate
system.

Portrait of Rene Descartes, French
philosopher, mathematician, and
scientist, for whom the “cartesian”
coordinate system is named. As a
philosopher, he’s famous for his
statement “cogito ergo sum” (“I think,
therefore I am”).
Source: Wikimedia Commons

x

y

z

(x, y, z)

Figure 12.1: The cartesian coordinate
system.
Source: Wikimedia Commons

We could use our new-found knowledge of the struct and typedef

commands to make it easy to write programs that deal with vectors.
All we need to do is define a new variable type that’s designed to hold
a vector’s three cartesian components.

typedef struct {

double x;

double y;

double z;

} Vector;

We can then define variables that have the new type Vector. For
example, we might define a vector named “velocity”, and give it a
magnitude of 60 mph along the x axis:

Vector velocity;

velocity.x = 60;

velocity.y = 0;

velocity.z = 0;

When initializing a “structure” variable, we can also take advantage of
the following shortcut:

Vector velocity = {60,0,0};

The items listed in the curly brackets are the initial values for each of

https://commons.wikimedia.org/wiki/File:Frans_Hals_111_WGA_version.jpg
https://commons.wikimedia.org/wiki/File:3D_Cartesian.svg
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the structure’s properties, in the same order they appear in the struct
statement.

Now that we can define our own variable types, we can write functions
that return more information. In C, functions can only return one
“value”, but that value can be a structure. Program 12.1 shows a few
examples of this, with our new variable type highlighted. Notice that
we can use our new type for arguments to our functions or the values
the functions return.

The add_vector function defined in Program 12.1 adds two vectors
together and returns their sum as a third vector. The scale_vector
function “scales” a vector by multiplying its magnitude by some amount
but leaving its direction unchanged. The print_vector function just
prints out a vector’s components.

We could generalize our vector functions to any number of dimensions,
and reduce the amount of repetitive typing in them, by replacing the x,
y, and z components with a three-element array of components:

const int dimension = 3;

typedef struct {

double x[dimension];

} Vector;

Instead of x, y, and z, we would then use x[0], x[1], and x[2]. A
function like scale_vector would then look like this:

Vector scale_vector ( double r, Vector v ) {

Vector vscale;

int i;

for ( i=0; i<dimension; i++ ) {

vscale.x[i] = r * v.x[i];

}

return ( vscale );

}

This would also require that we change the way we initialize our vectors:

Vector v1 = {{0,0,1}};

Vector v2 = {{1,0,0}};

(Notice the double curly brackets.) This says that the first (and only, in
this case) property of v1 is an array containing the values 0, 0, and 1.
Compare this to our earlier case with x, y, and z properties.
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Program 12.1: vector.cpp

#include <stdio.h>

#include <math.h>

typedef struct {

double x;

double y;

double z;

} Vector;

Vector scale_vector ( double r, Vector v ) {

Vector vscale;

vscale.x = r * v.x;

vscale.y = r * v.y;

vscale.z = r * v.z;

return ( vscale );

}

Vector add_vectors ( Vector v1, Vector v2 ) {

Vector sum;

sum.x = v1.x + v2.x;

sum.y = v1.y + v2.y;

sum.z = v1.z + v2.z;

return ( sum );

}

void print_vector ( Vector v ) {

printf ( "x = %lf\n", v.x );

printf ( "y = %lf\n", v.y );

printf ( "z = %lf\n", v.z );

}

int main () {

Vector v1 = {0,0,1};

Vector v2 = {1,0,0};

printf ( "Vector 1:\n" );

print_vector( v1 );

printf ( "Vector 2:\n" );

print_vector( v2 );

printf( "Sum of vectors:\n" );

print_vector( add_vectors( v1, v2 ) );

printf ( "Pi times Vector 1:\n" );

print_vector( scale_vector( M_PI, v1 ) );

}
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Exercise 58: What's Your Vector Victor?

Starting with vector.cpp, modify the program so that it
prompts the user for the x, y, z components of two vec-
tors, then prints out the components of the sum of the two
vectors.

But what about. . . ?

When we studied arrays in Chapter 6 and character strings in Chapter 8 we found that we couldn’t just
make two arrays equal by saying “array1 = array2”, or compare arrays the way we’d compare single
variables. Are there similar restrictions on structures?

First, regarding setting structures equal, there’s good news. The following will work fine:

typedef struct {

double width;

double height;

} Rectangle;

Rectangle r1, r2;

r1.width = 8.5;

r1.height = 11.0;

// Make r2 equal r1:

r2 = r1;

Another easy shortcut for setting the value of a structure is this:

// Set the width and height of rectangle r1:

r1 = (Rectangle){8.5,11.0};

Regarding the comparison of two structures, the answer is the same as for arrays. The usual comparison
operators (==, <, >, et cetera) won’t work. You’ll need to compare the properties of your structures
yourself. For example, with our rectangles above we might write:

if ( r1.width == r2.width && r1.height == r2.height ) {

printf ( "They're equal!\n" );

}
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12.5. Gravitation

Isaac Newton’s grave in Westminster
Abbey.
Source: Wikimedia Commons

Okay, now we have vectors so let’s do something with them. Imagine
you have two masses, say the Earth and the Sun. Newton’s Law of
Gravitation tells us that each of these bodies will attract the other with
a force whose magnitude is given by:

F = G
mearthmsun

r2 (12.1)

where mearth and msun are the masses of the bodies, and r is the distance
between them. G is Newton’s gravitational constant, equal to about
6.67 × 10−11 m3

kgs2 . Earth and Sun pull on each other with equal force,
but in opposite directions.

In principle, if we know a body’s initial position and velocity, its mass,
and the forces acting on it, we can predict its future motion. Could
we simulate the motion of the Earth and the Sun? Let’s try! In the
following, we won’t spend much time discussing the physics of the
problem. We’ll focus on the programming challenges it presents.

Figure 12.2: The earth-sun system,
showing some of the vector quantities
we might want to use in our program. ~F
represents the force of the sun on the
earth. The origin of our cartesian
coordinate system is shown in the lower
right corner. The vectors xe and xs

represent the position of the earth and
sun in this coordinate system.

First, we’ll need a little more information from Newton. He also tells
us that force and acceleration are related in this way:

~F = m~a (12.2)

where ~F is a vector representing the magnitude and direction of the

https://commons.wikimedia.org/wiki/File:Isaac_Newton_grave_in_Westminster_Abbey.jpg
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total force on an object, m is the object’s mass, and ~a is the object’s
acceleration. In order to predict the motion of an object, we’ll need to
know its acceleration. We can get this by rearranging Equation 12.2:

~a =
~F

m
(12.3)

The photo above shows a false-color
image of two icy “cryovolcanos” on
Pluto. After nearly ten years in space,
NASA’s New Horizons space probe
whizzed past Pluto during a few hours
in 2015, snapping thousands of photos
and taking measurements of many
kinds. This kind of precise navigation
demands highly sophisticated computer
simulations.
Source: NASA/JHUAPL

Next, we’ll need to know how acceleration affects an object’s motion.
Acceleration is the rate of change of velocity, so we might guess that
after a small amount of time, ∆t, the object’s velocity will change by
~a∆t. We also know that velocity is the rate of change of position, so we
might approximate the change of position during a short time as ~v∆t.

Given this chain of relationships, we can start with an object’s initial
position and velocity, then move forward in time by small steps and
follow the changes in the object’s position.

Both the Earth and the Sun move in response to their mutual gravita-
tional attraction. We’ll be tracking several properties of each of these
objects: mass, velocity, position, and the force acting on the object. This
sounds like a good place to use C’s structures.

Here are the structures we’ll be using, with convenient “typedef”
names given to them:

const int dimension = 3;

typedef struct {

double x[dimension];

} Vector;

typedef struct {

double mass;

Vector x; // Position

Vector v; // Velocity

Vector f; // Force on the body

} Body;

As before, we’ve defined a new type of variable called Vector to hold
vectors. Now we add a variable called Body that holds information
about one of the bodies we’ll be tracking. Notice that the Body type
has several properties that are of the Vector type.

In addition to the vector functions we’ve already written, we’ll need a

http://pluto.jhuapl.edu/Multimedia/Science-Photos/pics/CryoVolcanism_Mountains-Rt-txt.jpg
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few others:

Vector invert_vector ( Vector v ) {

Vector inverse;

int i;

for ( i=0; i<dimension; i++ ) {

inverse.x[i] = -v.x[i];

}

return ( inverse );

}

Vector subtract_vectors ( Vector v1, Vector v2 ) {

return ( add_vectors( v1, invert_vector(v2) ) );

}

double vector_magnitude ( Vector v ) {

double size2=0;

int i;

for ( i=0; i<dimension; i++ ) {

size2 += v.x[i]*v.x[i];

}

return ( sqrt( size2 ) );

};

The function subtract_vectors is the companion to the add_vectors
function we saw earlier. Subtraction is just equivalent to adding an
inverse, so we implement the subtraction function by defining a new
invert_vector function and then using it along with add_vectors

to do the subtraction. Finally, we’ll need to know the size of vector
quantities, so we define a new function named vector_magnitude

to do this.

Armed with all of these new tools, we’re now ready to tackle the
weighty problem of swinging the Earth around the Sun. The result is
Program 12.2. Here we’ve swept all of the functions we’ve discussed so
far into a header file named gravity.h.

The program steps through time in 10,000-second jumps (about 3 hours).
In each “time slice” the program updates the position and velocity
of Earth and Sun, based on the force of their mutual gravitational
attraction, then writes out the current time and the position of each
body.
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Program 12.2: gravity.cpp

#include <stdio.h>

#include <math.h>

#include "gravity.h"

int main () {

// All units in kilograms, meters, kilograms, and seconds.

// mass position velocity force

Body sun = {2.0e+30, {{0,0,0}}, {{0,0,0}}, {{0,0,0}}};

Body earth = {1.5e+24, {{1.5e+11,0,0}}, {{0,0,3.2e+4}}, {{0,0,0}}};

double distance, force, deltat=1e+4; // About 3 hours.

int i, nsteps = 10000;

double G = 6.67e-11;

Vector r, deltax, deltav;

for ( i=0; i<nsteps; i++ ) {

// Find forces from law of gravitation:

r = subtract_vectors( earth.x, sun.x );

distance = vector_magnitude( r );

force = G*sun.mass*earth.mass/(distance*distance);

sun.f = scale_vector ( force/distance, r );

earth.f = invert_vector( sun.f );

// Update positions and velocities for next step:

// Sun

deltax = scale_vector ( deltat, sun.v );

sun.x = add_vectors( sun.x, deltax );

deltav = scale_vector ( deltat/sun.mass, sun.f );

sun.v = add_vectors( sun.v, deltav );

// Earth

deltax = scale_vector ( deltat, earth.v );

earth.x = add_vectors( earth.x, deltax );

deltav = scale_vector ( deltat/earth.mass, earth.f );

earth.v = add_vectors( earth.v, deltav );

// Write out current time and positions

printf ("%lf ", deltat*(double)i );

print_vector ( sun.x );

print_vector ( earth.x );

printf ("\n");

}

}
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If we save the program’s output into a file we can plot the results with
gnuplot. Some of the results are shown in Figures 12.3 and 12.4. As
you can see, our simulation gives earth a rather rough ride. The orbit
is approximately regular, but doesn’t come back quite to the place it
started. If we asked the program to simulate more time steps the orbit
would eventually become a spiral.

-2e+11

-1e+11

 0

 1e+11

 2e+11

-2e+11 -1e+11  0  1e+11  2e+11

Figure 12.3: The Earth’s orbit as
approximated by Program 12.2.

 0  3e+07  6e+07  9e+07

Figure 12.4: The Earth’s position on the
X-axis as a function of time, as
approximated by Program 12.2.

By looking at the period of Earth’s movement along the X-axis of our
coordinate system, we can estimate the length of Earth’s year. An actual
year is about 3× 107 seconds long, but our simulated Earth has a rather
longer year of about 4.5 × 107 seconds.

Don’t use this program to navigate your space probe to Pluto! We could
probably improve the program in several ways. We could use more
precise values for the mass, distance, and initial velocity of the Sun and
Earth, for example. Still, for a relatively simple program the results
aren’t too bad.

Figure 12.5: New Horizons’ trajectory
through the Pluto system is a stunning
example of precise navigation.
Source: NASA/JHUAPL

But what about. . . ?

Yow! that’s all very impressive, but those vector function things
are really hard to read:

sun.x = add_vectors( sun.x, deltax );

Wouldn’t it be so much nicer if you could just write “sun.x =

sun.x + deltax”? If you use the extra features of C++, you can!

http://blogs.nasa.gov/pluto/wp-content/uploads/sites/253/2015/10/NHPlutoEncounterTrajectory_NomV8_Guo20150615.png
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C++ has extra capabilities beyond those of plain C. One of them
is called “operator overloading”. This allows you to define how
operators like + and - act when used with structures.

All we need to do is add the following to the gravity.h file used
by Program 12.2:

Vector operator+( Vector v1, Vector v2 ) {

return ( add_vectors ( v1, v2 ) );

}

Vector operator-( Vector v1, Vector v2 ) {

return ( subtract_vectors ( v1, v2 ) );

}

This tells the compiler that, when it sees you adding two vectors
in an expression like “vsum = v1 + v2”, it should pass v1 and
v2 to your add_vectors function and use that to add the vec-
tors. The “operator-” statement does the analogous thing for
subtraction.

12.6. Complex Numbers
Like vectors, another natural use for structures is the representation of
complex numbers. These are numbers of the form a + ib, where a and
b are real numbers, and i is

√
−1. The value of a is called the “real part”

of the complex number, and b is its “imaginary part”.

Using struct and typedef we can define a new variable type for
holding complex numbers:

typedef struct {

double re; // real part

double im; // imaginary part

} Complex;

The “magnitude” of a complex number represents its size, taking both
of its components (real and imaginary) into account. The magnitude
is just the same as though real and imaginary components were the
x and y components of a cartesian vector: magnitude =

√

Re2 + Im2.
Similarly, complex numbers add in the same way that 2-dimensional
vectors add.

Strangeness enters the picture when we begin multiplying complex
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numbers. Since they involve multiples of i, and i × i = −1, minus signs
begin to appear in surprising places.

We could use our new variable type to define a few functions for
operating with complex numbers:

double magnitude_complex( Complex z ) {

return sqrt( z.re*z.re + z.im*z.im );

}

Complex multiply_complex ( Complex a, Complex b ) {

Complex result;

result.re = a.re*b.re - a.im*b.im;

result.im = a.im*b.re + a.re*b.im;

return ( result );

}

Complex add_complex ( Complex a, Complex b ) {

Complex result;

result.re = a.re + b.re;

result.im = a.im + b.im;

return ( result );

}

12.7. The Mandelbrot Set

Mathematician Robert W. Brooks, who
along with Peter Matelski discovered
the Mandelbrot set in 1978. The set was
later named in honor of Benoit
Mandelbrot, who studied it extensively.
Source: Wikimedia Commons

Figure 12.6: Brooks and Matelski’s first
published picture of the Mandelbrot set.
We can do better than that!
Source: Wikimedia Commons

Mathematicians love to play games with numbers. Let’s try one here.
Here are the rules:

Take two numbers, c and z0. Pick any number you want for c, but set
z0 equal to zero. Now write down the value of z2

0 + c. Call this new
number z1. Now write down the value of z2

1 + c. Call this z2. Keep
doing this for more and more zn values. We might expect that each z

would be bigger than the last.

We coult write a little program to test this. Let’s pick c = 1 as the c

value and see what happens:

https://commons.wikimedia.org/wiki/File:Robert_W._Brooks.jpg
https://commons.wikimedia.org/wiki/File:Mandel.png
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Program 12.3: mandelseries.cpp

#include <stdio.h>

#include <math.h>

int main () {

double c=1;

double z=0;

int i;

printf ("For c = %lf:\n", c );

for ( i=0; i<10; i++ ) {

printf ( "z %d = %lf\n", i, z );

z = pow(z,2) + c;

}

}

The output of this program would be:

For c = 1.000000:

z 0 = 0.000000

z 1 = 1.000000

z 2 = 2.000000

z 3 = 5.000000

z 4 = 26.000000

z 5 = 677.000000

z 6 = 458330.000000

z 7 = 210066388901.000000

z 8 = 44127887745906175377408.000000

z 9 = 1947270476915296285689291011464375055838871552.000000

Wow! We were right. The numbers get big pretty quickly. But is this
true for all values of c? Let’s try a negative number and see what
happens. How about c = −1?:

For c = -1.000000:

z 0 = 0.000000

z 1 = -1.000000

z 2 = 0.000000

z 3 = -1.000000

z 4 = 0.000000

z 5 = -1.000000

z 6 = 0.000000
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z 7 = -1.000000

z 8 = 0.000000

z 9 = -1.000000

Hmm. It just oscillates back and forth between zero and one, and never
gets any bigger. Is this true for all negative numbers? No, if we try
c = −2 we’ll find that, after one flip, all of the rest of the values are
equal to 2! If we use c = −3, though, we’ll see that the numbers once
again blow up, and become very large very quickly. This is intriguing!2 2 If you’re a mathematician.

What if we extended this to complex numbers? Would they be even
weirder? Yes, indeed they would!

In 1978 two mathematicians, Robert W. Brooks and Peter Matelski, tried
this and discovered what’s known today as the “Mandelbrot Set”. It
has manyfascinating qualities, including the fact that its boundary is
infinitely rough. If you zoom in on most common-or-garden-variety
shapes, you’ll find that sooner or later you just see smooth surfaces
or curves. Not so with the Mandelbrot set. This shape is equally
squiggly at every scale. The Mandelbrot Set’s boundary is so squiggly
that it behaves as something more than a 1-dimensional curve. We
call such shapes “fractals”, because they appear to have “fractional”
dimensionality.

Approximate fractal shapes often
appear in nature. This piece of broccoli
is a good example.
Source: Wikimedia Commons

Frost patterns on a window also exhibit
fractal behavior.
Source: Wikimedia Commons

Figure 12.6 shows Brooks and Matelski’s first illustration of the Man-
delbrot set. It shows the “complex plane”, where complex numbers are
plotted with their real part on the x axis and their imaginary part on the
y axis. This graph uses ASCII characters to indicate the c values on the
complex plane which don’t cause the series to blow up. (We call these
c values “stable”.) This graph was produced in 1978, when computer
technology was much less capable than it is now. We should be able to
make a much better illustration using the computers available to us in
the 21st century.

Program 12.4 is the result. It uses the Complex variables we defined in
the preceding section. It uses a header file named complex.h which
contains the typedef statement and function definitions we wrote
earlier for dealing with complex numbers.

The program divides the complex plane into a 250 × 250 grid. Each
point on the grid represents a complex number, c, that we’ll test to
see if it makes the “Mandelbrot series3” blow up. The program takes 3 See Program 12.3.

advantage of something mathematicians have proven about the Man-
delbrot series: if a complex number has a magnitude greater than 2, we

https://en.wikipedia.org/wiki/File:Fractal_Broccoli.jpg
https://en.wikipedia.org/wiki/File:Frost_patterns_2.jpg
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know for sure that it will cause the series to blow up. This means we
only need to look at a region within a distance of 2 from the origin. As
soon as our series wanders outside of this region, we we know that it
will blow up.
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5i c = 3 + 4ic = 3 + 4i

Figure 12.7: The complex number
c = 3 + 4i located on the complex plane.

The heart of the program is the function mandel_test which we’ll use
to test each value of c. It calculates up to 100 terms of the Mandelbrot
series for this value. If one of the terms wanders more than a distance
of 2 away from the origin, we know this c value isn’t stable, and we can
stop calculating terms. If we make it all the way to 100 terms without
becoming unstable, we assume that c is stable. The function just returns
the number of terms before instability was detected, or 100 if we made
it through all 100.

Each time we test a value of c, we write out its real and imaginary parts,
and the number of terms returned by the mandel_test function, into
a file named mandel.dat.

The resulting file will have three columns of numbers: Real part, imag-
inary part, and number of terms. We can ask gnuplot to read this
file and interpet it as an image, with the first two columns giving the
coordinates of each pixel, and the third column giving its color. We
do this by giving gnuplot the command “plot "mandel.dat" with

image”. You can see the result in Figure 12.8. Beautiful!
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Figure 12.8: The Mandelbrot set,
generated by Program 12.4 and
visualized by gnuplot. See Wikipedia for
much more information about this
fascinating and beautiful structure.

https://en.wikipedia.org/wiki/Mandelbrot_set
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Exercise 59: Fun with Fractals

Create mandel.cpp and complex.h. Compile and run
mandel.cpp, then plot your results with gnuplot.

Now try modifying the program by changing the x and y
limits in main. Make x go from -0.76 to -0.75, and y go from
0.04 to 0.06. This will zoom in on the edge of the circle on
the left-hand side of the graph. The result should look like
Figure 12.9.
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Figure 12.9: Zooming in on the edge of
the large circle on the left-hand side of
the graph.

Silver crystals growing on a ceramic
substrate. Note the different crystal
domains that grow and bump into each
other.
Source: Wikimedia Commons

Magnetic domains in a piece of steel.
Source: Wikimedia Commons

12.8. Growing Domains
Let’s briefly go away from structures and look at a problem that just
uses good ol’ double values.

Imagine that we have a just-plowed 100 × 100 field of barren earth.
Over time, a few seeds of two different species are blown onto the
field. The seeds germinate, grow, and begin to reproduce, spreading
each species outward from the sites where the initial seeds fell. The
two species are incompatible, so new seeds won’t grow in land already
occupied by the other species.

This kind of problem is very common in science. It doesn’t have to
be the seeds of plants we’re talking about. It could be two different
crystal structures crystallizing out of a solution, it could be magnetic
domains growing in a magnet, or it could be the expansion of human
settlements in a formerly unoccupied territory.

Program 12.5 simulates the situation we’ve described. It defines the
2-dimensional array color[100][100] that will hold a color for each
sqare area of the field. The color tells us which species is living in
that area. The colors will just be three numbers: 0 means the square is
empty, 1 means that species number 1 has colonized this area, and 2

means the same for species number 2.

The program uses the rand01 function we wrote in Chapter 9. At the
beginning, the elements of color are initialized to one of the three
colors, based on random “dice rolls” made using rand01.

In the middle of the program, we start looping through a large number
(1 million) of “turns”. During each turn, the program uses rand01

https://commons.wikimedia.org/wiki/File:Silver_surface_crystal_growth_SEM.png
https://commons.wikimedia.org/wiki/File:Magnetic_domain_with_arrows_by_Zureks.png
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Program 12.4: mandel.cpp

#include <stdio.h>

#include <math.h>

const int NTRIALS=100;

#include "complex.h"

int mandel_test( Complex c ) {

Complex z = c;

int counts = 0;

while ( magnitude_complex( z ) <= 2.0

&& counts<NTRIALS ) {

counts++;

// z -> z^2 + c

z = add_complex( multiply_complex(z,z), c );

}

return counts;

}

int main(){

double xmin = -2.0;

double xmax = 0.5;

double ymin = -1.25;

double ymax = 1.25;

Complex c;

int nim,nre, counts;

const int NSTEPS = 250;

FILE *outp = fopen("mandel.dat","w");

for (nre=0; nre<NSTEPS ; nre++) { // loop over real axis

c.re = xmin + (xmax-xmin) * nre/NSTEPS;

for (nim=0; nim<NSTEPS; nim++) { // loop over imaginary axis

c.im = ymin + (ymax-ymin) * nim/NSTEPS;

counts = mandel_test(c);

fprintf(outp,"%lf %lf %d\n",c.re,c.im,counts);

}

}

fclose(outp);

return 0;

}
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to pick a random element of color. It then randomly picks another
element one space left, right, up, or down from that element. If this
second element is empty (that is, its color is 0), the second element’s
color is set equal to the first element. The first element has “colonized”
the second.

To pick a random direction, we make use of a new operator that we
haven’t seen before. This is C’s “trinary” operator. Most of the operators
in C, like +, -, *, /, et cetera, work on one or two values. The trinary
operator is the only operator in C that uses three values. It acts like an
abbreviated “if else” statement, and is indeed exactly equivalent to
this. It’s just shorter to write.

The syntax of the trinary operator is:

condition ? do this if true : do this if false

The statement above is exactly equivalent to:

if ( condition ) {

do this if true

} else {

do this if false

}

At the end of Program 12.5 the elements of color are printed out in a
particular way. We can think of a 2-dimensional array like color as
being a matrix of some number of rows and some number of columns.
In Program 12.5 we print out the array elements in just this way. Each
line of the output corresponds to a row of the matrix, and the number
of lines is equal to the number of rows.

If we run the program, directing it output into a file like this “./domain
> domain.dat”, we can plot the results with gnuplot. We’ve written
the program’s output as a matrix of values, which is different from the
kinds of files we’ve asked gnuplot to read before. That’s OK, though.
We just need to let gnuplot know that the file is in this format. Here’s
how to do that:

plot "domain.dat" matrix with image

The word matrix tells gnuplot that the file is in the form of an n × m

matrix with a newline at the end of each row.

If we modified the program so that it just showed us the initial dis-
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Program 12.5: domain.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double rand01 () {
static int needsrand = 1;
if ( needsrand ) {

srand(time(NULL));
needsrand = 0;

}
return ( rand()/(1.0+RAND_MAX) );

}

int main () {
int color[100][100];
int i,j,n,direction,inew,jnew,t;
double roll;

// Initialize:
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
roll = rand01();
if ( roll < 0.10 ) {

color[i][j] = 1;
} else if ( roll < 0.20 ) {
color[i][j] = 2;

} else {
color[i][j] = 0;

}
}

}

// Take turns:
for ( t=0; t<1000000; t++ ) {

i = 1.0 + 98.0*rand01();
j = 1.0 + 98.0*rand01();

rand01() < 0.5 ? direction=0 : direction=1;
rand01() < 0.5 ? n=0 : n=1;
if ( direction == 0 ) {

inew = i-1+2*n;
jnew = j;

} else {
inew = i;
jnew = j-1+2*n;

}

if ( color[inew][jnew] == 0 ) {
color[inew][jnew] = color[i][j];

}
}

// Write results:
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
printf ("%d ", color[i][j] );

}
printf ("\n");

}
}
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tribution of seeds, the output would look like the left-hand graph in
Figure 12.10. The unaltered program would show us the distribution
of species after 1 million turns. That would look like the right-hand
graph Figure 12.10.
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Figure 12.10: Initial distribution of two
species in the beginning (left) and after
some time has passed (right). Black
represents uncolonized spaces.

12.9. Simulating Evolution
In the preceding example, each element of our array has only one
property (color). What if the elements had more properties? We could
store all of the properties by using an array of structures instead of an
array of ints.

Charles Darwin, who developed the
theory of evolution by natural selection,
as described in his 1859 book The Origin
of Species.
Source: Wikimedia Commons

To illustrate this, let’s assume that our two species are small animals
that can compete with each other for resources. Each element of our
simulation array is a small habitat that can contain a family of these
animals, and let’s follow the members of each species over a long time
and watch them spread and respond to natural selection.

In 1859 Charles Darwin published his Origin of Species. Both he and
Alfred Russel Wallace had hit, more or less simultaneously, on the idea
of “evolution by natural selection”. This theory says that evolution
occurs because of three factors:

• Inheritance of characteristics. (Individuals tend to pass along some
of their characteristics to their offspring.)

• Variability. (Offspring aren’t identical to their parents, due to random
variations.)

• Natural Selection. (Some characteristics make individuals who pos-
sess them more likely to have offspring, either because they make the
individual more long-lived, more competitive for resources, more
fertile, or through other mechanisms.)

https://commons.wikimedia.org/wiki/File:Charles-Darwin-portrait-standing-photo-1881.png
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It’s not uncommon for larger animals to have an advantage over smaller
ones, so let’s keep track of the average size of the individuals in each
of our small habitats. If the family in one habitat tries to take over an
occupied neighboring habitat, we’ll assume that the side with bigger
individuals will win.

If you’re interested in this kind of thing,
you should read a little book called The
Theory of Island Biogeography by Robert
H. MacArthur and Edward O. Wilson
(pictured above). If you’re even more
interested, you should read Wilson’s
massive tome titled Sociobiology: The
New Synthesis.
Source: Wikimedia Commons

There are also disadvantages to being larger, though. Larger animals
tend to reproduce more slowly. This means that it should take more
“turns” in our program for larger animals to colonize a new habitat.

A second disadvantage comes from the environment itself. A given area
has limited food, water, and other resources. Larger individuals take
more resources. If our individuals got too big, they’d be like elephants
in a small back yard. There just wouldn’t be enough food to support
them and they’d eventually die. Mice, on the other hand, could thrive
in the same environment.

With these considerations in mind, let’s create a structure that could
represent each of our array elements. It might look like this:

typedef struct {

int species; // Which species occupies?

double size; // Avg. size of individuals.

int lastturn; // Last time this family tried expanding.

double capacity; // Capacity of this habitat.

} Habitat;

The structure above records the identity of the species occupying this
habitat. This will just be a number: 0, 1, or 2, as in our preceding
example. Then it records the average size of the individuals who live in
this habitat. As we’ll see later, we’ll assume that size is some measure
of the individuals’ height. The property lastturn records the last time
these individuals tried to colonize a neighboring habitat. We’ll use this
to allow for the fact that it takes larger individuals longer to reproduce.
Finally, capacity tells us the maximum size of indidviduals that can
thrive in this habitat.

We might define a 100 × 100 array of such structures like this:

Habitat h[100][100];

It’ll be convenient to have some functions for dealing with these struc-
tures, so let’s create a header file that contains these. It might look like
“Program” 12.6. You’ll see our old friends rand01 and normal from
Chapter 9, as well as some new things specific to this program.

https://commons.wikimedia.org/wiki/File:Plos_wilson.jpg
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The function init_habitats sets up the initial conditions by choos-
ing a random species (or no species) for each element of the array. It also
sets the size of the inhabitants of this element. It assumes that, intially,
the size of all individuals of any species is about “1” (in some arbitrary
units), but that there’s about a 10% variability between individuals. The
function uses our normal function to generate the random variations.
init_habitats also sets the “capacity” of each element to 50. If the
size of the individuals in this habitat exceeds this value, bad things will
begin to happen for them.

The function dumpsnapshot will be used to dump out a “snapshot”
of the conditions in our field every once in a while, so we can see
how things are progressing. It writes out a file with a name like
“habitat-nn.dat”, where “nn” is number we give dumpsnapshot.
The file is in the same “matrix” format we used in Program 12.5. The
function meansize calculates the mean size of the individuals in a
given species. As we’ll see, this will change as time progresses. This
function will let us track those changes.
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Figure 12.11: Three snapshots in the
evolution of our field occupied by two
competing species. At the top, we see
the initial random distribution. Over
time, the families in each of the initial
habitats colonize neighboring habitats,
perhaps driving out occupants of the
other species. The middle snapshot
shows an intermediate time, where the
species have acheived some kind of
equilibrium. Because size is
advantageous, natural selection drives
members of each species toward larger
sizes. In the last snapshot, we see the
result when the size of individuals
exceeds the capacity of the habitat.
Black squares show habitats where
colonists have died out due to lack of
resources.

Program 12.7 uses these structures and functions to actually do our
simulation. After calling init_habitats, it launches into a loop of
50,000,000 turns. In each turn, the program behaves similarly to Pro-
gram 12.5. One difference appears in the next-to-last “if” statement,
which no longer just checks to see if the neighboring element is unoc-
cupied. Now, even if the neighbor is already occupied, it will still be
taken over if the its occupants are smaller.

When the program calculates wait it
uses the function ceil from C’s math
library. This function rounds a number
up to the nearest integer. There’s also a
floor function, which rounds down to
the nearest integer.

In the final “if” statement, we enforce a wait period after we’ve taken
over an element. We’re not allowed to take over another element until
the wait period has passed. The wait period is calculated from our size.
If the size is larger, the wait period is longer (simulating longer gestation
periods for larger animals). We assume that the wait is proportional
to the mass of individuals. Since we said that size was a measure of
their height, we assume that their mass is proportional to size cubed.

Earlier in the program, after we’ve picked a random element, we check
to see if the size of the individuals in that element has exceeded the
element’s capacity. If so, we assume they die, and set species equal
to 0 for that element, making it empty and available for colonization.

When we run the program, it will make two kinds of output. First,
it will create ten snapshot files, showing the state of our array at ten
different times during its evolution. Second, it will periodically print to
the screen two numbers, representing the mean size of species 1 and
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Program 12.6: evolve.h

double rand01 () {
static int needsrand = 1;
if ( needsrand ) {

srand(time(NULL));
needsrand = 0;

}
return ( rand()/(1.0+RAND_MAX) );

}

double normal () {
int nroll = 12;
double sum = 0;
int i;
for ( i=0; i<nroll; i++ ) {

sum += rand01();
}
return ( sum - 6.0 );

}

double meansize ( int species ) {
int i,j;
double sum=0;
int n=0;
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
if ( h[i][j].species == species ) {

sum += h[i][j].size;
n++;

}
}

}
return( sum/(double)n );

}

void dumpsnapshot (int isnap) {
FILE *output;
char filename[100];
int i,j;

sprintf (filename,"habitat-%02d.dat",isnap);
output = fopen( filename,"w" );
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
fprintf (output, "%d ", h[i][j].species );

}
fprintf (output,"\n");

}
fclose( output );

}

void init_habitats () {
int i, j;
double roll;
for ( i=0; i<100; i++ ) {

for ( j=0; j<100; j++ ) {
roll = rand01();
if ( roll < 0.10 ) {

h[i][j].species = 1;
} else if ( roll < 0.20 ) {

h[i][j].species = 2;
} else {

h[i][j].species = 0;
}
h[i][j].size = 1.0 + variability*normal();
h[i][j].lastturn = 0;
h[i][j].capacity = 50.0;

}
}

}



structures 419

the mean size of species 2.

We can plot the snapshots with gnuplot just as we plotted the output of
Program 12.5:

plot "habitat-00.dat" matrix with image

The result will be plots like the ones shown in Figure 12.11.

If you run the program several times, you’ll find that the results will
vary widely. Sometimes the two species acheive an equilibrium, as in
Figure 12.11, but often one species will completly take over the field.

By directing the program’s output into a file (“./evolve > evolve.dat”)
we can look at how the mean size of each species varies over time. Fig-
ure 12.12 shows the trend in size for one species in one simulation.
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Figure 12.12: Because larger size is
favored by natural selection in our
model, the mean size of individuals in
each species grows over time, until it
reaches a plateau at the maximum
capacity the habitats can accommodate.

The trend toward larger sizes over time is very common in nature, and
is sometimes referred to by evolutionary biologists as “phyletic size
increas” or “Cope’s Rule” (after palaeontologist Edward Drinker Cope).
We’re all made familiar with this tendency in childhood, when we first
see pictures of tiny early horses like Eohippus (see Figure 12.13).

Figure 12.13: The tiny horse-ancestor,
Eohippus, as illustrated by
palaeontological artist Charles R. Knight
in 1905. Stephen Jay Gould has written
an interesting essay about the long
history of comparing the size of
Eohippus to that of a “fox terrier”. You
can find it in his collection of essays
Bully for Brontosaurus.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Eohippus.jpg
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Program 12.7: evolve.cpp

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

typedef struct {
int species;
double size;
int lastturn;
double capacity;

} Habitat;

Habitat h[100][100];
double variability=0.1;

#include "evolve.h"

int main () {

int i,j,n,direction,inew,jnew,t,isnap=0;
double wait;
int turns=50000000;

// Initialize:
init_habitats();

for ( t=0; t<turns; t++ ) {

if ( t%(100*100) == 0 ) {
printf ( "%lf %lf\n", meansize(1), meansize(2) );

}
if ( t%(turns/10) == 0 ) {

dumpsnapshot( isnap );
isnap++;

}

i = 1.0 + 98.0*rand01();
j = 1.0 + 98.0*rand01();

if ( h[i][j].size > h[i][j].capacity ) {
h[i][j].species = 0;
continue;

}

rand01() < 0.5 ? direction=0 : direction=1;
rand01() < 0.5 ? n=0 : n=1;
if ( direction == 0 ) {

inew = i-1+2*n;
jnew = j;

} else {
inew = i;
jnew = j-1+2*n;

}
if ( h[inew][jnew].species == 0 ||

h[inew][jnew].size < h[i][j].size ) {
wait = ceil( pow(h[i][j].size,3) );
if ( t - h[i][j].lastturn > wait ) {
h[inew][jnew].species = h[i][j].species;
h[inew][jnew].size = h[i][j].size + variability*normal();
h[inew][jnew].lastturn = t;
h[i][j].lastturn = t;

}
}

}
}
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12.10. Conclusion
Objects in the real world always have more than one interesting prop-
erty. C’s structures allow us to encapsulate an object’s multiple prop-
erties in a single variable. As we’ve seen in this chapter, the typedef
statement can allow us to simplify our code by defining new variable
types using these structures.

If we moved forward into the extra features offered by C++, we’s see
that structures are the precursor of even more powerful things called
“classes”. A C++ class incorporates multiple properties as well as a set
of functions (called “methods”) that are particular to a given type of
object.

We’ve also seen several new computing techniques in this chapter.
The techniques we used for dealing with gravitational interactions
can be refined and improved to make them suitable for really useful
calculations of the orbits of celestial bodies. The techniques we’ve seen
for dealing with interactions between neighboring objects (the domain
example and the evolution example) have wide applicability in physics
and biology.





13. Bitwise Operators and

Binary Numbers

13.1. Introduction
Back in what this author still regards as “the good old days” it was
easy to control individual bits in a computer’s memory. Computers
like the PDP-11/70 shown in Figure 13.1 actually had switches on the
front for doing just that. In order to start the computer, the user would
carefully set the switches to a particular pattern of ones and zeroes
(usually written on a yellowed piece of paper taped to the front of the
computer), perhaps repeating this process several times with different
patterns, inching the computer along until it could continue on its own.

Figure 13.1: The front panel of a DEC
PDP-11/70, showing the switches that
were used to load a binary starting
address into the computer’s memory.
Image: Wikimedia Commons

Computers have changed a lot since then, but it’s still possible, and
sometimes necessary, to switch individual bits on and off. The C
programming language provides us with a set of tools for doing that.

  

180 nm180 nm

a single bita single bit

Figure 13.2: An electron microscope’s
view of a memory chip, showing
individual memory cells. Each cell is
essentially a little switch, approximately
180 nanometers wide. The wavelength
of green light is shown to give an idea
of the size.
Image: Wikimedia Commons

It’s fun to think about what happens when your program changes the
value of a single bit. Each memory cell in a modern computer is smaller
than the wavelengths of visible light. When you change the value of
a single bit, you’re causing a precise physical change in an incredibly
tiny object.

Why would you want to the ability to flip individual bits? First of all,
bits are the smallest unit of data storage, and by efficiently setting bits
you can minimize the amount of space required to store your data on a
disk, and the amount of time required to transmit your data from one
place to another. Secondly, the CPU in your computer understands how
to flip bits on and off, and it can do these operations very quickly. If you
can do your calculations by flipping bits instead of more complicated
operations like multiplication and division, you can make your program
run much faster.

https://commons.wikimedia.org/wiki/File:Pdp-11-70-panel.jpg
https://commons.wikimedia.org/wiki/File:STM32-SEM-HD.jpg


424 practical computing for science and engineering

13.2. Binary Numbers
Before we start talking about bits, we first need to understand binary
numbers. In our society, we normally write numbers in what might be
called “decimal positional” notation. This means that each digit of a
number represents some multiple of a power of ten, and the position
of the digit indicates which multiple. Take a look at Figure 13.3 for
example.

0 0 0 0 0 2 3 7
100101102103104105106107

= 2×100 + 3×10 + 7×1

(10,000,000) (1,000,000) (100,000) (10,000) (1,000) (100) (10) (1)

Figure 13.3: The number 237 in decimal
positional notation.

The position of each digit tells us how “valuable” it is. You might think
of the digits as being like the contents of the bins in a cash register. The
rightmost slot is for one-dollar bills, the next is for tens, and the next
is for 100s. If we had two $100 bills, three $10 bills, and seven $1 bills,
we’d have $237. As we go from right to left, each slot has ten times the
value of the preceding one. A number system based on powers of ten is
called a “decimal” system from the Greek word deka, meaning ten. The
%d we use when printing integers with printf stands for “decimal
integer”.

×100 ×10 ×1

Figure 13.4: To represent a number in
our usual decimal notation we need to
be able to select from a set of ten digits
at each position. We could think of each
position as having a dial with ten
settings, from zero to nine. The number
237 is shown here.

To make our cash register analogy accurate, we’d have to imagine that
as soon as you get ten $1 bills you exchange them for a $10 bill and put
that into the next slot to the right, and do a similar operation whenever
we get to ten bills in any of the other slots. With this rule, each slot in
our number can contain one of ten symbols — 0, 1, 2, 3, 4, 5, 6, 7, 8, or
9 — telling us how many “bills” are in that slot. If we go beyond nine,
we need to move to the next slot to the right.

We don’t have to use powers of ten, though. We could base our system
on any number we want. We probably started using the decimal
system because we have ten fingers. If we’d had twelve fingers we
might have used a system based on powers of twelve. There are even
be some advantages to using such a “duodecimal” system1. In fact,

1 Take a look at this Numberphile video:
https://www.youtube.com/watch?v=U6xJfP7-
HCc

vestiges of an old 12-based counting system show up in our daily lives
whenever we buy a dozen doughnuts or look at a clock. If we used
a 12-based positional system for writing numbers, we’d need twelve
possible symbols for each slot.

Figure 13.5: In binary notation, each
slot can contain only a zero or a one, so
instead of the knob in Figure 13.4 you
might think of each binary digit as a
switch.

What if we had to use only two symbols? Then we could write numbers
in a “binary” positional notation. (The word binary comes from the
Latin bis, meaning “twice”.) Each slot in a binary number indicates
some number of multiples of two, and each digit is either 0 or 1. (See
Figures 13.5 and 13.6.)

Why would we be interested in binary numbers? Because each digit

https://www.youtube.com/watch?v=U6xJfP7-HCc
https://www.youtube.com/watch?v=U6xJfP7-HCc
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1 1 1 0 1 1 0 1
2021222324252627

= 1×128 + 1×64 + 1×32 + 1×8 + 1×4 + 1×1
= 237 (decimal)

(128) (64) (32) (16) (8) (4) (2) (1)

Figure 13.6: The number 237 (decimal)
would be written like this in binary.

can be represented by a switch, and it’s easy to make switches. We can
make switches that are both very small (so that many of them can be
packed into a small space) and very fast (meaning that each switch can
be turned on or off very quickly)2. Once we have some switches, we 2 Speed and size are correlated. As

switches get smaller, they can also be
turned on or off more quickly. That’s
one reason manufacturers put so
much effort into making the already-
microscopic components of modern
CPUs even smaller.

can use them as the digits of binary numbers.

Each digit in a binary number is called a “bit”. You can think of it as a
switch that can be flipped to a value of zero or one. Computers usually
deal with bits in groups of eight (or multiples of eight). A group of
eight bits is called a “byte”. (Half a byte, four bits, is sometimes called
a “nybble”.)

Figure 13.6 shows how the decimal number 237 would be written as a
binary number. Each bit represents a power of 2, and can have a value
of one or zero. Let’s call the right-most bit “bit 0”, the next one “bit 1”
and so on, with each bit numbered according to the power of 2 that it
represents.

Decimal Binary
1 1

2 10

3 11

8 1000

10 1010

64 1000000

100 1100100

127 1111111

128 10000000

200 11001000

255 11111111

Figure 13.7: Decimal and binary
representation of some numbers.

There are a couple of things we might notice right away with this
system. First, the bit number increases toward the left. If we were given
a bunch of bits, numbered zero through seven, and asked to write them
down, we might be inclined to start with bit 0 on the left-hand side of
the page, then write the others going left-to-right, as we usually arrange
things in English. We write the digits of numbers in the opposite way,
though, no matter which base (10, 12, 2, or something else) we use. We
don’t usually think about this, but it’s important to keep it in mind as
we start working with the digits of binary numbers.

Second, we might notice that this system can only represent positive
integers. We haven’t provided any way to represent non-integers or
even negative integers. We’ll address these concerns soon.



426 practical computing for science and engineering

Figure 13.7 shows the decimal and binary representations of some
numbers. Notice that the largest number we can write with eight bits
(one byte) is 255. This corresponds to all bits being set to 1. If we want
to write larger numbers, we’re going to need more bits.

13.3. Bits and Variables
When we write a statement like “number = 42;” in a C program,
we’re asking the computer to store the value 42 in a variable named
number. But what really happens inside the computer? Each variable
in our program is just a named section of the computer’s memory.
When we define a variable named number, the computer reserves a
few bits of memory that can be used to store that variable’s value.

We can use the sizeof statement3 (see page 167) to find out how much 3 The value returned by sizeof isn’t
actually an int, so to keep printf

from complaining we force the value to
be an int by putting “(int)” in front
of it.

space has been reserved for a given variable. The space is reported as a
number of bytes (8-bit chunks). For example:

#include <stdio.h>

int main () {

int i;

double d;

char c;

printf ("Size of i is %d bytes.\n", (int)sizeof( i ) );

printf ("Size of d is %d bytes.\n", (int)sizeof( d ) );

printf ("Size of c is %d bytes.\n", (int)sizeof( c ) );

}

4 bytesint

00001001

01010101

00010010

10110011

01011001

00110111

10110011

01111010

01011010

00101100

10000010

00110111

8 bytesdouble

00100101 1 bytechar

8 bits

Figure 13.8: Different types of variable
use different amounts of storage.

If we compiled and ran this program, we’d see something like this:

Size of i is 4 bytes.

Size of d is 8 bytes.

Size of c is 1 bytes.

As you can see, different types of variable will generally have different
amounts of space. The C language standards don’t specify exactly
how big the storage space for each type of variable should be, so these
numbers may vary from one C compiler to another, but the values
shown above are typical.

If the program tells us that int variables are allocated 4 bytes (32 bits)
of storage space, what’s the biggest number we can store in an int?
We might think it would be a binary number with 32 ones, like this:
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11111111111111111111111111111111

which is 4,294,967,295 (a little over 4 billion) in decimal representation.
But if we reached that conclusion we’d be forgetting that int variables
can hold either positive or negative numbers. Somehow, we’ve got to
reserve at least one bit to indicate whether the number is positive or
negative.

It would be great if we could peek at the bits inside an actual variable,
to see how they’re arranged. Let’s start by looking at the smallest kind
of variable identified by the program above: the char variable, which
has only one byte (8 bits) of storage.

13.4. Character/Number Equivalence
You might recall from Chapter 8 that each character is represented by a
numerical ASCII code. Figure 13.9 shows the characters corresponding
to the ASCII codes from zero to 127. You’ll see that the table includes
all of the letters and numbers you’ve come to know and love, and many
of the other symbols on your keyboard. For example, the upper case
letter “A” is character number 65.

There are also some non-printable characters. For example, the NUL
character (which we sometimes write as \0) is there as character num-
ber zero. Character number 10 is the newline (also called linefeed)
character, \n. Characters like newline, horizontal tab, formfeed, and
space are used the move around on your screen, but don’t actually print
anything. Some of the non-printing characters are extremely weird
things like DLE, NAK, SYN, and ETB. These are used to control the flow
of ASCII data sent across a communications line.

One important fact is that, in C, a character and its ASCII number
are almost entirely interchangeable. The following program prints the
number 65 twice. The first time, it tells printf to print it as a number.
The second time, it tells printf to print it as a character:

#include <stdio.h>

int main () {

printf ( "As a number it's %d\n", 65 );

printf ( "As a character it's %c\n", 65 );

}

The only substantial difference in the two printf lines is that one uses
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ASCII
Number Character

ASCII
Number Character

ASCII
Number Character

ASCII
Number Character

0 NUL '\0' 32 SPACE 64 @ 96 `

1 SOH (start of heading) 33 ! 65 A 97 a

2 STX (start of text) 34 " 66 B 98 b

3 ETX (end of text) 35 # 67 C 99 c

4 EOT (end of transmission) 36 $ 68 D 100 d

5 ENQ (enquiry) 37 % 69 E 101 e

6 ACK (acknowledge) 38 & 70 F 102 f

7 BEL '\a' (bell) 39 ' 71 G 103 g

8 BS '\b' (backspace) 40 ( 72 H 104 h

9 HT '\t' (horizontal tab) 41 ) 73 I 105 i

10 LF '\n' (new line) 42 * 74 J 106 j

11 VT '\v' (vertical tab) 43 + 75 K 107 k

12 FF '\f' (form feed) 44 , 76 L 108 l

13 CR '\r' (carriage ret) 45 - 77 M 109 m

14 SO (shift out) 46 . 78 N 110 n

15 SI (shift in) 47 / 79 O 111 o

16 DLE (data link escape) 48 0 80 P 112 p

17 DC1 (device control 1) 49 1 81 Q 113 q

18 DC2 (device control 2) 50 2 82 R 114 r

19 DC3 (device control 3) 51 3 83 S 115 s

20 DC4 (device control 4) 52 4 84 T 116 t

21 NAK (negative ack.) 53 5 85 U 117 u

22 SYN (synchronous idle) 54 6 86 V 118 v

23 ETB (end of trans. blk) 55 7 87 W 119 w

24 CAN (cancel) 56 8 88 X 120 x

25 EM (end of medium) 57 9 89 Y 121 y

26 SUB (substitute) 58 : 90 Z 122 z

27 ESC (escape) 59 ; 91 [ 123 {

28 FS (file separator) 60 < 92 \ '\\' 124 |

29 GS (group separator) 61 = 93 ] 125 }

30 RS (record separator) 62 > 94 ^ 126 ~

31 US (unit separator) 63 ? 95 _ 127 DEL

Figure 13.9: ASCII codes between zero
and 127 and their corresponding
characters.
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%d as a placeholder and the other uses %c. The %d tells printf to treat
65 as a number, and %c says to treat it as a character. If we ran the
program, we’d see:

As a number it's 65

As a character it's A

Perhaps even more surprisingly, we’d see the same results if we wrote
the program this way:

#include <stdio.h>

int main () {

printf ( "As a number it's %d\n", 'A');

printf ( "As a character it's %c\n", 'A' );

}

As far as C is concerned, 'A' is exactly equivalent to 65.

Exercise 60: Character Building

Write a program named charnum.cpp that uses a for loop
to print out the numbers from 33 to 126, inclusive, and the
ASCII character that corresponds to each number. The pro-
gram’s output should be two columns, with the first column
being the number and the second column its corresponding
ASCII character. Note that, because of the equivalence of
characters and numbers in C, the loop can either go from
33 to 126 or from '!' to '~' (see Figure 13.9).

If we could look directly at the 8 bits that store a character variable’s
value, we’d see that they’re just a binary representation of a character’s
ASCII number. For example, ’A’ is character number 65, which is
01000001 when expressed as an 8-bit binary number.
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13.5. A Simple Encryption Scheme (rot13)
Imagine that we took all of the lower-case ASCII letters and arranged
them in a circle, as in Figure 13.10. Below each letter is shown its ASCII
character number. There are 26 letters, so if we start at any letter then
move 13 spaces around the circle we’ll find ourselves at a different letter
that’s exactly on the opposite side of the circle.

+13

Figure 13.10: Adding 13 to the value ’a’
moves halfway around the circle to ’n’.
Adding 13 again would bring us back to
’a’.

You could use this as a simple way of “encrypting” a message. Start
out by writing down your message, then replace each letter with a
different one, halfway around the circle. The person receiving your
encrypted message could easily decode it (assuming he or she knows
the code!) by just going 13 more spaces around the circle, to get back
to the original letter.

This simple encryption scheme is called rot13, since it picks a replace-
ment letter by rotating 13 spaces around the circle. In the early days of
the Internet, rot13 was often used to obscure text. For example, if you
posted a movie review that contained spoilers, you might use rot13
to encrypt those parts. Anyone who really wanted to read them could
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decrypt the text, but if you didn’t want to know how the movie ended,
you’d be in no danger of having it accidentally spoiled for you.

Fortunately, it’s easy to write a program that can understand rot13.
Since moving by 13 spaces can be used to either encrypt or decrypt
a message, you can write one program that will work for either task.
Give it some plain text, and it will encrypt it. Give it some encrypted
text, and it will give you back the original message.

Writing such a program is particularly easy in C, since we’re free to use
characters and their numbers interchangeably. Program 13.1 shows one
way to do it.

Program 13.1: rot13.cpp

#include <stdio.h>

int main () {

char letter, position, newposition;

while ( scanf("%c", &letter) != EOF ) {

if ( letter >= 'a' && letter <= 'z' ) {

position = letter - 'a';

newposition = (position + 13)%26;

letter = 'a' + newposition;

}

printf ("%c",letter);

}

}

Ony change
lower-case letters.

Shift by 13 letters.

The program uses a “while” loop to read characters, one at a time.
Each time it reads a character, it checks to see whether this is one of the
lower-case characters ’a’ through ’z’. These are the only letters that
are part of the circle that we’re using for encryption (see Figure 13.10).
Any other characters will be left alone. Notice that we don’t have to
switch between the character’s name (like ’a’) and its ASCII number
(like 97). C takes care of this for us automatically.

Whenever we find a lower-case letter, we then identify the letter that’s
opposite it on our letter circle. This circle of letters is a lot like a clock.
Remember that in Chapter 4 we talked about clocks, and said that
they’re an example of modular arithmetic. When a clock’s hand goes
past twelve, it starts over again at one. We say that the modulus of the
clock is twelve. If we set a clock’s hour hand at 3 and wait 16 hours
we’ll find that the hand now points to 7. In terms of modular arithmetic,
we’d say that (3 + 16)%12 = 7, since 7 is the remainder obtained
after dividing 3+16 by 12.
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Our circle of letters has 26 positions instead of 12, so it has a modulus
of 26. But there’s also another difference: our letters don’t start at 1.
Instead, they start with ’a’ (or, equivalently, 97 in C). When we look
at a clock, the “12” position is both the beginning and the end of the
circle of numbers. When we do modular arithmetic on a clock, we
assume that the clock numbers tell us how many hours away from 12

we are. We could imagine that, when the clock’s hour hand gets to 12

it’s briefly twelve hours away from where it started, then as is passes
twelve it’s instantaneously back at zero. In our clock’s modulo-12

counting system, zero is just the flip side of 12.

So, for example, if we were given the letter ’y’ and wanted to find out
which letter was on the opposite side of the circle, we first find how
far we are from ’a’. This is just 'y'- 'a'. Then we add 13 to this
distance and find the remainder after dividing by 26:

( 'y' - 'a' + 13 ) % 26

The remainder tells us how far away from ’a’ we’ll be when we move
to the letter on the opposite side of the circle. To find out this letter’s
ASCII number, we just add ’a’ to it. That’s what Program 13.1 does.

Exercise 61: A Lot of Rot

Create and compile Program 13.1. Run the program and type
some text. When you press Enter or Return, the program
should print the rot13-encrypted version of your text. For
example, if you type “this is a test” the program will tell you
that the encrypted version of this is “guvf vf n grfg”. Press
Ctrl-D to exit the program. If you run the program again
and type “guvf vf n grfg”, the program will translate it back
into “this is a test”.

If you have a whole file full of text you want to encrypt
(a file named secretmessage.txt, for example), you can
rot13-encrypt the whole thing by typing this command:

cat secretmessage.txt | ./rot13

Amaze your friends! Confuse your enemies!

Now that we have some understanding of how character variables are
stored, it’s natural to wonder how other kinds of variables stored. It
would be nice if we could examine them bit by bit to find out. We
can do this, but first we’ll need to learn a little about C’s “bitwise
operators”. In particular, we’ll need to learn about “bitwise shift” and
“bitwise and”.
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13.6. The Shift Operators

Figure 13.11: If you’ve never used a
typewriter, you might not know that the
shift key originally shifted part of the
typewriter up or down, to get access to
upper-case letters. This reduced the
number of keys that were needed.
Before the shift key was invented
typewriters either had separate keys for
each upper and lower case letter, or
they could only type in upper (or lower)
case.
Image: Wikimedia Commons

It should be obvious that the following program will print “1”. (Try it
yourself if you don’t believe me!)

#include <stdio.h>

int main () {

printf ( "%d\n", 1 );

}

but what would the following do?:

#include <stdio.h>

int main () {

printf ( "%d\n", 1<<3 );

}

You might be surprised to find that it prints “8”. What’s going on here?
What does that “<<3” do?

Let’s think about binary numbers again, and imagine that we have an
8-bit binary number representing the value “1”, like this:

0 0 0 0 0 0 0 1
2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

Figure 13.12: The number 1 written as
an 8-bit binary number. As with decimal
numbers, extra zeros on the left-hand
side don’t matter. We can write 1 or 01
or 00001, and they all mean the same
thing.

Referring to Figures 13.12 and 13.13, we see that we could write any
power of 2 in binary form by just writing down a lot of zeros and
putting a one in the slot corresponding to the desired power. So, 2

(decimal) is written as 10 (binary), 4 is written as 100, 8 is 1000, and
so on. If we started with a one in the first slot, we could imagine
generating all of the other powers of 2 by just shifting the one to the
left by some number of slots. (See Figure 13.13.)

Power Decimal Binary

20 1 00000001

21 2 00000010

22 4 00000100

23 8 00001000

24 16 00010000

25 32 00100000

26 64 01000000

27 128 10000000

Figure 13.13: Powers of 2 written as
8-bit binary numbers.

That’s exactly what C’s << operator does. It shifts all of the bits in
a number toward the left by a given amount. Bits shifted past the
left-hand edge are lost, and empty slots on the right-hand side are
filled in with zeros. In the program above, 1<<3 means “Start with the
number 1 in binary, then shift all of the bits to the left by three spaces.”
As you can see from Figure 13.14, that would give you 8, and that’s
what the program above prints out.

https://commons.wikimedia.org/wiki/File:Shift_(4261060942).jpg
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0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0
2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

Lost

1<<3=

1=

Added zeros

Figure 13.14: Starting with the 8-bit
binary representationn of the number 1,
we can shift all of the digits three spaces
to the left to get 8 by saying “1<<3”.

It’s interesting to think about what happens to a number when we shift
its digits to the left like this. Shifting the digits of a decimal number to
the left is equivalent to multiplying that number by some power of ten.
Ten times 237 is 2370. One hundred times 237 is 23700. Similarly, if we
shift the digits of a binary number to the left, we multiply it by a power
of two. For example, <<1 multiplies the number by two, <<2 multiplies
by four, and <<3 multiplies by eight.

<<1 Means

“Shift 1 Place to the Left”

Figure 13.15: The “left-shift” operator,
<<, shifts each bit leftward by a given
amount. Like birds on a perch, bits that
get shifted too far “fall off”.
Image: OpenClipart

What do we mean when we say that bits shifted “past the edge” are
lost? Where is the edge? As we saw above when we were playing with
the sizeof statement, each variable in a program has some amount
of storage space allocated to it. The bits that represent that variable’s
value are stored in that space. We can shift those bits around, but the
space is finite, and if we shift too far we lose some information4. For 4 As we’ll see, this also means that

there’s a maximum number that can
be stored in any variable. What that
number is will depend on the variable’s
type.

simplicity, many of the figures in this chapter will assume that we only
have eight bits available (one byte), but in reality we’ll usualy have
more space (four or eight bytes) for each of our numerical variables.

Figure 13.17 shows some examples that start with a different 8-bit
binary number (237 in decimal notation). Each time we shift left, some
bits drop off the edge and are irretrievably lost. If we shift far enough,
as in the bottom case, all of the original bits are lost, and we’re left with
only zeros. If you only have eight bits to store your number in, you’re
in trouble if you shove things over by eight spaces.

Note that it’s perfectly OK to shift the bits by 0 spaces, even though
that doesn’t change anything. The expression 1<<0 is just the same as
1. As we’ll see, this is sometimes convenient.

https://openclipart.org/detail/4611/wintersky
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Not surprisingly, there’s also a “right-shift” operator, >>. Figure 13.18

shows some examples. It works just like the left-shift operator, but
moves things in the opposite direction. Don’t think that you can use
a right-shift to recover bits that have dropped off the edge due to a
left-shift, though. That doesn’t work5. Any bits that are dropped are 5 More accurately, you can’t depend on it.

gone forever.

Exercise 62: Bit Drill

Let’s get some practice with the bit-shift operators. Write a
program named bitdrill.cpp that loops through values
of i from 0 through 31 and prints i and 1<<i for each value.
You might see a surprise for 1<<31 !

When you printed the value of 1<<i you probably used “%d”
in your printf statement. Try changing this to “%u”, then
recompile your program and run it again. Does the value
of 1<<31 change? We’ll explain why this happens a little
later.

One final note about the exercise above: if you look at Figure 13.13

you can see that the binary representation of each of the numbers you
generated (each 1<<i) would be mostly zeros except for a single 1 in
bit number i. Apparently, we can use 1<<i to create a number that
just has one particular bit turned “on”. This fact will come in handy in
the next section.

Okay, so we see that it’s possible to shift bits left and right. What
good does that do us? Remember that our goal was to be able to see
how the bits are really arranged when we store a number in a variable.
Bit-shifting is one of the tools we’ll need to do that, but we’ll also need
another tool: the “bitwise and”. We’ll get to that in a later section,
but first we need to learn a little more about how a computer stores
numbers.

Figure 13.16: Bit drill, meet drill bits.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Drillbits.jpg
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1 1 1 0 1 1 0 1

2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

1 1 0 1 1 0 1 0

1 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0

Lost

x=237

x<<1

x<<2

x<<8

Figure 13.17: If you shift far enough, all
of the original bits are lost.

1 1 1 0 1 1 0 1

2021222324252627

(128) (64) (32) (16) (8) (4) (2) (1)

0 1 1 1 0 1 1 0

0 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0

Lost

x=237

x>>1

x>>2

x>>8

Figure 13.18: The right-shift operator, >>,
shifts bits rightward by a given number
of slots.
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13.7. Signed and Unsigned Integers
In Section 13.6 you might have been surprised by the output of your
bitdrill.cpp program. If you used “%d” when printing the values
you probably saw that the program’s output looked like Figure 13.19.

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576

21 2097152

22 4194304

23 8388608

24 16777216

25 33554432

26 67108864

27 134217728

28 268435456

29 536870912

30 1073741824

31 -2147483648

Figure 13.19: The output of the
bitdrill.cpp program from Section
13.6, using %d to print the numbers.

Why is the last number negative? To figure it out, let’s start by consider-
ing what this number’s bits look like. Figure 13.20 shows the left-most
few bits of this 32-bit number (all of the other bits are zero). We might
expect this number to be equal to 231, which is a little over two billion.

1 0 0 0 0 0 0 0
2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

...

...

Figure 13.20: The left-most bits of the
32-bit number 1<<31.

The explanation has to do with the way the computer stores negative
numbers. In order to store both negative and positive numbers we need
to reserve at least one bit that will indicate the number’s sign. That’s
part of the explanation for what we see in our program’s output, but
it’s clearly not the whole story. If the top-most bit just indicated the
sign, then our last number would be “−0”, not −2, 147, 483, 648.

To make computations faster, computers actually use a slightly more
complicated way of storing negative integers called “two’s complement”
notation. The two’s complement of a binary number can be formed by:

1. Flipping every 1 to a 0, and every 0 to a 1, and

2. Adding 1 to the result.

This might seem pointless, but it has a distinct advantage: it lets the
computer add numbers together without needing to check their signs.
Adding the two’s complement of a number turns out to work just the
same as subtracting that number.

If we just reserved one bit as a “sign bit”, we’d always need to check the
sign when adding numbers, and then decide whether to add or subtract.
This would add extra steps to our calculation, slowing things down.
By using two’s complement notation we avoid this. As it turns out,
the bit pattern we produced by doing 1«31 is the two’s complement
of 2, 147, 483, 648, so to the computer it represents the negative of that
number.



438 practical computing for science and engineering

Using two’s complement notation for negative numbers, a 32-bit integer
can hold any number between −2, 147, 483, 648 and 2, 147, 483, 647. Any
number that has 1 as its left-most bit is assumed to be negative, and
interpreted as the two’s complement of the value. Figure 13.21 shows
the binary representation of some typical numbers.

Decimal Binary, 32 bits, Signed

0 00000000.00000000.00000000.00000000

1 00000000.00000000.00000000.00000001

32 00000000.00000000.00000000.00100000

256 00000000.00000000.00000001.00000000

1 billion 00111011.10011010.11001010.00000000

2 billion 01110111.00110101.10010100.00000000

2,147,483,647 01111111.11111111.11111111.11111111

-2,147,483,648 10000000.00000000.00000000.00000000

-256 11111111.11111111.11111111.00000000

-32 11111111.11111111.11111111.11100000

-1 11111111.11111111.11111111.11111111

Figure 13.21: Some representative signed
32-bit integers. Groups of eight bits (1
byte) have been separated by dots for
clarity.

The table is arranged in order of increasing binary numbers, from all
bits “off” to all bits “on”. Notice that when we go past the biggest
positive number (a little over 2 billion) the value jumps immediately to
the smallest negative number. The value when all bits are “on” is −1.

What if we know that all of our values are going to be positive? Are
we still limited to a maximum value of 2,147,483,647? It seems a shame
to reserve part of the available range for negative numbers when we
know we won’t have any.

If you try changing “%d” into “%u” in your bitdrill.cpp program,
you’ll see that the last thing it prints is now a positive number:

31 2147483648

0 4,294,967,295

2,147,483,647-2,147,483,648 0

2,147,483,647

Signed Integer Range

Unsigned Integer Range

Figure 13.22: A visual comparision of
the range of int and unsigned int

variables.

The “%u” format specifier tells the program to interpret the binary data
as an “unsigned integer”. Unsigned integers don’t wrap around to
negative values halfway through their range. Instead, they start at zero
and just keep getting bigger. The biggest value that can be stored in a
32-bit unsigned integer is 4, 294, 967, 295 (a little over 4 billion), which
in this case is represented by a 32 “on” bits. Figure 13.23 shows the bit
patterns that correspond to some representative unsigned integers.
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Decimal Binary, 32 bits, Unsigned

0 00000000.00000000.00000000.00000000

1 00000000.00000000.00000000.00000001

32 00000000.00000000.00000000.00100000

256 00000000.00000000.00000001.00000000

1 billion 00111011.10011010.11001010.00000000

2 billion 01110111.00110101.10010100.00000000

2,147,483,647 01111111.11111111.11111111.11111111

2,147,483,648 10000000.00000000.00000000.00000000

3 billion 10110010.11010000.01011110.00000000

4 billion 11101110.01101011.00101000.00000000

4,294,967,295 11111111.11111111.11111111.11111111

Figure 13.23: Some representative
un-signed 32-bit integers. Groups of
eight bits (1 byte) have been separated by
dots for clarity.

The int variables we’ve used so far are for holding signed integers. If
you know you won’t need negative numbers, you can define a variable
as “unsigned int”, and use %u as a placeholder when reading or
writing its value.

Notice that an unsigned integer uses the same pattern of bits to represent
4, 294, 967, 295 as the pattern that’s used to represent −1 for signed

integers. It’s worth pausing to think about what this means. If we
see 32 “on” bits in the computer’s memory, we don’t know whether it
represents −1 or 4, 294, 967, 295. It could even represent other values.
32 bits is the same size as four 8-bit char variables, so these bits could
represent an array of four characters. It’s not enough to know what
binary data is stored in a variable’s memory location. We also need to
know the variable’s type. The type tells us how to interpret the data we
see.

Program 13.2 can be used to illustrate the difference between int

variables and unsigned int variables.

Program 13.2: unsigned.cpp

#include <stdio.h>
int main () {

int i;
unsigned int j;

printf ( "Enter an integer: " );
scanf ( "%d", &i );
printf ( "You entered %d\n", i );

printf ( "Enter an integer: " );
scanf ( "%u", &j );
printf ( "You entered %u\n", j );

}
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If you ran this program and gave it 4000000000 (4 billion) each time
it asked you for a number, you’d see the following:

Enter an integer: 4000000000

You entered -294967296

Enter an integer: 4000000000

You entered 4000000000

Sometimes we can choose which way we want to display the same data
by just changing the placeholder in our printf statement, as we did
when we changed %d to %u in the bitdrill.cpp program. There
are subtle rules that control the way C converts data from one type to
another, though, so be careful, especially when comparing variables of
different types. Take a look at the following program, for example6: 6 This example is adapted from an excel-

lent, but rather technical, explanation by
Ozgur Ozcitak at StackOverflow.

Program 13.3: plusminus.cpp

#include <stdio.h>

int main() {

unsigned int plus_one = 1;

int minus_one = -1;

if( plus_one < minus_one ) {

printf("1 < -1 \n");

} else {

printf("Math isn't broken.\n");

}

}

If we compiled this program, g++ would give us a warning about
comparing signed and unsigned numbers, but it would still create a
program we could run. If we ran the program, it would erroneously
tell us that 1 is less than −1. That’s because in this situation g++

assumes we want to compare the two numbers as though they were
both unsigned integers. As we saw above, the signed integer −1 is the
same as the unsigned integer 4, 294, 967, 295.

Notice that 4, 294, 967, 295 is 232 − 1. In general, if we have n bits for
storing an unsigned integer, the biggest number we can store will be
2n − 1.

One final note: If you wanted to, you could explicitly define int

variables as signed int, to make clear that they’re different from
unsigned int. You don’t have to, though. If you don’t specify
whether the variable is signed or unsigned, the default is signed.

https://stackoverflow.com/a/50632/7379479
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4 0 0

5 9 9

Subtract Each Digit from 9

6 0 0Add 1

Original Number

Ten's Complement

Constructing the 
ten's complement 
of a number

Constructing the 
ten's complement 
of a number

Figure 13.24: The “ten’s complement”
of a number can be formed by
subtracting each digit from 9 and then
adding 1 to the resulting number.

Figure 13.25: “Complementary colors”
are pairs of colors that combine to form
white (or black in some color systems).
Each is the “complement” of the other,
meaning that each supplies what the
other lacks. Similarly, the ten’s
complement (or two’s complement) of a
number supplies what the number
lacks to become a power of ten (or two).

But what about. . . ?

What does “two’s complement” mean, anyway? And how can you
possibly subtract by adding? The answers depend on the fact that
numbers in a computer always have a limited number of digits.

For example, an unsigned int variable might have 32 bits — 32

binary digits – in the computer’s memory. If we try to put too large
a number into that space, the upper digits of the number will be
lost. If the biggest number we can store is 4,294,967,295 (expressed
in binary, of course) but we try to put in 4,294,967,296, we’ll see
that our variable ends up containing the value zero! 4,294,967,297

would give us 1, 4,294,967,298 would give us 2, and so forth. It’s
like the numbers get to the maximum value and then wrap around
to the beginning again.

This is analogous to an old-fashioned arcade game like Asteroids,
where characters that went off the right side of the screen reap-
peared on the left side.

It might be easier to understand if we look at a “ten’s complement”
example, where we work in the more-familiar base 10. Imagine
that we want to subtract 400 from 700. Let’s start by putting a 700-
pixel-long bar on the screen of a 1,000-pixel-wide arcade console,
as in the figure above.

If we wanted to subtract 400 pixels from the bar’s length, we could
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just move to the left by that amount and chop the bar off at the
vertical dashed line. This is the same as subtracting 400 pixels from
the bar’s length.

Alternatively, though, we could find the ten’s complement of 400

and add that much to the bar’s length, causing it to wrap around
when it bumps into the edge of the screen. The ten’s complement
of the number is just the difference between the number and the
total width of the screen. That difference turns out to be 600 pixels
in this example. As you can see, going forward a distance of 600

pixels (which wraps us around to the other side of the screen)
leaves us at the same dashed vertical line. We end up at the same
place as if we’d subtracted 400 pixels.

For 3-digit numbers the ten’s complement is the amount you need
to add to get to 1,000, because you can only hold numbers up
to 999 in three digits. After that, the numbers roll over like an
odometer to 000. For 4-digit numbers the limit would be 9,999, and
the ten’s complement would be the amount you need to add to get
10,000. In general, for n digits the ten’s complement of a number x

is 10n − x. Similarly, the n-digit two’s complement of x would be
2n − x.

One way to find the ten’s complement of a number is to subtract
each of the number’s digits from 9, and then add 1 to the result,
as shown in Figure 13.24. This might seem roundabout when we
could just subtract the number from 1,000 (for 3 digits) and be
done with it, but it’s useful when working with binary numbers.
In base 2, instead of subtracting from 9, you just flip the value of
each bit. This is something the computer can do very quickly. It
turns out that flipping the bits and adding 1 to the result is much
faster than finding the twos complement any other way.

Figure 13.26: Many cartoon characters
also have four digits. This is Felix the
Cat, one of the author’s favorites. He
first appeared in Feline Follies in 1919.
You can watch it at archive.org.
Image: Wikimedia Commons

https://archive.org/details/FelixTheCat-FelineFollies1919
https://commons.wikimedia.org/wiki/File:Felix_the_cat.svg
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13.8. Bitwise Logic
Way back in Chapter 3 we learned about the “and” and “or” (&& and
||) logical operators that we often use inside “if” statements. For
example, the statement:

Figure 13.27: The mathematics of logic
is called “Boolean Algebra” after its
inventor, George Boole, a 19th Century
British mathematician. Boole studied
how true and false assertions could be
chained together using “ands” and
“ors” to trace a mathematically rigorous
path leading to a specific conclusion.
His work was the foundation of
modern computer science.
Image: Wikimedia Commons

if ( a<3 && b>4 )

can be read as “if a is less than three and b is greater than four”,
whereas the statement:

if ( c==1 || d<7 )

means “if c equals one or d is less than seven”.

The && operator compares two expressions and tells us whether both

expressions are true. The || operator compares two expressions and
tells us whether at least one of them is true.

It turns out that C has a set of similar operators for comparing individ-
ual bits of binary numbers. These operators are & and |. (Note that,
unlike the logical operators we’ve used before, these new operators
aren’t doubled. Each is just a single character.) These operators treat
“1” as true and “0” as false.

Consider the example in Figure 13.29, which sets z equal to x&y. As
you can see, the & operator compares two numbers, bit by bit, looking
for places where the bits of both numbers are set to “1”. If both bits
are “1”, then the resulting bit is “1”, otherwise, it’s “0”.

Figure 13.28: The ampersand, &, once
had the distinction of being a member
of the alphabet, as seen in this page
from the 1863 “Dixie Primer, for the
Little Folks”. When reciting the
alphabet the “little folks” would end by
saying “X, Y, Z, and per se and”, the
slurring of which gave rise to the
character’s name. The character itself is
a combination of the letters Et, the Latin
word for “and”.
Image: Wikimedia Commons

We can summarize the behavior of the & operator with a truth table,
as in Figure 13.30. This shows the value that a bit of x&y will have
if the corresponding bits of x and y have the values given in the
shaded squares. A bit of x&y is only true (has a value of “1”) if the
corresponding bits of x and y are both true.

https://commons.wikimedia.org/wiki/File:Portrait_of_George_Boole.png
http://docsouth.unc.edu/imls/moore/moore.html
http://docsouth.unc.edu/imls/moore/moore.html
https://en.wikipedia.org/wiki/File:Alphabet_with_ampersand.jpg
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1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

0 1 0 0 1 0 0 1

x=

z=x&y

y=

& & & & & & & &

Figure 13.29: The result of a bitwise
“and” of two binary numbers is another
number that only has a 1 in the spots
where both of the original numbers had a
1.

0 0

0 1

0 1
x

0

1

y

&

Figure 13.30: Truth table for &, the
“bitwise and” operator. The result is
only true if both x and y are true.

The & operator is valuable because it can be used to find out whether a
particular bit of a given number has a value of 0 or 1. Let’s try it out
by examining the bits in the number 237. You can see this number’s
binary representation at the top of Figure 13.31.

Now let’s constuct another binary number. Recall that we can make a
binary number with a single 1 in any slot we choose by starting with
1 and shifting with the << operator. The middle line of Figure 13.31

shows a number that has a single 1 in slot number 3. The number is
1<<3. That’s equal to 8 in decimal notation, but all we really care about
is the fact that it’s all zeros except for a 1 in bit number 3. We might
call this number a “mask” because (as we’ll see) we’re going to use it
to hide all but one bit of the first number.

If we “bitwise and” these two numbers together, the result is what’s
shown in the bottom row of Figure 13.31. The 1 in this row is telling us
that bit number 3 is “on” in the number we’re testing (the top row).

We can use a other masks to test other bits. For example, Figure 13.32

shows how we could use 1<<4 as a mask to test bit number 4 of our
number. In this case, the bottom row shows all zeros, indicating that
bit number 4 is “off”.
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1 1 1 0 1 1 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

237=

237&(1<<3)=

1<<3=

& & & & & & & &

Figure 13.31: Testing bit 3 of the number
237. The result shows that this bit is
“on”.

1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

237=

237&(1<<4)=

1<<4=

& & & & & & & &

Figure 13.32: Testing bit 4 of the number
237. The result shows that this bit is
“off”.
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All of this leads us to the general rule that we can test bit number i of
a number, n, by checking the value of n&(1<<i). If this value is zero,
then the bit is “off”. If the value is non-zero, then the bit is “on”. We’ll
use this fact in the next section, when we start examining the inner
workings of variables.

Before we go on, though, let’s look at another useful bitwise logic
operator: the “bitwise or” operator, |. Figure 13.33 shows how this
operator works. If we have two values, x and y, and combine them
with the |operator to get a new value, z = x|y, the result has a 1 in
any slot where either x or y had a 1. The truth table for this operator
is shown in Figure 13.34.

1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

1 1 1 1 1 1 0 1

x=

z=x|y

y=

| | | | | | | |

Figure 13.33: The result of a bitwise “or”
of two binary numbers is another
number that has a 1 in the spots where
either of the original numbers had a 1.

0 1
1 1

0 1
x

0

1
y

|

Figure 13.34: Truth table for |, the
“bitwise or” operator. The result is true
wherever either x or y is true.

Another bitwise operator we should talk about is the “exclusive or”
(often called “xor”) operator, ^. Unlike the “or” operator, z = x^y

gives a 1 in any position where one and only one of the original numbers
has a 1. Figure 13.35 illustrates this. As you can see in the bottom
row, there’s a zero wherever both bits are “off”, but there are also zeros
whenever both bits are “on”. The truth table for the ^operator is shown
in Figure 13.36.
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1 1 1 0 1 1 0 1

0 1 0 1 1 0 0 1

1 0 1 1 0 1 0 0

x=

z=x^y

y=

^ ^ ^ ^ ^ ^ ^ ^

Figure 13.35: The result of a bitwise
“exclusive or” of two binary numbers is
another number that has a 1 in the spots
where only one of the original numbers
had a 1.

0 1

1 0

0 1
x

0

1
y

^

Figure 13.36: Truth table for ^, the
“exclusive or” operator. The result is
true wherever only one of x or y is true.

Finally, to complete our toolkit of bitwise operators there’s the “bitwise
not”, ~. This operator changes every 0 to 1 and every 1 to 0. For
example, if x contains the bits 11101101, then ~x will be 00010010.
If you think of each 1 or 0 as “true” or “false”, then the “not” operator
changes each “true” into “not true”, and each “false” into “not false”.

The following table summarizes the bitwise logical operators we’ve
talked about in this section:

Operator Symbol Usage Description

Bitwise and & z = x&y Bits of z are 1 only where bits of both
x and y are 1.

Bitwise or | z = x|y Bits of z are 1 where bits of either x or
y are 1.

Bitwise xor

(“Exclusive or”)
^ z = x^y Bits of z are 1 where bits of either x or

y are 1, but not where both are 1.
Bitwise not ~ z = ~x Bits of z are the opposite of the corre-

sponding bits in x.
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13.9. Examining Bits

1 0 1 0 1 0
202122232425

= 1×32 + 1×8 + 1×2 
= 42 (decimal)

(32) (16) (8) (4) (2) (1)

Figure 13.37: The number 42 expressed
in binary.

Now that we know about bit-shifting and the bitwise “and” opera-
tor we’re ready to write a program that examines individual bits in
the computer’s memory. Remember that we can check the value of
n&(1<<i) to find out whether bit number i of the number n is “on”
or “off”, as we saw in Section 13.8.

Program 13.4 puts the value 42 into a variable named n and then
examine’s the variable’s bits one by one.

Program 13.4: printbits.cpp

#include <stdio.h>

int main () {

unsigned int n = 42;

int i, on, nbits;

nbits = 8*sizeof( n );

for ( i=nbits-1; i>=0; i-- ) {

on = n & (1<<i);

if ( on != 0 ) {

printf ( "1" );

} else {

printf ( "0" );

}

}

printf ("\n");

}

sizeof gives bytes.
1 byte = 8 bits.

Start at highest bit
and work down.

If this value is zero,
the bit is “off”.

If we ran this program, it would print:

00000000000000000000000000101010

Is this really equal to 42 in decimal? Let’s take a look. We can ignore
the long line of zeros on the left-hand side, so we only need to look at
the right-most 6 bits. As you can see from Figure 13.37, this is indeed
the binary representation of the decimal number 42.

Figure 13.38: In Douglas Adams’
Hitchhiker’s Guide to the Galaxy books, 42

is the answer to the “ultimate question
of life, the universe and everything”.
Image: Wikimedia Commons

https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
https://commons.wikimedia.org/wiki/File:Douglas_adams_portrait_(cropped_2).jpg
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Exercise 63: Bit by Bit

Create, compile and run Program 13.4. It should print the
binary version of the decimal number 42. Try changing the
value of n in the program, recompiling it and running it
again. What happens if you set n to a power of 2 (like 2, 4,
8, 16, and so forth)? What happens if you set it to a value
that’s one less than a power of 2 (like 3, 7, 15, 31, ...)?

Try a few even numbers, paying attention to the right-most
digit of the output, and then try a few odd numbers doing
the same. Do you see a pattern?

If you’re tired of re-compiling the program, modify it so that
it asks you for the number instead of having the number
written into the program. Pay attention to the kind of format
specifier (placeholder) you use in your scanf statement.
Make sure it matches the type of the variable you’re reading
the number into.

Try giving the program the number 4294967295 (the biggest
number that an unsigned int can hold. What does the
output look like? What happens when you give it even
bigger numbers?

Figure 13.39: In the past, data was
sometimes saved on paper tapes like this.
Each line (vertical column in this picture)
represents a binary number. A large
punched-out hole represents a 1 and the
un-punched spaces are zeros. (Ignore the
line of small holes. That’s for moving the
tape.) The right-hand tape in this picture
is written using 7-bit ASCII characters.
The bottom-most position in each line is
a special “parity bit” wich isn’t part of
the character but is used for
error-checking. The other bits can be
read from bottom to top as a binary
number representing an ASCII character
(see the table in Figure 13.9). The visible
part of the right-hand tape says:
10.1 TYPE"DO YOU LOVE ME?"

Let’s hope the poor programmer wasn’t
disappointed.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:PaperTapes-5and8Hole.jpg
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13.10. Using xor for Encryption

Figure 13.40: Les Deux Soers (1889), by
Pierre-Auguste Renoir.
Image: Wikimedia Commons

You and your best friend want to exchange secret messages. Fortunately,
you know about the bitwise “exclusive or” (xor) operator, ^, and that’s
all you need for writing a simple encryption program.

Take a look at Program 13.5 (secretletter.cpp) below.

Program 13.5: secretletter.cpp

#include <stdio.h>

#include <stdlib.h>

int main ( int argc, char *argv[] ) {

char letter;

char key;

if ( argc != 2 ) {

fprintf ( stderr, "Usage: %s key\n", argv[0] );

exit(1);

}

key = argv[1][0];

while ( scanf( "%c", &letter ) != EOF ) {

printf ( "%c", letter^key );

}

}

Make sure user
has supplied a key.

The key is the first (and only)
letter of the first argument.

Combine each letter
with the key, using xor.

This program takes one command-line argument: a single letter that
forms the “key” for your encrypted message. Only someone who
knows the key will be able to unscramble the message.

The program works by taking each letter you type and “xor-ing” its bits
with the bits of the key. The resulting encrypted letter is then printed
out. The program will keep reading letters until it sees an “End of
File” signal, which you can give it by typing Ctrl-D. The encrypted
characters the program generates might not be viewable on your screen,
and some of them might even cause your display to misbehave in weird
ways. Because of this, it would be a good idea to redirect the program’s
output into a file, like this:

./secretletter b > secretstuff.dat

In this example I’ve used the letter “b” as my secret key, but you can
use any character you like. Just don’t tell anyone except your friend.

https://commons.wikimedia.org/wiki/File:Les_deux_soers.jpg
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Once you’ve made the encrypted file (secretstuff.dat in the exam-
ple above), you can e-mail it to your friend, secure in the knowledge
that nobody else will be able to read it.

Figure 13.41: Julia Child — author of
The Art of French Cooking and beloved
host of The French Chef — had an earlier
career as a spy. During World War II
she worked for the OSS, stationed in Sri
Lanka and China, where she passed
encrypted intelligence back to the US.
Image: Wikimedia Commons

But how will your friend decode the message? That’s where the xor
operation really comes in handy. It turns out that if you have three
binary numbers, plain, key, and encrypted, and you do this to
them:

encrypted = plain ^ key

then the following is also true:

plain = encrypted ^ key

so all your friend needs to do is run the encrypted message back
through the same program, using the same key. Once your friend
receives your message, he or she can decrypt it by typing:

cat secretstuff.dat | ./secretletter b

This is like what we did earlier to “decrypt” files created with Program
13.1 (rot13.cpp).

One obvious weakness of this program is that a Bad Guy could decrypt
our message by just trying all the possible letters we might have used
as our secret key. Even if we allow any letter (upper or lower case) or
number as the key, that’s still only 62 possibilities, and it wouldn’t take
that long to try them all.

We could improve our security by using a whole word as our key – a
password! Each time the program encrypts a character it could use the
next letter in the word, until it gets to the end and then starts over at
the beginning of the word. With that change, the number of possible
keys (still assuming only letters and numbers) becomes 62n, where n is
the maximum length of our password. For 8-letter passwords, that’s
628 = 218, 340, 105, 584, 896 possiblities! It would be very hard for a
Bad Guy to try all of these.

Program 13.6 shows how you might modify the secretletter.cpp
program to make it use a whole word as the key. Then necessary
changes are shown in bold. Notice that we use the strlen function
to find the length of the “key word” (or “password”), and we use the
modulo operator (%) and the number of characters read so far (nchars)
to keep cycling through the letters of the key word.

https://commons.wikimedia.org/wiki/File:Julia_Child_portrait_by_©Lynn_Gilbert,_1978.jpg
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Program 13.6: secretword.cpp

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main ( int argc, char *argv[] ) {

char letter;

char key;

int keynumber, keylength, nchars=0;

if ( argc != 2 ) {

fprintf ( stderr, "Usage: %s key\n", argv[0] );

exit(1);

}

keylength = strlen( argv[1] );

while ( scanf( "%c", &letter ) != EOF ) {

keynumber = nchars%keylength;

key = argv[1][keynumber];

printf ( "%c", letter^key );

nchars++;

}

}

Figure 13.42: “Say the secret word and
win a hundred dollars!” Groucho Marx
was the host of a quiz show named You
Bet Your Life. At the beginning of the
show the audience was shown a secret
word. If a contestant used the word
during the quiz, a rubber duck holding
a $100 bill descended on a string.
Image: Wikimedia Commons

This program works just the same as the earlier version. Start typing
your message after entering a command like this:

./secretword groucho > secretstuff.dat

where “groucho” is whatever you choose to use as your password and
secretstuff.dat is the encrypted version of your message. Again,
type Ctrl-D when you’re finished typing the message. Your friend can
then decrypt the message by typing:

cat secretstuff.dat | ./secretword groucho

The simplicity of xor encryption comes with a price. Another relation
between the key, the plain message, and its encrypted version is this:

key = encrypted ^ plain

meaning that, if an enemy ever obtains both the encrypted and de-
crypted versions of one of your messages, they can find the key you’ve
used! Even with a multi-letter key, if bad guys ever get snippets of

https://commons.wikimedia.org/wiki/File:Groucho_Marx_-_portrait.jpg


bitwise operators and binary numbers 453

encrypted and unencrypted data that are longer than our key, they’ll
be able to calculate all the letters in the key. Because of this weakness,
the same password shouldn’t be used more than once when doing this
kind of encryption.

Figure 13.43: A Soviet poster: “In order
to have more, it is necessary to produce
more. In order to produce more, it is
necessary to know more.”
Image: Wikimedia Commons

In the days of the cold war, Soviet spies came to the US armed with
a pad full of encryption keys. Their associates back in the USSR had
identical pads. Whenever a spy needed to send back some information,
he’d use one of the keys to encrypt it, then throw away that key. When
his compatriot received the message, he’d decrypt it using the first key
on his pad, and then discard that key. This type of encryption key is
called a “one-time pad”.

Exercise 64: Spies Like Us

Create, compile, and run Program 13.6 (secretword.cpp).
Try encrypting a message, writing the encrypted output into
a file named “encrypted.dat”.

Look at encrypted.dat with nano. It should look like
nonsense.

Now try decrypting the message. Does the text displayed
on your screen match your original message? What happens
if you use the wrong password when attempting to decrypt
the message?

What happens if you only use the first part of the password
when decrypting the message? For example, if you used
“charlottesville” as the password when encrypting the mes-
sage, what happens if you use “charlotte” when decrypting
it? (Make sure your message is longer than the password.)

Note that you can use spaces in the password, but if you do
you’ll need to enclose it in quotes, like this:

./secretword "a long password" > encrypted.dat

and do the same when decrypting the message.

https://commons.wikimedia.org/wiki/File:Soviet_Poster_4.jpg
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13.11. long and long long Variables

Figure 13.44: Long, long hair! An
average human has about 100,000 scalp
hairs, a number that could easily be
stored in an int.
Image: Wikimedia Commons

There are almost 8 billion people on Earth. Imagine that you had to
give each person an ID number. You wouldn’t be able to store that
number in an int or even an unsigned int. They can only store
numbers up to about 2 and 4 billion, respectively.

What if we want to store an integer that’s bigger than the biggest thing
that will fit into an unsigned int? C offers some other variable types
that might accommodate your needs. Two of them are “long int”
and “long long int”.

The C standard doesn’t specify how many bits each of these types has.
It only requires that long int be at least as large as int, and that
long long int be at least as large as long int. In some cases, two
(or even all three) of these types of variables will have the same number
of bits. Typically, though, you’ll find that at long long int can hold
significantly larger numbers than int.

We can again use sizeof to find out how many bits each of these
types uses.

#include <stdio.h>

int main () {

int i;

long int ilong;

long long int ilonglong;

printf ("Size of i is %d bytes.\n", (int)sizeof( i ) );

printf ("Size of ilong is %d bytes.\n", (int)sizeof( ilong ) );

printf ("Size of ilonglong is %d bytes.\n", (int)sizeof( ilonglong ) );

}

If we ran this program on a typical computer, we might see something
like this:

Size of i is 4 bytes.

Size of ilong is 8 bytes.

Size of ilonglong is 8 bytes.

Since a byte is 8 bits, this means that an int has 4 × 8 = 32 bits, a
long int has 8 × 8 = 64 bits, and a long long int also has 64 bits.
If we stored the number 42 in an int variable on this computer, its bits
would look like this:

00000000000000000000000000101010

https://commons.wikimedia.org/wiki/File:Fille_aux_longs_cheveux.jpg
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but the same value stored in a long int would look like this:

0000000000000000000000000000000000000000000000000000000000101010

Just as with plain int variables, there are signed and unsigned versions
of long and long long int variables: unsigned long int and
unsigned long long int.

Each of these types has an appropriate placeholder to use in printf

and scanf statements. The table below lists them.

Type Format Specifier

int %d

unsigned int %u

long int %ld

unsigned long int %lu

long long int %lld

unsigned long long int %llu

What’s the biggest number that will fit into each of these types of
integer? With the information from sizeof and what we now know
about how integers are stored we could figure it out, but there’s an
easier way. Your programs can use the file limits.h to find the
biggest or smallest numbers we can put into a given type of variable.
limits.h defines symbols like INT_MAX and INT_MIN, which tell
you the maximum and minimum valuse an int can hold. Here are
some useful values to look at:

Symbol Meaning

INT_MIN The smallest negative value that can be held in an int.
INT_MAX The largest positive value that can be held in an int.
LONG_MIN The smallest negative value that can be held in a long

int.
LONG_MAX The largest positive value that can be held in a long

int.
LLONG_MIN The smallest negative value that can be held in a long

long int.
LLONG_MAX The largest positive value that can be held in a long

long int.
UINT_MAX The largest value that can be held in an unsigned int.
ULONG_MAX The largest value that can be held in an unsigned long

int.
ULLONG_MAX The largest value that can be held in an unsigned long

long int.
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Notice that there are no symbols for the minimum values of the un-
signed types. For those, the minimum is always zero.

With all that in mind, we could write a little program to tell us the
limits on our various integer types. Program 13.7 does that.

Figure 13.45: Composer John Cage. The
longest piece of music I’m aware of is
John Cage’s Organ2/ASLSP (As Slow as
Possible), which is currently being
performed on an organ in Halberstadt,
Germany. The performance will end on
September 5, 2640, after 639 years! If we
created a timer that counted how many
seconds the performance has lasted, it
would only need to count to a little over
20 billion. This wouldn’t fit into an int,
but it would easily fit into a 64-bit long
long int.
Image: Wikimedia Commons

Program 13.7: printsizes.cpp

#include <stdio.h>

#include <limits.h>

int main () {

printf ("INT_MAX is %d\n", INT_MAX );

printf ("LONG_MAX is %ld\n", LONG_MAX );

printf ("LLONG_MAX is %lld\n", LLONG_MAX );

printf ("INT_MIN is %d\n", INT_MIN );

printf ("LONG_MIN is %ld\n", LONG_MIN );

printf ("LLONG_MIN is %lld\n", LLONG_MIN );

printf ("UINT_MAX is %u\n", UINT_MAX );

printf ("ULONG_MAX is %lu\n", ULONG_MAX );

printf ("ULLONG_MAX is %llu\n", ULLONG_MAX );

}

If we ran this program on a typical computer we might see something
like the following:

INT_MAX is 2147483647

LONG_MAX is 9223372036854775807

LLONG_MAX is 9223372036854775807

INT_MIN is -2147483648

LONG_MIN is -9223372036854775808

LLONG_MIN is -9223372036854775808

UINT_MAX is 4294967295

ULONG_MAX is 18446744073709551615

ULLONG_MAX is 18446744073709551615

This tells us that, on this computer, the biggest number we can store
in any of these integer types is 264 − 1, or 18, 446, 744, 073, 709, 551, 615
(about 1.8 × 1019, or 18 quintillion). This is the maximum value of an
unsigned long int or an unsigned long long int here.

Figure 13.46: Mathematicians at the
University of Hawaii have estimated
that there are about 7.5 quintillion
grains of sand on Earth.
Image: Wikimedia Commons

How big is 18 quintillion? That’s more than twice the estimated number
of grains of sand on earth! We could give each sand grain a serial
number if we wanted to.

https://en.wikipedia.org/wiki/As_Slow_as_Possible
https://en.wikipedia.org/wiki/As_Slow_as_Possible
https://commons.wikimedia.org/wiki/File:John_Milton_Cage_Jr.jpg
https://web.archive.org/web/20121219042143/www.hawaii.edu/suremath/jsand.html
https://web.archive.org/web/20121219042143/www.hawaii.edu/suremath/jsand.html
https://commons.wikimedia.org/wiki/File:A_beach_in_Maldives.jpg
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Figure 13.47: The two closet-sized boxes
in the foreground are IBM 350 disk
drives, introduced in 1956. Each drive
can hold a whopping 3.75 Megabytes of
data. That’s about the size of a single
photograph from a modern digital
camera.
Image: Wikimedia Commons

But what about. . . ?

Operating systems like Microsoft Windows and computer proces-
sors like those made by Intel often say they’re “64-bit” or “32-bit”.
What does that mean?

64-bit processors are CPUs that can read and process data in 64-bit
chunks. This effectively lets them do more work in less time than
a 32-bit processor. Most CPUs you’ll find in desktop and laptop
computers today are 64-bit devices.

A 64-bit operating system takes advantage of a 64-bit CPU’s abil-
ities. One key advantage of 64-bit operating systems is that they
can store the addresses of memory or disk locations in 64-bit-wide
variables. For example, a 32-bit operating system has trouble with
files larger than 2 Gigabytes or amounts of memory larger than 4

Gigabytes — the maximum numbers that can be stored in signed
and unsigned 32-bit integers. As we’ve seen above, the limits on
64-bit integers are astronomically higher, allowing 64-bit operating
systems to use much larger files and amounts of memory.

Data adapted from Wikimedia Commons

As you can see from the graph above, disks have continued to
grow rapidly in size over the last 40 years. Disks holding tens
of thousands of Gigabytes are now available. The move to 64-bit
operating systems was necessary to accommodate this growth.

https://commons.wikimedia.org/wiki/File:BRL61-IBM_305_RAMAC.jpeg
https://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.svg
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13.12. int Variables with Specific Widths

Figure 13.48: Two uintatheres pause for
a drink in this beautiful painting by
Charles R. Knight.
Image: Field Museum

As we noted above, the C standards don’t specify the exact number
of bits that an int, long, or long long variable should have. The
standards just say that each has at least as many bits as the preceding
type.

Sometimes, though, we want to have an integer variable with a specific
number of bits. For example, if we wanted our program to read binary
data in 4-byte chunks, it would be nice to have a 4-byte-long variable to
store each chunk.

The header file stdint.h defines some new types that we can use in
situations like this:

Type Size Format for printf Format for scanf

uint8_t 8 bits (1 byte) PRIu8 SCNu8

uint16_t 16 bits (2 bytes) PRIu16 SCNu16

uint32_t 32 bits (4 bytes) PRIu32 SCNu32

uint64_t 64 bits (8 bytes) PRIu64 SCNu64

These variable types each hold unsigned integers. There are corre-
sponding signed types with names like int8_t, but you’ll probably
find that the unsigned types are more useful.

There are new placeholders (“format specifiers”) for each of the new
types, and that these placeholders look different from the ones we’ve
used before. In order to use them, you’ll first need to include inttypes.h7. 7 Some older C compilers will complain

about these formats unless you also
add this arcane line at the top of your
program:
#define __STDC_FORMAT_MACROS

Notice that there are different placeholders for printf and scanf.

These placeholders are used a little differently, too. Take a look at the
following example, which reads a number into a uint8_t variable and
then prints the value back out:

Program 13.8: uintathere.cpp

#include <stdio.h>

#include <stdint.h>

#include <inttypes.h>

int main () {

uint8_t n;

printf ("Enter a number: ");

scanf( "%"SCNu8, &n );

printf ("You entered %"PRIu8"\n", n);

}

https://www.fieldmuseum.org/blog/photo-archives-charles-knight-paintings-gallery
https://www.fieldmuseum.org/field-museum-natural-history-conditions-and-suggested-norms-use-collections-data-and-images
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Instead of saying something like "%d", where the placeholder is inside
the quotes, these new placeholders need to go outside the quotes. Notice,
for example, how the template we give printf in the program above
has three sections: a beginning quoted section, followed by PRIu8,
then finally another quoted section. Whenever you want to use one of
these new-fangled placeholders, you need to exclude it from the quotes
like this, but leave the % inside!

Here’s another example, where we’re printing two uint8_t variables:

printf ( "The numbers are %"PRIu8" and %"PRIu8"\n", n, m );

Why all these complications? It’s because these types were added to
the C standards long after the original types like int. The new types
add new functionality without breaking anything that’s already there.
This required a little fancy footwork.

13.13. The Size of Literal Numbers
When a program does a calculation like “n = 2*5-3” it stores the
numbers 2 and 5 somewhere in the computer’s memory, then multi-
plies 2*5 and stores the result somewhere, then adds 3 to the result.
What amount of memory does the program reserve for these numbers
and intermediate results while it’s working?

Figure 13.49: The scientist and author
Carl Sagan was famous for talking
about the “billions and billons” of stars
out there. The phrase was used so often
that an informal unit called the “sagan”
has been defined. It’s equal to at least 2

billion plus 2 billion (“billions and
billions”), or 4 billion.
Image: Wikimedia Commons

In general, the program will look at each number and try to find an
appropriately-sized type of storage to put it in. For example, the current
version of g++ will first try to treat the number as an int. If it won’t fit
into the number of bits allocated for an int, it will move up to a long
int or a long long int. The numbers 2, 5, and 3 in the example
above would all fit into an int, which has 32 bits (4 bytes) on most
computers. If we looked at the computer’s memory while the program
was running, we’d see something like this:

00000000.00000000.00000000.00000010

00000000.00000000.00000000.00000101

00000000.00000000.00000000.00000011

representing (from top to bottom) 2, 5, and 3. (I’ve inserted dots in the
numbers above to separate them into byte-sized chunks for clarity.)

If we used the number “8000000000” (8 billion) in our program, it
might be stored in memory like this:

00000000.00000000.00000000.00000001.11011100.11010110.01010000.00000000

since that number is too large to fit into only 32 bits.

https://commons.wikimedia.org/wiki/File:Carl_Sagan_Planetary_Society.JPG
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You can use the sizeof statement to find out exactly how many bytes
a program will use to store a given number. For example, this program:

#include <stdio.h>

int main () {

printf ( "%d bytes\n", (int)sizeof(2) );

printf ( "%d bytes\n", (int)sizeof(2000000000) ); // 2 billion.

printf ( "%d bytes\n", (int)sizeof(4000000000) ); // 4 billion.

printf ( "%d bytes\n", (int)sizeof(8000000000) ); // 8 billion.

}

might print:

4 bytes

4 bytes

8 bytes

8 bytes

That’s all interesting, but do we need to worry about it? Yes, it turns
out that we do sometimes. Imagine what would happen if we had a
statement like:

n = 2000000000*4+7;

which starts by multiplying 2 billion (a number that will fit in 4 bytes)
by 4.

When the computer sees an expression like 2000000000*4 it guesses
how much space to allocate for the result by looking at the sizes of the
numbers being multiplied. Since each of the numbers in this example
would fit into 4 bytes, the computer allocates 4 bytes for the result. But,
as we’ve seen above, the result here (8 billion) won’t fit into 4 bytes.

Most modern compilers are smart enough to anticipate this problem,
and they’ll give you a warning message like:

warning: integer overflow in expression

n = 2000000000*4+7;

^

But the compiler can only catch the most obvious variations on this
problem. Imagine what would happen in a slightly more complicated
situation:
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Program 13.9: literal.cpp

#include <stdio.h>

int main () {

int x;

long int n;

printf ( "Enter multiplier: " );

scanf ( "%d", &x);

n = 2000000000*x+7;

printf ( "%ld\n", n );

}

Here, instead of multiplying by 4, we ask the user to enter a multiplier
when we run the program. The compiler can’t know in advance what
the user will type, so the compiler would give you no warning or error
messages, but if you ran the program and entered 4 as the multiplier,
bad things could happen.

The variable n is a long int, which is large enough8 to hold the 8 See Section 13.11 above. Note that
the details will vary, depending what
operating system and compiler you
use, but the principles are the same
everywhere.

expected result of our calculation (8,000,000,007), but the program
might incorrectly tell us that the answer is -589,934,585!

What’s happening in this case? Let’s follow the process step by step:

1. The program multiples 2,000,000,000,000 × 4, which should equal 8

billion. If we had 8 bytes (64 bits) to store the number, it would look
like this:

00000000.00000000.00000000.00000001.11011100.11010110.01010000.00000000

2. Since the computer has only allocated 4 bytes, the left-most 1 gets
chopped off:

00000000.00000000.00000000.00000001. 11011100.11010110.01010000.00000000

Chop this off

leaving us with:

11011100.11010110.01010000.00000000

This isn’t equal to 8 billion now. Interpreted as an int, it’s equal to
-589,934,592.

3. We now add 7 to this, to get -589,934,585, which is exactly what the
program told us.
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How could we have avoided this problem? It turns out that you can tell
the compiler how much space to reserve for a number. In the example
above, we could fix the problem by adding one letter:

n = 2000000000L*x+7;

The L after the number tells the compiler that we want to reserve as
many bits as a long int variable9. With that change, the program 9 We could have used either an upper-

or lower-case L. I’ve used an upper-case
letter here to avoid mistaking it for the
number 1.

would correctly tell us that the answer is 8,000,000,007.

We can use other suffixes on numbers to select other types. The table
below shows some of the possibilities:

Type Suffix

long int L

long long int LL

unsigned int U

unsigned long int UL

unsigned long long int ULL

If you want to use the specific-width types like uint32_t, defined in
stdint.h10, the syntax is a little different. For those types, you can 10 See Section 13.12.

use a statement like:

n = UINT64_C(2000000000)*x+7;

which tells the compiler that you specifically want to reserve 64 bits for
storing the first number. Some other similar options are listed in the
table below:

Type Syntax

uint8_t UINT8_C()

uint32_t UINT32_C()

uint64_t UINT64_C()

As you can see, numbers inside a computer aren’t as simple as the
numbers we use in math class. The complications arise because the
computer has a limited amount of space to store each number. You
should think about this whenever you’re working near the limit of the
largest numbers your variables can contain.



bitwise operators and binary numbers 463

13.14. Hexadecimal Numbers
When we write a number like 1729 we assume that it’s expressed in
base 10 (decimal) notation. In the preceding sections we’ve seen that
it’s also possible to write numbers in base 2 (binary) notation. There
are a couple of other useful notations that you should be aware of. One
of them is “hexadecimal” (or “hex”), which uses 16 as its base.

Figure 13.50: Srinivasa Ramanujan
(1887-1920) was a brilliant Indian
mathematician. While visiting
Ramanujan, the English mathematician
G.H. Hardy remarked that the number
on a taxicab, 1729, was rather
uninteresting. Ramanujan replied that
this number was, in fact, very
interesting, being the smallest number
that’s the sum of two cubes in two
different ways:13 + 123 and 93 + 103.
Since then, 1729 has been known as
“Ramanujan’s taxicab number”.
Image: Wikimedia Commons

We know that in base 10 we have ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and
9) and in base 2 we have two digits (0 and 1). Apparently we’ll need
sixteen digits for base 16! Since we only have ten number symbols on
our keyboards, what symbols do we use for the extra six digits? The
convention is to use the letters ’A’ through ’F’. The table in Figure 13.51

shows some decimal numbers with their hex equivalents. It also shows
the binary version of each number.

As you can see, this is how we’d count to sixteen in hexadecimal:
1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10. In hex, the number “10” is equal to
1 × 16 + 0 × 1:

0 0 1 0
160161162163

(4,096) (256) (16) (1)

Decimal Hex Binary

0 0 0000 0000

1 1 0000 0001

2 2 0000 0010

3 3 0000 0011

4 4 0000 0100

5 5 0000 0101

6 6 0000 0110

7 7 0000 0111

8 8 0000 1000

9 9 0000 1001

10 A 0000 1010

11 B 0000 1011

12 C 0000 1100

13 D 0000 1101

14 E 0000 1110

15 F 0000 1111

16 10 0001 0000

17 11 0001 0001

18 12 0001 0010

31 1F 0001 1111

32 20 0010 0000

63 3F 0011 1111

64 40 0100 0000

100 64 0110 0100

128 80 1000 0000

255 FF 1111 1111

Figure 13.51: Some decimal numbers
with their hexadecimal and binary
(8-bit) equivalents. A space splits each
binary number into two 4-bit “nybbles”.

Hexadecimal numbers are useful whenever you can divide a set of bits
into 4-bit groups. Notice that in table in Figure 13.51 we’ve split the
binary version of each number into two 4-bit chunks. You might recall
that 4 bits (half a byte) is called a “nybble”. The minimum number that
can be stored in 4 bits is, of course, zero, and the maximum number is
15. That gives 16 possible values that we can represent with 4 bits, just
like the 16 possible digits of hexadecimal numbers.

Since there are two nybbles in each byte, that means that the value
stored in a byte can be represented by two hexadecimal digits. That
value can be anything from 00 through FF, which corresponds to a

https://commons.wikimedia.org/wiki/File:Srinivasa_Ramanujan_-_OPC_-_2.jpg
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range of decimal values from zero to 255.

Let’s look at the binary representation of the number 1729:

00000000.00000000.00000110.11000001

We could use spaces to break this into 4-bit nybbles:

0000 0000 0000 0000 0000 0110 1100 0001

Converting each nybble into its hex equivalent, we’d get:

0 0 0 0 0 6 C 1

0 6 C1
160161162163

= 6×256 + 12×16 + 1×1
= 1729 (decimal)

(4,096) (256) (16) (1)

These eight hex digits (000006C1) represent the same value as the 32

bits of the number’s binary representation. Since hex notation is much
more compact than binary, and since it’s easy to convert between binary
and hex, we often use hexadecimal numbers in computing.

Hex numbers are used so often in computing that the C language has
some built-in facilities for dealing with them. For example, we can write
hex numbers directly into our program without needing to convert
them into decimal. If we wanted to give a variable the value FF in hex
(which is 255 in decimal), we could say:

n = 0xFF;

When we start a number with “0x”, the compiler assumes that the
number is written in hexadecimal notation. This might take a little
getting used to, since it looks like you’re writing “zero times FF”, but
you’ll get the hang of it. The zero at the beginning tells the compiler that
this is a number, and not a variable name (since variable names can’t
start with digits), and the x means that the number is in heXadecimal.
(Note that it doesn’t matter whether you use an upper-case or lower-
case x, but programmers usually stick to lower-case.)

Figure 13.52: Symbols like these, often
found on the sides of Pennsylvania
barns, are called “Hex signs”.
Image: Wikimedia Commons

We can also read and write numbers in hex notation. The placeholder
“%x” means “read or write this number as hex”. For example, these
statements:

n = 1729;

printf ( "In hex the number is %x.\n", n );

would print:

In hex the number is 6c1.

https://commons.wikimedia.org/wiki/File:IntegrityBarnstar.png
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Notice that this printed a lower-case “c”. If we wanted to print upper-
case letters, we could have used “%X” instead, to get 6C1. If we wanted
to print a 0x at the beginning of the number, as we would if we used
the number in a program, we could use “%#x”, like this:

printf ( "In hex the number is %#x.\n", n );

which would print “In hex the number is 0x6c1.” As before,
using an upper-case X would cause the printed letters to be upper-case.

When using “%x” with scanf, case doesn’t matter. For example, these
statements:

printf ("Enter number: ");

scanf("%x",&n);

would accept a number written as 6c1 or 6C1. It would also be OK if
you entered 0x6c1 or 0x6C1. As always, scanf tries to be forgiving.

If you’ve ever created web pages, you’ve probably already encountered
hex numbers. In that context, these numbers are often used to specify
colors. For example, if you see “#FFA500” that means 100% red, about
65% green, and no blue, which would mix together on your screen to
give you a nice orange color. (The color #0006C1” is a nice dark blue.)

#FFA500
Figure 13.53: The three pairs of hex
digits in this kind of color specification
tell the computer how much red, green,
and blue to mix together. Each pair of
digits is a number between 00 and FF.Color specifications like these consist of three pairs of hex digits, telling

the computer how much red, green, and blue to use. Each pair of digits
represents one 8-bit byte. The number stored in this byte says how
much of that color to use, on a scale from 00 (none of it) to FF (all of
it). Altogether, the color specification takes up 3 bytes of storage, or 24

bits. You’ll often see this referred to as “24-bit color”. This many bits
can store any of 224 = 16, 777, 216 different values, so that’s how many
colors it’s possible to specify this way.

Let’s try writing a little program that uses hex numbers to play with
color. Program 13.10 loops through some of the values for R, G, and
B and prints the resulting hexadecimal color identifier. Since (as we
noted above) there are over 16 million possible R,G,B combinations, the
program won’t print them all. Instead, it uses only eight out of the
possible 256 values for R, G, or B. That means the program will print
8 × 8 × 8 = 512 different colors.

The program has three nested loops. Each loop gives one of the primary
colors (R, G, or B) values between 00 and FF in steps of 32. That gives
eight values for each of the primary colors (since 256/32 = 8).
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Program 13.10: colorcube.cpp

#include <stdio.h>

int main () {

int r,g,b;

int step=32;

for ( r=0; r<=0xFF; r+=step ) {

for ( g=0; g<=0xFF; g+=step ) {

for ( b=0; b<=0xFF; b+=step ) {

printf ( "%d %d %d ", r,g,b );

printf ( "0x" );

printf ( "%02x", r );

printf ( "%02x", g );

printf ( "%02x", b );

printf ( "\n");

}

}

}

}

Figure 13.54: Hexe means “witch” in
German. Here’s W.W. Denslow’s
illustration of the Wicked Witch of the
West, from L. Frank Baum’s The
Wonderful Wizard of Oz.
Image: Wikimedia Commons

The program’s output has four columns, with each line looking some-
thing like this:

16 176 48 0x10b030

The first three numbers are the R, G, and B values expressed as decimal
numbers between 0 and 255. The fourth colum is a single hexadecimal
number corresponding to these RGB values.

Note that we’ve written the number in the format C uses for hex
numbers, by starting it with “0x”. This makes it easy to use the output
with other programs that understand this way of writing hex numbers.
After the 0x we write the R, G, and B values as hex numbers. Since
we want each of these numbers to have two digits, we can’t just use %x
as the placeholder. We want to force printf to print two digits, even
if the left-hand one is zero. We can make this happen by adding “02”
between % and x. The 2 tells printf to always leave room for 2 digits,
and the 0 says to put a zero on the left if there would otherwise not be
a digit there11. 11 See Appendix E for other printf

tricks.

https://commons.wikimedia.org/wiki/File:Wicked_Witch_of_the_West.png
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Exercise 65: Color Cube

Create and compile Program 13.10. Run the program and
redirect its output into a file, like this:

./colorcube > colorcube.dat

We can use gnuplot to visualize the output of our program.
We’ll use gnuplot’s splot command to plot points in 3-
dimensional space, where the x, y, and z coordinates of each
point are the R, G, and B values from our program. The
fourth column will determine each point’s color. Fortunately,
gnuplot also uses a leading 0x to identify hex numbers, just
as C does.

Start up gnuplot and give it the following commands:

set hidden3d

set xyplane 0

set view equal xyz

splot "colorcube.dat" using 1:2:3:4 pt 7 ps 6 lc rgb variable

The result should look something like the left-hand figure
below:

Try grabbing the cube with your mouse and rotating it
around!

How does this gnuplot magic work? The first three com-
mands have the following effects:

• set hidden3d causes gnuplot to “hide” objects that are
“behind” others in 3-d plots like this. Without this setting,
the stacking of objects depends on the order in which
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gnuplot draws them, which might not have anything to
do with which object is “closer” to the viewer.

• set xyplane 0 causes gnuplot to set the cube on the x-y
plane. Without this, splot will leave some space below
the cube.

• set view equal xyz causes all of the axes to have
equal scales. This makes the plot a cube, rather than a
shoebox.

While still in gnuplot, try turning each of these options off,
one at a time, by using unset instead of set, and then
typing replot after unsetting each one. This will show you
the effect of each setting.

The last gnuplot command (splot...) says that we want
to use columns 1, 2, 3, and 4 of the file. The “lc rgb

variable” at the end of the line tells gnuplot that the color
of each point will be specified in RGB format and will be
given by the last column of our data file. The “pt 7” and
“ps 6” control the point type and point size. These choices
cause the points to be plotted as large circles.

Figure 13.55: A “hex” can also be a curse.
Here’s a Roman curse written on a lead
tablet. The writing says, in part, “I curse
Tretia Maria and her life and mind and
memory and liver and lungs mixed up
together. . . ” Yow! The tablet is in the
British Museum.
Image: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Curse_tablet_BM_1934.11-5.1.jpg


A. Some Challenging Projects

The following pages contain some projects that will challenge you to
write programs using the skills you’ve learned in this book. Give them
a try!





Project 1: Cannonball Run

Introduction: The Visitor
Imagine that you’re an artilleryman in Napoleon’s army. Your job is to
fire a cannon, and to drop cannonballs as close as possible to a given
target. You take your job seriously, and spend a lot of time thinking
about the factors that limit your cannon’s accuracy.

Ignoring effects of the wind and rain (which you can’t control), you
know that if the cannon always fired cannonballs at the same speed
and angle, they’d always hit the same spot. But in reality, the speed
and angle aren’t always the same. Damp gunpowder or badly-formed,
ill-fitting cannonballs change the speed, and the cannon doesn’t stay in
exactly the same position from one shot to the next, tilting a little up or
down, or side to side.
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Figure A.1: The figures above illustrate
how a cannonball’s final position
depends on the upward angle at which
it’s fired (top) and its initial velocity
(bottom).

If you could fix even one of these problems you’d deserve a medal! But,
sadly, it would take years of experimentation and tons of gunpowder
to develop a new cannon design. If only there were some way to
accurately simulate a real cannon with something smaller, like the toy
cannons that tin soldiers use.

As you’re standing beside your cannon, musing about this, a mighty
concussion knocks you off your feet! An attack! But no. Rolling
onto your stomach and peering through the settling dust you see, not
a cannonball’s crater, but an oddly-dressed man. He’s lying on the
ground, waving his hands in the air. “I’ve done it!”, he shouts, “I’ve
done it! I’m the first man to travel back in time!”

Over the course of the next hour you find out that this man has come
from the 21st Century, and that the technology of his time is almost
magical. The time-traveller has brought with him an object the size of a
book which, when unfolded, can display moving images and even play
music! The traveller calls it a “computer”. This device is the solution to
your problem! It can instantly simulate thousands of cannon shots!
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Program 1: Simulating the Cannon
This project will require you to write three programs. The first of them
will be named “simulate.cpp”, and it will simulate a cannon. The
program will allow the user to specify a speed and vertical angle for
the cannonballs, but will add some random “jitter” to these values to
simulate the cannon’s imperfections. It will also add some random
jitter to the side-to-side direction in which the cannon is pointing. The
program’s output will be a file containing the x, y coordinates at which
each simulated cannonball lands1. 1 Note that in all of the following we’ll

ignore the effects of air resistance.

Figure A.2: Canon de 16 Gribeauval.
Source: Wikimedia Commons

The program should accept all of its parameters on the command line,
as described in Section 9.15 of Chapter 9. The usage should be:

./simulate nshots vinit theta outfile

where:

• nshots is the number of cannonballs to fire.

• vinit is the ideal initial velocity of the cannonballs (before adding
any jitter).

• theta is the ideal angle between the cannon and the ground (before
adding jitter), expressed in degrees. An angle of zero means the
cannon is horizontal, and an angle of 90 means the cannon is pointing
straight up into the air. (See Figure A.3.)

• outfile is the name of a file into which the program will write
the x and y coordinates at which each cannonball lands. Assume
that the cannon points along the x axis, but cannonballs may veer by
some small random angle, β, to the right or left. (See Figure A.4.)

If the user doesn’t supply enough command-line arguments, the pro-
gram should print out a friendly usage message and then stop without
trying to do anything else.

After running the program, the output file should contain two columns
of numbers with a space between them. The first column is x and the
second column is y.

https://commons.wikimedia.org/wiki/File:Canon_de_16_Gribeauval_pour_les_sieges_before_1923.jpg


some challenging projects 473

Figure A.3: Side view of the cannon’s
upward angle, θ.

Figure A.4: Overhead view of a
cannonballs side-to-side angle, β, its
range, r, and the landing positions of
some cannonballs.

β

r sin(β)

r cos(β)

x,y

Intended direction

= angle to left or right

r = ra
nge of c

annonball

Figure A.5: Finding the x and y
coordinates of a cannonball, given its
range and the horizontal angle β.

To get you started, the helpful time-traveller has already written much
of the program for you (see Program A.1). All you need to do is
complete the program by filling in main and adding a help function
that prints out a friendly usage message when the user doesn’t supply
enough arguments on the command line. As you can see, you’ll be
using several functions that have appeared in Chapters 9 and 11. These
are at the top of Program A.1.

Your program should determine the landing positions of the cannon-
balls as follows:
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1. Convert the upward angle (theta) into radians, since C’s trigonome-
try functions use radians instead of degrees. You can use the function
to_radians to do this. (This function is taken from Chapter 9, Sec-
tion 9.8.)

2. Open the output file for writing. (See examples like Program 5.3 in
Chapter 5.) Note that the name of the file will be in the command-line
argument argv[4].

3. Now loop through all of the cannon shots, using a for loop.

4. Each time the cannon shoots, set the cannonball’s initial velocity
and upward angle to the values of vinit and theta, plus some
random “jitter”. To do this, use the function named normal (taken
from Section 11.4 of Chapter 11). The normal function generates
numbers that tend to be close to zero, but sometimes have other
values. (See Figure A.6.)

• For each shot your program makes, set the cannonball’s initial
velocity to vinit + 0.1*vinit*normal(). This will give a
value that tends to be within +/- 10% of the “ideal” velocity,
vinit.  0
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Figure A.6: The normal function
generates pseudo-random numbers that
are most likely to be near zero, with
smaller probabilities for other values.
This figure shows 100,000

pseudo-random numbers generated by
normal.

• Set each cannonball’s upward angle to theta + 0.01*normal().
This will give a value that tends to be close the “ideal” angle,
theta, but has some small random variation.

5. Now that you have the cannonball’s velocity and upward angle, use
the range function (taken from Chapter 9, Section 9.8) to calculate
its range. This function takes the cannonball’s initial velocity and its
upward angle, and returns the cannonball’s “range” (the horizontal
distance from the launch point to the landing point). (See Figure
A.4.)

6. To determine the cannonball’s landing position you’ll also need to
know β, the angle by which its path deviates to the right or left. (See
Figure A.4.) Use the normal function for this by setting β equal to
0.01*normal(). This will give you a random, small angle.

7. Now that you have the cannonball’s range and the angle β, you
calculate the x and y coordinates of its landing spot. See Figure A.5.

8. Finally, write the x and y coordinates into the output file. (See
examples like Program 5.3 in Chapter 5 if you don’t remember how
to do this.)

Once you’ve written and compiled your program, run it like this to
produce an output file to use with your next program:

./simulate 10000 250 45 simulate.dat
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Program A.1: simulate.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(double)RAND_MAX );

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}

double g = 9.81; // Acceleration of gravity.

double to_radians ( double degrees ) {

return ( 2.0 * M_PI * degrees / 360.0 );

}

double time_of_flight ( double v0, double angle ) {

double t;

double vy0;

vy0 = v0 * sin(angle);

t = 2.0 * vy0 / g;

return ( t );

}

double range ( double v0, double angle ) {

double d;

d = v0 * cos(angle) * time_of_flight( v0, angle );

return ( d );

}

int main (int argc, char *argv[]) {

//

// Insert program here!

//

}
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Program 2: Analyzing the Results
Your second program will be named analyze.cpp. It will read a data
file produced by your first program, and give you a statistical summary
of the data it contains.

Like the first program, analyze should accept all of its parameters on
the command line, and give users a helpful message if they don’t give
it the right number of arguments. The usage should be:

./analyze filename

where filename is the name of a data file produced by your simulate.cpp
program.

The output of the analyze program should look like this:

Average x = 6428.287617
Std. dev. of x = 1286.944844
Min x = 2568.660526
Max x = 13046.427659
Average y = -0.611109
Std. dev. of y = 65.978704
Min y = -284.001774
Max y = 313.589122

showing the average values of x and y, the standard deviations of x

and y, and the minium and maximum values of x and y.

The helpful time-traveller has come to your aid again, and written some
of the program for you (see Program A.2). You’ll just need to fill in
main and write a help function.

To analyze the data, the program should proceed as follows:

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the
data and calculate the average and standard deviation.

2. The time-traveller has kindly provided you with an easy way to find
minimum and maximum values, using the two functions findmin
and findmax. Each time you read a new value of x, for example,
just say xmax = findmax(x,xmax,n). This will update the value
of xmax if necessary. When you’re done reading all of the data, xmax
will contain the largest value of x.

Run your program to analyze the simulate.dat file you produced
earlier. Check to make sure its results look realistic. (Compare them to
the sample output above.)
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Program A.2: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

double findmax ( double x, double oldvalue, int n ) {

if ( n == 0) {

oldvalue = x;

} else {

if ( x > oldvalue ) {

oldvalue = x;

}

}

return ( oldvalue );

}

double findmin ( double x, double oldvalue, int n ) {

if ( n == 0 ) {

oldvalue = x;

} else {

if ( x < oldvalue ) {

oldvalue = x;

}

}

return ( oldvalue );

}

int main ( int argc, char *argv[] ) {

//

// Insert program here!

//

}
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Program 3: Making Pictures
Your final program will be called visualize.cpp and it will let you
make pictures like the ones shown in Figure A.8. These figures show
the distribution of landing positions of 10,000 simulated cannonballs.

[i][j-1]

[i-1][j] [i][j] [i+1][j]

[i][j+1]

Figure A.7: Each element of grid
records the number of cannonballs that
landed within a particular section of the
battlefield.

The figures represent 2-dimensional histograms. We talked about
histograms in Chapter 7, but we didn’t say much about 2-dimensional
ones. Because of that, our friendly time-traveller has written almost all
of this program for you. (See Program A.3.)

This program uses a 2-dimensional, nbins × nbins array named
grid. Each element of the array represents an area of the battlefield.
The number stored in each element is the number of cannonballs that
landed in that area.

Like the preceding programs, this one will expect parameters on its
command line. Its usage will be:

./visualize xmin xmax ymin ymax infile outfile

where xmin, xmax, ymin, and ymax specify the limits of rectangular
area of the battlefield. infile is the name of a data file produced by
your simulate program. outfile is the name of a file into which
the current program will write its results.

Two key parts of the program have been left for you to fill in. First, near
the top of main, you need to set all of the elements of grid to zero. To
do this, you’ll need two nested “for” loops. Inside the loops, set each
element, grid[xbin][ybin], to zero.

Second, near the end of main, you need to open the output file for
writing and write your results into it. (You’ll again need two nested
“for” loops to do this.)

The file should have three columns, x, y, and grid[xbin][ybin],
where x and y are the coordinates of the center of the grid element.
Use x=xmin+xbinwidth*(0.5+xbin), and y similarly, for the center
position of each grid element.

There should also be a blank line after every nbins rows. See the end
of Section 6.12 for an explanation of this blank line, and the last part of
Program 6.8 for an example showing how to create it.

After writing and compiling the program, try it out. Use your analyze
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program to find good values for xmin, xmax, ymin, and ymax. Use
these values and your newest program to process the data in simulate.dat
and create a new file, visualize.dat, that can be plotted with gnu-

plot:

./visualize 2569 13046 -284 314 simulate.dat visualize.dat

Try plotting your results with gnuplot. To produce the top graph in
Figure A.8, give gnuplot the following command:

plot "visualize.dat" with image

To produce the bottom graph in Figure A.8, use this gnuplot command:

splot "visualize.dat" with image, "" with histeps
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Figure A.8: Two views of the
distribution of cannonball landing
positions. The color scale shows how
many cannonballs (out of 10,000) landed
in each grid element.
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Program A.3: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

void help() {

printf ("Usage: ./visualize xmin xmax ymin ymax input.dat output.dat\n");

}

int main ( int argc, char *argv[] ) {

const int nbins = 20;

int grid[nbins][nbins];

double x, y;

double xmin, xmax;

double ymin, ymax;

double xbinwidth, ybinwidth;

FILE *output;

FILE *input;

int xbin, ybin;

if ( argc != 7 ) {

help();

exit(1);

}

// Insert code here to reset all bins to zero.

xmin = atof(argv[1]);

xmax = atof(argv[2]);

ymin = atof(argv[3]);

ymax = atof(argv[4]);

xbinwidth = (xmax - xmin)/(double)nbins;

ybinwidth = (ymax - ymin)/(double)nbins;

input = fopen ( argv[5],"r" );

while ( fscanf(input, "%lf %lf", &x, &y) != EOF ) {

xbin = (x-xmin)/xbinwidth;

ybin = (y-ymin)/ybinwidth;

if ( xbin >= 0 && ybin >= 0 && xbin < nbins && ybin < nbins ) {

grid[xbin][ybin]++;

}

}

fclose ( input );

// Insert code here to open the output file and write

// the contents of "grid" into it.

}
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Last Words
As your friend from the future fades away in a cloud of sparkles, you
stand there savoring your brief glimpse of the future. “If only we had
such technology today,” you sigh, as you hear your commander shout
the order to begin breaking camp.

Figure A.9: Wellington at Waterloo.
Source: Wikimedia Commons

Figure A.10: Part of Babbage’s
“Difference Engine”.
Source: Wikimedia Commons

While you prepare to march into Russia during the Spring of 1812, far
away in England a mathematician named Charles Babbage is looking
at mathematical tables, like the ones used by artillerymen for aiming
their cannons, and thinking about how these tables could be generated
automatically, by machinery instead of humans.

After Napoleon’s defeat at Waterloo in 1815, Babbage exchanges ideas
with other mathematicians, English and French, and in 1822 he be-
gins work on the series of computing machines that will become the
ancestors of all modern computers.

Figure A.11: The Emperor Napoleon
(left), and Babbage’s brain (right).
Source: Wikimedia Commons 1, 2

https://commons.wikimedia.org/wiki/File:Wellington_at_Waterloo_Hillingford.jpg
https://en.wikipedia.org/wiki/File:Difference_engine_plate_1853.jpg
https://commons.wikimedia.org/wiki/File:Jacques-Louis_David_-_The_Emperor_Napoleon_in_His_Study_at_the_Tuileries_-_Google_Art_Project.jpg
https://en.wikipedia.org/wiki/File:Babbages_Brain.jpg


Project 2: Diffusion Confusion

Introduction: Randomly-Bouncing Molecules
Imagine that you’re in a large room full of perfectly still air. At the
opposite end of the room is a just-opened bottle of perfume. The
volatile molecules from the perfume have started to wander out into
the room, bouncing off of molecules in the air. How long would it take
these molecules to bounce their way across the room to your nose?

dis
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e

(x,y,z)

x

y
Figure A.12: A molecule leaves the
perfume bottle, then bounces around
among the air molecules for a while,
ending up at a position (x, y, z) some
distance from where it started.

A typical speed for a molecule in air is about 1,000 miles per hour,
but our perfume molecules don’t travel in a straight line. Figure A.12

shows a typical perfume molecule’s path. Since it bounces around at
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random, it tends to linger near the bottle for a long time. The process
by which molecules spread out by bouncing around this way is called
“diffusion”.

In this project you will write three programs: simulate.cpp, analyze.cpp,
and visualize.cpp. The first will simulate the paths of perfume
molecules through air, the second will analyze the simulated data, and
the third will help us visualize one of the results.

Program 1: Simulating the Paths of Molecules
Your first program will be named simulate.cpp. It will track the
random movement of some number of perfume molecules as they
undergo some number of collisions. The program will write the final
position of each molecule, and how long it took the molecule to get
there, into an output file.

The perfume molecule’s path is an example of a random walk, and
this program will be very similar to Practice Problem 4 in Chapter
7. One difference is that the new program tracks a random path in
three dimensions instead of two, so you’ll need to keep track of the
molecule’s x, y, and z coordinates. Another difference is that we won’t
assume that each step of the path has the same length, as we did in
the earlier program. This time, we’ll let the step length vary a little.
Each step in the molecule’s random path will be the distance from
one collision to the next. Finally, the new program won’t bother with
keeping track of sums or averages.

The program should accept all of its parameters on the command line,
as described in Section 9.15 of Chapter 9. The usage should be:

./simulate nparticles ncollisions output.dat

where:

• nparticles is the number of perfume molecules we want to simu-
late.

• ncollisions is the number of collisions each molecule will experi-
ence.

• output.dat is the name of a file into which the program’s results
will be written.

If the user doesn’t supply enough command-line arguments, the pro-
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gram should print out a friendly usage message and then stop without
trying to do anything else. See Section 9.15 of Chapter 9 for an example
showing how to do this.

After running the program, its output file should contain four columns
of numbers: The x,y, and z coordinates where the molecule ended up,
and the time it took to get there. We’ll measure time in microseconds
(1 microsecond = 10−6 seconds) and distances in microns (1 micron =
10−6 meters).

Each time a perfume molecule collides with an air molecule, we’ll
need to generate a new random direction for it, and a new random
distance to the next collision. In 3-dimensional space, we can describe
a particle’s direction with two angles, θ (theta) and ϕ (phi) (see Figure
A.13):

x

y

z

φ

θ

Δ z=d cos(φ )

Δ y=d sin(φ )sin(θ)

Δ x=d sin(φ )cos(θ)

(x,y,z)

d

Figure A.13: After a collision, the
molecule’s new direction is given by two
angles, θ and ϕ. The distance to the next
collision is d.

• The angle θ can point in any direction away from the Z axis. It can
have any value between zero and 2π radians (360°).

• The angle ϕ can have any value between straight up (zero) and
straight down (π radians, or 180°).

The distance, d, will vary around some average value called the “mean
free path”, which we’ll assume to be 0.14 microns. Each time we
generate a value for d we’ll do so by adding a little bit of random “jitter”
to this distance.
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To get you started, I’ve already written some of the program for you
(see Program A.4). All you need to do is complete the program by
filling in main. As you can see, you’ll be using two functions that have
appeared in Chapter 11. These are at the top of Program A.4. You’ll
also see that I’ve defined the values of the mean free path (meanpath)
and the speed of the molecules (speed), which we assume to be 500

microns/microsecond.

Figure A.14: Trading card for Hoyt’s
German Cologne, circa 1900.
Source: Wikimedia Commons

To track the molecules, your program should do the following:

1. Open the output file for writing2. The output file name will be

2 For a reminder about how to write
output into files, see examples like
Program 5.3 in Chapter 5.

given by argv[3], so you can say something like “output =

fopen(argv[3],"w");”.

2. You’ll need a pair of nested for loops: An outer loop for each
molecule, and an inner one for each collision3.

3 This is similar to what we did in
Program 2.7 in Chapter 2.

3. Keep track of the molecule’s position with three variables, xpos,
ypos, and zpos. Keep track of the time elapsed with a variable
named t. Remember to set all of these back to zero whenever you
begin tracking a new molecule.

4. Every time the molecule collides, do the following:

(a) Generate two random angles like this:

theta = 2.0*M_PI*rand01();

phi = M_PI*rand01();

(b) Generate a random distance like this:

d = meanpath * ( 1.0 + 0.1*normal() );

where normal is a function shown in Program A.4 below.

(c) Add ∆x, ∆y, and ∆z (as shown in Figure A.13) to the values of
xpos, ypos, and zpos, respectively, to get the molecule’s new
position4. 4 If you’re not familiar with the symbols

in Figure A.13, remember that θ is
theta and ϕ is phi. These are the
random angles you generated in step (a)
above.

(d) Update t by adding d/speed to it. This is the time it will take
the molecule to travel the distance d.

5. Use the trick described in Section 4.4 of Chapter 4 to print out
progress reports as your program is running. After every 10 molecules,
print a message like this on the screen: Working on molecule

10... (or 20, or 30, and so on). It’s OK if the program prints
“Working on molecule 0” when it starts.

https://commons.wikimedia.org/wiki/File:E.W._Hoyt_and_Co._(Proprietors)_(3093565672).jpg
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6. After tracking the molecule through ncollisions collisions, write
xpos, ypos, zpos, and t into the program’s output file5. These 5 See examples like Program 5.3 in

Chapter 5.should be written as four numbers separated by single spaces, with
a \n at the end of the line.

Once you’ve written and compiled your program, run it like this to
produce an output file to use with your next program:

./simulate 1000 16000 simulate-16000.dat

This should produce an output file (simulate-16000.dat) contain-
ing the final positions and times for 1,000 perfume molecules after each
of them bounces 16,000 times.
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Figure A.15: You can check your first
program’s results by plotting them with
gnuplot. This figure shows what you
should see if you type:
splot "simulate-16000.dat"

with points palette pointsize

3 pointtype 7

It shows the final x, y, and z positions
of the molecules, color-coded by how
long it took them to get there.

Program A.4: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}

double normal () {

int nroll = 12;

double sum = 0;

int i;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}

int main ( int argc, char *argv[] ) {

double meanpath = 0.14; // Microns per collision

double speed = 500; // Microns per microsecond

//

// Insert program here!

//

}
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Program 2: Analyzing the Results
Your second program will be named analyze.cpp. It will read a data
file produced by your first program, and give you a statistical summary
of the data it contains.

Like the first program, analyze should accept all of its parameters on
the command line, and give users a helpful message if they don’t give
it the right number of arguments. The usage should be:

./analyze input.dat

where input.dat is the name of a data file produced by your simulate.cpp
program.

The output of the analyze program should look like this:

Average distance = 16.292850 microns
Std. dev. of distance = 6.987062 microns
Min distance = 0.684207 microns
Max distance = 45.581858 microns
Average time = 4.480129 microseconds
Std. dev. of time = 0.003552 microseconds
Min time = 4.469744 microseconds
Max time = 4.491567 microseconds
Diffusion Coefficient is 0.29626 cm^2/s

where distance is the final distance of a molecule from the origin,
which is given by

distance =
√

x2 + y2 + z2

and time is the amount of time the molecule took to get there, which
is just the fourth column in your data file.

Figure A.16: Broken glass perfume
amphora from Ephesus, 2nd century CE.
Source: Wikimedia Commons

The “Diffusion Coefficient” is a way of measuring how fast molecules
diffuse through the air. It’s usually given in units of cm2/s. If your
program calls the average distance davg and the average time tavg,
you can calculate the diffusion coefficient like this:

dcm = davg/1.0e4;

tseconds = tavg/1.0e6;

dcoeff = dcm*dcm/2.0/tseconds;

where dcm is the distance converted to centimeters and tseconds is
the time converted to seconds. dcoeff is the Diffusion Coefficient. It
should end up having a value of around 0.3 cm2/s if your programs
are working properly.

https://commons.wikimedia.org/wiki/File:EAM_-_Perfume_amphora.jpg
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Again, I’ve already written some of the program for you (see Program
A.5). You’ll just need to fill in main.

To analyze the data, the program should proceed as follows:

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the
data and calculate the average and standard deviation.

2. At the top of Program A.5 below I’ve provided you with an easy
way to find minimum and maximum values, using the two functions
findmin and findmax. Each time you read a new value of t, for
example, just say tmax = findmax(t,tmax,n), where n is the
number of molecules you’ve processed so far. This will update the
value of tmax if necessary. When you’re done reading all of the data,
tmax will contain the largest value of t. Note: It’s important that n
be equal to zero the first time you use these functions.

3. After reading all of the data from the input file, calculate the Diffu-
sion Coefficient (as shown above) and print all of the results.

Figure A.17: “The Perfume Maker”, by
Rudolf Ernst.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Ernst,_Rodolphe_-_The_Perfume_Maker.jpg
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Program A.5: analyze.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

double findmax ( double x, double oldvalue, int n ) {

if ( n == 0) {

oldvalue = x;

} else {

if ( x > oldvalue ) {

oldvalue = x;

}

}

return ( oldvalue );

}

double findmin ( double x, double oldvalue, int n ) {

if ( n == 0 ) {

oldvalue = x;

} else {

if ( x < oldvalue ) {

oldvalue = x;

}

}

return ( oldvalue );

}

int main ( int argc, char *argv[] ) {

//

// Insert program here!

//

}
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Program 3: Visualizing the Distance
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Figure A.18: Distribution of the final
positions of 1,000 perfume molecules
after each has experienced 16,000

collisions.

Your final program will be called visualize.cpp and it will let you
make pictures like the one shown in Figure A.18. This figure shows the
distribution of final distances of 1,000 perfume molecules after 16,000

collisions.

This figure is a histogram, like the ones we discussed in Chapter 7. Your
third program will be similar to Program 7.1 in that chapter. Again, to
get you started, I’ve written part of the program for you (see Program
A.6 below). Notice that I’ve defined a 50-element array, bin, to hold
the histogram data.

Like the preceding programs, this one will expect parameters on its
command line, and should complain and exit if it doesn’t get the proper
number of parameters. Its usage will be:

./visualize dmin dmax input.dat output.dat

where dmin and dmax are the minimum and maximum distances (as
determined by your analyze program) input.dat is the name of a
file produced by your simulate program, and output.dat is a file
into which your new program will write the histogram data.

The output file should contain two columns of numbers, separated by
a single space. Unlike Program 7.1, the first column here will contain
a distance instead of a bin number (see below for instructions about
converting bin number to distance). The second column will be the
number of molecules in that bin.

To make the histogram, the program should proceed as follows:

1. First, determine the binwidth, like this:

binwidth = (dmax-dmin)/nbins;

2. Next, use a while loop to read data from the input file. Each line of
the file will contain four values: x, y, z, and t.

3. Every time you read a line, determine the distance from distance =
√

x2 + y2 + z2.

4. Determine which bin this distance belongs in, and increment that
bin. Be sure to keep a count of the number of over/underflows, as
Program 7.1 does.

5. After processing all of the input data, write the histogram data into
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the output file. For each bin of the histogram, write two numbers
separated by a single space: the distance represented by that bin,
and the number of molecules that fell within it. The distance can be
calculated from the bin number, like this:

distance = dmin + binwidth*(0.5+i);

where i is the bin number.

6. Finally, at the bottom of the output file, write a line beginning with
a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you
produced earlier:

./visualize 0.684207 45.581858 simulate-16000.dat visualize-16000.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize-16000.dat" with impulses lw 5

The result should look like Figure A.18.

Program A.6: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main ( int argc, char *argv[] ) {

const int nbins=50;

int bin[nbins];

//

// Insert program here!

//

}
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Figure A.19: How long would it take
our perfume molecules to diffuse across
a room? A long time!

What do your results tell you? If you were to run your simulate
program two more times, like this:

./simulate 1000 1000 simulate-1000.dat

./simulate 1000 4000 simulate-4000.dat

and then use your analyze program to analyze each of these files
and your simulate-1600.dat file, you might notice a pattern. Every
time you increase the number of collisions by a factor of four, the
average distance increases by a factor of two. This fact is reflected in
the definition of the Diffusion Coefficient, which tells us that the time
it takes molecules to travel a given distance by diffusion is:

t =
d2

2D

where t is the time, d is the distance, and D is the diffusion coefficient.

If we plotted time versus distance, we’d get a graph like Figure A.19.
As you can see from the graph, it would take hundreds of hours for our
perfume molecules to travel even one meter. Diffusion is apparently
very slow! Scents usually reach our nose by riding on air currents,
rather than through diffusion.

Why is diffusion so slow? From Chemistry class we know that a small
amount of air (say, a ballon full) contains on the order of 1023 molecules.
That’s a lot of obstacles to bounce off of. Even though our perfume
molecule might be traveling at 1,000 miles per hour, it collides with air
molecules billions of times per second, and each collision sends it off in
another random direction.

Figure A.20: In the Carboniferous
period Earth’s oxygen levels were much
higher than they are today. This
allowed giant inects like the dragonfly
Meganeura (top) to survive, even
without lungs. Meganeura had a
two-foot wingspan! The bottom
illustration shows tracheae inside an
insect’s body.
Source: Wikimedia Commons and D.G. Mackean

The low speed of diffusion explains why we have lungs, and why
there aren’t any human-sized insects. Breathing moves oxygen by two
mechanisms: diffusion and advection. When we breath, air is drawn into
our lungs by advection (the bulk motion of a fluid) and it brings oxygen
molecules along with it. When the air gets down into our lungs, oxygen
molecules then diffuse through the thin walls of blood vessels. This is
a very short distance, so diffusion can do the job relatively quickly. The
blood then carries the oxygen all through our body (advection again).

Insects don’t have lungs. Their bodies contain hollow tubes called
tracheae that open to the outside world. Oxygen molecules wander into
these tubes by diffusion, and then wander through the tubes until they
reach cells inside the insect’s body. This is a slow process, but since
insects are small, the distances are short. If insects were human-sized,
they couldn’t get oxygen quickly enough through this mechanism.

https://en.wikipedia.org/wiki/Meganeura
https://commons.wikimedia.org/wiki/File:Meganeura.jpg
http://www.biology-resources.com/drawing-insect-spiracle.html




Project 3: Proton Power

Introduction: Particle Beam Therapy
We all know that radiation can cause cancer, but radiation can also
be used to fight cancer. One example of this is particle beam cancer
therapy, in which a beam of charged particles (usually protons or pions)
is shot into a tumor with the goal of destroying it.

Figure A.21: An apparatus used for
pion-beam radiation therapy at the Paul
Scherrer Institut. The patient lies in the
semicircular cradle, which is inserted
into the apparatus behind during
treatment.

As particles from such a beam travel through the body, they gradually
lose energy and eventually come to rest. As it turns out, much of the
particle’s energy is lost close to the point at which it stops. This makes
such beams well-suited for killing tumors without doing too much
damage to the other tissues they pass through on the way to the tumor,
or tissues beyond the tumor.

Particles with higher energies will travel farther into the body. By
adjusting the energy of the particles, we can cause them to stop at a
chosen depth (ideally, inside a tumor).

At moderate energies, a beam of particles traveling through a body
loses energy mostly through interactions with electrons. Although it’s
possible that some of the particles will bump into an atomic nucleus,
that doesn’t happen very often. Since protons are 2,000 times heavier
than electrons, beams of these particles tend to travel in a straight line,
knocking puny electrons aside as they go.

+

Figure A.22: A proton (shown with a
plus sign because of its positive charge)
is much larger than the electrons it
knocks aside while travelling through
the body.

Figure A.23 shows how much energy protons deposit as they travel
through the body. The four curves show what happens when you use
protons of four different starting energies, ranging from 50 MeV to 125

MeV. The energy deposited damages the body’s tissues. The goal is to
destroy the tumor without doing too much damage to healthy tissue.

https://www.psi.ch/
https://www.psi.ch/
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Figure A.23: Energy deposited at various
depths by incoming protons having
energies of 50, 75, 100, or 125 MeV. As
you can see, more energetic protons
penetrate to greater depths. Also notice
that most of a proton’s energy is
deposited near its stopping point.

The Assignment
Imagine you’re a doctor working at a radiation therapy facility. You
have at your command a beam of protons. You can aim the beam
precisely, and control its energy.

You’re preparing for a visit by a patient with a 2-centimeter-thick tumor
buried 8 centimeters deep in her body (see Figure A.24). You need to
determine what energy the protons should have in order to deposit
most of their energy in the region of the tumor.

A physicist colleague has given you a formula to calculate the energy
lost by a particle while going through a thin slice of material. The
formula has a form like this6: 6 The actual equation is called the

Bethe-Bloch formula.

∆E = ∆x · f (E, proton properties, material properties)

where ∆E is the amount of energy the particle loses, ∆x is the thickness
of the slice, and f is some function that depends on E (the energy at the
beginning of the slice) as well as the constant properties of the particle
(like charge and mass) and properties of the material (like density).

Unfortunately, your physicist friend tells you that eight centimeters is
too big to call a “thin slice”. But that’s OK, she says. Just treat the
eight centimeters as though it was a stack of thinner slices, as shown
in Figure A.25. Each time the proton passes through one of the slices,

https://en.wikipedia.org/wiki/Bethe_formula
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it loses some amount of energy, ∆E. This lost energy damages the
tissue in that slice. The proton then enters the next slice with its energy
reduced by the amount ∆E.

Your assignment is to write three programs: simulate.cpp, visualize.cpp,
and analyze.cpp. The first will simulate the passage of protons
through the patient’s body, the second will help visualize these results,
and the third will help choose the right proton energy.

2 cm

X0
Tumor

Figure A.24: Our patient’s tumor is 2 cm
thick, and is centered at a depth of 8 cm.
Here “x” represents the depth below the
patient’s skin.

x0 Δx

E E-ΔE
+ +

ΔE

Energy 
going in

Energy 
coming out

Energy 
deposited

Figure A.25: We can look at the patient’s
body as a series of thin slices through
which the proton must pass. Each time
the proton passes through one of the
slices, it loses some amount of energy,
∆E. This lost energy damages the tissue
in that slice.
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Program 1: Simulating Protons
Your first job will be to write a program named simulate.cpp that
keeps track of the energy that protons lose as they travel through such a
stack of thin slices. Each slice will have a thickness of 0.01 cm. Assume
each proton travels in a straight line, starting at x = 0 and progresses
along the x axis until it runs out of energy. Each time a proton passes
through a slice, the program should write the proton’s position, energy
loss, and remaining energy into an output file.

Figure A.26: The international symbol
for ionizing radiation, which was first
used at Berkeley Radiation Laboratory
in 1946.
Source: Wikimedia Commons

Your physicist friend has kindly provided you with the beginning of
a program, but she’s too busy to finish it. The part she’s written for
you is shown in Program A.7. Near the top of the program are some
numbers you’ll need. The program assumes that humans are just made
out of water, since they mostly are.

She’s also written some useful functions in a header file named dedx.h,
which is shown below as Program A.8. The biggest function in it is
named dEdx, and it does most of the work of calculating how much
energy a proton loses while going through one of the slices. Notice that
simulate.cpp has an include statement near the top that fetches
dedx.h.

Program A.7: simulate.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include "dedx.h"

int main (int argc, char *argv[]) {

double pmass = 938.27; // MeV, Proton mass.

double pcharge = 1.0; // Proton charge.

double rho = 1.0; // Density, g/cm^2, for water.

double amass = 18.01; // Atomic mass, AMU, for water.

double anum = 10.0; // Atomic number, Z, for water.

double activation = 75.0; // Activation energy, eV, for water.

double dx = 0.01; // Slice thickness, cm.

int nprotons;

double estart, energy;

double x, de;

FILE *output;

// Sorry! got to run to a faculty meeting. You'll

// have to insert the rest of the program here.

}

https://en.wikipedia.org/wiki/Hazard_symbol
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To complete the program, you’ll need to do the following:

1. First, copy Program A.8 (dedx.h) into a file named dedx.h and save
it. Then create a file named simulate.cpp and start by putting the
contents of Program A.7 into it. This will be the program that does
your proton simulation.

2. Your program should accept three arguments on the command line.7 7 We learned how to use command-line
arguments in Sections 9.15 and 9.16 of
Chapter 9.

When you’re done writing your program, you should be able to run
it like this:

./simulate nprotons estart output

where:

• nprotons is the number of protons you want to simulate.
• estart is the starting energy of the protons.
• output is the name of an output file into which the program will

write its results.

If the user doesn’t supply enough command-line arguments, the
program should print out a friendly usage message and then stop
without trying to do anything else8. 8 See Section 9.16 of Chapter 9 for

information about how to do this.

Since nprotons is an integer, you’ll need to use the atoi function
to convert this command-line argument9. For estart you’ll need to 9 See Problem 5 (add.cpp) at the end of

Chapter 9.use atof, since this number can contain decimal places. The output
file name won’t need any conversion, since it’s already a character
string. You can just use that argument directly, like this:

output = fopen( argv[3], "w" );

3. Your program will need a pair of nested loops: An outer “for” loop
that generates protons, one a at a time, and an inner “do-while”
loop that tracks each proton through the slices until the proton loses
all of its energy.

Figure A.27: A “wind” of charged
particles, including many protons,
blows outward from the Sun. It
interacts with the earth’s magnetic field
to produce the aurora.
Source: Wikimedia Commons

4. Each time the program starts tracking a new proton it should set
the proton’s initial position and energy. To be more realistic, the
program should add some “wiggle” to these values. In the real
world, the particles in a proton beam don’t all have exactly the same
energy, and they won’t necessarily enter the body at exactly the same
spot (the patient might move a little, for example). Use the function
named “normal” (defined in dedx.h) for this. Here’s how to do it:

energy = estart + 0.01*estart*normal();

https://commons.wikimedia.org/wiki/File:Polarlicht_2.jpg
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x = 0 + 0.1*normal();

This sets the proton’s initial energy to estart ± 1% and the starting
position to zero cm ± 1 mm.

5. Each time a proton goes through a slice of tissue, your program
should do the following:

(a) Calculate the amount of energy the proton deposits in the slice
(we’ll call that “de”). Our physicist friend has given us the func-
tion named dEdx to help us calculate this.

de = dx * dEdx(energy, pmass, pcharge, rho, amass, anum, activation);

(b) Calculate the proton’s new energy:

energy = energy - de;

(c) Update the proton’s position:

x = x + dx;

6. Every time we change the values of x, de, and energy, the program
should write those values into the output file specified on the com-
mand line10. These should be written as three numbers, separated 10 See examples like Program 5.3 in

Chapter 5.by single spaces, with a \n at the end of the line.

7. We can’t know in advance how many slices a proton will travel
through before its energy is all gone. We just have to look at the
energy after each slice, and see if it’s still greater than zero11.

11 This is similar to the baselpi.cpp
program you wrote for Problem 6

in Chapter 4. In that program, we
kept calculating smaller and smaller
terms, until we got to one that was less
than some limit. That program used a
“do-while” loop, and we can use one
of those here, too.

Near the end of the proton’s path, because of the approximations
we’re making, the dEdx function might tell us that the proton loses
no energy, even though it has some energy left. That means you also
need to check the value of de at the end of your “do-while” loop:

} while ( energy > 0 && de > 0 );

Once you’ve written and compiled your program, run it like this to
produce an output file to use with your next programs:

./simulate 1000 100 100-mev.dat

Figure A.28: You can check your first
program’s results by plotting them with
gnuplot. This figure shows what you
should see if you type:
plot "100-mev.dat" using 1:2

It shows the energy deposited in each
slice by each proton.

This should produce an output file named 100-mev.dat containing
information about the energy deposited by each proton, in each slice of
the patient’s body.
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The file dedx.h, below, contains a function named dEdx for calculating
the energy lost (∆E) in a slice of matter with thickness ∆x. This file
also contains two random-number functions that we’ve used before.
rand01 generates random numbers uniformly distributed between
zero and one, and normal generates random numbers in a Gaussian
or “normal” distribution12. 12 You can read about both of these in

Chapter 11.

Program A.8: dedx.h

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}

double normal () {

int i, nroll = 12;

double sum = 0;

for ( i=0; i<nroll; i++ ) {

sum += rand01();

}

return ( sum - 6.0 );

}

// Returns dE/dx, in MeV * cm^2/g (see units of "constant", below.)

double dEdx (double T, double pmass, double pcharge,

double rho, double a, double z, double activation) {

const double constant = 0.1535; // MeV cm^2/g

const double me = 0.5110034; //MeV/c^2, Electron mass.

double E, p, beta, gamma, wmax, excite;

double term1, term2, term3, bbdedx;

E = T + pmass;

p = sqrt(T*T + 2.0*pmass*T);

beta = sqrt(p*p/E/E);

gamma = 1.0/sqrt(1.0-beta*beta);

wmax = 2.0*me*beta*beta/(1.0-beta*beta); // MeV

excite = activation/1.0e6 ; // Convert to MeV.

term1 = constant*rho*z*pcharge*pcharge/a/(beta*beta);

term2 = log(2.0*me*gamma*gamma*beta*beta*wmax/excite/excite);

term3 = 2.0*beta*beta;

bbdedx = term1*(term2-term3);

if ( bbdedx < 0.0 ) {

bbdedx = 0.0;

}

// Add 10% gaussian noise:

bbdedx += 0.1*sqrt(bbdedx)*normal();

return (bbdedx);

}
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Program 2: Visualizing the Results
Your next program will be named visualize.cpp and it will help
us see how much total energy our beam of protons has deposited at
various points along its path. To do this, you’ll make what’s called a
“weighted histogram”.

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4

Ann Ben Carol Dave Edith

Figure A.29: The top histogram just
counts things. The bottom histogram
gives each thing a different weight. A
weighted histogram doesn’t just add 1

for each thing. Instead, it adds some
“weight”, given by a property that we’re
interested in (how much water is in a
glass, for example). These weights
generally won’t be integers.

In Chapter 7 we learned about histograms, which are graphs that tell us
which values in our data occur most frequently. We imagined dropping
marbles into bins to count how many times we’d seen a data value
within a particular range.

Think about a similar situation: Imagine you’re the owner of a restau-
rant, and you’re concerned about wasting water. You’ve noticed that
sometimes full glasses of water are left on tables after the diners have
left. You suspect that some of your wait staff are filling glasses too
often. To investigate, you get five large beakers, one for each of your
waitpersons. Whenever diners leave, you dump their leftover water
into the beaker representing that table’s waitperson.

As you can see in Figure A.29, this is almost the same as the histograms
we’ve made before, but instead of putting an integer number of marbles
into each bin, we’re pouring some (non-integer) amount of water into
a beaker. We can think of this as a “weighted” histogram. Instead of
just counting each glass as “1 glass”, and adding “1” to our histogram,
we’re giving the glasses different weights, depending on how much
water they contain, and adding that weight to the histogram.

In your visualize.cpp program, you’ll make a weighted histogram
that shows how much total energy our proton beam deposited at
various points along its path. Your program will be very similar to
Program 7.1 in Chapter 7.

Again, to get you started, your physicist friend has taken a break from
her busy schedule and written part of the program for you (see Program
A.9 below). Notice that she’s defined a 100-element array, hist, to
hold the histogram data. Also notice that this is an array of double
values instead of integers, since we’re making a weighted histogram.
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Program A.9: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

int main ( int argc, char *argv[] ) {

const int nbins = 100;

double hist[nbins];

FILE *input;

FILE *output;

// Gotta go give a lecture. You'll have to

// write the rest of the program.

}

Like the preceding program, this one will expect parameters on its
command line, and should complain and exit if it doesn’t get the
proper number of parameters13. Its usage will be: 13 See Sections 9.15 & 9.16 of Chapter 9.

./visualize xmin xmax input output

where xmin and xmax are the minimum and maximum depth we’re
interested in, in centimeters, input is the name of a file produced by
your simulate program, and output is the name of a file into which
your program will write the histogram data.

The output file should contain two columns of numbers, separated by
a single space. Unlike Program 7.1, the first column here will contain
a depth instead of a bin number (see below for instructions about
converting bin number to distance). The second column will be the
total energy deposited at that depth, in MeV.

Figure A.30: A painting by Gretchen
Andrew, from her series “Malignant
Epithelial Ovarian Cancer”, which aims
to “humanize the experience of having
cancer”.

To make the histogram, the program should proceed as follows:

1. Make sure the program sets all of the bins to zero at the beginning.

2. Determine the binwidth, like this:

binwidth = (xmax-xmin)/nbins;

3. Next, use a while loop to read data from the input file. Each line of
the file will contain three values: x, de, and energy.

4. Determine which bin this x value belongs in, as Program 7.1 does.

5. Be sure to keep a count of the number of over/underflows, as
Program 7.1 does.

https://en.wikipedia.org/wiki/Gretchen_Andrew
https://en.wikipedia.org/wiki/Gretchen_Andrew
https://malignant-epithelial-ovarian-cancer.com/
https://malignant-epithelial-ovarian-cancer.com/
https://artillerymag.com/gretchen-andrew-searching-for-different-truths/
https://artillerymag.com/gretchen-andrew-searching-for-different-truths/
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6. If it’s not an over- or underflow, add the value of de to this bin.
(Note that this is different from Program 7.1, which just adds 1 to
the bin.)

7. After processing all of the input data, write the histogram data into
the output file. For each bin of the histogram, write two numbers
separated by a single space: the depth represented by that bin, and
the total amount of energy deposited within it. The depth can be
calculated from the bin number, like this:

depth = xmin + binwidth*(0.5+i);

where i is the bin number.

8. Finally, at the bottom of the output file, write a line beginning with
a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you
produced earlier:

./visualize 0 10 100-mev.dat hist100.dat
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Figure A.31: The total energy deposited
at each depth by a 1,000 100-MeV
protons.

You can plot the resulting data file with gnuplot like this:

plot "hist100.dat" with lines

The result should look like Figure A.31.

Program 3: Analyzing the Data
Your last program will be called analyze.cpp. It will read data pro-
duced by your first program and determine how much total energy was
deposited in the patient’s body, and how much energy was deposited
in the tumor.

Like the preceding programs, this one should accept all of its param-
eters on the command line, and give users a helpful message if they
don’t give it the right number of arguments. The usage should be:

./analyze input tcenter tsize

Where “input” is the name of a data file produced by your simulate
program, “tcenter” is the depth of the center of the tumor, in cm,
and “tsize” is the size of the tumor, in cm.
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Program A.10: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

int main ( int argc, char *argv[] ) {

// Ack! My lab is on fire (again)!

// You're on your own here!

}

Once again, your physicist friend has written the first part of the
program for you, as shown in Program A.10. She didn’t have time for
much, but you shouldn’t have any trouble completing it. Here’s how to
do it:

Figure A.32: A Russian “Proton” rocket.
Source: Wikimedia Commons

Figure A.33: The BBC Micro“Proton”
computer.
Source: Wikimedia Commons

Figure A.34: A 2016 “Proton Persona”
automobile.
Source: Wikimedia Commons

1. First, make sure you define two double variables to keep track of
the total amount of energy and the amount of energy deposited in
the tumor. Make sure both of these are set to zero initially.

2. Next, you’ll need to find the depth at which the tumor begins, and
the depth at which it ends. These can be found from tcenter and
tsize, like this:

xmin = tcenter - tsize/2.0;

xmax = tcenter + tsize/2.0;

3. Use a while loop to read data from the input file. Each line of the
file will contain three values: x, de, and energy.

4. Each time you read a de value, add it to the total energy.
5. If x is between xmin and xmax, also add de to the amount of energy

deposited in the tumor.
6. After reading all of the data, print your results in a nice way that

tells the user the total energy and the energy in the tumor. Also tell
the user what fraction of the total energy was deposited in the tumor,
expressed as a percentage. Note that you can tell printf to print a
percent sign by writing %%.

After you’ve written your program, run it like this:

./analyze 100-mev.dat 8 2

This tells the program to read the data for 100 Mev protons that you
produced with your simulate program, and look at the amount of
energy that would end up in a two-centimeter-thick tumor located
at a depth of eight centimeters. The program’s output should look
something like this:

https://commons.wikimedia.org/wiki/File:Proton_Zvezda_crop.jpg
https://commons.wikimedia.org/wiki/File:BBC_Micro_Front_Restored.jpg
https://commons.wikimedia.org/wiki/File:Proton-Persona-Red.jpg
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Total energy deposited: 102252.422287 MeV

Energy deposited in tumor: 28645.976102 MeV

Fraction deposited in tumor: 28.014961%

Results

Figure A.35: Proton therapy is a
valuable treatment for some types of
cancer. It’s becoming more widely used,
with over 100 treatment centers online
now or in planning. Shown above are a
facility in Orsay, France (top) and the
Mayo Clinic in the US (bottom). The
cost, while still significant, is coming
down. The ability to minimize radiation
damage to surrounding tissues makes it
particularly appealing in pediatric cases,
where collateral radiation damage can
have long-term effects on development.

Using the tools you’ve written you could find the proton energy that
best suits your patient’s needs. For example, you could simulate protons
of several energies using your simulate program:

./simulate 1000 50 50-mev.dat

./simulate 1000 75 75-mev.dat

./simulate 1000 100 100-mev.dat

./simulate 1000 125 125-mev.dat

then take a look at the energy distribution created by each energy:

./visualize 0 10 50-mev.dat hist50.dat

./visualize 0 10 75-mev.dat hist75.dat

./visualize 0 10 100-mev.dat hist100.dat

./visualize 0 10 125-mev.dat hist125.dat

You’d see distributions like those shown in Figure A.23 in the intro-
duction. Each distribution has a distinct peak, called the “Bragg peak”,
near the end of the proton’s path. If you saw that one of these peaks
lies in the region of the tumor, you might use your analyze program
to see what fraction of the energy would go into the tumor, like this:

./analyze 100-mev.dat 8 2

Congratulations, Doctor! You’ve helped a patient along the road to
recovery.

If you’re interested in learning more about proton beam therapy, you
can find information here:

• Proton Therapy, from Wikipedia.
• The evolution of proton beam therapy: Current and future status,

from the NIH’s National Center for Biotechnology Information.
• The physics of proton therapy, by Wayne D Newhauser and Rui

Zhang.

https://commons.wikimedia.org/wiki/File:Orsay_proton_therapy_dsc04460.jpg
https://commons.wikimedia.org/wiki/File:MayoProton.jpg
https://en.wikipedia.org/wiki/Proton_therapy
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772792/
http://iopscience.iop.org/article/10.1088/0031-9155/60/8/R155/meta


Project 4: Population Explosion

Introduction

Boat (1922-1928), Adriano de Sousa
Lopes.
Source: Wikimedia Commons

Imagine that a derelict boat washes up on the shore of an uninhabited
island. Aboard the boat is a crew of ten rats, all grateful to be on dry
land again. Finding plenty of food and water on the island, the happy
rats settle down and begin raising families14.

14 This is reminiscent of the famous
radio drama Three Skeleton Key, first
broadcast in 1949. If you want to hear
a scary story, you can listen to it here:
mp3 at archive.org

Floating from place to place like this (a
phenomenon called "rafting") is one
way organisms colonize new territories.
About 50 million years ago the first
lemurs floated on wind-swept debris
across the Mozambique Channel from
the African mainland to the island of
Madagascar. In 1995, a dozen iguanas
floating on trees uprooted by a
hurricane colonized the previously
iguana-fee Caribbean island of
Anguilla.
Sources: Wikimedia Commons and Wikimedia Commons.

We might wonder how rapidly our rat population grows in their new
island home. Common brown Norway rats are known to have a very
high reproductive rate of 0.015 offspring per day. In a perfect envi-
ronment, we might expect their population to grow over time like
this:

N(t) = N0e0.015t

where N(t) is the population after t days, given an initial population of
N0. If we graphed the population over a few years, we’d see something
like Figure A.36.

This predicts a rat population of 6 trillion trillion after 10 years! Clearly
that’s unrealistic. Although there are a lot of rats in the world, their
total population is probably only a few billion15.

15
See https://www.worldatlas.com/articles/how-many-rats-are-there-

in-the-world.html

The problem is that our estimate assumes that birth and death rates
will stay the same as the population grows. Observations of the natural
world show that this isn’t really the case. For example, populations
typically share a limited amount of food and other resources. As the
population grows, food is harder to find and some individuals die of
starvation. Malnutrition also throttles population growth by reducing
birth rates. Typically death rates increase and birth rates decline as
populations grow. Taking these effects into account, a more realistic
graph of our rat population might look like Figure A.37.

This graph shows the population initially increasing, but then levelling

https://commons.wikimedia.org/wiki/File:Boat_(1922_-_1928)_-_Adriano_de_Sousa_Lopes_(1879_-_1944)_(20760150249).jpg
https://en.wikipedia.org/wiki/Three_Skeleton_Key
https://archive.org/download/OTRR_Escape_Singles/Escape_49-11-15_-085-_Three_Skeleton_Key_-William_Conrad-_-2-.mp3
https://commons.wikimedia.org/wiki/File:IMG-89595a4e304480974accb0a7f2b52ca5-V.jpg
https://commons.wikimedia.org/wiki/File:Iguana_Iguana_from_Margarita_Island.jpg
https://www.worldatlas.com/articles/how-many-rats-are-there-in-the-world.html
https://www.worldatlas.com/articles/how-many-rats-are-there-in-the-world.html
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off at some constant value. This value (called the carrying capacity of
the environment) is the population at which the birth rate is equal to
the death rate. When these rates are equal, the population no longer
increases. The S-shaped curve of this graph is called a logistic curve

and is typical of the growth of a population colonizing a new, initially
resource-rich, environment.
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Figure A.36: Rat population given by
the equation N(t) = N0e0.015t.
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Figure A.37: Rat population with
limited resources.

Illustration from Jules Verne’s story La
Famille Raton, written in 1886.
Source: Wikimedia Commons

The Assignment
Now consider a post-apocalyptic scenario where a group of 100 humans
is stranded on an island. The island is a pleasant place where the plants
and animals could easily provide food and shelter for a population
of 1,000 humans. Resigned to their fate, the humans settle down and
begin making the best of a bad situation. Ultimately, they have children
who grow up knowing no home but the island. These children have
grandchildren, and so on down the generations.

Your task in this project is to write three programs that simulate, visu-
alize, and analyze the growth of such a population.

In order to write a program to model the population’s growth, we’ll
need to know how birth and death rates change as the population
increases. The shape of the functions governing birth and death rates
will vary from one species to another, and will generally depend on
many environmental factors. For the purpose of our simulation, though,
let’s assume that these rates depend solely on the amount of food
available per individual. When food is plentiful, the birth rate is high
and the death rate is low. In times of famine, the birth rate is low, and
the death rate is high.

We’ll assume that we’re told the total food-producing capacity of the
environment, in terms of the number of individuals that can be fully
fed. To find each person’s share of this bounty (his or her ration), we
can just divide the total amount of food by the number of people. Birth
and death rates will be functions that depend on this ration.

Figure A.38 shows the shapes of the two functions we’ll use. These
functions give the annual probability of dying or having offspring
when the ration has various values. When the ration is 1, everybody is
well fed: the annual probability of having offspring is at its maximum,
and the probability of dying is at some minimum value due purely
to accident, disease, or old age. As the ration approaches zero, the
probability of dying approaches 1 (100%) and the probability of giving

https://fr.wikisource.org/wiki/La_Famille_Raton
https://fr.wikisource.org/wiki/La_Famille_Raton
https://commons.wikimedia.org/wiki/File:'Aventures_de_la_famille_Raton'_by_Felicien_de_Myrbach_07.jpg
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birth trails off to some tiny value. We’ll assume that if the ration is
greater than 1, the birth and death rates stay constant at the same values
they had when the ration was 1. (We’ll ignore any possible ill-effects of
overeating!)
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Figure A.38: Annual probability of birth
or death as a function of ration.

The birth probability function we’ve graphed looks like this:

b(r) =











bmax

10(1 − r) + 1
if r ≤ 1

bmax if r > 1

(A.1)

and the death probability function looks like this:

d(r) =











dmin +
1

10r + 1
− 0.09 if r ≤ 1

dmin if r > 1

(A.2)

where r is the ration, bmax is the maximum probability per year of
having offspring, and dmin is the minimum probability per year of
dying.

Now let’s get programming! You’ll be writing three programs: simulate.cpp,
visualize.cpp, and analyze.cpp. The first will simulate the pop-
ulation’s growth, the second will help visualize the results, and the
third will do some statistical analysis on them.
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Program 1: Simulating Population Growth

Théodore Géricault’s The Raft of the
Medusa (1818-1819).
Source: Wikimedia Commons

Your first job will be to write a program named simulate.cpp that
simulates the growth of the population over some number of years and
writes its results into a file.

Our simulation program’s strategy will be this: We’ll give the program
an initial population, the total amount of food, the values of bmax and
dmin, and tell it how many years to simulate. The program will then
loop through the years, one at a time. For each year it will loop through
all of the individuals in the population. For each person, the program
will check to see whether the person has offspring during that year
and whether the person dies during that year, using the b(r) and d(r)

functions in Equations A.1 and A.2 above. If the person dies, the
population will be reduced by one. If the person has offspring, the
population will increase by one16. 16 for simplicity, we’re assuming one

child per person per year, at most.

The program should accept all of its parameters on the command line,
as described in Section 9.15 of Chapter 9. The usage should be:

./simulate population food bmax dmin nyears outfile

where:

• population is the initial population.
• food is the total amount of food the island can produce, in terms of

the number of people who can be well-fed.
• bmax is bmax from Equation A.1 above.
• dmin is dmin from Equation A.2 above.
• nyears is the number of years to simulate.
• outfile is the name of a data file into which the program will write

its results.

To get you started, I’ve already written some of the program for you
(see Program A.11). All you need to do is complete the program by
filling in main and the two functions birthprob and deathprob.
Notice that I’ve added a handy function named rand01 near the top of
the program17. It can be used to generate a random number between 17 This function is described in Section

11.4 in Chapter 11.zero and one.

https://commons.wikimedia.org/wiki/File:JEAN_LOUIS_THÉODORE_GÉRICAULT_-_La_Balsa_de_la_Medusa_(Museo_del_Louvre,_1818-19).jpg
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Program A.11: simulate.cpp

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <stdio.h>

double rand01 () {

static int needsrand = 1;

if ( needsrand ) {

srand(time(NULL));

needsrand = 0;

}

return ( rand()/(1.0+RAND_MAX) );

}

double birthprob ( double bmax, double ration ) {

// Insert function here.
}

double deathprob ( double dmin, double ration ) {

// Insert function here.
}

int main ( int argc, char *argv[] ) {

double population;

double popgrowth;

int nyears;

int year;

int individual;

double food;

double ration;

double bmax, dmin;

double bprob, dprob;

FILE *output;

// Insert program here.
}

To complete the program, you’ll need to add code to do the following:

1. Check to make sure the user has supplied enough command-line
arguments. If there aren’t enough command-line arguments, the
program should print out a friendly usage message and then stop
without trying to do anything else18. 18 See Section 9.16 of Chapter 9 for an

example of how to do this.

2. Convert the command-line arguments into the variables population,
food, bmax, dmin, and nyears by using the atoi and atof func-
tions. The last command-line argument (the output file name)
doesn’t need to be converted. You can just use it directly, like
this:
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output = fopen( argv[6], "w" );

Crowded Boardwalk, Atlantic City, New
Jersey (1910).
Source: Wikimedia Commons

3. Your program will need a pair of nested “for” loops: An outer loop
that goes through all the years, and an inner loop that goes through
all of the individuals in the population and, for each one, checks to
see whether that person died or had offspring during the current
year.

The outer loop might start like this:

for ( year=0; year<nyears; year++ ) {

and the inner loop might start like this:

for ( individual=0; individual<population; individual++ ) {

4. At the beginning of each year the program will need to do a few
things:

• Find the ration by dividing food by population

• Find the probability of having offspring, which we’ll call bprob,
by using the birthprob function defined at the top of the pro-
gram (we’ll describe this and the deathprob function below).

• Find the probability of dying, which we’ll call dprob, by using
the deathprob function defined at the top of the program.

• Set popgrowth to zero. We’ll use this variable to keep track of
how much the population grows during the current year. (If there
are more deaths than births, this number might be negative, but
that’s OK.)

5. Inside the inner loop we’ll do some things for each individual who’s
currently in the population:

• Check to see if that person had offspring during the year. We do
this by using the rand01 function to give us a random number
between zero and one, and then checking to see if that number is
less than bprob. If it is, then we add 1 to popgrowth, indicating
that a person has been added to the population this year.

• Similarly, we check to see if the person died this year. We do this
by looking to see if rand01 gives us a number less than dprob.
If it does, then we subtract 1 from popgrowth, indicating that a
person has been removed from the population. (Remember that
it’s OK for popgrowth to be negative.)

6. At the end of each year, we add popgrowth to population to get

https://commons.wikimedia.org/wiki/File:Crowded_Boardwalk,_Atlantic_City,_New_Jersey.png
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the new value for population, and we write data about this year
into our output file. The values of year, population, popgrowth,
bprob, dprob, and ration should be written to the file, in that
order, separated by spaces19.

19 See Chapter 5 for information about
writing data into a file.

Edoardo Matania, Die geschlossene Bank
(1870s).
Source: Wikimedia Commons

7. The last step in completing the program is to write the two functions
birthprob and deathprob. The birthprob function takes the
value of bmax and ration and uses the relationship shown in
Equation A.1 to calculate the birth probability. Similarly, deathprob
uses dmin and ration to calculate the death probability, as given
by Equation A.2. Note that you’ll need an if/else statement in
each of these functions, to deal with the cases when ration is less
than one or greater than one.20

20 See Chapter 3 for information about
writing if/else statements, and
Chapter 9 for information about writing
functions.

After you’ve completed your program, compile it and run it three times,
with these arguments:

./simulate 2000 1000 0.0182 0.0077 1000 hipop.dat

./simulate 500 1000 0.0182 0.0077 1000 medpop.dat

./simulate 100 1000 0.0182 0.0077 1000 lopop.dat

The three simulations are the same except for the starting population.
In the first one, the initial population is higher than the amount of food
available in the environment (2,000 people, but only food enough for
1,000). The second simulation has an initial population of 500, with the
same amount of food, and the third simulation shows what happens
when the initial population is only 100. The values used for bmax
and dmin are actual current worldwide average values for birth and
death rates in human populations21. Each of the simulations tracks the 21 CIA World Factbook, estimated

values for 2018.population growth over a period of 1,000 years.

You can plot your results by giving gnuplot the command:

plot [0:300] "hipop.dat" with lines, "medpop.dat" with lines, "lopop.dat" with lines

which shows just the first 300 years. The result should look something
like Figure A.39. Notice that, in all cases, the population eventually set-
tles down to a stable level that’s slightly greater than 1,000 individuals.

https://commons.wikimedia.org/wiki/File:Eduardo_Matania_Beim_Die_geschlossene_Bank_1870s.jpg
https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html
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Figure A.39: Population growth when
there is sufficient food for 1,000 people,
starting with populations of 100, 500,
and 2,000 people.

Program 2: Visualizing the Stable Population
So now we know that the island’s population always tends toward a
particular value, but what is that value exactly? Let’s start to investigate
this by writing a program to visualize the data from our simulations
in a different way. The program will be called visualize.cpp and
it will let you make graphs like the one shown in Figure A.40. This
graph shows population on the horizontal axis, divided into 50 bins.
The vertical axis shows how many years had a population within each
bin.
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Figure A.40: Histogram of population
values from lopop.dat.

This figure is a histogram, like the ones we discussed in Chapter 7.
Your program will be similar to Program 7.1 in that chapter. Again, to
get you started, I’ve written part of the program for you (see Program
A.12 below). Notice that I’ve defined a 50-element array, bin, to hold
the histogram data.

Program A.12: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main ( int argc, char *argv[] ) {

const int nbins=50;

int bin[nbins];

double binwidth;

int binno;

int overunderflow=0;

int i;

FILE *input;

FILE *output;

// Insert program here.

}
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Like the preceding program, this one will expect parameters on its
command line, and should complain and exit if it doesn’t get the
proper number of parameters. Its usage will be:

“Cynicus”, The last car for Miramar
(c. 1910).
Source: Wikimedia Commons

./visualize popmin popmax inputfile outputfile

where popmin and popmax are the minimum and maximum popula-
tion you want to include in your histogram, inputfile is the name of
a file produced by your simulate.cpp program, and outputfile is
a file into which your new program will write the histogram data.

The input and output files can be opened like this22: 22 Notice that we open one file for
reading (with "r") and the other for
writing (with "w").input = fopen(argv[3],"r");

output = fopen(argv[4],"w");

The output file should contain two columns of numbers, separated by
a single space. Unlike Program 7.1, the first column here will contain a
population value instead of a bin number (see below for instructions
about converting bin number to population). The second column will
be the number of years in that bin.

To make the histogram, the program should proceed as follows:

1. First, determine the binwidth, like this:

binwidth = (popmax-popmin)/nbins;

2. Next, use a while loop to read data from the input file23. Each line 23 See Chapter 5 for information about
reading data from files.of the file will contain six values: year, population, popgrowth,

bprob, dprob, and ration. The first value is an integer, and the
other five are doubles.

3. Determine which bin this population value belongs in, and increment
that bin. Be sure to keep a count of the number of over/underflows,
as Program 7.1 does. Since the range of our histogram is popmin to
popmax, the bin number will be:

binno = (population-popmin)/binwidth;

4. After processing all of the input data, write the histogram data into
the output file. For each bin of the histogram, write two numbers
separated by a single space: the population value represented by
that bin, and the value of bin[i]. The population value can be
calculated from the bin number, like this:

population = popmin + binwidth*(0.5+i);

https://commons.wikimedia.org/wiki/File:"Cynicus"_-The_last_car_for_Miramar._(Postcard._ca_1910)._(20171958368).jpg
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where i is the bin number.

5. Finally, at the bottom of the output file, write a line beginning with
a # that tells how many overflows or underflows were seen.

Run your program like this to make a histogram of the data you
produced earlier. Start out by looking at population values between 0

and 1,100:
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Figure A.41: A histogram of population
values from lopop.dat in the range 0

to 1,100.

./visualize 0 1100 lopop.dat visualize.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize.dat" with impulses lw 5

The graph should look like Figure A.41. Now let’s zoom in on the
region around a population of 1,000 by running your visualize program
again, this time setting popmin to 1,000 and popmax to 1,100:

./visualize 1000 1100 lopop.dat visualize.dat

You can plot the resulting data file with gnuplot like this:

plot "visualize.dat" with impulses lw 5

The result should look like Figure A.40 at the beginning of this section.

As you can see, the population values cluster around 1,040 or so, slightly
above the 1,000 individuals that can be fully fed. Think for a minute
about what this means: We’re finding that the population tends to
settle in at a level where there’s not quite enough food to go around.
This raises the death rate and lowers the birth rate until the two rates
are equal. In your final program you’ll find an exact value for this
equilibrium population.

Program 3: Finding the Mean and Standard De-

viation

Manuel Tovar Siles, “Any stop of any line
of any tramway of Madrid” (1920).
Source: Wikimedia Commons

Your third program will be named analyze.cpp. It will read a data
file produced by your first program, and give you a statistical summary
of the data it contains.

Like the first two programs, analyze should accept all of its param-
eters on the command line, and give users a helpful message if they

https://commons.wikimedia.org/wiki/File:Cualquier_parada_de_cualquier_línea_de_cualquier_tranvía_de_Madrid,_de_Tovar,_La_Voz,_14_de_octubre_de_1920.jpg
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don’t give it the right number of arguments. The usage should be:

./analyze popmin popmax inputfile

where popmin and popmax delimit the range of population values
you’re interested in, as they do in your preceding program, and
inputfile is the name of a data file produced by your simulate.cpp
program.

The output of the analyze program should look like this:

Mean population = 1046.245636
Std. dev. = 9.590271

Again, I’ve written some of the program for you (see Program A.13).
You’ll just need to fill in main.

Program A.13: analyze.cpp

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main ( int argc, char *argv[] ) {

int year;

double population, popgrowth;

int popmin, popmax;

double dprob, bprob, ration;

double sum=0;

double sum2=0;

double mean, stddev;

int nvalues=0;

FILE *input;

// Insert program here.

}

To analyze the data, the program should proceed as follows:
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Figure A.42: bprob and dprob versus
ration, from our lopop.dat
simulation.

1. First, open the data file for reading. See Program 7.5 in Chapter 7

for an example of this. Refer to that program to see how to read the
data and calculate the average and standard deviation.

2. Like your visualize.cpp program, this new program should use
a while loop to read data from the input file. Each line of the file
will contain six values: year, population, popgrowth, bprob,
dprob, and ration.

3. Unlike Program 7.5, our new program will need to check to see
whether a population value is between popmin and popmax before
adding it to sum and sum2.
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If you run your program like this:

./analyze 1000 1100 lopop.dat

you should see that the mean population value is about24 1,046, which 24 The value you see will vary, because
the simulation uses random numberscorresponds to a ration of 1, 000/1, 046 or about 95.6%. If we plot our

simulation’s birth and death probabilities versus ration, using gnuplot

commands like this:

set xrange [0.92:1]

set yrange [0.008:0.02]

plot "lopop.dat" using 6:4, "" using 6:5

(column 6 of our output file is ration, column 4 is bprob and column
5 is dprob) we would see something like Figure A.42. This confirms
that birth probability and death probability are equal when the ration is
around 95.6%, the ration where our analysis shows that our population
is stable.

Conclusion

Thomas Malthus (left) and Charles
Darwin.
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Figure A.43: World population growth.
Source: Wikimedia Commons

In 1798, English scholar Thomas Robert Malthus wrote An Essay on the

Principle of Population, in which he observed that English populations
were growing more rapidly than the increase in agricultural production.
Malthus anticipated the phenomenon we’ve explored in this project:
Populations tend to grow to the point where resources are no longer
sufficient for everyone, causing death rates to increase and birth rates
to decline until the population stabilizes. Malthus’s ideas about com-
petition for scarce resources were an inspiration for Charles Darwin’s
theory of evolution by natural selection.

Such plateaus in population have occurred many times in human his-
tory, but have typically been temporary and limited to a geographic
region. In Malthus’s time, for example, England was heading for a
shortage of food, while Russia had an overabundance of agricultural
capacity. Malthus expected these shortages to last only until new agri-
cultural land had been developed, or until improvements in agriculture
increased the yield of existing land.

Arnold Böcklin, The Isle of the Dead,
third version (1883) and The Isle of the
Living (1888).
Source: Wikimedia Commons and Wikimedia Commons

Globally, the human race has shown no slowing of its exponential
growth rate (see Figure A.43). So far, development of new land and
improvements in agricultural science have, on average, kept ahead of
population growth, but humans also depend on fresh water, shelter,
and other limited resources. Some people estimate25 that the global

25
See https://en.wikipedia.org/wiki/Planetary_boundaries.

https://commons.wikimedia.org/wiki/File:Population_curve.svg
https://commons.wikimedia.org/wiki/File:Arnold_Böcklin_-_Die_Toteninsel_III_(Alte_Nationalgalerie,_Berlin).jpg
https://commons.wikimedia.org/wiki/File:B%C3%B6cklin_-_Die_Lebensinsel_-1888.jpeg
https://en.wikipedia.org/wiki/Planetary_boundaries
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population already exceeds the Earth’s carrying capacity26.

26 Apparently we’re not running short
of physical space. John Brunner’s novel
Stand on Zanzibar notes that 7 billion
people (the current population of Earth)
could fit on the island of Zanzibar – if
they stood shoulder to shoulder!

What will happen to our islanders? Will they find a clever way to
avoid a “Malthusian crisis?” Let’s wish them luck, and the same for the
inhabitants of this island Earth.

https://en.wikipedia.org/wiki/Stand_on_Zanzibar




Project 5: Yard Sale!

Introduction
Every August a 630-mile-long yard sale stretches from Michigan to
Alabama along US Highway 127. It’s called the “World’s Longest Yard
Sale”. Thousands of people visit it. In the early 21st century Economists
began to realize that yard sales like this provide a good model for
the whole world’s economy. By simulating the interactions between
buyers and sellers at such a sale, we can make predictions about wealth
distribution that match data observed in the real world. The trick is
to assume that the economy is made up of many, many one-to-one
interactions where a buyer and a seller exchange some wealth.

Source: Wikimedia Commons

Economists gauge a person’s wealth by looking not just at how much
money you have, but also the value of the goods you own. Imagine
that I’m a vendor at the yard sale and you’re a shopper. If you pay me
five dollars for a toaster, an economist would traditionally have said
that there was no net change in either person’s wealth: I have your five
dollars, but you now have a toaster worth five dollars.

Source: Wikimedia Commons

But is it really? What if, when you get home, you find that the toaster
doesn’t work. Then you really have a toaster worth less than five dollars,
but I still have your money. We could say that you’ve lost some wealth
by giving me five dollars and getting something worth less than that,
and I’ve gained some wealth by getting five dollars in exchange for
a worthless toaster. In that case, wealth has flowed from you to me,
making you poorer and me richer.

This happened because you mis-judged the value of the toaster. Tradi-
tionally, economists have assumed that shoppers are good at judging
the value of things, and economic models have used this assumption
to make predictions about the economy. But recently economists have
become interested in models that take into account the fact that buyers

https://commons.wikimedia.org/wiki/File:Yard_Sale_At_Mayweed_Corners_(104625085).jpeg
https://commons.wikimedia.org/wiki/File:Toaster.jpg
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and sellers often make mistakes about the value of things. A seller
might sell a “worthless” painting for five dollars, only to find later that
it’s a valuable Picasso, or a buyer might pay a lot of money for a “Rolex”
watch only to find that it’s a cheap knock-off.

Anirban Chakraborti, who first
proposed the “yard sale” model of
economics in 2002.

The mistakes we make are usually small, but we probably always make
some small error when we assign a value to something we buy or sell.
The effect of this is that wealth flows around the economy, with some
people becoming more wealthy than others. If everyone had an equal
chance of gaining or losing an equal amount because of these mistakes,
we might assume that, on average, they don’t matter, and that any
inequalities of wealth would even out over time. But the yard sale
models that Economists have developed, and which match real-world
economic data, make an additional assumption: They assume that the
biggest possible mistake in each transaction is the total wealth of the
poorest person involved in the transaction. (A person with only one
dollar can’t buy the five-dollar toaster, no matter whether the toaster
is broken or not.) By doing this we’re ignoring people who win the
lottery or accidentally sell a Picasso for five dollars, but it turns out that
those situations are rare and don’t have much effect on the economy as
a whole27. 27 These models also assume that wealth

of any kind can be exchanged. I can
pay you five dollars for that toaster, or I
can trade you a record player for it. My
wealth includes both the money I have
and the value of the items I own.

In this project we’re going to write three programs that investigate such
a yard-sale model of the economy. The first program (simulate.cpp)
will simulate lots of interactions between buyers and sellers. The second
(visualize.cpp) will visualize the distribution of wealth after some
time has passed. The third (analyze.cpp) will analyze the data and
boil it down to a single number that measures how evenly wealth is
distributed. Let’s get started!

Program 1: Buyers and Sellers
Our first program will be named simulate.cpp, and it should start
out like Program A.14 below. The program will simulate many random
transactions between pairs of people, and track the wealth flowing from
person to person. We’ll assume everybody starts out with the same
amount of wealth.

How the Program Works

The program should accept three parameters on the command line:
The initial wealth of each person, the number of transactions we want
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Program A.14: simulate.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main ( int argc, char* argv[] ) {

const int N = 10000; // Number of people.

double wealth[N]; // Wealth of each person.

double wstart; // Starting wealth of each person.

double mistake; // Size of a mistake.

double flip; // A random number, used for deciding who made the mistake.

double ntransactions; // Number of transactions.

int alice, bob; // The two people involved in a transaction.

int poor; // which of the two people is poorer.

int i;

FILE *output;

srand( time(NULL) ); // Set the seed of the random number generator.

// Put the rest of the program here!

}

to simulate, and the name of a file we want to write our results into.
For example:

./simulate 100 2e+5 output.dat

The first number is the initial wealth of each person, the second is how
many transactions we want to simulate28, and the final argument is the 28 This number is in C-style scientific

notation. In this example, we’ve used
2e+5 which is 2 × 105, or 200,000. See
Section 4.3 of Chapter 4.

name of the output file we want to create.

The program should assume that this is a very big yard sale, with
10,000 people swapping money and goods. That’s the population of a
small town or a rural county. To keep track of how much wealth each
person has, it should use an array with 10,000 elements. The wealth of
person number i will be wealth[i]. A person’s wealth will generally
be a number with decimal places, so wealth will need to be an array
of doubles.

We’ll start each person out with the same amount of wealth. Let’s call
it wstart. After setting the initial wealths, the program should enter
a loop that simulates some number of random transactions. For each
transaction, we’ll pick two people at random. Let’s call them alice and
bob, and their wealths will be wealth[alice] and wealth[bob].

After we’ve picked two people, we need to see which one is poorer by
comparing their wealths. Let’s have another variable, poor, and say
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that if Alice is poorer, poor=alice and if Bob is poorer, poor=bob.

Now assume that somebody makes a mistake in the transaction. Re-
member that we’re limiting the size of the mistake to the wealth of the
poorer person, so at most the mistake will be wealth[poor]. Let’s
say that the size of the mistake is a random number between zero and
one, multiplied by wealth[poor].

Aaah, wealth! (Portuguese actor
António Silva portraying a wealthy
man)
Source: Wikimedia Commons

Then we “flip a coin” to decide which person, Alice or Bob, benefits
from this mistake. We do this by generating a random number between
zero and one. If this number is greater than 0.5 Alice wins, otherwise
Bob wins. If Alice wins, the amount of the mistake is added to her
wealth and subtracted from Bob’s wealth. If Bob wins, the mistake is
added to his wealth and subtracted from Alice’s.

After the program has done the requested number of transactions, it
should write the final wealth of each person into the file specified on
the command line. The output file should have two columns separated
by a space: person number and the wealth of that person.

How to Write the Program

To get you started, Program A.14 shows part of simulate.cpp. It
includes all of the variables you’ll need. You just need to write the
middle part, where all the work gets done. To complete the program,
you’ll need to add code to do the following:

1. Check to make sure the user has supplied enough command-line
arguments. If there aren’t enough command-line arguments, the
program should print out a friendly usage message and then stop
without trying to do anything else29. 29 See Section 9.16 of Chapter 9 for an

example of how to do this.

2. Convert the command-line arguments into the variables wstart and
ntransactions by using the atof function30.The last command- 30 Notice that we’ve chosen to make

ntransactions a double, even
though it will always have some integer
value. That’s because we’ll be using
large numbers of transactions, and it’s
convenient to write things like 1e+7
instead of 10000000, so we don’t have
to carefully count zeros. C only lets you
use scientific notation with doubles.

line argument (the output file name) doesn’t need to be converted.
You can just use it directly, like this:

output = fopen( argv[3], "w" );

3. Next you’ll need a “for” loop to set the initial wealth of each person
to wstart.

4. Then you’ll need a second “for” loop that goes through ntransactions

https://commons.wikimedia.org/wiki/File:Ant%C3%B3nio_Silva.jpg
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transactions. During each transaction the program will need to do
several things:

(a) Pick two random people to be Alice and Bob for this transaction.
You might do something like this:

alice = rand()/(1.0+RAND_MAX) * N;

bob = rand()/(1.0+RAND_MAX) * N;

Notice that this generates a random number between zero and
(almost) one, and then multiplies it by N, the total number of
people 31. 31 On rare occasions, at random, it will

turn out that “Alice” and “Bob” are the
same person, but we won’t worry about
that. It happens rarely, and it won’t
affect the results.

(b) Then we need to use an “if” statement to check which person has
the smaller wealth. Set the variable poor to equal either alice
or bob, as appropriate.

(c) Next the program needs to determine a random size for the
mistake that’s made in this transaction. Remember that it should
be an amount between zero and wealth[poor]. One way to do
this is:

mistake = wealth[poor]*rand()/(1.0+RAND_MAX);

(d) As the last thing in the loop the program should “flip a coin” to
see whether Alice or Bob gets the benefit of the mistake. To do
this, generate a random number between zero and one, and then
use an “if” statement to see if it’s greater than 0.5. If it is, then
Alice wins. Transfer mistake amount of wealth from the loser to
the winner.

5. After the loop is done, the program should write its results into a
file32. This should be done with a third “for” loop. For each person, 32 See examples like Program 5.3 in

Chapter 5.there should be one line in the file with two numbers separated by a
space. For person “i” the numbers should be i and wealth[i].

Running the Program

After you’ve created the program, run it several times to make some
output files that you’ll use with the next two programs. Try these
commands:

./simulate 100 0 simulate-0.dat

./simulate 100 1e+4 simulate-10K.dat

./simulate 100 1e+6 simulate-1M.dat

./simulate 100 1e+9 simulate-1G.dat
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Those commands will create four output files representing a starting
wealth of $100 for each person, and simulating 0 transactions, 10 thou-
sand transactions, then 1 million and 1 billion transactions. If you
look inside any of these files with nano you should see two columns of
numbers. The first column will be the person number (an integer) and
the second column will be that person’s wealth (a number with decimal
places) after the specified number of transactions. You can graph the
results with gnuplot if you like, using gnuplot commands like:

plot "simulate-1M.dat" with impulses

You should see graphs like the ones in Figure A.44.
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Figure A.44: The top graph shows the
distribution of wealth after 0

transactions. Everybody has the same
amount of money ($100). The middle
graph shows the situation after 1

million transactions. Now some people
have a lot more wealth than others. The
bottom graph show the situation after 1

billion transactions. Now one random,
lucky person has all of the money, and
everyone else has nothing!

Look at what happens as the number of transactions increases. At
zero transactions everybody has the same amount of money. After
a million transactions wealth has spread around, and some people
have thousands of dollars. This isn’t too surprising. But after a billion
transactions we find that one lucky person has all of the money, and
nobody else has any! If you run this billion-transaction simulation
several times, you’ll find that one person always ends up with all the
money, but it will be a different person each time.

That’s something that economists have found to be an inescapable
property of the yard sale model: If you let it run long enough one
person inevitably ends up with all the wealth.

Program 2: Visualizing at the results
Let’s take a closer look at how our simulation distributes wealth. To
investigate this, we might make a graph that shows wealth across the
bottom, divided into equal-sized ranges like $0-$25, $25-$50, $50-$75,
and so on. On the vertical axis we could show how many people have
a wealth in each range. We learned in Chapter 7 that a graph like this
is called a histogram.

The next program you’ll write is named visualize.cpp and it will
make histograms of the simulated wealth data created by your first
program. The new program will be similar to Program 7.1 in Chapter
7. It should start out like Program A.15 below.
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Program A.15: visualize.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main ( int argc, char *argv[] ) {

const int nbins=100;

int bin[nbins]; // How many people are in each wealth range.

double binsize; // Width of wealth ranges.

int n; // "Person number".

double wealth; // Wealth of that person.

double maxwealth; // Maximum wealth we want to graph.

int binno; // Bin number for a person, based on person's wealth.

int overunderflow=0; // How many people were outside the range of the graph?

int i;

FILE *input;

FILE *output;

// Insert program here.

}

How the Program Works

Like the preceding program, this one will expect parameters on its
command line, and should complain and exit if it doesn’t get the
proper number of parameters. Its usage will be:

Postcard: “Youth poverty at the
beginning of the 20th century in
Europe.”
Source: Wikimedia Commons

./visualize maxwealth input.dat output.dat

where maxwealth is the maximum wealth you want to include in
your histogram, input.dat is the name of a file produced by your
simulate.cpp program, and output.dat is a file into which your
new program will write the histogram data.

The output file should contain two columns of numbers, separated by
a single space. Unlike Program 7.1, the first column here will contain
a wealth value instead of a bin number (see below for instructions
about converting bin number to wealth). The second column will be
the number of people who have that amount of wealth.

How to Write the Program

To make the histogram, the program should proceed as follows:

1. Check to make sure the user has supplied enough command-line
arguments. If there aren’t enough command-line arguments, the

https://commons.wikimedia.org/wiki/File:La_pauvret%C3%A9_chez_les_jeunes_au_d%C3%A9but_du_20e_si%C3%A8cle_en_Europe.png
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program should print out a friendly usage message and then stop
without trying to do anything else.

2. Convert the first command-line argument into the variable maxwealth
by using the atof function. The other two command-line arguments
(the input and output file names) don’t need to be converted. The
input and output files can be opened like this33: 33 Notice that we open one file for

reading (with "r") and the other for
writing (with "w").input = fopen(argv[2],"r");

output = fopen(argv[3],"w");

3. Next, determine the binwidth, like this:

binwidth = maxwealth/nbins;

4. Use a “for” loop to set all the elements of bin to zero.

5. Now use a while loop to read data from the input file34. Each line of 34 See Chapter 5 for information about
reading data from files. In particular,
look at Program 5.4.

the file will contain two values: A person number and that person’s
wealth. The first value is an integer, and second is a double.

6. Determine which bin each person’s wealth value belongs in, and
increment that bin. Be sure to keep a count of the number of
over/underflows, as Program 7.1 does. Since the size of each bin is
binwidth, the bin number will be:

binno = wealth/binwidth;

7. After processing all of the input data, write the histogram data into
the output file. For each bin of the histogram, write two numbers
separated by a single space: the first number is the wealth value
represented by that bin, and the second is the value of bin[i]. The
wealth value can be calculated from the bin number, like this:

wealth = binwidth*(0.5+i);

where i is the bin number. This will give you the wealth at the
midpoint of that bin’s wealth range.

8. Finally, at the bottom of the output file, write a line beginning with
a # that tells how many overflows or underflows were seen.

After you’ve written the program, run it a few times like this to create
histograms from the files you created previously, limiting the graph to
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a maximum wealth of $2,500:

./visualize 2500 simulate-0.dat visualize-0.dat

./visualize 2500 simulate-10K.dat visualize-10K.dat

./visualize 2500 simulate-1M.dat visualize-1M.dat

./visualize 2500 simulate-1G.dat visualize-1G.dat

You can use gnuplot to view the histograms by giving it commands like:

set log y

set yrange [0.1:]

plot "visualize-10K.dat" with impulses

This will draw a vertical line for each wealth range, with the height
of the line indicating the number of people who have a wealth in that
range. The first command makes the Y-axis logarithmic. If we didn’t
do this, we wouldn’t be able to the bins that only have a few people
in them. Your graphs should look something like the ones shown in
Figure A.46.
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Figure A.45: Wealth distribution after 1

billion transactions, showing wealth up
to $1 million.

You can see that the data in the last graphs is starting to run off the right-
hand edge of the graph. The total amount of money in our population
is $1 million ( $100 per person × 10,000 people). Let’s graph the data
from our longest simulation using this as maxwealth. To do that, run
your visualize program again, like this:

./visualize 1000000 simulate-1G.dat visualize-long-1G.dat

This extends the wealth scale out to $1,000,000. If you graph the new
file with gnuplot (again using a logarithmic Y-axis) you should see
something like Figure A.45.

This is another way of seeing that only one person ends up with all of
the money. The short spike on the right-hand side represents the one
person who now has 1 million dollars. The tall spike on the left-hand
side is everyone else, with zero dollars35. 35 Sometimes after a billion transactions

you’ll find that there are still two people
who have some money. After more
transactions, though, one of them
always ends up with all of the money.

Program 3: Quantifying Wealth Inequality
Our simulated economy produces severe wealth inequality, but how
does it compare to real-life economies? How can we measure the
amount of wealth inequality? One way of quantifying it is called the
“Gini Coefficient36”. 36 See

https://en.wikipedia.org/wiki/Gini_coefficient.

https://en.wikipedia.org/wiki/Gini_coefficient
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Figure A.46: Histograms of wealth after
different numbers of transactions.
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The Gini Coefficient starts by measuring the average difference in
wealth between any two individuals in the population. (It ignores the
sign of this difference by taking the absolute value.) Then it divides
the result by the total amount of wealth in the population. A Gini
Coefficient of zero corresponds to an economy where everybody has
the same amount of wealth. A value of one corresponds to an economy
where a single person has all the wealth, and everyone else has nothing.
Real-life economies fall somewhere between these two extremes.
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Figure A.47: Estimated world-wide Gini
Coefficient, by year. See Milanovic and
World Bank in the “Further Reading”
section below.

Researchers at the World Bank have estimated values for the world-
wide Gini Coefficient for various years, beginning with 1820 (see Figure
A.47). The value seems to have risen to a peak of about 0.8 in the 1980s
and then begun a downward trend. The current value is about 0.6537.

37 Note that some writers refer to the
“Gini Index”, which is just 100 times the
Gini Coefficient. That means the current
world-wide Gini Index is about 65.

Your third program, analyze.cpp, will read the data produced by
your simulation and calculate the Gini Coefficient for your simulated
economy.

How the Program Works

Like the first two programs, this one should accept arguments on the
command line. In this case, there will be just one argument: the name
of a data file produced by your simulate.cpp program. For example,
you should be able to run your latest program like this:

./analyze simulate-10K.dat

Your program should start by reading the data from the data file and
putting it back into a 10,000-element array called wealth, just like the
array you used in your first program.

“Children sleeping in Mulberry Street”
(detail), by Jacob Riis (1890).
Source: Wikimedia Commons

Next your program will need to add up the total wealth of all of the
people. You’ll need this later for calculating the Gini Coefficient.

After that, you’ll need to go through each pair of people in the popu-
lation, find the difference in their income, and add its absolute value
to a sum. You should do this with two nested “for” loops. Once the
wealth differences have all been added up, you can use that sum and
the total wealth to calculate the Gini Coefficient. Mathematically, the
Gini Coefficient is defined as:

gini =

∑
i

∑
j

| wealth[i]− wealth[j] |

2N∑
i

wealth[i]

https://commons.wikimedia.org/wiki/File:Riischildren.jpg
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Program A.16 below shows how your program should start. It contains
all the variables you’ll need. You just need to fill in the rest of the
program.

Program A.16: analyze.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main ( int argc, char* argv[] ) {

const int N = 10000; // Number of people.

double wealth[N]; // Wealth of each person.

double sum = 0; // Sum of all the wealth.

double sumdiff = 0; // Sum of wealth differences between pairs of people.

double gini; // Gini coeffficient.

int n; // ``Person number''

int i,j;

FILE *input;

// Add the rest of the program here.
}

How to Write the Program

1. Check to make sure the user has supplied enough command-line
arguments. If there aren’t enough command-line arguments, the
program should print out a friendly usage message and then stop
without trying to do anything else.

2. The only command-line argument (the input file name) doesn’t need
to be converted. You can just use it directly, like this:

input = fopen( argv[1], "r" );

3. Next you’ll need a “for” loop that repeats 10,000 times (the value of
N in the program) and reads one line out of the input file each time.
The input file has two columns of data: the person number and that
person’s wealth. That means you should have a statement like this
for reading a line from the input file:

fscanf( input, "%d %lf", &n, &wealth[i] );

As you read each wealth value, add it to the value of sum. This will
give you the sum of all the wealth in the population, which you’ll
need later for calculating the Gini Coefficient.

4. Now the program needs to find the difference in wealth between
each pair of people in the population. To do this you’ll need a pair
of nested “for” loops. Use the fabs function to get the absolute
value of the wealth difference, and then add it to sumdiff like this:

sumdiff += fabs( wealth[i] - wealth[j] );
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Note that this will actually count each pair of people twice. For exam-
ple, if i is 20 and j is 30, the sum will include both wealth[20] -

wealth[30] and wealth[30] - wealth[20]. We’ll take care of
this later by dividing sumdiff by 2 when doing the Gini Coefficient
calculation.

5. Finally, the program just needs to calculate the Gini Coefficient
and print it out. The Gini Coefficient will be equal to sumdiff/(

2.0*N*sum ).
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Figure A.48: Gini Coefficient calculated
for various numbers of transactions
using our yard sale simulation.

The Gini Coefficient calculated by your program will be a value between
zero and one. If you run it with your simulation data for 10,000

transactions, like this:

./analyze simulate-10K.dat

you should see a Gini Coefficient of about 0.37. If you run it with the
simulation data for 1 billion transactions, the value should be much
higher, almost 1.0. Figure A.48 shows how the Gini Coefficient varies
with the number of transactions. As you can see, it approaches a value
of one for large numbers of transactions, meaning that only a few
people end up with all of the wealth.

Conclusion
So what does this model of economics tell us about the real world? Al-
though there is great inequality of wealth (for example, five billionaires
now have more wealth than the poorest half of humanity combined), it
seems unrealistic that one person would end up with all of it.

The yard sale model seems pretty simple. It just makes two assump-
tions: pairs of people exchange wealth, and poor people can’t spend
more money than they have. Why does it make a prediction that’s so
different from what we see in the world around us? Clearly there’s
some factor that we’re leaving out of our model.

It might seem that everybody at the yard sale has an equal opportunity
to gain wealth, and at first they do. Initially wealth is distributed evenly
among all of them, with perfect symmetry. But this initial symmetry is
spontaneously broken as soon as some people become a little poorer
than others. Poorer people in the model are always at an economic
disadvantage because poverty limits the size of the economic risks they
can take. This creates a tendency for the rich to get richer and the poor
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to get poorer, causing the yard sale model to inevitably collapse into
oligarchy.

Why doesn’t this happen in the real world? Mathematician Bruce
Boghosian at Tufts University and his economist colleagues have shown
that by transferring a small fraction of wealth from rich people to poor
people after each transaction, the yard sale model’s wealth distribution
can be stabilized. In the real world, this corresponds to the wealth
redistribution that’s done by taxes and social programs.

Lou Hoover, First Lady of the United
States, with her sons.

Migrant Mother, Photo by Dorothea
Lange.
Source: Wikimedia Commons

With this one small change, Boghosian has found the modified yard
sale model can match recent European and U.S. wealth distribution
patterns to within 2%. By making two more tweaks, allowing people to
go into debt and accounting for advantages that wealthier people have
in business transactions, the model can match U.S. data over a span of
several decades with an accuracy of a fraction of a percent.

Boghosian also points to economies where social programs have broken
down, like Armenia after the fall of the Soviet Union. In those cases,
the economy really does devolve into oligarchy, with all of the wealth
being held by a few people after an initial struggle for resources, just
as our unmodified yard sale model would predict.

In a 2019 Scientific American article Boghosian said

“We find it noteworthy that the best-fitting model for empirical wealth
distribution discovered so far is one that would be completely unstable
without redistribution rather than one based on a supposed equilibrium
of market forces. In fact, these mathematical models demonstrate that far
from wealth trickling down to the poor, the natural inclination of wealth
is to flow upward, so that the ’natural’ wealth distribution in a free-
market economy is one of complete oligarchy. It is only redistribution
that sets limits on inequality.”

Further Reading
• “The Mathematics of Inequality”,

https://now.tufts.edu/articles/mathematics-inequality.
• Bruce M. Boghosian, “Is Inequality Inevitable?” (originally published under the title “The Inescapable Casino”),

Scientific American 321, 5, 70-77 (November 2019).
• Anirban Chakraborti, “Distributions of money in model markets of economy”,

https://arxiv.org/abs/cond-mat/0205221.
• Branko Milanovic, “Global Inequality and the Global Inequality Extraction Ratio”,

http://documents1.worldbank.org/curated/en/389721468330911675/pdf/WPS5044.pdf.
• World Bank, “Poverty and Prosperity 2016 / Taking on Inequality”,

https://openknowledge.worldbank.org/bitstream/handle/10986/25078/9781464809583.pdf.

https://commons.wikimedia.org/wiki/File:Migrant_Mother_sequence_by_Dorothea_Lange,_8b29525u.jpg
https://now.tufts.edu/articles/mathematics-inequality
https://www.scientificamerican.com/article/is-inequality-inevitable/
https://arxiv.org/abs/cond-mat/0205221
http://documents1.worldbank.org/curated/en/389721468330911675/pdf/WPS5044.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/25078/9781464809583.pdf


B. Installing Necessary

Software

B.1. For Microsoft Windows

Windows 10:

In August of 2016 Microsoft released an update for Windows 10 that
allows you to install a complete development environment, including
the tools used in this book, fairly easily.

1. To begin, enable Windows Subsystem for Linux (WSL):
• Click the start button on the taskbar and search for “Turn windows

features on or off”. This should show you a box like Figure B.1.
Place a check in the box beside “Windows Subsystem for Linux”,
then click OK.

• Restart your computer (this is necessary before going on).

Figure B.1: Turning on “Windows
Subsystem for Linux”

2. Install the “Ubuntu” app for WSL:
• Click the start button and search for “Microsoft Store”. Open the

Microsoft Store app. (See Figure B.2.)
• Within the Store app, search for “Ubuntu”.
• Select the orange Ubuntu app whose name is just “Ubuntu”, with

no version number.
• Click the “Get” button to install this app. (See Figure B.3.)

Figure B.2: Searching for “Ubuntu” in
the Microsoft Store

Figure B.3: Click “Get” to install the
Ubuntu app.

3. Start the “Ubuntu” app and configure it:
• From the Start Menu, click the “Ubuntu” icon, as shown in Figure

B.4.
• The app will open (see Figure B.5) and begin setting itself up.

This might take several minutes.
• Near the end of this process, the app will ask you to supply a user

name and a password for use within the app (see Figure B.6).
4. Updating and installing software in the app:

Type the following commands in the app’s window:
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sudo apt update

sudo apt -y upgrade

sudo apt -y install g++ nano gnuplot-x11

sudo apt -y reinstall gnome-icon-theme

The first command will ask for the user name and password you
entered in the preceding step. If any of the commands asks you
about restarting services, answer “yes”.
This will install the specific software (g++, nano, and gnuplot) used
in this book.

5. Next, type the following command:

echo export DISPLAY=localhost:0 >> $HOME/.bashrc

6. In order to use this version of gnuplot you’ll need to install one more
piece of Windows software, called an “X server”. This allows the
tools in the development environment (installed in the steps above)
to display graphics on your screen. To install it, download and install
VcXsrv from here:
https://sourceforge.net/projects/vcxsrv/

7. After you’ve installed VcXsrv, click the Start button, and type “xlaunch”
and press the Enter key. A window like Figure B.7 should appear.
Keep clicking “Next” until you get to the dialog box shown in
Figure B.8.

Figure B.7: Running xlaunch.

Figure B.8: Saving xlaunch

configuration.

Click “Save Configuration” and save the configuration as
“config.xlaunch” on your desktop.
Now hold down the “Windows” key and type R, press “Enter”, then
type:

shell:startup

and press the Enter key. This will open up your startup folder. Drag
the “config.xlaunch” icon from your desktop into this folder.

8. Now restart your computer. You should be able to get a command
window by clicking “Ubuntu” in the Start Menu. All the work in
this book can be done in this window.

https://sourceforge.net/projects/vcxsrv/
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Windows 7 and 8:

For Windows 7 and 8 we’ve created a bundle of useful free Windows
software that you can download and install on your own computer.
The bundle includes g++, nano, and gnuplot, among other tools.

You can download the bundle from the following address:

http://faculty.virginia.edu/comp-phys/phys1660/2015/software/phys1660-
bundle-setup.exe

The downloaded file will be called phys1660-bundle.exe. Run it
to install the software. Once installed, you should see a new icon for
MSys on your desktop. Double-click this to open a command window.
From the command window, you can use the g++, nano, and gnuplot

commands described in this book.

http://faculty.virginia.edu/comp-phys/phys1660/2015/software/phys1660-bundle-setup.exe
http://faculty.virginia.edu/comp-phys/phys1660/2015/software/phys1660-bundle-setup.exe
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B.2. For Linux
On Debian, Ubuntu, Mint and similar distributions, type:

sudo apt update

sudo apt -y upgrade

sudo apt -y install g++ nano gnuplot

On Fedora, CentOS, Red Hat and similar distributions, type:

sudo yum install gcc-c++ nano gnuplot

B.3. For Apple MacOS
For Mac users, Apple includes many of the tools you’ll need, but they
might need to be “activated”. You’ll also need gnuplot and Xquartz,
upon which gnuplot depends.

1. To get a command window, click any blank spot on your desktop
background, then go to the “Go” menu at the top of the screen and
select Utilities->Terminal.

2. Inside the terminal window, type g++. The first time you do this
you’ll see a message like the one below.

Click “Install” to install the command line developer tools. Now you
should be able to use the g++ command as we do in this book.

3. In order to use gnuplot under OS X, you’ll also need to install two
more things. The first is XQuartz, which you can get here:
http://xquartz.macosforge.org/landing/

4. IMPORTANT: After you’ve installed XQuartz, you must log out of
your computer and log back in to complete the installation. (If you
don’t do this, gnuplot may not install or work correctly.)

5. The last thing to install is gnuplot itself, which you can get here:
https://csml-wiki.northwestern.edu/index.php/Binary_versions_of_Gnuplot_for_OS_X

http://xquartz.macosforge.org/landing/
https://csml-wiki.northwestern.edu/index.php/Binary_versions_of_Gnuplot_for_OS_X
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Download the current version of gnuplot from the site above.
6. IMPORTANT: After you’ve downloaded the file, hold down the Ctrl

key while clicking on it. If you don’t hold down the Ctrl key, the
computer might refuse to run the installer. Then proceed to install
the package as usual.

You should now be able to use the g++, nano, and gnuplot in your
terminal window.





C. Getting Example Data Sets

C.1. Star Data (HYG Database)
David Nash, amateur astronomer, has assembled a database of nearby
stars that combines data from three sources:

• The Hipparcos satellite’s massive survey of millions of stars
• The Yale Bright Star Catalog, containing data for about 10,000 stars
• The Gliese Catalog of Nearby Stars, containing about 4,000 stars.

Nash combined the nearby stars in these databases to form the HYG
database (for “Hipparcos, Yale, Gliese”).

Figure C.1: The Hipparcos satellite
before launch.
Source: Wikimedia Commons

For one of the exercises in Chapter 5 you’ll need to download the HYG
database and create a new, smaller, database from it. The resulting
file will be called stars.dat and it’s used in Exercise 31. Here’s how
to get the database and create stars.dat from it. The process will
involve a couple of mysterious commands that I won’t explain, but feel
free to do some research on your own to find out what they do. The
steps to create stars.dat are:

1. Fetch the HYG database. There are two tools that let you do this
easily. Use whichever tool is installed on the computer you’re using.
The first tool is wget. The wget command lets you download files
from a web site without needing to use a web browser. Here’s how
to use wget to download the HYG database;

wget https://raw.github.com/astronexus/HYG-Database/master/hygdata_v3.csv

If the computer you’re using doesn’t have wget, it probably has a
similar tool named curl. Here’s the curl command for download-
ing the database:

curl -L -O https://raw.github.com/astronexus/HYG-Database/master/hygdata_v3.csv

2. Extract the part of the data that we’ll be using in Exercise 31. Note
that this is one big, long command without any line breaks. Every
character in it is important, so type carefully. (If you can cut-and-

http://astronexus.com/node/10
https://en.wikipedia.org/wiki/Hipparcos
https://en.wikipedia.org/wiki/Bright_Star_Catalogue
https://en.wikipedia.org/wiki/Gliese_Catalogue_of_Nearby_Stars
https://github.com/astronexus/HYG-Database
https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec.jpg
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paste the command, it’s a good idea to do so.)

cat hygdata_v3.csv | grep -v -E 'Sol|^id' | awk -F, '{print $18,$19,$20}' > stars.dat

What does this command do? First, it uses the grep command to
exclude two rows of data: a row of column headers, and the row
for our Sun (which is included in the data just like other local stars).
Second, it uses the awk command to select only three columns: just
the columns that hold the x, y, and z coordinates of each star.

That’s it! You now have the stars.dat database, and you’re ready for
Exercise 31.

You might want to play around with other data in the HYG database.
If so, you can find a description of the data it contains here:

https://github.com/astronexus/HYG-Database

C.2. Normally-Distributed Data
Chapter 7 uses the file energy.dat for several exercises. This file
contains simulated energy measurements from a scintillation counter.
The energy values are “normally” distributed, meaning that when
we make a histogram of the values it has the shape of a Normal
distribution.

You can generate energy.dat by compiling Program C.1 and running
it like this:

./mkenergy > energy.dat

Figure C.2: Carl Friedrich Gauss, who
studied the Normal distribution
extensively.
Source: Wikimedia Commons

Program C.1 uses a technique called the Box-Muller Transform to
generate normally-distributed numbers. It defines a function named
normal that takes two arguments (the mean of the distribution and
its standard deviation) and returns a single pseudo-random number.
(You’ll understand how to create C functions after reading Chapter
9.) The program’s main function just uses normal to generate 100,000

numbers. By changing the mean and standard deviation, you can
change the distribution of the numbers. Try it, it’s fun!

https://github.com/astronexus/HYG-Database
https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg
https://en.wikipedia.org/wiki/Box–Muller_transform
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Figure C.3: Statistician George E.P. Box,
one of the inventors of the Box-Muller
transform.
Source: Wikimedia Commons

Program C.1: mkenergy.cpp

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

double normal(double mean, double sigma) {

// Use Box-Mueller Tranform to generate

// normally-distributed numbers.

const double epsilon = 1e-9;

const double two_pi = 2.0*M_PI;

static double z0, z1;

static int generate=1;

static int initialized=0;

double u1, u2;

if (!initialized) {

srand(time(NULL));

initialized = 1;

}

if (!generate) {

generate = 1;

return z1 * sigma + mean;

} else {

do

{

u1 = rand() * (1.0 / RAND_MAX);

u2 = rand() * (1.0 / RAND_MAX);

}

while ( u1 <= epsilon );

z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2);

z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2);

generate = 0;

return z0 * sigma + mean;

}

}

int main () {

int i;

for ( i=0; i<100000; i++ ) {

printf ("%lf\n",normal(35.0,2.5) );

}

}

https://commons.wikimedia.org/wiki/File:GeorgeEPBox.jpg


544 practical computing for science and engineering

C.3. Census Data (American Community

Survey)

Figure C.4: A U.S. census worker
transcribing data onto punched cards
during the 1950s.
Source: Wikimedia Commons

In addition to the decennial census mandated by the U.S. constitution,
the Census Bureau conducts many other surveys. One of these is the
ongoing American Community Survey (ACS), which gathers data about
how Americans live in their communities. Data from the ACS help
local governments decide how to spend their money.

ACS data can be downloaded from the Census Bureau’s web site. In
order to protect the identities of the citizens who respond to the survey,
only an anonymized sample of the data (called a “Public Use Microdata
Sample” or “PUMS”) is provided. These data sets are available here:

https://www.census.gov/programs-surveys/acs/data/pums.html

Exercise 40 on page 234 uses a data file named census.dat derived
from the ACS data collected during the years 2011 through 2013. Here’s
how to make it:

1. First, as in Section C.1 above, you’ll need to fetch some data from
a web site. If your computer has the wget command, you can do it
this way:

wget http://www2.census.gov/acs2013_3yr/pums/csv_hus.zip

otherwise, you can use the curl command like this:

curl -L -O http://www2.census.gov/acs2013_3yr/pums/csv_hus.zip

2. The file you downloaded is named csv_hus.zip. This file has
several data sets packed inside it, so the next step is to unpack them.
You can do this by using the following command:

unzip csv_hus.zip

This will extract five files:

ss13husa.csv

ss13husb.csv

ss13husc.csv

ss13husd.csv

ACS2011-2013_PUMS_README.pdf

The last file contains documentation describing the data, and the
other files contain the actual data, broken into four parts.
If you looked inside one of the csv files you unpacked, you’d see that
each line of the files was just a list of values separated by commas.
The “csv” in the file name stands for “comma-separated values”.
The data is organized in rows and columns. Each row represents

https://commons.wikimedia.org/wiki/File:Early_US_Census_Machines_1950_08010.jpg
https://www.census.gov/programs-surveys/acs/about.html
https://www.census.gov/programs-surveys/acs/data/pums.html
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a single household, and each column is a particular kind of data
about that household (number of children or household income, for
example). The top row is a comma-separated list of abbreviations
telling us what each column represents.

3. To produce our census.dat file we’re going to extract just a few of
these columns. We could do this using awk and grep, as we did in
Section C.1, but this is a book about C programming, so let’s use a C
program to do it this time.
The program datafilter.cpp (Program C.2) contains a lot of stuff
that you haven’t seen before unless you’ve already finished reading
this book. Much of it will become clear after you reach Chapter 8,
and most of the rest after you read Chapter 9. The only parts that we
won’t cover in this book are the malloc and free functions. You’ll
have to learn about those in a different book, or do some research
on your own.
For now, just save this program as datafilter.cpp and compile
it by typing “g++ -Wall -o datafilter datafilter.cpp”.

4. The datafilter program needs a configuration file to tell it what
to do. Using nano, create a file called census.conf containing the
following lines:

,

-1

NRC

ACR

BDSP

FINCP

FULP

GASP

GRNTP

Notice that the first line is just a comma on a line by itself. This tells
datafilter that the columns in our data file will be separated by
commas. The second line of the file tells datafilter that it should
replace any missing data values with “-1”. The rest of the lines are
a list of columns that datafilter should select. These are the names
that appear in the top row of each csv file.



546 practical computing for science and engineering

Program C.2: datafilter.cpp

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
int main( int argc, char *argv[] )
{

const int maxcolumns = 100;
const int maxlength = 4096;
char *output[maxcolumns];
char *wanted[maxcolumns];
int wantedfield[maxcolumns];
int nwanted;
char line[maxlength];
char *position;
char delimiter[maxlength];
char blankvalue[maxlength];
char *word;
int i, field;
FILE *input;
FILE *setup;

// Check syntax:
if ( argc > 3 ) {

fprintf ( stderr, "Syntax: %s datafile configfile\n", argv[0] );
exit (1);

}

// Open data file:
if ( !strcmp( argv[1], "-" ) ) {

fprintf ( stderr, "Reading data from stdin.\n" );
input = stdin;

} else {
if ( ( input = fopen ( argv[1], "r" ) ) ) {

fprintf ( stderr, "Reading data from %s.\n", argv[1] );
} else {

fprintf ( stderr, "Error opening \"%s\": %s\n", argv[1], strerror(errno) );
exit(1);

}
}

// Open configuration file:
if ( ( setup = fopen ( argv[2], "r" ) ) ) {

fprintf ( stderr, "Reading setup from %s.\n", argv[2] );
} else {

fprintf ( stderr, "Error opening \"%s\": %s\n", argv[2], strerror(errno) );
exit(1);

}

// Read delimiter:
fgets( delimiter, 10, setup );
delimiter[strcspn(delimiter, "\r\n")] = 0;

// Read blank value:
fgets( blankvalue, maxlength, setup );
blankvalue[strcspn(blankvalue, "\r\n")] = 0;

// Read fields:
nwanted = 0;
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for ( i=0; i<maxcolumns; i++ ) {
if ( !fgets ( line, maxlength, setup ) ) { // Break at EOF.

break;
}
line[strcspn(line, "\r\n")] = 0;
wanted[i] = (char *)malloc( strlen( line ) + 1 );
snprintf( wanted[i], strlen( line ) + 1, "%s", line );
nwanted++;

}

// Close configuration file:
fclose ( setup );

// Read header:
fgets( line, maxlength, input);
line[strcspn(line, "\r\n")] = 0;
position = line;
field = 0;
while (position != NULL) {

word = strsep(&position, delimiter);
for ( i=0; i<nwanted; i++ ) {

if ( !strcmp( word, wanted[i] ) ) {
wantedfield[i] = field;

}
}
field++;

}

// Read data:
while ( fgets( line, maxlength, input) ) {

line[strcspn(line, "\r\n")] = 0;
position = line;
field = 0;
while (position != NULL) {

word = strsep(&position, delimiter);
for ( i=0; i<nwanted; i++ ) {

if ( field == wantedfield[i] ) {
output[i] = (char *)malloc( strlen(word) + 1 );
if ( strlen(word) ) {

snprintf( output[i], strlen(word) + 1, word );
} else {

snprintf( output[i], strlen(blankvalue) + 1, blankvalue );
}

}
}
field++;

}
for ( i=0; i<nwanted; i++ ) {

printf ( "%s ", output[i] );
free ( output[i] );

}
printf ("\n");

}

if ( input != stdin ) {
fclose ( input );

}
}
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5. Now we’re ready to create census.dat. Type the following com-
mands to do it:

./datafilter ss13husa.csv census.conf > census.dat

./datafilter ss13husb.csv census.conf >> census.dat

./datafilter ss13husc.csv census.conf >> census.dat

./datafilter ss13husd.csv census.conf >> census.dat

Each of these lines processes one of the csv data files and appends
the columns extracted from it onto the end of the file census.dat.
Seven columns are extracted from the original data. These columns
are1: 1 Notice that we’ve numbered them like

the elements of a C array, starting with
zero instead of one.

0 NRC Number of related children in household
1 ACR Lot size, in acres
2 BDSP Number of bedrooms
3 FINCP Family income
4 FULP Annual fuel cost
5 GASP Monthly gas cost
6 GRNTP Monthly rent

If you’d like to do further research with this data you can find a
complete description of each of the columns in the csv files here:

http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2011-2013.txt

http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2011-2013.txt


D. Some Notes About gnuplot

D.1. What is gnuplot?
gnuplot is a general-purpose plotting/graphing program that is quite
flexible and surprisingly powerful. It can graph 2- and 3-d functions
defined by the user. gnuplot also has a wide array of built-in functions,
covering trigonometry, as you might expect, but also extending to
bessel functions, the gamma function, the error function (erf) and many
others.

gnuplot can also plot 2- and 3-d data. Data can be read in either ascii
or binary format. Since gnuplot allows you to specify the layout of the
data file, it can accommodate many different file formats.

gnuplot is cross-platform (Linux, Windows and OS X), and it’s free and
open-source.

gnuplot is command-line driven. This means that you can write scripts
and re-use them later, and it makes it possible to easily tell other people
what you’ve done. The program also has very good built-in help. Just
type ´́ help´́ at the gnuplot command prompt, and you can browse
through documentation for every feature.

gnuplot has been around for many years and is widely used, so there
are many gnuplot experts on the Web, offering useful advice. You’ll
find many gnuplot demos on the Web. Here’s a trio of particularly
informative sites:

• http://gnuplot.sourceforge.net/demo/
• http://www.gnuplotting.org/
• http://www.gnuplot.info/screenshots/

http://gnuplot.sourceforge.net/demo/
http://www.gnuplotting.org/
http://www.gnuplot.info/screenshots/
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D.2. Plotting functions:
Plotting 2-d functions in gnuplot is quite intuitive for most people. In
the example below, we’re plotting a parabola. (In gnuplot ** means
´́ exponentiate´́ .)

plot x**2
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By default, gnuplot displays 2-d functions with lines and 3-d functions
with a mesh surface. The next few examples show how we can control
the style with which functions are displayed. (See Figure D.1.)

Plotting a symbol at each point:

plot x**2 with points

Explicitly connecting the points with lines (this is the default):

plot x**2 with lines

Displaying a symbol at each point, AND connecting the points with
lines:

plot x**2 with linespoints

Displaying an ´́ impulse´́ (a narrow vertical line) for each point:

plot x**2 with impulses
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Figure D.1: Top row, left to right: plot
with points and lines. Bottom row,
left to right: plot with linespoints

and impulses.
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Displaying a box for each point (like a histogram). (Note that gnuplot

doesn’t have much of a built-in ability to generate histograms from
data, but I’ll show you later how you can fool it into making passable
histograms without too much trouble.)

plot x**2 with boxes
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Figure D.2: A plot using the boxes
style.

Here’s our first look at a 3-d function. Note that, if you display this in
gnuplot, you can grab the graph and move it around in three dimensions,
to display it from different angles.

splot x**2+y**2
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Figure D.3: A function of two variables,
plotted using splot (for “Surface Plot”).

When gnuplot plots a function, it generates a set of points within a
range of X values (or X and Y values, for 3-d functions), then displays
those points. Later, we’ll see how to control the number of points. By
default, gnuplot selects X, Y (and Z, if applicable) ranges based on some
internal algorithms that generally do a pretty good job of showing the
function’s interesting features. We can also explicitly tell gnuplot what
these ranges should be, as we’ll see later.

D.3. Defining Functions:
As I mentioned, gnuplot has many built-in functions. Here’s a plot of
the sine of x:

plot sin(x)
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Figure D.4: The built-in function
sin(x).
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You can also define your own functions, perhaps using some of gnuplots
functions as building-blocks:

f(x) = sin(x)*exp(x/(2.0*pi))

plot f(x)
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Figure D.5: A plot of sin(x)e
x

2π .

Note that gnuplot predefines ´́ pi´́ for us. You can define your own
variables, too. In the following example, we define a function of x. The
function uses a parameter ´́ s´́ , which we can set to whatever value we
want:

s = 10.0;

f(x) = exp(-x**2/(2*s**2))

plot f(x)
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Figure D.6: A gaussian curve with
s=10.

Now we can change the value of s, and plot the function again:

s = 1.0

plot f(x)
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Figure D.7: Top to bottom: Gaussian
curves with s = 1, 2, and 2.5.

Note that gnuplot lets you repeat the last graphing operation by just
typing ´́ replot´́ :

s = 2.0

replot #<-- note

And also note, above, that you can insert comments anywhere on the
gnuplot command line by preceding them with a ´́ #´́ . This will be useful
when you start writing scripts for gnuplot.

We can see the current value of a variable by using the ´́ print´́ com-
mand, and we can erase a variable completely by using the ´́ undefine´́
command:

print s

undefine s

Here’s another way we could have defined the function f(x) above. Here
we pass the parameter explicitly as one of the function’s arguments:

f(x,s) = exp(-x**2/(2*s**2))

plot f(x,2.5)
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Now we can easily plot a family of curves with different values of this
parameter. In gnuplot, you can plot many different things with a single
plot command. The things you want to plot are separated by commas.
By default, gnuplot will try to automatically set the displayed ranges so
that everything fits on the graph.

plot f(x,2.5), f(x,1.0), f(x,5.0)
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Here’s another way of displaying functions. The ´́ filledcurves´́ style
takes several parameters. In this example, we give it the parameter
´́ y1=0´́ , which says to fill the area between the curve and y=0. (We use
´́ y1´́ because gnuplot allows several different y axes – one at left and
one at right, for example. ´́ y1´́ is the first y axis.)

plot besj0(x) with filledcurves y1=0, besj1(x) with filledcurves y1=0
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Figure D.8: Bessel functions plotted with
filled curves.

D.4. Setting Ranges:
Until now we’ve let gnuplot decide what ranges of X and Y values to
display. Here’s how we can tell gnuplot to display an explicit range:

set xrange [-20:20]

replot
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Once set, this range is used for all subsequent plots. We can also set a
one-time range right along with the ´́ plot´́ command:
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plot [-30:30] f(x,1.0)
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A range set as in the example above will ony affect the current plot.

Just as with the X range, we can of course set the Y range (and the Z
range, when appropriate):

set yrange [0:2]

replot
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You can view the current ranges by typing ´́ show xrange´́ or ´́ show
yrange´́ or ´́ show zrange´́ . You can reset the a range to auto-scaling by
giving the range the value ´́ [*:*]´́ :

set xrange [*:*]

set yrange [*:*]

D.5. Multiple Plots:
gnuplot lets you display multiple plots on a single page. To do this, use
the ´́ set multiplot´́ command. Here are some examples:

set multiplot layout 1,2

plot f(x,1)

plot f(x,5)

unset multiplot  0
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Figure D.9: layout 1,2 creates two
side-by-side plots.Choosing layout 1,2 creates two side-by-side regions for plotting. If

we choose layout 2,1 we get two regions, one on top of the other.

set multiplot layout 2,1

plot f(x,1)

plot f(x,5)

unset multiplot

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

f(x,1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

f(x,5)

Figure D.10: layout 2,1 creates two
vertically-stacked plots.
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Figure D.11: A 2 × 2 grid of four plots.

As you might have guessed, the two numbers after layout just tell
gnuplot how many horizontal and vertical regions the display should
be divided into. If we want to display four plots in a 2 × 2 grid, we can
do this:

set multiplot layout 2,2

plot f(x,1)

plot f(x,5)

splot x**2+y**2

splot x**3+y**3

unset multiplot
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D.6. Keys, Titles, and Labels:
You may have noticed that gnuplot places a ´́ key´́ in the upper right-
hand corner of each plot, identifying the information that’s being
plotted. You may sometimes want to turn this off. gnuplot provides a
mechanism for this:

unset key

replot
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Figure D.12: Plots with (bottom) and
without (top) a “key”.

To turn it back on, you can use the following:

set key

replot

You can control the labels on the key by using the ´́ title´́ option of the
plot command. For example:

plot f(x,2) title "sigma=2",f(x,3) title "sigma=3"

We can also set a global title for the graph, as follows:

set title "some examples"

Axes can be labeled by using ´́ set xlabel´́ or ´́ set ylabel´́ :

set xlabel "This is the x axis"

set ylabel "This is the y axis"

replot
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Figure D.13: A plot showing key titles, a
global title, xlabel, and ylabel.
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D.7. Linear and Logarithmic Scales:
Until now, we’ve only looked at linear scales. You might sometimes
want logarithmic scales, instead. The following command makes the Y
axis logarithmic:

set log y

replot
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You can use ´́ unset log y´́ to go back to a linear scale. You can also set
log/linear scales on the X and Z axes.

unset log y

Grids are often useful for reading data off of graphs. Use the ´́ set grid´́
command to turn on a coarse-grained grid on your graph:

set grid

replot
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With logarithmic scales, these coarse-grained grid lines will often be
unsatisfactory:

set log y

replot
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In this case, we may want to turn on ´́ minor´́ grid lines to. To do this
we use some of the available qualifiers for the ´́ set grid´́ command.
´́ ytics´́ here refers to the major tic marks on the Y axis. ´́ mytics´́ refers
to the minor tick marks. The command below tells gnuplot to make
grid lines for both major and minor tic marks.

set grid ytics mytics

replot
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You can see that gnuplot doesn’t always choose reasonable ranges for
the axes, especially when the axis is logarithmic. We can make this look
better by explicitly setting the lower end of the range:

set yrange [.001:*]

replot
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D.8. Three-Dimensional Plots:
Now let’s look at some more 3-d plots. Let’s start by defining a function
3-d version of the f(x) we were using above:

f(x,y,s) = exp(-(x**2+y**2)/(2*s**2))

set xrange [-10:10]

set yrange [-10:10]

splot f(x,y,1)
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Figure D.14: 3-d plots showing the effect
of samples and isosamples.The output is shown on the left-hand side of Figure D.14. The graph

looks confusing because gnuplot didn’t evaluate the function at very
many points, and didn’t draw many lines in the mesh that indicates
the location of the surface.

We can get a better plot by telling gnuplot explicitly how many points
to use when sampling the function, and how many lines to draw across
the surface. The first of these is controlled by gnuplot’s ´́ samples´́
setting, and the second by the ´́ isosamples´́ setting. As you can see
this makes the graph much better, as shown in the right-hand side of
Figure D.14.

set samples 100

set isosamples 100

replot

But why is the zero of the Z axis lifted up like that? This is so gnuplot

can display a contour map underneath, as we’ll see later. For now, if
we don’t like the Z offset we can eliminate it:

set xyplane 0

replot
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Figure D.15: The effect of setting
xyplane to zero.
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gnuplot provides other ways of displaying 3-d data. One of these is
called ´́ pm3d´́ . This style colorizes the surface based on the Z-value at
each point. Here’s an example:

splot f(x,y,1) with pm3d
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Sometimes we just want the colorization, without the 3-d look. For this,
gnuplot provides the ´́ map´́ view. This displays the data in the X-Y
plane, with colors providing information about the Z values. Here’s an
example of that:

set view map

replot

f(x,y,1)
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D.9. Color Palettes:
The graphs above use a default palette of colors, but we can define our
own palette if we want to. Using the ´́ set palette´́ command, we can tie
certain colors to certain Z values. gnuplot will interpolate between the
colors we specify and generate a color for each Z value on the graph.
We can specify as many Z values as we want to in the ´́ set palette´́
command. In the example below, I specify the color for 0 and for 1,
and let gnuplot figure out the rest. We could specify the colors at other
locations by just adding more comma-separated pairs to our list:

set palette defined (0 "green", 1 "red")

replot

f(x,y,1)
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Figure D.16: A green-to-red palette.

You can reset the palette to the default values by just typing ´́ set
palette´́ by itself:

set palette #<-- reset

replot

If we wanted to display a grid on a plot like this, we’d need to be
careful about the color of the grid lines. By default, these lines are
black, and wouldn’t show up. We can specify the line color at the ´́ set
grid´́ line, though. Here’s an example where I set the grid line color to
white. Notice that I also use the ´́ front´́ qualifier, to make sure the grid
lines are displayed in front of the data. That’s important in this case,
because grid lines are normally displayed behind the data, and would
be obscured by the solid colors of our dataset.

set grid front xtics ytics lc rgb '#ffffff'

replot
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Figure D.17: Overlaying a grid.

Here are some examples of other built-in color palettes:

set palette gray

replot

f(x,y,1)
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Figure D.18: A grayscale palette.

set palette color negative

replot

f(x,y,1)
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Figure D.19: An inverted-color palette.
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D.10. Setting the Viewing Angle:
As we noted before, when gnuplot is showing us a 3-d plot it allows
us to grab the plot and turn it around to view it from different angles.
We can also control the viewing angles from the command line, using
commands like the following. (These are actually the default values.
Unfortunately, gnuplot doesn’t provide us with a way to just ´́ set view
default´́ . We have to explicitly enter the values.)

set view 60, 30, 1, 1 #<-- rot_x, rot_z, scale, scale_z

splot f(x,y,1)

f(x,y,1)
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Figure D.20: A 3-d graph, rotated to
specific angles using set view.

D.11. Discontinuous Functions:
What if we want to plot a function that has a discontinuity? Say, a
step-function? gnuplot makes it easy to do that, too. The following
example shows one way to do it, using the ´́ ternary operator´́ (?:). If
you’re familiar with C or Perl, you probably already know how this
operator works. The syntax is ´́ test ? true : false´́ . If ´́ test´́ is true, then
the ´́ true´́ section is used. Otherwise, the ´́ false´́ section is used. It’s
like a compact if/else statement.

In this example, we say that the function l(x) has the value 100 if x is
greater than 0, or a value of 0 otherwise.

set yrange [-1:110]

l(x) = x>0 ? 100 : 0

plot l(x)

l(x)

 0

 20

 40

 60

 80

 100

-10 -5  0  5  10

What if we wanted to define a ´́ square pulse´́ , i.e., a function that only
has a non-zero value between x=x1 and x=x2? We could do that by first
defining a gneralized step function:

l(x,x0,a) = x<x0 ? 0 : a

In the function above, x0 is the x value at which the function changes
value, and a is the value it has when it’s non-zero. Now we can
construct a square pulse by taking the difference of two instances of
this function with different x0 values:

m(x) = l(x,1,10) - l(x,2,10)

set yrange [-1:11]

plot m(x)

m(x)
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(Notice that the ´́ vertical´́ lines aren’t exactly vertical. That’s because
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gnuplot is just connecting a discrete set of data points it has generated
along the function. We could improve the plot by using ´́ set samples´́
to increase the number of data points.)

I think it’s clear that we can construct any arbitrarily complex disjoint
function by using similar mechanisms.

D.12. Hiding Regions:
Sometimes we want gnuplot to just display nothing in certain regions.
Perhaps the function is undefined there, or maybe we just want to
emphasize a certain region. Here’s a trick to make that happen. Can
you figure out how it works?

(Also notice that the example below uses ´́ filledcurves x1´́ to cause
some areas to be filled between the curve and the bottom of the graph.)

# Other piecewise functions, using sqrt(-1) to make function disappear:

set samples 1000

set yrange [0:0.5]

f(x) = exp(-x*x/2)/sqrt(2*pi)

g(x) = x>=1 ? f(x) : sqrt(-1)

h(x) = x<=1 && x>=0 ? f(x) : sqrt(-1)

plot g(x) with filledcurves x1,h(x) with filledcurves x1, f(x) with lines

g(x)
h(x)
f(x)
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D.13. Plotting Data:
OK, so we’ve seen how gnuplot works for plotting functions. How
about plotting data points? We can use the same tools we’ve seen
above for controlling the look of the graph, no matter whether we’re
plotting functions or data. We can also still use the ´́ plot´́ and ´́ splot´́
commands.

Here’s a simple example showing how to use gnuplot to plot data from
a text file. The file contains three columns of numbers, separated by
white space. In this example, the colums are, in order, X, Y and the
error in Y.

plot "gaussian-data.dat"

"gaussian-data.dat"

 0
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The command above just reads the the first two columns and plots the
data as X and Y values, placing a symbol at each point.

Note that the file name must always be enclosed in quotes.

We can tell gnuplot to make use of the ´́ error´́ column by adding ´́ with
errorbars´́ :

plot "gaussian-data.dat" with errorbars

gnuplot will assume that the third column in the file contains the error
values, unless we tell it otherwise.
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We can also explicitly tell gnuplot which columns to use for X, Y, error
values, and so forth. In the following example, we tell gnuplot to plot
data from a text file, and use column 2 as the X value and column 3 as
the Y value:

plot "h_200.dat" using 2:3

When plotting error bars, we can also specify a third column containing
those:

plot "h_200.dat" using 2:3:4 with errorbars

"h_200.dat" using 2:3:4
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Figure D.21: Plotting selected columns
with error bars.

We can also plot 3-dimensional data. Here’s another plot, showing
stopping positions of charged particles in a chunk of matter. The file
contains three columns, representing the X, Y and Z components of the
stopping position.

plot "stopping-positions.dat"

"stopping-positions.dat"
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This is equivalent to ´́ using 1:2´́ .

For displaying all three dimensions we can use the same data file with
gnuplot’s splot command. The default order of the columns is X, Y, Z,
but we can reorder them if we want. Here’s a 3-d plot of the same data,
using column 3 as X, column 2 as Y and column 1 as Z:

splot "stopping-positions.dat" using 3:2:1
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"stopping-positions.dat" using 3:2:1
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"stopping-positions.dat" using 3:2:1
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"stopping-positions.dat" using 3:2:1:3
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Figure D.22: Colorizing by Z-value (top)
or a specified column (bottom).

We can also tell gnuplot to colorize the points, using the option ´́ with
points palette´́ . (See Figure D.22.) By default, points are colorized
based on the value of Z.

splot "stopping-positions.dat" using 3:2:1 with points palette

If we want to, we can specify another column to use for colorizing the
points:

splot "stopping-positions.dat" using 3:2:1:3 with points palette

If we have data that we want to display in the style of a histogram (see
Figure D.23), we might use the option ´́ with boxes´́ :

plot "energy.dat" using 1:3 with boxes

"energy.dat" using 1:3
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Figure D.23: Data displayed with boxes,
in the style of a histogram.
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Here’s another data set from these stopped particles. This one contains
two-dimensional histogram data, binned by X and Z, with the histogram
height being the amount of energy deposited in each X,Z bin. In this
case, let’s use the ´́ pm3d´́ style to colorize the graph based on the
energy value:

splot "xzde.dat" with pm3d

"xzde.dat"
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We can tell gnuplot to also display a color map on the bottom of the
graph. To make this visible, we’ll need to lift the surface up a little. The
additional ´́ at bs´́ tells the pm3d style to colorize both the surface (´́ s´́ )
and the bottom (´́ b´́ ).

set xyplane 1

splot "xzde.dat" with pm3d at bs
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Figure D.24: Projecting the data into a
color map on a plane beneath the
surface.

We could place the color map at the top, instead, by saying ´́ at st´́ , for
´́ surface´́ and ´́ top´́ . Note that the order matters, since it controls the
order in which the two maps will be drawn, and one map may obscure
the other if we do them in the wrong order (try it and see).

splot "xzde.dat" with pm3d at st

"xzde.dat"
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Figure D.25: Projecting the data into a
color map on a plane above the surface.

When plotting colorized graphs, we can control whether or not we
display the color key by typing ´́ unset colorbox´́ or ´́ set colorbox´́ :

unset colorbox

replot

"xzde.dat"
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Figure D.26: The effect of unset
colorbox.

In the following example, we ask gnuplot to create a color map on the
bottom surface, and also to plot a wire-mesh (the default) surface above
this:
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splot "xzde.dat" with pm3d at b, "xzde.dat" with lines
"xzde.dat"
"xzde.dat"
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Figure D.27: A color map on the
bottom, and a wire mesh on top.

Sometimes we may just want to see the colormap. As we saw above,
we can get this by typing ´́ set view map´́ . The graph below is colorized
according to how much energy was deposited at each location. We can
see the particles coming in from the left, depositing more and more of
their energy as they slow down and stop.

set view map

splot "xzde.dat" with pm3d "xzde.dat"

 0  2  4  6  8  10  12  14  16

-6

-4

-2

 0

 2

 4

 6

 0

 100

 200

 300

 400

 500

 600

Figure D.28: The effect of set view

map.

I mentioned above that gnuplot doesn’t know about histograms, and
can’t automatically bin data for you. It’s pretty straightforward to
construct a simple histogram using gnuplot’s functions, though. Here’s
an example, using the X value of the particle stopping position data.
In the following, I define a function, ´́ bin(x)´́ , which just returns the
X value of the center of the bin into which a given data point would
fall. We then make use of an ability of gnuplot’s to plot the sum of all Y
values with the same X value.

As X values, we plot bin(x), and for each value we give gnuplot a fixed
Y value of 1. We mean by this, ´́ 1 particle stopped inside the bin on
the X axis´́ . We then tell gnuplot to use ´́ smooth freq´́ , which is a style
that causes gnuplot to sum all of the Y values at a given X value, and
display the result. We’ve created a histogram! (We’ll talk more about
the syntax of this ´́ using´́ statement later.)

"stopping-positions.dat" using (bin($1)):(1)
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Figure D.29: A sneaky histogram.

Here’s what it looks like:

# A sneaky way to make histograms:

# See also:

# http://www.inference.phy.cam.ac.uk/teaching/comput/C++/examples/gnuplot/#four

binsize = 0.1

bin(x) = int( x/binsize + 0.5 )

plot "stopping-positions.dat" using (bin($1)):(1) smooth freq with boxes
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D.14. Binary Data Files:
Up until now, we’ve read data from ASCII files. gnuplot can also read
binary files. We just need to tell gnuplot that the file is binary, and
what kind of numbers are in it. For example, the following command
reads a binary file containing floating-point data (type double in C
and gnuplot parlance). The file was created by a C program, which
wrote the numbers in binary format into the file. Below, we tell gnuplot

that the file contains a stream of ´́ doubles´́ . If the file were a different
format (say, alternating double and int), we could tell gnuplot how
to deal with it (say, format = "%double%int"). Type ´́ help plot
binary general´́ in gnuplot for more information.

# binary data

plot "data.dat" binary format="%double"

D.15. Mathematical Combinations of Data:
As we saw in the histogramming example above, gnuplot lets us plot
functions of data columns. We specify what to plot with the ´́ using´́
qualifier. If we’re just plotting the unadorned contents of the column,
we just give the column’s number. But, if we want something more
complicated, we can supply a more complicated expression. These more
complicated expressions need to be enclosed in parentheses. Within
these parentheses we can use whatever arithmetic expressions and
functions we want, referring to data by column number. In this context,
the column numbers must be preceded by ´́ $´́ , to distingush them from
actual numbers that we might be using in the expressions.

Here’s a pair of examples (see Figure D.30):

plot "stopping-positions.dat" using 1:($2/100)

plot "stopping-positions.dat" using (sqrt($1**2+$2**2+$3**2))

"stopping-positions.dat" using 1:($2/100)
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"stopping-positions.dat" using (sqrt($1**2+$2**2+$3**2))
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Figure D.30: Plots produced by the
“using” expressions in the two
examples at left.

Sometimes we want to use ´́ line number´́ as one of the things we plot.
For example, imagine we have a file containing many measurements
of position and time. Each line of the file just has two values, x and
t. If the lines in the file are in the same order in which we did the
measurements, we could think of the line number as a third value: the
´́ measurement number´́ . We can use the line number in our plots by
referring to (column(0)) or, equivalently, ($0). For example, to plot
position versus line number:

plot "mydata.dat" using ($0):1
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D.16. Multiple Data Sets in One File:
A data file may contain more than one data set. In the example below,
we plot data from a file called ´́ bessel2.dat´́ which contains five data
sets. Each data set is two columns containing x and jn(x), where jn
is the nth order Bessel function. The first data set is j0(x), the second
is j1(x) and so on. The data sets are just concatenated together, with
blank lines separating them.

# Multple data sets in one file, with blank lines:

set xrange [0:20]

set yrange [*:*]

plot "bessel2.dat" with lines

"bessel2.dat"
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 0  5  10  15  20D.17. Inset Graphs:
Sometimes we want to have a smaller graph inset into a larger one.
Here’s a long example that illustrates how to accomplish that in gnu-

plot. Within the ´́ multiplot´́ environment, we can specify the size and
location of each plot explicitly. In the example below, we create a large
graph by specifying ´́ origin 0.0,0.0´́ and ´́ size 1.0,1.0´́ . Multiplot’s co-
ordinate system (by default) begins at 0,0 in the lower left corner of the
screen and goes to 1,1 at the upper right. We then set the origin and
size of a second plot so as to place it in the upper right corner of the
first graph.

i(x) = 0.5*(1+erf(x/sqrt(2)))

unset key

unset label

unset xlabel

unset ylabel

unset title

set multiplot

set origin 0.0,0.0

set size 1.0,1.0

set yrange [0.001:]

set xrange [0:3]

set log y

set xtics

set ytics

set grid xtics ytics mxtics mytics
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plot 1-i(x), 0.5-(1-i(x))

set origin 0.7,0.7

set size 0.3,0.3

f(x) = exp(-x*x/2)/sqrt(2*pi)

g(x) = x>=1?f(x):sqrt(-1)

h(x) = x>=1&&x>=0?f(x):sqrt(-1)

set xrange [-3:3]

unset log y

unset grid

unset xtics

unset ytics

plot g(x) with filledcurves x1,h(x) with filledcurves x1, f(x) with lines

unset multiplot
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D.18. Writing Output Files:
When you start gnuplot and begin graphing, gnuplot chooses one of
several ways of displaying the data, depending on the abilities of
your computer’s display. Each way of displaying the data is called a
´́ terminal type´́ or ´́ term´́ in gnuplot. If you’re using gnuplot under
Linux, you’ll probably be using the x11 or the wxt term. You’ll see a
message when you start gnuplot that says something like ´́ Terminal
type set to ’wxt’´́ . Both of these terminal types are used for displaying
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graphs on your computer’s screen. You can see what the current
terminal is by typing ´́ show term´́ .

There are other terminal types that are intended for creating graphics
files. For example, you can use the ´́ png´́ terminal to create png files,
or the ´́ postscript´́ terminal to creat postscript files.

In the example below, we change the terminal type to ´́ postscript´́ using
the command ´́ set term postscript enhanced color´́ . The ´́ enhanced
color´́ part specifies some options available in the postscript terminal
type. If we tried plotting a graph at this point, we’d see postscript
commands printed on our screen. We don’t want that! The next
thing we need to do is to tell gnuplot where to write these postscript
commands. We do this by using the ´́ set output´́ command. Note that
the name of the output file must be enclosed in quotes. Anything we
subsequently plot will be written into this file as postscript data.

set term postscript enhanced color

set output "gnuplot/images/file.eps"

plot "energy.dat" using 1:3 with boxes

We can similarly send output into a png file:

set term png

set output "gnuplot/images/file.png"

replot

Many terminal types allow you to use special symbols (e.g., Greek
letters) in titles and labels. Unfortunately, the way to do this varies
greatly from one terminal type to another. For example, to produce a
lower-case Greek sigma with the postscript driver, you could insert the
string {/Symbol s} in your title. For the png terminal, you’d need to
insert a unicode symbol by typing an appropriate sequence of keys on
your keyboard. For one of the Latex terminal types, you’d need to use
Latex-style equations. A useful cheat-sheet for this kind of thing can be
found at http://mathewpeet.org/lists/symbols/.

D.19. Fitting functions to data:
gnuplot also allows us to fit model functions to data sets by searching
through parameter-space to find a set of parameters that minimize the
chi-squared value obtained by comparing the given model to the data
set.

http://mathewpeet.org/lists/symbols/
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For example, consider the following data set, which contains some data
that appears to be distributed in something like a Gaussian distribution.

set xrange [*:*]

set yrange [*:*]

plot 'h_200.dat' using 2:3:4 with errorbars
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We can define a function that represents a generalized Gaussian distri-
bution, characterized by three parameters: s (the standard deviation),
m (the mean) and a (an amplitude). We define such a function, g(x),
below. gnuplot is capable of adjusting the values of a, m and s in order
to find the best fit to a given data set. gnuplot isn’t particularly good
at guessing good initial values for these parameters, so we should set
them by hand to some approximate values before asking gnuplot to
adjust them. In the example below, we just read approximate values
from the graph, without too much care.
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Figure D.31: Data plotted along with a
best-fit curve.

Then, we use gnuplot’s fit command to adjust the parameters a,m and
s to find a minimum chi-squared.

g(x) = a*exp(-(x-m)**2/2/s**2) # Gaussian

a=25

m=100

s=15

fit g(x) 'h_200.dat' using 2:3:4 via a,m,s

The output of the fit command will look something like this:

After 5 iterations the fit converged.

final sum of squares of residuals : 11.2835

rel. change during last iteration : -4.51108e-07

degrees of freedom (FIT_NDF) : 22

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.716162

variance of residuals (reduced chisquare) = WSSR/ndf : 0.512888

Final set of parameters Asymptotic Standard Error

======================= ==========================

a = 16.3064 +/- 1.084 (6.645%)

m = 99.7578 +/- 0.5116 (0.5128%)

s = 9.36694 +/- 0.4236 (4.522%)

We can then ask gnuplot to draw the best-fit function (using the newly-
obtained parameter values), along with the data (see Figure D.31):

plot 'h_200.dat' using 2:3:4 with errorbars, g(x)
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D.20. Using text as axis labels:
It’s sometimes useful to be able to use text as axis labels. For example,
you might have a file like this:

Joe 1.00

Bob 2.45

Mary 3.14

Jane 0.76

You could plot these values with the names as labels by typing the
following in gnuplot:

plot "file.dat" using 2:xticlabels(1) with boxes
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"file.dat" using 2:xticlabels(1)

Figure D.32: Using a text column to
label an axis.

If the labels are so long that they bump into each other, you can rotate
them by issuing the command:

set xtics rotate by -90

If you do this, you may also need to reduce the height of the graph to
leave vertical room for the labels. This can be done with a command
like:

set size ratio 0.7

D.21. Using dates and times in data sets:
Finally, gnuplot is capable of reading date and time data in data files,
and plotting them appropriately. For detailed information, type ´́ help
set xdata´́ and ´́ help set timefmt´́ inside gnuplot. One quick example is
shown below. In it, we tell gnuplot that the X values will be times, and
that their format in the data file will be abbreviated month names (like
´́ Jan´́ , ´́ Feb´́ , etc.) Then we tell gnuplot to mark the X axis with labels
in the same format. After that, we only need to tell gnuplot to plot the
data in the file.

set xdata time # Tell gnuplot that the X values will be times.

set timefmt "%b" # Tell gnuplot what format to expect in the data file.

# See man strftime for codes.

set format x "%b" # How axis will be displayed.

plot "mail-stats.dat" using 1:2 with boxes
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Figure D.33: Using dates or times to
label an axis.





E. Format Specifier Tricks

Here are a few tips and tricks for format specifiers (placeholders) in
printf and scanf statements. This isn’t an exhaustive list of the
things you can do with format specifiers, but it includes the things
you’re likely to use most often. For complete information, see the
excellent Wikipedia article on “printf format strings”.

To start with, here’s a list of format specifiers for some common variable
types:

Format Description
%d Format for printing or reading an integer.
%lf Format for printing or reading a double.
%le Print a double in scientific notation.
%lg Print a double in either scientific notation or normal notation,

whichever is more appropriate.
%c A single character.
%s An array of characters (also called a “character string”)
%p A memory address (also called a “pointer”).
%u An unsigned integer.
%ld A long integer.
%lu An unsigned long integer
%lld A long long integer.
%llu An unsigned long long integer.
%x A hexadecimal integer with lower-case letters.
%X A hexadecimal integer with upper-case letters.
%o An octal integer.

You can adjust the behavior of these format specifiers by adding modi-
fiers to them. The following tables shows some tricks to help you make
your program’s output look just the way you want it.

https://en.wikipedia.org/wiki/Printf_format_string
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Generic tricks
Example Result Description
printf("%%") % Print a literal % symbol.

Tricks for Integers
Example Result Description
printf("%20d",1234567890) 1234567890 Print an integer, reserving

a 20-digit-wide space for
it. If the number isn’t this
long, add blank spaces on
the left-hand side.

printf("%-20d",1234567890) 1234567890 The same as above, but
add blank spaces on the
right-hand side if neces-
sary.

printf("%8d",1234567890) 1234567890 If the number won’t fit in
the specified width, use as
much space as necessary.

printf("%020d",1234567890) 00000000001234567890 Pad the number with ze-
ros on the left (if neces-
sary) to make it 20 digits
long.

Tricks for doubles
Example Result Description
printf("%20lf",M_PI) 3.141593 Print a double, reserving

enough space for 20 dig-
its.

printf("%5lf",M_PI*1e8) 314159265.358979 If the number won’t fit in
the specified width, use as
much space as necessary.

printf("%20.10lf",M_PI) 3.1415926536 Reserve enough space for
20 digits (including the
decimal point) and print
10 of those digits after the
decimal point. Pad with
spaces on the left-hand
side if necessary.

printf("%-20lf",M_PI) 3.141593 As above, but pad on the
right-hand side.

printf("%020lf",M_PI) 0000000000003.141593 Pad the number with ze-
ros on the left (if neces-
sary) to make it 20 digits
long.
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Tricks for Characters
Example Result Description
printf("%20c",'A') A Print a character, reserv-

ing a 20-character-wide
space for it. Fill the ex-
tra width with spaces on
the left-hand side.

printf("%-20c",'A') A As above, but fill on the
right-hand side.

Tricks for Strings
Example Result Description
printf("%20s","Testing") Testing Print a character string,

reserving a 20-character-
wide space for it. Fill the
extra width, if any, with
spaces on the left-hand
side.

printf("%-20s","Testing") Testing As above, but fill with
spaces on the right-hand
side.

printf("%4s","Testing") Testing If the string won’t fit in
the specified width, use as
much space as necessary.
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