
Introduction

A New Kind of Problem-Solving
It’s a lazy summer afternoon in 1450, and a tired monk is sitting at a

desk, staring at a blank sheet of vellum. He’s been given the task of

making twenty copies (twenty!) of a fifty-page book. He sighs, then

picks up a pen and begins to write, following the holes that have been

carefully pricked into the sheet as guides. He wonders if he’s being

punished. This will take forever!

Figure 1: A monk copying a
manuscript.
Source: Wikimedia Commons

As he works, his mind wanders into fantasies of being an Abbott or a

King, capable of commanding monks to do all the menial work. He’d

only have to command twenty copies of a book (or a thousand!) and

it would be done. Even better to be a Wizard, and not have to deal

with lazy monks! Swoosh! goes the magic wand, and a pile of books

appears!

Figure 2: A printing press (1520).
Source: Wikimedia Commons

The monk doesn’t know it, but his vision is becoming reality even as

he works. A few years earlier, Johannes Gutenberg had invented a

printing press that used moveable type. As it spread across Europe, this

new technology was changing the way people thought about problem-

solving.

For the monk in his scriptorium, each new page is a new problem

requiring an amount of time and effort similar to any previous page.

To copy fifty pages takes him about fifty times as long as a single page.

Even though he might begin the task by spending a little time thinking

about the style of the writing and the layout of the pages, the vast

majority of his time will be spent on the mindless, repetitive task of

producing individual pages, one at a time. If his mind wanders into

fantasies, a page could be ruined.

https://commons.wikimedia.org/wiki/File:Escribano.jpg
https://commons.wikimedia.org/wiki/File:Press1520.png


16 practical computing for science and engineering

But consider the job of a printer a hundred years later. To him, the

problem of printing a page consists of setting the type. Once he’s done

that, he can create as many copies of the page as he likes, with relatively

little effort and in a short time.

* * *

Early 20th Century particle physicists used “cloud chambers” and, later,

“bubble chambers” to see the paths of subatomic particles. Collisions

and decays within these chambers produced visible tracks that could

be photographed. The chambers could take a new photograph every

few seconds. Each photograph was then analyzed by people called

“scanners”, who measured the tracks as the photographs were projected

onto a table. At their fastest these workers could analyze only about

five photographs per hour. Photographs taken during a few days of

running a bubble chamber could take years to analyze.

Figure 3: Traces of charged particles in
a bubble chamber at Fermilab (1973).
Source: Wikimedia Commons

Bubble chambers have long been superseded by other kinds of detectors

that can be read out electronically and analyzed by computers. Because

of this, large experiments like the Compact Muon Solenoid at CERN

can record and analyze thousands of electronic “snapshots” per second.

There are no longer any “scanners”, just as monks no longer copy

manuscripts.

Figure 4: A “scanner” analyzes a
bubble chamber photograph.
Source: CERN

* * *

Since the earliest days of aeronautics, airplane designs have been tested

in wind tunnels. The Wright brothers themselves used a simple wind

tunnel in the development of the “Wright Flyer”. Whole airplanes,

parts of them, or models of them were placed into the wind tunnel

to study their behavior. The lift generated by one type of wing or

propeller might be measured and compared to measured values for

other designs. Many models were made and tested in the process of

designing an airplane.

Figure 5: A model of the X-15 rocket
plane in a wind tunnel (1962).
Source: Wikimedia Commons

Today, computer simulations have largely replaced wind tunnel tests.

Modern computational fluid dynamics can accurately model the flow

of air around complicated shapes, and we can change the shape by

clicking and dragging a mouse or changing some parameters, rather

than needing to manufacture a physical model, leaving the engineer

free to test odd shapes and explore possibilities as they occur to her.

* * *

https://commons.wikimedia.org/wiki/File:HD.6B.235_(11069100644).jpg
http://images.iop.org/objects/ccr/cern/55/3/26/CCarc2_03_15.jpg
https://commons.wikimedia.org/wiki/File:X-15_Model_in_Supersonic_Tunnel_-_GPN-2000-001272.jpg


chapter 0. introduction 17

In 1913 Henry Norris Russell documented a relationship between the

color and brightness of stars. At that time, and indeed until the 1970s,

most graphs used in publications were drawn by hand. On the left-

hand side of the figure below you can see Russell’s graph of brightness

versus color (what we now call a Hertzsprung-Russell diagram). The

graph shows data for about 300 stars, collected by observers using

astronomical instruments and written down by hand. These data were

then plotted, using pen and ink, to show the results.

Figure 6: Russell’s original diagram, and
a modern Hertzsprung-Russell diagram
produced with gnuplot using data from
the Hipparcos satellite.
Source: Popular Astronomy. 22: 275-294, 1914

On the right-hand side of the figure above we see a modern-day

Hertzsprung-Russell diagram. It was produced using data gathered

by the Hipparcos satellite, downloaded over the Web, analyzed by a

computer program, and plotted using gnuplot. It shows about 100,000

stars. It took the computer less than a second to produce this graph

from the data.

* * *

The computer revolution of the late 20th Century gave us a new kind

of problem-solving. As in the aftermath of the Gutenberg revolution,

we suddenly found that we no longer needed to focus on the mindless,

repetitive components of many tasks. Computers could now make

data analysis more-or-less effortless. Simulations done by computers

were now capable of eliminating the need for many real-world tests.

Visualizations that were once tedious to prepare could now be done

instantly, by anybody. The ease, accuracy, and speed with which

computers could perform repetitive tasks freed us up to explore in

ways that would have been unfeasible earlier.

To a poor monk in a scriptorium every page is a new problem that needs

https://babel.hathitrust.org/shcgi/pt?id=chi.60263614;view=1up;seq=331


18 practical computing for science and engineering

to be solved. To a printer, once the page is typeset the problem is solved

forever. A well-written computer program does the same. It tackles a

problem, and solves it forever. That’s a new kind of problem-solving.

About this Book
Today, if you intend to pursue a career in science or engineering you’ll

need to know the basics of computation. This book aims to teach them

to you.

It introduces three core skills: analyzing data, simulating data, and

visualizing data. It assumes no prior programming experience or

knowledge about the inner workings of computers. It will concentrate

on using using computers to solve common problems you’ll encounter

in science and engineering.

A Note About Choices
Which is the best tool: a hammer or a screwdriver? Most people would

say that the answer depends on the task. The same is true for computer

languages. There is no "best" programming language, any more than

there’s a best tool.

When designing this book, I needed to choose a programming language

that would suit its needs and yours. I settled on the C language for

several reasons.

First of all, C and its cousins (C++, Objective-C, etc cetera) are very

widely used. It’s likely that any program you’ve ever used on a desktop

computer was written in some variant of the C language. A 2016 study

by IEEE1ranked C as the most popular programming language, based 1 IEEE Spectrum: The Top Programming
Languages 2016on its use in software repositories and appearance as a topic in various

online forums.

C has been around a long time, and many newer programming lan-

guages have adopted features from it. This means that once you’ve

learned C you’ll find it easier to learn those languages, too. Some of

these C-like languages include Java, PHP, Javascript, Perl, Go, and C#.

More than some languages, C lets you see the computer’s internal

workings. When learning C, you need to think about the way the

computer uses memory to store information, and how data is stored in

 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016


chapter 0. introduction 19

files. An understanding of these concepts will help you later on, even

if you move to higher-level programming languages that hide these

details.

C has a reputation for being fast. Other languages sometimes rely on

C to do their “heavy lifting”. For example, Google recently released

an artificial intelligence system named TensorFlow2, which appears 2 https://www.tensorflow.org/

to be written in the Python programming language. If you download

TensorFlow and look at the source code, though, you’ll find that about

80% of it is written in C. The Google developers said they wrote the

most compute-intensive parts of the code in C to make it run faster.

If you go into research or engineering, you’ll often be working at the

cutting edge of technology. Having the skill to write C programs can

help you squeeze the best performance out of your software.

Finally C is available on a wider range of computers than any other

language, and the software needed to build C programs is available

for free. No matter what kind of computer you’re using, or how small

your budget, It’s almost certain that you’ll be able to write and run C

programs.

Those are some of the reasons for choosing to use the C language in

this book. Every language has its strengths and weaknesses. After

you’ve learned C, I hope you go on to explore other languages too.

When you’re a researcher or an engineer, here are some other things

you should think about when deciding which language to use for a

project:

Figure 7: Dennis Ritchie, the inventor of
the C language.
Source: Wikimedia Commons

• What are your skills? Sometimes its better to use a language you

already know.

• What are the skills of other programmers who are likely to work

on this project in the future? When you’re collaborating with other

programmers, consider their skills, too.

• If there’s an existing code base, what language(s) does it use? When

adding features to existing software, it’s often a good idea to stick

to the same language the rest of the software uses, unless there’s a

compelling reason to introduce a new language.

• Are strengths of a given programming language a good match for

the project’s needs? Don’t try to use a hammer to insert screws.

https://www.tensorflow.org/
https://commons.wikimedia.org/wiki/File:Ken_n_dennis.jpg

