

 1

Linux System Administration SSU:
Disks and Filesystems

This time we'll talk about filesystems. We'll start out by
looking at disk partitions, which are the traditional
places to put filesystems. Then we'll take a look at
�logical volumes�, which are an abstraction that
moves us away from physical disk partitions. We'll
also take a quick look at file permissions, attributes
and ACLs.

 2

Part 1: Disks

First, we'll take a quick look at current disk technology,
and then we'll talk about some of the problems that
loom on the horizon.

 3

A Stack of Disks

PATA
(�IDE�)

SATA

SCSI

SAS

Showing Data Connectors

Comparison of PATA
(left) and SATA (right)

Here are four different types of disks, all of the same width.
Each is a standard �3.5-inch� disk, and would fit into the
same slot as any of the others. The two most common
types of disks are Parallel ATA (PATA) disks (sometimes
loosely called �IDE� disks) and Serial ATA (SATA) disks.
SATA is the successor to PATA, and is found almost
universally in new computers.

The move from a parallel bus to a serial bus was driven by
speed. With a parallel bus, crosstalk between adjacent
wires becomes more and more of a problem with
increasing signal frequency. Similarly, older SCSI disks
(another parallel interface, found mostly in servers) are
being phased out in favor of Serial-Attached SCSI (SAS).

 4

Disk Drive Form Factors

�2.5-inch� - Initially used in laptops and
other restricted spaces. Increasingly
used for low power consumption.

�3.5-inch� - Was the size of drives
accommodating 3.5-inch floppies. Now
the most common size for desktop and
server hard disks.

�5.25-inch� - Originally the size of drives
accommodating 5.25-inch floppies. Still
used for CD/DVD drives in desktop
computers.

Not shown: �1.8-inch� - Ultra-small form
factor for very small laptops and other
cramped spaces.

This shows some of the form factors used for disks.
Note that the names of the form factors don't reflect
the actual physical dimensions of the disks.

 5

PATA/�IDE�
Channel

MasterSlave

SATA
Channel

SATA
Channel

PATA (�IDE�) versus SATA Channels

Up to two devices (Master
and Slave) per channel.
Channel runs at the speed
of the slowest device.

One device per channel.

Another difference between PATA and SATA is the
number of devices per channel.

 6

From a study of 100,000 disks:

* For d rive s le s s th a n five ye a rs o ld , a ctu a l fa ilure ra te s we re la rg e r
t h a n m a n u fa cture r's p re d ict ion s b y a fa ctor o f 2–1 0. For five to e ig ht
ye a r o ld drive s , fa ilu re ra te s we re a fa c tor o f 3 0 h ig h e r t h a n
m a n ufa c tu re r 's p re d ic t ion s .

* Fa ilu re ra te s o f SATA d is ks a re n ot worse th a n th e re p la ce m e nt
ra te s o f SCSI or Fib re Ch a nn e l d is ks . Th is m a y in d ica te th a t d isk
in d e p e n d e n t fa ctors , su ch a s op e ra t in g con d it ions , u sa g e a n d
e n viron m e n ta l fa c tors , a ffe c t fa ilu re ra te s m ore tha n in he re n t fla ws .

* We a r-ou t s ta rts e a rly, a n d con t in u e s th rou g h ou t t he d isk's life t im e .

 http://www.usenix.org/events/fast07/tech/schroeder/schroeder.pdf

Schroeder and Gibson, in Proceedings of the 5th USENIX
Conference on File and Storage Technologies

Disk Failure Rates (CMU: Schroeder and Gibson)

There have been several recent studies of disk failure
rates. I'll talk about a couple of particularly
interesting ones, done at CMU and Google. These
are some things to keep in mind when buying disks,
thinking about backup strategies, or budgeting for
replacement costs.

 7

From a study of more than 100,000 disks:
* Disk m a y a c tu a lly like h ig h e r te m p e ra tu re s

Penheiro, Weber and Barroso, in Proceedings of the 5th USENIX
Conference on File and Storage Technologies

Disk Failure Rates (Google)

http://research.google.com/archive/disk_failures.pdf

The Google report confirms many of the CMU findings,
and adds some interesting new finding. For
example, our long-standing assumption that disks
are more likely to fail at higher temperatures may not
be correct. Maybe we could save money by leaving
our server rooms at a higher temperature, or by
eliminating some of the fans inside computers.

When manufacturers test disks, they can't run them for
five years to see if they fail. Typically, they try to
simulate long lifetimes by running the disks for a
shorter time under extreme conditions (high
temperature, for example). It may be that, because
of this, manufacturers have been inadvertently
selecting disk designs that prefer to run at higher
temperatures.

 8

�With 12 TB of capacity in the remaining RAID 5 stripe and an
URE rate of 10^14, you are highly likely to encounter a URE.
Almost certain, if the drive vendors are right.�
...

�The key point that seems to be missed in many of the
comments is that when a disk fails in a RAID 5 array and it
has to rebuild there is a significant chance of a non-
recoverable read error during the rebuild (BER / UER). As
there is no longer any redundancy the RAID array cannot
rebuild, this is not dependent on whether you are running
Windows or Linux, hardware or software RAID 5, it is simple
mathematics. An honest RAID controller will log this and
generally abort, allowing you to restore undamaged data from
backup onto a fresh array. �

The Problem of Error Rates (Robin Harris):

http://blogs.zdnet.com/storage/?p=162

This recent blog post by Robin Harris got a lot of
attention. Manufacturers cite what's called an
�Unrecoverable Read Error� (URE) rate for disks.
This is a measure of the probability that a given bit of
data will suddenly, and permanently, become
unreadable. In the past, a URE rate of 1 in 10^14
has been acceptable, but as disks get bigger, it's
becoming more and more likely that you'll encounter
a URE when you read from the disk. The thing to
note is that URE rates haven't kept up with disk
sizes, and this is becoming a problem.

Here's something I noticed recently. The smaller, inset plot
shows how disk capacity (red marks) and ethernet speed
(blue marks) have increased over the years. Note that disk
capacity doubles approximately every two years, but
ethernet speed only doubles every four years or so. To see
what this means, look at the larger graph.

This graph shows the amount of time needed to transfer the
entire contents of a current disk to another similar disk
across the network, assuming that the only limiting factor is
network speed. As you can see, this transfer time is
steadily increasing, because network speeds aren't
keeping pace with the increasing capacity of disks.

If this trend continues, it means that, in the future, we'll need
to think more and more carefully about where our data
lives.

 10

Part 2: Partitions

A partition is just a section of a hard disk. We'll look at
why we'd want to chop up a hard disk into partitions,
but we'll start by looking at the structure of a hard
disk.

 11

Disk Geometry:

Block, or
�Track Sector�

Disks are made of stacks of spinning
platters, each surface of which is read by
an independent �read head�.

Originally, the position of a piece of data
on a disk was given by the coordinates
C,H and S, for �Cylinder�, �Head� and
�Sector�.

The intersection of a cylinder with a
platter surface is a �Track�.

The intersection of a sector with a track
is a �Block�. Confusingly, the terms
�Track Sector� or just �Sector� are also
often used to refer to blocks.

Today, the CHS coordinates don't really
refer to where the data is actually
located on the disk. They're just
abstractions. A more recent coordinate
scheme, �Logical Block Addressing�
(LBA) just numbers the blocks on the
disk, starting with zero.

Each block is typically 512 bytes.

The CHS coordinate system began with floppy disks,
where the (c,h,s) values really told you where to find
the data. Some reasons CHS doesn't really tell you
where the data is on a modern hard disk:

� As disks became smarter, they began transparently
hiding bad blocks and substituting good blocks from
a pool of spares.

� These disks also try to optimize I/O performance, so
they want to choose where to really put the data.

� You can have arrays of disks (e.g. RAID) that appear
(to the operating system) to be one disk.

� The same addressing scheme can be applied to
non-disk devices, like solid-state disks.

If (c,h,s) is hard to grasp, realize that it's just equivalent
to (r,z,�). They're coordinates in a cylindrical
coordinate system.

 12

Partitions:

Sometimes, it's useful to split up a disk into smaller pieces, called
�partitions�. Some motivations for this are:

� The operating system may not be able to use storage devices as
large as the whole disk.

� You may want to install multiple operating systems.

� You may want to designate one partition as swap space.

� You may want to prevent one part of your storage from filling up the
whole disk.

One potential problem with having multiple partitions on a disk is that
partitions are generally difficult to re-size after they are created.

Each disk will have at least one partition. Note that
you can only have up to four primary partitions. We'll
talk about how to get around the 2 Terabyte size limit
later.

The MBR also contains a few other values, like a disk
signature, but you can see by adding up the numbers
that the boot code and the parition table make up the
bulk of the MBR.

In LBA coordinates, the MBR is LBA=0.

In practice, you seldom see disks with more than half a
dozen partitions. These days, the typical desktop
Linux computer's disk has only two or three.

 15

EFI and GUID Partition Tables:

The successor to the PC BIOS is called �Extensible
Firmware Interface� (EFI). Currently, Intel-based Macintosh
computers are the only common computers that use EFI
instead of a BIOS, but it may become more common as
time goes by.

Instead of an MBR-based partition table, EFI uses a
different scheme, called a �GUID Partition Table� (GPT).

GPT uses 8 bytes to store addresses, so the maximum size
of partitions is about 16 Exabytes (16 x 1018 bytes). That
should hold us for the near future.

You can create GPT partition tables using GNU parted.
See the following page for an example:

http://portal.itauth.com/2008/01/17/creating-large-2tb-linux-partitions

(Linux bootloaders like Grub can boot GPT partitions
as well as the older MBR-style partitions.)

Compare this with the way we'll use fdisk, later, to
create partitions.

 16

Disk and Partition Files in /dev:
In Linux, each whole disk drive or partition is represented by a special file in
the /dev directory. Programs manipulate the disks and partitions by using
these special files. The files have different names, depending on the type of
disk.

� IDE/PATA Disks:
 These disks are represented by files named /dev/hd[a-z]. The disk
names will be:

� hda -- Master disk on the 1st IDE channel.
� hdb -- Slave disk on the 1st IDE channel.
� hdc -- Master disk on the 2nd IDE channel.
� hdd -- Slave disk on the 2nd IDE channel.
...etc.

 Partitions on each disk are numbered sequentially, starting with 1.
Thus, the first partition on the master disk on the first IDE channel
would be �hda1�, the second would be �hda2�, etc.

� SATA, SCSI, USB or Firewire Disks:
 These disks are represented by files named /dev/sd[a-z]. They're
named in the order they're detected at boot time. Partitions have
names like �sda1�, �sda2�, etc.

 17

Part 3: Manipulating Partitions

Now we'll look at how to create and otherwise
manipulate partitions on a disk. This can be
dangerous work. You always need to be careful
about which disk you're working on. I've tried to
indicate clearly which commands require special
caution.

 18

Viewing Partitions with �fdisk�:

[root@demo ~]# fdisk -l /dev/sda

Disk /dev/sda: 160.0 GB, 160000000000 bytes
255 heads, 63 sectors/track, 19452 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 * 1 13 104391 83 Linux
/dev/sda2 14 19452 156143767+ 8e Linux LVM

You can use the �fdisk -l� command to view the partition layout on a
disk:

Near the top, you can see the number of heads, sectors and cylinders. These
may not represent physical reality, but they're the way the disk presents itself to
the operating system.

Fdisk reports the size of each partition in 1024-byte �blocks�. The two partitions
above are about 100 MB and about 156 GB. The �+� sign on the size of the
second partition means that its size isn't an integer number of 1024-byte
blocks.

The �start� and �end� values are in units of cylinders, by default. You can use
the �-u� switch to cause fdisk to display start and end in terms of 512-byte �track
sectors�.

Partition Type

To add to the confusion about terms like �block� and
�sector�, fdisk uses a size of 1024 bytes (not 512)
when it reports the number of �blocks� in a partition.
The Linux kernel uses blocks of this size, and many
Linux programs will assume that a �block� is 1024
bytes. Filesystems typically use �blocks� of 1024,
2048 or 4096 bytes.

The disk-drive industry is currently pushing new
standards that would make the on-disk block size
4096 bytes.

 19

 0 Empty 1e Hidden W95 FAT1 80 Old Minix be Solaris boot
 1 FAT12 24 NEC DOS 81 Minix / old Lin bf Solaris
 2 XENIX root 39 Plan 9 82 Linux swap / So c1 DRDOS/sec (FAT-
 3 XENIX usr 3c PartitionMagic 83 Linux c4 DRDOS/sec (FAT-
 4 FAT16 <32M 40 Venix 80286 84 OS/2 hidden C: c6 DRDOS/sec (FAT-
 5 Extended 41 PPC PReP Boot 85 Linux extended c7 Syrinx
 6 FAT16 42 SFS 86 NTFS volume set da Non-FS data
 7 HPFS/NTFS 4d QNX4.x 87 NTFS volume set db CP/M / CTOS / .
 8 AIX 4e QNX4.x 2nd part 88 Linux plaintext de Dell Utility
 9 AIX bootable 4f QNX4.x 3rd part 8e Linux LVM df BootIt
 a OS/2 Boot Manag 50 OnTrack DM 93 Amoeba e1 DOS access
 b W95 FAT32 51 OnTrack DM6 Aux 94 Amoeba BBT e3 DOS R/O
 c W95 FAT32 (LBA) 52 CP/M 9f BSD/OS e4 SpeedStor
 e W95 FAT16 (LBA) 53 OnTrack DM6 Aux a0 IBM Thinkpad hi eb BeOS fs
 f W95 Ext'd (LBA) 54 OnTrackDM6 a5 FreeBSD ee EFI GPT
10 OPUS 55 EZ-Drive a6 OpenBSD ef EFI (FAT-12/16/
11 Hidden FAT12 56 Golden Bow a7 NeXTSTEP f0 Linux/PA-RISC b
12 Compaq diagnost 5c Priam Edisk a8 Darwin UFS f1 SpeedStor
14 Hidden FAT16 <3 61 SpeedStor a9 NetBSD f4 SpeedStor
16 Hidden FAT16 63 GNU HURD or Sys ab Darwin boot f2 DOS secondary
17 Hidden HPFS/NTF 64 Novell Netware b7 BSDI fs fd Linux raid auto
18 AST SmartSleep 65 Novell Netware b8 BSDI swap fe LANstep
1b Hidden W95 FAT3 70 DiskSecure Mult bb Boot Wizard hid ff BBT
1c Hidden W95 FAT3 75 PC/IX

Partition Types:
Here's the list of partition types that fdisk knows about. The most common
ones are highlighted.

 20

[root@demo ~]# fdisk /dev/sdb

Command (m for help): n

Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-9726, default 1): +
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-9726,
default 9726): +40G

Command (m for help): p
Disk /dev/sdb: 80.0 GB, 80000000000 bytes
255 heads, 63 sectors/track, 9726 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 1 4864 39070048+ 83 Linux

Creating Partitions with �fdisk�:

Some fdisk commands:
p Print the partition table

n Create a new partition

d Delete a partition

t Change a partition's
 type

q Quit without saving
 changes

w Write the new partition
 table and exit

You can use fdisk to create or delete partitions on a disk. If you type �fdisk
/dev/sda�, for example, you'll be dropped into fdisk's command-line
environment, where several simple one-character commands allow you to
manipulate partitions on the disk.

Note: In fdisk, the term �primary�
partition means one that's not an
�extended� partition.

Notice that nothing you do in fdisk is actually written to
the disk until you type �w�. If you decide you've
made a mistake, you can always quit without saving
anything by typing �q�.

 21

Changing a Partition's Type:

Command (m for help): p

Disk /dev/sdb: 80.0 GB, 80000000000 bytes
255 heads, 63 sectors/track, 9726 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 1 4864 39070048+ 83 Linux
/dev/sdb2 4865 9726 39054015 83 Linux

Command (m for help): t
Partition number (1-4): 2
Hex code (type L to list codes): 82
Changed system type of partition 2 to 82 (Linux swap / Solaris)

Command (m for help): p

Disk /dev/sdb: 80.0 GB, 80000000000 bytes
255 heads, 63 sectors/track, 9726 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 1 4864 39070048+ 83 Linux
/dev/sdb2 4865 9726 39054015 82 Linux swap / Solaris

Here's how to change a partition's type, using fdisk. In this example, we
change the partition from the default type (�Linux�) to mark it as a swap
partition.

 22

Formatting a Swap Partition:
Before a swap partition can be used, it needs to be formatted. You can
do this with the �mkswap� command:

[root@demo ~]# mkswap /dev/sdb2
Setting up swapspace version 1, size=39054015 kB

WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!

WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!

Note that this will re-format the designated partition immediately,
without asking for confirmation, so be careful!

To start using the new swap space immediately, use the �swapon�
command:
[root@demo ~]# swapon /dev/sdb2

As we'll see later, you can also cause this swap partition to be used
automatically, at boot time.

Here's one of those very dangerous commands.
Please make sure you point mkswap at the right disk
partition.

 23

Saving Partition Layout with �sfdisk�:

[root@demo ~]# sfdisk -d /dev/hda > hda.out

You can save a partition layout into a file, so that it can later be restored.
One way to do this is the �sfdisk� command. For example, this command
will save the disk partitioning information into the file hda.out:

[root@demo ~]# sfdisk /dev/hda < hda.out
WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!

WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!

If the disk is replaced later, or if you have another identical disk that you
want to partition in the same way, you can use this command:

Note that this command should be used very carefully, since it will
(without asking for confirmation) wipe out any existing partition table on
the disk. The content of hda.out looks like this:

partition table of /dev/hda
unit: sectors

/dev/hda1 : start= 63, size= 208782, Id=83, bootable
/dev/hda2 : start= 208845, size=312287535, Id=8e
/dev/hda3 : start= 0, size= 0, Id= 0
/dev/hda4 : start= 0, size= 0, Id= 0

Another dangerous command.

 24

Part 4: Filesystem
Structure

In order to understand filesystems, it's important to
have a little knowledge about how they're laid out on
disk. Terms like �superblock� and �block group� show
up in error messages sometimes, and knowing what
they mean can save you a lot of grief. Here's a
primer on filesystem structure.

 25

What is a Filesystem?
A filesystem is a way of organizing data on a block device. The filesystem
organizes data into �files�, each of which has a name and other metadata
attributes. These files are grouped into hierarchical �directories�, making it
possible to locate a particular file by specifying its name and directory path.
Some of the metadata typically associated with each file are:

� Timestamps, recording file creation or modification times.
� Ownership, specifying a user or group to whom the file belongs.
� Permissions, specifying who has access to the file.

Linux originally used the �minix� filesystem, from the operating system of the
same name, but quickly switched to what was called the �Extended
Filesystem� (in 1992) followed by an improved �Second Extended Filesystem�
(in 1993). The two latter filesystems were developed by French software
developer Remy Card.

The Second Extended Filesystem (ext2) remained the standard Linux
filesystem until the early years of the next century, when it was supplanted by
the �Third Extended Filesystem� (ext3), written by Scottish software
developer Stephen Tweedie.

Linux also supports many other filesystems, including
Microsoft's VFAT and NTFS, and the ISO9660
filesystem used on CDs and DVDs.

A block device is a device like a disk where you can
directly address individual �blocks� of data. Linux
separates devices into �character� devices, which
just read and write streams of bytes, and �block�
devices, in which parts of the device's storage can
be directly addressed.

 26

How ext2 and ext3 Work:

Block Group 0 Block Group 1 Block Group N

Disk Partition Data

Super-
block

All Group
Descriptors

Data
Bitmap

Inode
Bitmap

Inode
Table Data Blocks

This Group's Descriptor

The ext2 and ext3 filesystems are very similar. Both divide a disk partition
into �block groups� of a fixed size. At the beginning of each block group is
metadata about the filesystem in general, and that block group in particular.
There is much redundancy in this metadata, making it possible to detect and
correct damage to the filesystem.

 27

Super-
block

All Group
Descriptors

Data
Bitmap

Inode
Bitmap

Inode
Table Data Blocks

This Group's Descriptor

Superblocks:

Block Group

The ext2/ext3 filesystem as a whole is described in a chunk of data called the
�Superblock�. The superblock contains:

� a name for the filesystem (a �label�),
� the size of the filesystem's block groups,
� timestamps showing when the filesystem was last mounted,
� a flag saying whether it was unmounted cleanly,
� a number showing the amount of unused space in the filesystem,

and much other information. The superblock is duplicated at the beginning of
many block groups. Normally, the operating system only uses the copy at the
beginning of block group 0, but if this is lost or damaged, the data can be
recovered from one of the other copies. During normal operation, the
operating system keeps all copies of the superblock synchronized.

The superblock is actually duplicated at the beginning
of each block group for ext2 filesytems. For ext3,
there's the option of only duplicating it in some block
groups. If this option is turned on (as it is by default),
the superblock is only duplicated in block groups 0, 1
and powers of 3, 5 and 7.

 28

Super-
block

All Group
Descriptors

Data
Bitmap

Inode
Bitmap

Inode
Table Data Blocks

This Group's Descriptor

Inodes and Group Descriptors:
Each file's data is stored in the �data blocks� section of a block group. Files are
described by records stored in blocks called �index nodes� (inodes). The inodes
are stored in a part of the block group called the �group descriptor�. Data in each
inode includes:

� the file's name,
� the file's owner,
� the group to which the file belongs,
� several timestamps,
� permission settings for the file,
� pointers to the data blocks that contain the file's data,

and other information. The group descriptors are so important that copies of the
block descriptors for every block group are stored in each block group. Normally,
the operating system only uses the descriptors stored in block group 0 for all block
groups, but if a filesystem is damaged or has been uncleanly unmounted it's
possible to verify the filesystem's integrity and repair damage by using other copies.

As with the superblock, the operating system normally keeps all of
the copies of a given group's group descriptors in sync.

Directories are also described by inodes. Each inode has a �type�
that identifies it a a file, a directory, or some other special type of
thing.

The inodes are numbered sequentially, and files can be identified
by their inode number as well as their name.

The �data bitmap� is a set of ones and zeroes, each corresponding
to one of the blocks in the block group's data section. If a one is
set in the bitmap, that means that this block is used. A zero
means that it's free. The data bitmap lets us know which blocks
we can use.

Similarly, the �inode bitmap� tells us which entries in the inode
table are free.

 29

The Journal:
Although ext2 and ext3 are very similar, ext3 has one important feature
that ext2 lacks: journaling. We say that ext3 is a �journaled� filesystem
because, instead of writing data directly into data blocks, the filesystem
drivers first write a list of tasks into a journal. These tasks describe any
changes that need to be made to the data blocks.

The operating system then periodically looks at the journal to see if
there are any tasks that need doing. These tasks are then done, in
order, and each completed task is marked as �done� in the journal.

If the computer crashes, the journal is examined at the next reboot to
see if there were any outstanding tasks that needed to be done. If so,
they're done. Any garbled information left at the end of the journal is
ignored and cleared.

Journaling makes it much quicker to check the integrity of a filesytem
after a crash, since only a few items in the journal need to be looked at.
In contrast, when an ext2 filesystem crashes, the operating system
needs to scan the entire filesystem looking for problems.

Other than journaling, ext2 and ext3 are largely the
forward- and backward-compatible. An ext2
filesystem can easily be converted to ext3 by adding
a journal. Going the other way may be possible, too,
if an ext3 filesystem doesn't use any features that
aren't present in an ext2 filesystem.

The journal is described by a special inode, usually
inode number 8.

 30

Filesystem Limits:

Size Limits ext2 ext3
Max. File Size: 2 TB 2 TB 16 TB

16 TB 16 TB 1 EB

ext4
(future)

Max. Filesystem Size:

Some size limits for filesystems:

 31

Part 5: Filesystem Tools:

Now lets look at some tools for creating and
manipulating filesystems.

 32

[root@demo ~]# mke2fs -j -Lmydata /dev/sdb1
WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!WARNING!

Making a Filesystem:

Make an ext2
filesystem...

but add a journal,
making it ext3.

Give it this
label.

Create it on this
partition.

To make an ext2 or ext3 filesystem, use the �mke2fs� command. There
shouldn't be any reason to create an ext2 filesystem these days, so
from here on out I'll assume that we're working with ext3 filesystems.

Note that the command above will format (or re-format) the designated
partition without asking for any confirmation. Please make sure you
point it at the partition you really want to format.

The filesystem label can be any text you choose, but usually the label
is chosen to be the same as the name of the location at which you
expect to mount the filesystem. For example, a filesystem intended to
be mounted at �/boot�, would probably probably be created with
�-L/boot�. For the �/� and �/boot� filesystems, this should always be
done, but it's good practice for other filesystems, too.

Another dangerous command.

 33

Example mke2fs Output:
[root@demo ~]# mke2fs -j -Lmydata /dev/sdb1
mke2fs 1.38 (30-Jun-2005)
Filesystem label=mydata
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
122109952 inodes, 244190000 blocks
12209500 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=247463936
7453 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912,
 819200, 884736, 1605632, 2654208,
 4096000, 7962624, 11239424, 20480000,
 23887872, 71663616, 78675968,
 102400000, 214990848
Writing inode tables: done
creating root dir

Note that mke2fs divides the disk up into 7,453 block
groups, but only (!) 18 copies of the superblock are
created. If this were an ext2 filesystem, there would
be 7,453 copies. The total number of inodes
available (including all inodes in all block groups) is
122,109,952. This is the maximum number of files
that this filesystem will hold.

 34

Changing the Attributes of a Filesystem:

[root@demo ~]# tune2fs -L/data /dev/sdb1

The tune2fs command can be used to change the attributes of an
ext2/ext3 filesystem after it has been created. For example, to
change the filesystem's label:

Some other useful things that tune2fs can do:

-l List superblock information.

-j Add a journal to an ext2 filesystem, making it ext3.

-c Set the maximum mount count for the filesystem, after which a
 filesystem check will occur (0 = never check).

-i Set the interval between filesystem checks (0 = never check).

Changing a filesystem's label is perfectly safe. It won't
cause you to lose any data. (But it might cause
confusion if you're already referring to the old label
somewhere.) The same is true for the other flags
listed above.

 35

Looking at Filesystem Metadata:
[root@demo ~]# tune2fs -l /dev/sda1
tune2fs 1.39 (29-May-2006)
Filesystem volume name: /boot
Filesystem state: clean
Inode count: 26104
Block count: 104388
Reserved block count: 5219
Free blocks: 55562
Free inodes: 26037
First block: 1
Block size: 1024
Blocks per group: 8192
Inodes per group: 2008
Inode blocks per group: 251
Filesystem created: Mon Sep 10 10:58:16 2007
Last mount time: Fri Dec 26 10:23:03 2008
Last write time: Fri Dec 26 10:23:03 2008
Mount count: 60
Maximum mount count: -1
Last checked: Mon Sep 10 10:58:16 2007
Check interval: 0 (<none>)
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
etc...

�tune2fs -l� will show you a filesystem's superblock information:

You can see this plus block group information by using the �dumpe2fs� command.

Note the �mount count�, �maximum mount count�, �last
checked� and �check interval� entries. We'll see later
that the �fsck� command uses these.

 36

Checking a Filesystem:

If a computer loses power unexpectedly, the filesystems on its disks may be left in
an untidy state. The �filesystem check� (fsck) command looks at ext2/ext3
filesystems and tries to find and repair damage. Fsck can only be run on
unmounted filesystems.

Each filesystem's superblock contains a flag saying whether the filesystem was
cleanly unmounted. If it was, fsck just exits without doing anything further.

If the filesystem wasn't cleanly unmounted, fsck checks it. Under ext3, fsck first just
looks at the journal and completes any outstanding operations, if possible. If this
works, then fsck exits.

If the ext3 journal is damaged, or if this is an ext2 filesystem, fsck scans the
filesystem for damage. It does this primarily by looking for inconsistencies between
the various copies of the superblock and block group descriptors. If inconsistencies
are found, fsck tries to resolve them, using various strategies.

The filesystem's superblock also contains a �mount count�, �maximum mount
count�, �last check date� and �check interval�. If the mount count exceeds the
maximum, a scan of the filesystem is forced even if it was cleanly unmounted. If
the time since the last check date exceeds the check interval, a scan is also forced.
 Both of these forced checks can be disabled, by using tune2fs.

[root@demo ~]# fsck /dev/sdb1

 37

Modifying fsck's Behavior:
Some useful fsck options:

-f Force a scan, even if the filesystem appears to have been cleanly
unmounted.

-b Specify an alternative superblock, in case the primary superblock
has been damaged.

-y Answer �yes� to any questions fsck asks.

-A Check all filesystems.

-C Show a progress bar as fsck works. (It can sometimes take a very
long time.)

Fsck is actually a wrapper that calls a different type-
specific filesystem checker for each different type of
filesystem that it knows about.

The directory tree of each physical device is grafted
onto the same tree, with the root directory (�/�) at the
top. There are no �C:� or �D:� drives under Linux.
Every file you have access to lives in the same tree,
and you don't need to care what device the file lives
on.

 39

Mounting Filesystems Automatically at Boot Time:

/dev/sda1 / ext3 defaults 1 1
LABEL=/boot /boot ext3 defaults 1 2
devpts /dev/pts devpts mode=620 0 0
tmpfs /dev/shm tmpfs defaults 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs defaults 0 0
/dev/sda2 swap swap defaults 0 0

The file /etc/fstab (�filesystem table�) contains a list of filesystems to be
mounted automatically at boot time. It looks like this:

Filesystem Mount Point Type Options
�dump� Flag

fsck Order

Disk partition

Disk partition

Specified by label

Special filesystems
created by the kernel

/etc/fstab

� The �dump� flag is used by a backup utility called
�dump�. Filesystems marked with a 1 here will be
backed up by dump.

� The �fsck order� field determines what order
filesystems are checked when fsck is run automatically
at boot time. A value of zero means that this
filesystem won't be checked. Others are checked in
ascending order of these values.

(Note that this file also
lists swap partitions.)

Among the �options� settings you can use �noauto� to
cause the given filesystem not to be automatically
mounted at boot time. In that case, you'd need to
manually mount it later, using the �mount� command.

If you have a filesystem listed in /etc/fstab, you can
mount it either like this, with two arguments:

mount /dev/sda1 /

or like this, with one argument:

mount /dev/sda1
or

mount /

since /etc/fstab lets �mount� know what you mean by
these.

 40

Part 6: Logical Volume Management

In past years I wouldn't have included a section on
LVM, but these days Linux distributions use it by
default. You'll need to know a little about LVM to
understand how any current Linux computer's
filesystems are laid out.

 41

The LVM System:

The ext2 and ext3 filesystems are limited by the size of the partitions
they occupy. Partitions are difficult to resize, and they can't grow
beyond the whole size of the disk. What can we do if we need more
space than that for our filesystem?

One solution is the Logical Volume Management (LVM) system. LVM
lets you define �logical volumes� that can be used like disk partitions.
Unlike partitions, logical volumes can span multiple disks, and they can
easily grow or shrink.

These days, when you install a Linux distribution on a computer, some
of the filesystems that are created will (by default) be on logical
volumes, not physical disk partitions. This makes it important to
understand how LVM works.

As we'll see, LVM also provides us with another,
software-based, way to avoid the 2 TB partition limit
imposed by MBR-style partition tables.

 42

PE PE PE PE PE PE PE

Physical Volume (PV)sda

PE PE PE PE PE PE PE

sdb

Physical Extent (PE)

Volume Group

Logical Volume

LogVol00

VolGroup00

Logical Volume Structure:
LVM divides each disk into chunks called �physical extents� (PEs). Disks are added
to �volume groups� (VGs). Each VG is a pool of physical extents from which �logical
volumes� (LVs) can be formed. An LV can be expanded by adding more PEs from
the pool. If an LV needs to grow even larger, more PEs can be added to the pool by
adding disks to the volume group.

 43

Creating Logical Volumes:

[root@demo ~]# pvcreate /dev/sdb

[root@demo ~]# vgcreate VolGroup01 /dev/sdb

[root@demo ~]# lvcreate -L500G -nLogVol00 VolGroup01

[root@demo ~]# mount /dev/VolGroup01/LogVol00 /data

First, let's make a new disk available to the LVM system by initializing it
as an LVM �physical volume� using �pvcreate�:

Then, let's create a new volume group and add the newly-initialized
disk to it:

Now, let's create a 500 GB logical volume from the pool of space in our
new volume group:

Finally, we can mount the logical volume just as we'd mount a partition:

[root@demo ~]# mke2fs -j -L/data /dev/VolGroup01/LogVol00

Now we can create a filesystem on the logical volume, just as we'd use
a partition:

Note that you can point pvcreate at either a whole disk,
as above, or a disk partition (like �/dev/sdb1�). If you
use a whole disk, the disk's partition table is wiped
out, since LVM doesn't need it. Thus, LVM can be
used to completely avoid the 2 TB limit imposed by
MBR-style partition tables.

This may be one of the reasons current distributions
are using LVM by default. Disks are rapidly
approaching 2 TB in size, and it looks like most non-
Mac computers are going to be using the BIOS/MBR
architecture for a while, rather than moving to
EFI/GPT. LVM provides a way to support large disks
without any hardware changes.

 44

Examining Volume Groups:
[root@demo ~]# vgdisplay VolGroup00
 --- Volume group ---
 VG Name VolGroup00
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 3
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 2
 Open LV 2
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 148.91 GB
 PE Size 32.00 MB
 Total PE 4765
 Alloc PE / Size 4765 / 148.91 GB
 Free PE / Size 0 / 0
 VG UUID blHfoy-z03Z-DzTQ-PH4p-uYfJ-jkHS-29Hxob

You can find out about a volume group by using the �vgdisplay� command:

Notice these. They tell
you how many physical
extents are in the volume
group, and how many are
still available for making
new logical volumes.

If you move a disk to a different computer that already has a volume group with
the same name, you may need to use the UUID of the volume groups to
rename one of them. Use �vgrename� for this.

 45

Growing a Logical Volume:

[root@demo ~]# vgextend VolGroup01 /dev/sdc

If we don't have any free PEs in our volume group, we can add
another disk:

[root@demo ~]# lvextend -L+100G /dev/VolGroup01/LogVol00

[root@demo ~]# resize2fs /dev/VolGroup01/LogVol00

Now that we have more PEs, we can assign some of them to one of
our existing logical volumes, to make it bigger:

Extending the logical volume doesn't extend the filesystem on top of it.
We have to do that by hand. For ext2/ext3 filesystems, you can use
the resize2fs command to do this. The command below will just resize
the filesystem so that it occupies all of the available space in the logical
volume:

For many more �stupid LVM tricks� see: http://www.howtoforge.com/linux_lvm

 46

Part 7: Managing File Ownerships and Permissions:

Now lets take a quick look at how some of the
metadata stored in a file's inode is used. In
particular, we'll look at file ownerships, and three
mechanisms for controlling access to files.

 47

The �chown� and �chgrp� Commands:

[root@demo ~]# ls -l junk.dat
-rw-r--r-- 1 bkw1a bkw1a 0 Jan 25 00:07 junk.dat

[root@demo ~]# chown elvis junk.dat
[root@demo ~]# ls -l junk.dat
-rw-r--r-- 1 elvis bkw1a 0 Jan 25 00:07 junk.dat

[root@demo ~]# chown elvis.demo junk.dat
[root@demo ~]# ls -l junk.dat
-rw-r--r-- 1 elvis demo 0 Jan 25 00:07 junk.dat

A file's user ownership and group ownership can be changed with
�chown� (change ownership) command:

Group ownership can also be changed with the �chgrp� command:

[root@demo ~]# chgrp demo junk.dat

Under Linux, each files or directory has both a �user�
ownership and a �group� ownership. A file's
ownership and permissions (which we'll look at next)
control who has access to the file. Note that, in the
Unix world, directories are just another kind of file,
and have the same kind of ownerhips and
permissions.

Ownership of all files in an entire directory tree can be
changed by using the �-R� (for �recursive�) flag on
chown and chgrp. For example:

chown -R elvis.demo phase1
 where �phase1� is a directory.

 48

The �stat� Command:
The set of permissions pertaining to a file is called the file's �mode�.
The mode is displayed symbolically by commands like �ls�:

-rw-r----- 1 bkw1a demo 72 Jan 18 10:52 readme.txt
mode

Internally, though, the file's mode is represented by four sets of three
bits (12 bits in all), which can collectively be written as a four-digit octal
number. The �stat� command shows the mode in both formats:

~/demo> stat readme.txt
 File: `readme.txt'
 Size: 72 Blocks: 8 IO Block: 4096
regular file
Device: fd00h/64768d Inode: 17008595 Links: 1
Access: (0640/-rw-r-----) Uid: (500/bkw1a) Gid: (505/demo)
Access: 2009-01-19 10:58:02.000000000 -0500
Modify: 2009-01-18 10:52:29.000000000 -0500
Change: 2009-01-18 11:38:30.000000000 -0500

 49

u g t

r w x

r w x

r w x

U
G
O

012

5 4 3

678

11 10 9

Bit Number

Special Bits: setuid, setgid and sticky.

User (owner) Permissions

Group Permissions

Other (Everyone Else) Permissions

Internal Representation of File Mode Bits:

File permissions are actually stored as a set of 12 bits,
shown above.

 50

Permissions on files can be changed with the �chmod� (�change
mode�) command. Permissions can either be specified symbolically or
as an octal number. The symbolic form is most useful when modifying
an existing set of permissions.

The �chmod� Command:

u
g
o
a

r
w
x
s
t

+
=
-

chmod file.dat

All =

person

permission

add

remove

~/demo> chmod a+r readme.dat
Give all users read permission:

Alternatively, modes can be set directly as octal numbers:

~/demo> chmod 0644 readme.dat
Set the file's mode to rw-r-r-:

set

~/demo> chmod ug+r readme.dat
Give user and group read permission:

You can use �chmod g+s directory� to set the �setgid�
bit on a directory. We'll see later that you can use
�chmod u+s� to turn on a �setuid� bit.

 51

Permissions on Directories:

� If you have write permission on a directory, you can
delete any file within the directory, regardless of
whether you have ownership or write permission on the
particular file.

� You need execute permission on a directory in order
to traverse it. For example, to �cd� into a directory, you
need execute permission.

� You need read permission on a directory in order to
list its contents, even if all of the individual files within
the directory are readable by you.

The meaning of permissions on files if fairly clear, but
the meaning of read, write and execute on a
directory may need some explanation.

 52

The �setgid� Bit:

It is possible to set the permissions and ownership on a directory so
that files created within the directory will inherit the group ownership
of the directory. This is accomplished by setting the �setgid� bit in
the directory's permissions:
drwxrwsr-x 2 bkw1a demo 4096 Jan 27 13:12 shared

Setgid bit

Files subsequently created in the �shared� directory will have
their group ownership set to �demo�, making it easier to share
them with other members of this group.

If the setgid bit is set on a parent directory, child
directories inherit the bit.

It's important to note, though, that setting this bit on a
parent directory doesn't change the ownership or
permissions of files or subdirectories that already
existed before you set the setgid bit on the parent
directory. It only affects files and directories created
thereafter.

The �setuid� bit, which we'll see next, has no effect on
directories.

It's important to note that it's up to setuid programs to
decide on their own what they will and won't do.
Mistakes often lead to security problems.

What happens if the setuid bit is set, but the file isn't
executable? In that case, the output of �ls� would look
like:
�-rwSr-xr-x� (with a capitol S), indicating that the file
would execute as root if it were exectuable.

What effect does the �setgid� bit have on files? it
causes the file to run as though it had been invoked by
a member of the owning group.

 54

The �Sticky Bit�:

One of the bits in a file's mode is called the �sticky� bit. If this bit is
set on a directory, only a file's owner (or root) is allowed to delete or
rename files in this directory, no matter what would otherwise be
allowed. The sticky bit is most often used on temporary directories,
like /tmp, where everyone needs to have write access, but it's
desirable to prevent users from deleting one another's files.

drwxrwxrwt 34 root root 36864 Jan 27 15:49 tmp

The sticky bit shows up in the symbolic representation of the
permissions as a �t� in the last position if the �x� bit is set for �others�,
and as a �T� in this position otherwise.

 55

Attributes, and Immutable Files:
In addition to the file permissions available on all Unix filesystems,
the common filesystems under Linux also support a set of extended
file attributes. Some of these are quite esoteric, but one, at least, is
widely useful. This is the �immutable� attribute.

Files marked as immutable cannot be changed or deleted, even by
the root user (although the root user has the power to remove the
immutable attribute). This is useful for preventing accidental or
malicious modification of files that are normally unchanging.

Attributes can be listed with �lsattr� and changed with �chattr�:
[root@demo ~]# lsattr junk.dat
------------- junk.dat

[root@demo ~]# chattr +i junk.dat

[root@demo ~]# lsattr junk.dat
----i-------- junk.dat

The attribute can be removed with the �-i� flag.

But what if we want to have a really complex system of
access permissions for a file? We can't do this with
just user, group and other.

 57

Access Control Lists (ACLs):
In addition to the read/write/execute permissions for user/group/other, the most common
Linux filesystems also offer a mechanism to deal with more complex access restrictions. This
mechanism is called Access Control Lists (ACLs).

When ACLs are available, each file or directory can have a complex set of access
permissions associated with it. These permissions consist of an arbitrarily long list of access
control rules. A rule can be created, for example, to give a particular user read-only access to
a file, or to allow read-write access to a particular group.

ACLs can be modified with the �setfacl� command, and viewed with the �getfacl� command.
[root@demo ~]# getfacl myfile.dat
file: myfile.dat
owner: elvis
group: demo
user::rw-
group::r--
other::---

[root@demo ~]# setfacl -m user:priscilla:rw myfile.dat

[root@demo ~]# getfacl myfile.dat
file: myfile.dat
owner: elvis
group: demo
user::rw-
user:priscilla:rw
group::r--
other::---

 58

The End

Thank You!

