

 1

Linux System Administration SSU
Networks and Firewalls

This talk is intended to give you a foundation for
understanding computer networks. The emphasis is
on Linux, but much of this (especially the first part of
the talk) will apply to any operating system.

Even if you don't make direct use of this knowledge, it
provides important background information you can
use when configuring networks and firewalls,
troubleshooting network problems, trying to
understand what's possible on the network, and
planning the future of your department's IT
infrastructure.

 2

Part 1: Network Hardware

This is a broad topic, but I'll really only be talking about
the most common type of network hardware,
Ethernet over twisted-pair copper wire.

 3

Local-Area
Network (LAN) Local-Area

Network (LAN)

Local-Area
Network (LAN)

Wide-Area Network (WAN)Va Tech

UVa

UNC

Local-Area and Wide-Area Networks:
A LAN is a network that covers a relatively small, well-defined physical
area like a department or a college campus. LANs are typically linked
together by WANs. LANs tend to connect to WANs at only a few points,
through expensive leased lines. LANs are optimized for speed over
short distances. WANs are optimized for reliability over long distances.
Because of all this, WANs and LANs tend to use different technologies.

Local networks are created by local IT staff, or by hired
contractors, who string cables and put in other
network hardware as necessary. You can't usually
connect two widely-separated networks this way,
though. It would be unreasonable to send your IT
people walking down the road from UVa to Va Tech,
reeling out cable behind them, to create a link
between the two universities. Instead, local networks
are typically linked by leased lines, rented from
phone companies or other providers. These
companies have the infrastructure already in place to
connect distant locations and maintain that
connection.

 4

Ethernet:
The most commonly used technology for wired LANs
is currently �Ethernet� carried over twisted-pair
cables. The twisted pairs of wires help reduce
crosstalk. Ethernet devices can communicate at
several different standard speeds: 10, 100 or 1000
Mbits/sec. Cable is designated �Category 5�, �5e� or
�6� depending on its characteristics, with Category 6
cable being the best quality, and the only one suitable
for reliable communication at 1000 Mbits/sec.

The connectors at the ends of the cables are called
RJ-45 connectors. They're a type of modular
connector similar to modular telephone connectors
(called RJ-11), but wider.

Each pair of wires carries signals. At the end of the
line, the voltage difference between the two wires in
the pair is measured. By measuring this differential
voltage, noise that affects both wires equally is
eliminated. The twists in the wires help ensure that
sources of noise along the way do affect both wires
equally.

This twisted-pair scheme has been in use since the
early days of the phone system. It's well-understood
technology, and cheap to produce.

 5

Ethernet Hardware Standards:

Twisted-Pair Copper:
� 10BaseT: 10 Mbits/sec over twisted-pair copper cable.
� 100BaseT: 100 Mbits/sec over twisted-pair.
� 1000BaseT: 1000 Mbits/sec (1 Gbit/sec) over twisted-pair.
� 10GBaseT: 10 Gbit/sec over twisted-pair (future).

Optical Fiber:
� 1000BaseSX: 1000 Mbits/sec over optical fiber.
� 10GBaseSR: 10 Gbit/sec over optical fiber (future).

Coaxial (obsolete):
� 10Base5: 10 Mbits/sec over 50-ohm RG-8 coaxial cable.
� 10Base2: 10 Mbits/sec over 50-ohm RG-58 coaxial cable.

 There are many varieties of ethernet hardware. Here are a
few of them:

A note on nomenclature: The �base� in names like
�10BaseT� comes from �baseband�, meaning that
these transmission standards use a band of
frequencies starting at zero and going up to some
maximum, cutoff, frequency.

Optical fibers are better for long distances, but they're
more expensive to deploy and maintain. They're
usually used for connecting buildings together.

Typical network connections to desktop computers
currently use either 10BastT or 100BaseT Ethernet.
1000 Mbit/set Ethernet is often used between
buildings or as the backplane of clusters of
computers.

 6

Part 2: Ethernet

Now that we've seen the hardware, let's look at how
Ethernet works. As we'll see, collisions are an
integral part of it.

 7

MAC Addresses:
Every Ethernet device has a unique 6-byte (48-bit) address,
called a �Media Access Control� (MAC) address. Typically,
the first 3 bytes of the address identify the network device's
manufacturer, leaving 3 bytes (24 bits) to identify the device
uniquely in that manufacturer's address space.

00 1A A0 BF 6B 5F: : : : :

Dell, Inc. One of the 224 addresses
available to Dell.

A tool for looking up vendors, by MAC address: http://www.coffer.com/mac_find/

(00-FF) (00-FF) (00-FF) (00-FF) (00-FF) (00-FF)

(224 = 16,777,216)

A single manufacturer may actually be allocated
several different 3-byte prefixes, especially a large
manufacturer like Dell. There are plenty to go
around: almost 17 million.

There's no expectation that we'll run short of MAC
addresses anytime soon. The total number of them
is about 280 trillion. This isn't the case with some
other network addresses, as we'll see.

The checksum at the end of the frame is just a number
computed from the frame's data. When the frame is
composed, some function is applied to the data that
produces a �hash�. The function is chosen so that
any small change in the data will produce a different
hash. This hash is stored as the checksum value in
the frame's footer. When the frame arrives, the
same function is applied again to the data. If the
resulting hash doesn't match the hash stored in the
checksum, then the receiver knows that the frame
has been mangled during transmission.

 9

How Ethernet Works:
Alice Bob Charlie

EnglebertDanny

Alice Bob Charlie

EnglebertDanny

Alice Bob Charlie

EnglebertDanny

Alice Bob Charlie

EnglebertDanny

Is anybody
talking? Hi Charlie!

Hi Charlie! Hi Alice! Oops! Oops!

Carrier sense,
followed by

transmission.

A Collision!

Medium

You can think of the original Ethernet design as a bunch of rooms
along a corridor. Whenever one of the occupants (a computer)
wants to communicate with another, it shouts the message down
the corridor (a �shared medium�). Everyone except the intended
recipient ignores the message.

Originally, Ethernet used a design called �Carrier-Sense, Multiple
Access with Collision Detection� (CSMA/CD). When an Ethernet
device wants to start talking, it first listens to see if the shared
medium is free, then it transmits its message. If two devices talk
at the same time, that's a �collision�, and each device shuts up
for some random time, before trying again. Early on, this simple-
minded system was (amazingly) shown to perform much better
than more sophisticated networking schemes.

It's important to remember that collisions are a natural part of the
way Ethernet works. There's nothing wrong with a few of them.

 10

Switches:

Charlie

Danny

Ethernet Switch

MAC = 00:00:07:65:43:21

MAC = 00:00:01:23:45:67

Hi Charlie!

connection

These days, most wired LANs don't use a shared
medium any more. Instead, they use Ethernet
switches. A switch can be thought of as a smart
medium that can create dedicated connections
between any two of the devices connected to it.
The switch does this by remembering the MAC
addresses of the devices that are plugged into it.

In this example, only Charlie
hears the message from
Danny. The switch has
created a dedicated
connection that no other
computer can listen to.

The switch does its work by remembering the MAC
addresses of the devices that are plugged into it. For
each connector, the switch maintains a list of the
MAC addresses it has recently seen talking on that
connection.

Some traffic still needs to be broadcast, though. (ARP
packets, for example, as we'll see.) The switch will
send broadcast traffic to all devices connected to it.

 11

Part 3: The Internet Protocol (IP):

In the 1960s the Advanced Research Projects Agency
(ARPA) of the Department of Defense began building
a nationwide network called �ARPANET�. The first
link (at 50 Kbits/sec) was created between UCLA and
Stanford in 1969. ARPANET grew into the Internet
we know now.

A new protocol, called �Internet Protocol� (IP) was
invented for transmitting data on the Internet. This
protocol was intended to be layered on top of a
variety of underlying protocols. Thus, IP was
independent of the details of a site's local network
hardware. The Internet Protocol was capable of
binding together a heterogeneous collection of
computers around the world.

 12

IP Addresses:
Each host on an IP network should have a unique 4-byte (32-bit)
IP address. An IP address uniquely identifies a host on the
Internet. IP addresses are typically expressed in �dotted decimal�
form, like this:

192 168 100 21. . .
(0-255) (0-255) (0-255) (0-255)

(232 = 4,294,967,296 possible addresses)

IP address numbers are managed by the �Internet Assigned Numbers
Authority� (IANA). Three address ranges are reserved for private
networks:

From To Number
10.0.0.0 10.255.255.255 16777216
172.16.0.0 172.31.255.255 1048576
192.168.0.0 192.168.255.255 65536

Note that I use the term �host� here instead of computer. By
�host�, I mean �a thing with an IP address�. Usually, there will
be a one-to-one mapping between IP addresses and
computers, but not always by any means.

The IANA hands out blocks of addresses through regional
registrars to internet service providers (ISPs). Each ISP is
approved by the regional registrar, and must pay an annual fee
to retain its IP addresses. UVa owns several address ranges:
128.143.*.*, 137.54.*.* and portions of the 199.111.*.* address
space. The annual fee for a two-byte address range (called a /
16 or a �Class B� network) like 128.143.*.* is $4,500.

Finally, note that everything I'm going to say about IP applies to
the current version, IPv4. The successor, IPv6, is on its way,
but probably won't affect you for a few more years. IPv6 has
a much larger address space and a different notation.

Notice that an IP packet can have a maximum size of
65,535 bytes, but an Ethernet frame can only carry
up to 1,500 bytes of data. When a large IP packet
arrives at an Ethernet network, it may be broken up
into smaller packets (�fragments�) which are sent in
separate Ethernet frames. The IP headers of these
fragments will contain the information necessary to
reassemble them later.

The maximum size of the underlying layer's �chunks� is
called the �Maximum Transmission Unit� (MTU).

We're starting to build up a stack of protocols, each of which adds
features unavailable at lower levels. The physical layer gives us
a mechanism for transmitting zeros and ones. The �link� layer
(e.g., Ethernet) gives us a way to send a set of zeros and ones
to a particular computer. The Internet layer gives us a way to
transmit data across a heterogeneous network. We'll add two
more layers before we're done.

You can imagine IP packets travelling across the network the way
you'd take a plane trip. First, you get in your car and drive to the
airport. There, you board a small plane and fly to another
airport, where you get on a big plane and fly somewhere else.
Once there, you rent a car and drive to your final destination.
Just like you, IP packets can travel in a variety of vehicles on
their way from one computer to another. Sometimes they'll be
contained in Ethernet packets, sometimes they'll travel over
other types of network. But eventually they'll arrive a their
destination.

 15

The �ping� Command:

~/demo> ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.367 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=1.01 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.326 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.275 ms

--- 192.168.1.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time
2998ms
rtt min/avg/max/mdev = 0.275/0.494/1.011/0.301 ms

Ctrl-C

The �ping� command sends small packets to a host on the Internet, then
tells you if the host responded and how long it took the packet to get
there and back. It will also tell you if any packets were lost in
transmission. By default, ping will keep sending packets until you stop it
with a �Ctrl-C�.

Note that a host may simply choose not to respond to ping requests. This is
often done for security reasons. Bad Guys will often look for target computers
by pinging, in numerical order, each IP address on a network. Addresses that
don't respond may be ignored.

 16

The Address Resolution Protocol (ARP):

00:00:07:65:43:21

MAC 00:00:01:23:45:67
IP 192.168.1.2

Who has
192.168.1.2?

Tell
00:00:07:65:43:21.

Hi 00:00:07:65:43:21!
 I have 192.168.1.2.
My MAC address is
00:00:01:23:45:67

In order to compose an Ethernet frame, we need to know the recipient's MAC
address. If we know a host's IP address, we may be able to find its MAC address
using a protocol called ARP. ARP packets are broadcast, so every host on the
local network hears them (even if they're connected through a switch). If a host
with the requested IP address is on the local network, it will respond with a
message giving its MAC address.

To broadcast a request on an Ethernet network, you
send it to the special MAC address
�FF:FF:FF:FF:FF:FF�.

 17

Routers:

00:00:07:65:43:21

Who has
192.168.1.2?

Tell
00:00:07:65:43:21.

Router

Requests for
192.168.1.* go through
me. My MAC address

is

But what if the host we want is on a
different network segment? In that case,
a �router� may respond instead. Routers
connect two or more networks, and know
how to route traffic from one segment to
another.

192.168.1.2

A network �segment� is a section of a network that is
connected at the physical layer. Traffic can travel
between all computers on the same segment without
the help of routers or other intermediate devices that
understand higher-level protocols.

When a router hears an ARP request for a host on one
 of the other segments it's connected to, the router
responds with its own MAC address. The sending
computer then knows to send Ethernet frames to the
router, and the router will pass them along to the
other network segment, doing its own ARPs there to
find the destination host.

 18

[root@demo ~]# arp

Address HWtype HWaddress Flags Mask Iface
print.phys.Mydomain.Org ether 00:16:3E:3E:8D:00 C eth0
tracking.phys.Mydomain. ether 00:04:75:06:E8:D7 C eth0
data.phys.Mydomain.Org ether 00:04:75:86:EA:5E C eth0
d-128-100-154.bootp.Myd ether 00:21:70:DF:23:E0 C eth0
vesna.phys.Mydomain.Org ether 00:16:76:83:01:AE C eth0
galileo.phys.Mydomain.O ether 00:15:C5:5D:58:72 C eth0
memory-alpha.phys.Mydom ether 00:04:75:86:EA:02 C eth0
gilmer-router-all.acc.M ether 00:D0:05:30:78:00 C eth0
teleport.phys.Mydomain. ether 00:20:AF:69:13:B5 C eth0

The ARP Cache:
Each computer maintains a cache of the results of recent ARP
requests. Under Linux, you can use the �arp� command to view the
contents of the cache. This is a good way to find the MAC address of
another local computer. If it's not in the cache already, use �ping
hostname� to send a packet to the host, and then look again. Note
that remote hosts will all appear to have the MAC address of the
router.

One of those things you'll probably never need to do,
but it's possible anyway:

You can also use the �arp� command to manually
manipulate the ARP cache. This is sometimes
necessary for configuring network devices that are
only accessible through the local network segment
(i.e., they don't have a keyboard or any other way of
configuring them locally). Using the appropriate arp
command, you can manually enter a MAC address
into the ARP cache and associate it with an IP
address. You can then use that IP address to
communicate with the remote device.

 19

~/demo> traceroute 64.233.169.103
traceroute to 64.233.169.103 (64.233.169.103), 30 hops max, 40 byte packets
 1 gilmer-router-all.acc.Virginia.EDU (128.143.102.1) 0.578 ms 0.714 ms 0.684 ms
 2 carruthers-6509a-x.misc.Virginia.EDU (128.143.222.46) 0.407 ms 0.613 ms 0.589 ms
 3 new-internet-x.misc.Virginia.EDU (128.143.222.93) 0.564 ms 0.579 ms 0.731 ms
 4 192.35.48.26 (192.35.48.26) 3.937 ms 3.910 ms 3.919 ms
 5 te2-1--580.tr01-asbnva01.transitrail.net (137.164.131.177) 4.354 ms 4.567 ms
4.539 ms
 6 (137.164.130.154) 4.261 ms 4.250 ms 4.266 ms
 7 216.239.48.112 (216.239.48.112) 4.956 ms 4.910 ms 4.868 ms
 8 72.14.236.200 (72.14.236.200) 5.094 ms 64.233.175.171 (64.233.175.171) 5.304 ms
64.233.175.169 (64.233.175.169) 5.277 ms
 9 216.239.49.145 (216.239.49.145) 8.488 ms 7.596 ms 7.851 ms
10 yo-in-f103.google.com (64.233.169.103) 5.396 ms 5.478 ms 5.436 ms

The �traceroute� Command:

You can use the �traceroute� command to trace the
path that packets would follow from one computer to
another. In the example below, traceroute shows the
path through various routers to a host at Google.

Note that traceroute can't always identify all of the
routers along the way. Firewall rules may prevent
some intermediate hosts from responding to
traceroute's queries.

 20

Domain Name Servers:

search phys.mydomain.org mydomain.org

nameserver 192.168.200.7
nameserver 192.168.50.7
nameserver 192.168.51.30

~/demo> host www.virginia.edu
www.virginia.edu has address 128.143.22.36

~/demo> host 128.143.22.36
36.22.143.128.in-addr.arpa domain name pointer
www.Virginia.EDU.

Numbers are hard to remember, so we have Domain Name Servers
(DNSs). A DNS is a server that maintains a list of computer names,
and their associated numerical IP addresses. These names are
organized into a hierarchical system of �Domains�. Name resolution
information is kept in the file /etc/resolv.conf:

If I don't specify the full name,
try appending these.

List of DNS servers to use.

Most network-aware commands will accept either a numerical address
or a hostname. You can manually look up a host's address using the
�host� command. You can also do the reverse.

Underneath a few top-level domains (TLDs) like �.com�
and �.edu�, secondary domain names are given out to
individuals or institutions, on a first-come-first-serve
basis, through domain registrars. Registrars typically
charge an annual fee for retaining a domain name.
The annual fee for a domain name is typically only a
few dollars.

 21

The /etc/hosts File and �localhost�:

Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost

10.0.0.1 master1.private master1
10.0.0.2 master2.private master2 home.private mail.private

192.168.100.1 server1.cluster server1
192.168.100.2 server2.cluster server2

You can also maintain your own list of hostnames in the file /etc/hosts:
Address List of Names

Note that there should always be an entry for the address 127.0.0.1.
This is a special, reserved, address that will always refer to the local
computer. It's called the �loopback� address. Many programs use the
name �localhost� or �localhost.localdomain� to refer to it.

Applications will usually check the /etc/hosts file first,
and then go to the DNS servers when trying to
resolve a name. The order is configurable in
/etc/nsswitch.conf. Type �man nsswitch.conf� for
more information.

 22

Part 4: Network Interfaces

A �network interface� is the device inside your
computer that is actually plugged into the local
network. This may be a card plugged into an
expansion slot inside your computer, but typically
these days the network interface is built into the
computer's motherboard. For most computers, the
network interface will be the thing in the back of your
computer into which you plug an RJ-45 connector.

The picture above shows an old acoustic coupler, of
the type I used when I was in high school in the
1970s. This was an early way of connecting
computers together. Data was sent over a phone
line as a series of tones, and these were decoded by
devices like the on above and turned into digital
signals.

 23

Network Interfaces:
To get a list of your computer's network interfaces, use the �ifconfig�
command. Normally, you'll see at least two interfaces:
[root@demo ~]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:1A:A0:BF:6B:5F
 inet addr:192.168.100.2 Bcast:192.168.255.255 Mask:255.255.0.0
 inet6 addr: fe80::21a:a0ff:febf:6b5f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:78617868 errors:0 dropped:0 overruns:0 frame:0
 TX packets:25924911 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:725202911 (691.6 MiB) TX bytes:1837757879 (1.7 GiB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:10774315 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10774315 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:4152450841 (3.8 GiB) TX bytes:4152450841 (3.8 GiB)

The interface �eth0� is an ethernet interface. Ifconfig shows its MAC
address and IP address. The interface called �lo� is the �loopback�
interface. It's used when a network-aware program wants to talk to the
same computer.

Programs could talk to the local computer through
eth0, too, but there are some disadvantages:

� There's more overhead involved. To talk on eth0 the
system needs to go through the whole process of
composing a message on the network, sending it out
on the network, then hearing it and interpreting it.

� There may be firewall rules applied to eth0 that you
don't want to apply to purely internal
communications.

 24

Configuring a Network Interface:

You can also use ifconfig to configure network interfaces. For example,
to assign the IP address �192.168.100.2� to eth0, you could use a
command like:
ifconfig eth0 192.168.100.2 netmask 255.255.0.0 broadcast 192.168.0.0

Interface IP address Network mask Broadcast address

� The �network mask� specifies what part of the IP address specifies
the local network. It's used to determine whether a given IP address is
part of the local network or a remote network. Traffic to remote
networks may need to be sent to a gateway computer that knows how
to deliver it.

� The �broadcast address� specifies the address to which broadcast
messages should be sent. Broadcast messages are messages that
should be heard by all hosts on the local network.

You can actually have more than one IP address on a
single interface. You can use ifconfig to add extra
addresses to an interface by specifying �aliases� for
the interface. These have names like �eth0:0�,
�eth0:1�, �eth0:2�, etc. Once you've configured the
interface with its first address, as above, you can add
others like this:

ifconfig eth0:0 192.168.100.50
ifconfig eth0:1 192.168.100.38
ifconfig eth0:2 192.168.100.5

 25

The �route� Command:

[root@demo ~]# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.0.0 * 255.255.0.0 U 0 0 0 eth0
default gw.mydom.org 0.0.0.0 UG 0 0 0 eth0

Each computer maintains a �routing table� containing information
about where to send packets destined for various networks. You can
view or manipulate the routing table with the �route� command:

The two routing rules above say:
1. Traffic for addresses beginning with 192.168 should be transmitted to
the recipient directly on interface eth0.
2. Traffic for other addresses should be sent to the gateway
�gw.mydom.org� through the interface eth0.

[root@demo ~]# route add -net 192.168.0.0 netmask 255.255.0.0 dev eth0
[root@demo ~]# route add default gw gw.mydom.org

This table could be created by issuing the following commands:

 26

Static versus Dynamically-assigned IP Addresses:
How do you know what IP address to assign to your network
interface? Your ISP can provide you with an IP address in two ways:
1. Static IP Addresses:
If your computer always needs to have the same IP address, your
ISP may assign a �fixed� or �static� IP address to you. The ISP will
keep a list of static IP address assignments, so that they can be sure
they don't assign the same address more than once. The ISP will
also probably assign the computer a name, and associate this name
with the computer's static address in their DNS servers.

2. Dynamic IP Addresses:
If your computer doesn't need a fixed address, you can obtain a
randomly-assigned address through a process called �Dynamic Host
Configuration Protocol� (DHCP). Your ISP probably maintains a
DHCP server that will, on demand, provide your computer with an IP
address and other configuration information, such as a list of DNS
servers.

Static addresses are usually appropriate for servers. Dynamic addresses
are appropriate for most personal computers.

There are many tools for querying DHCP servers and
obtaining an IP address. Some of the common ones
are �dhclient� (used in Red Hat-derived distributions
and Ubuntu), �pump� (used by KNOPPIX), and
�dhcpcd� (not to be confused with �dhcpd� -- one's a
client and the other's a server!). All of these will
query the DHCP server, obtain an IP address and
configure the interface for you.

The syntax for dhclient is just �dhclient eth0�.

 27

Network Configuration Files:
You can use the ifconfig and route commands directly, but usually
Linux distributions provide scripts, configuration files and graphical
tools for configuring your network interfaces. The details will depend
on your Linux distribution.

DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp

Red Hat, Fedora, CentOS: Ubuntu:
Configuration files for each interface live in
the directory /etc/sysconfig/network-scripts,
with file names like �ifcfg-eth0�. The files look
like this:

These distributions also provide a graphical
too for configuring network interfaces. It can
be invoked by typing the command
�system-config-network�.

The configuration file for all interfaces is
�/etc/network/interfaces�. It looks like this:

There's also a graphical tool for manually
configuring network interfaces. It can be
invoked by typing �network-admin�.

BUT WAIT! By default, Ubuntu uses a tool
called NetworkManager that attempts to
dynamically and automatically configure all of
your network interfaces. You should only
fiddle with the network configuration by hand
if NetworkManager fails.

Most distributions are moving toward using
NetworkManager to manage network connections.

 28

Part 5: Ports

We know how to contact a remote computer, using its
IP address, but what about contacting a particular
service running on that remote computer? For that,
we'll need to introduce an internal address called a
�port number�. Sometimes people are confused by
the name �port�. It sounds like some physical thing
that you would plug a cable into. In the following,
remember that ports are just addresses. They're not
anything physical.

 29

eth0

Web Server
(httpd)

Ssh Server
(sshd)

File Server
(smbd)

myserver.mydomain.org
192.168.100.50

mypc.mydomain.org
192.168.100.20

Port 80

22

137

Ports:
When you talk to a computer on the internet, you can identify a
particular service within that computer that you want to talk to. This is
done by giving a �port number� in addition to the IP address.
A port number is a number between 1
and 65535 (a 16-bit range). Services
on a computer listen to particular
ports. You can think of a port number
as the address of a service inside a
server.

A port number is actually used at both ends of the
connection. In the illustration above, the traffic
leaving �mypc.mydomain.com� would originate from
a particular source port on that computer. If the
computer were browsing the web, for example, the
traffic would originate from some randomly-assigned
port on mypc, and would be address to destination
port 80, on the remote computer, where the web
server would be listening.

When an application requests a port on the local
computer, it can ask for port �0�. In this special case,
the computer picks a port at random, from a pool of
ports available for that purpose, and gives it to the
application.

 30

Port Number Assignment:
The IANA maintains an official list of standard port numbers for various
services. This list is purely advisory, but software authors seldom use
ports in non-standard ways. The list of ports is divided into three
sections:
� Well-Known Ports (aka Privileged Ports):
Ports 1-1023 are called �Well-Known� ports, and many of them have
been in common use since the beginning of the Internet. These are
the ports used by familiar services such as web, ftp, ssh, telnet and
smb. Only processes owned by the root user are allowed to bind to
these ports.

� Registered Ports:
Ports 1024-49151 are �Registered� ports. These are associated with
applications that have registered with IANA and been assigned an
official port number. Registering a port makes it less likely that
someone else will use that port for another purpose.

� Dynamic/Private/Ephemeral ports:
Ports 49152-65535 are available for temporary use, or for private use.

 31

Some Common Ports:

� 22: Ssh
� 80: Http
� 443: Https
� 25: Smtp
� 20/21: Ftp
� 53: DNS
� 110: Pop3
� 143: Imap
� 389: Ldap
� 993: Imaps

Here are a few commonly-used ports:

You don't need to remember the numbers. You can usually refer to
them by name. Most applications will look up ports by name, using
the file �/etc/services�. This file contains a list of port names, their
associated numbers, and other information.

Because it's so much more complex, TCP also has a
lot more overhead. In situations where dropped
packets can be tolerated, or where the order of
packets doesn't matter, UDP is used instead.

So now we have four layers in our layer-cake. On top
of the physical layer, Ethernet frames carry data from
computer to computer, guided by MAC addresses.
Within those frames are IP packets, guided by IP
addresses. Inside the IP packets are TCP or UDP
segments/packets, addressed by port number.

 34

...drum roll...

And to finish our cake.....

...we add one more layer: the application layer, where
protocols like http live. These layers make up what's
called the TCP/IP Five Layer Model of networking.

The Five Layer Model is a simplified version of a more
general model of networking called the OSI Seven
Layer Model, which you may have heard of. The
Five layer model gives a more intuitive picture of how
the most common type of networking works.

 36

Part 6: Monitoring Traffic

Now let's look at some tools for monitoring network
activity.

 37

The �netstat� Command:

[root@demo ~]# netstat -anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program
name
tcp 0 0 0.0.0.0:750 0.0.0.0:* LISTEN 354/rpc.statd
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 3507/portmap
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN 13034/X
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 5858/cupsd
tcp 0 0 0.0.0.0:3551 0.0.0.0:* LISTEN 8305/apcupsd
tcp 0 0 10.2.1.43:37218 10.2.2.108:22 ESTABLISHED 7491/ssh
tcp 0 0 10.2.1.43:25 10.9.3.3:50071 TIME_WAIT -
tcp 0 0 10.2.1.43:38860 10.2.1.159:22 ESTABLISHED 5581/ssh
tcp 0 0 10.2.1.43:54874 10.2.2.107:22 ESTABLISHED 25409/ssh
tcp 0 0 10.2.1.43:57525 10.2.1.57:2200 ESTABLISHED 27818/ssh
tcp 0 0 127.0.0.1:39788 127.0.0.1:783 TIME_WAIT -
tcp 0 0 10.2.1.43:47548 128.143.100.51:22 ESTABLISHED 11350/ssh
tcp 0 0 10.2.1.43:42177 10.2.1.44:22 ESTABLISHED 15294/ssh
tcp 0 0 10.2.1.43:25 10.2.1.105:53651 TIME_WAIT -
tcp 0 0 127.0.0.1:49912 127.0.0.1:22 ESTABLISHED 28866/ssh
tcp 0 0 10.2.1.43:37956 10.2.1.114:22 ESTABLISHED 7362/ssh
tcp 0 0 10.2.1.43:47173 10.2.1.113:22 ESTABLISHED 7405/ssh
tcp 0 0 127.0.0.1:60554 127.0.0.1:22 ESTABLISHED 26185/ssh
...etc.

The �netstat� command shows information about network connections
to your computer. It shows the source and destination address and
port for each connection, and it can be made to show the process ID
and process name of the processes that are bound to these ports.

Netstat will also show you information about �Unix
domain sockets�. Ignore this for now. These are
local connections between processes running on
your computer.

The switches shown above are:

-a Show all connections, including servers that are just
listening.

-n Don't resolve host or port names. Just show the
numbers.

-p Show the process IDs and process names.

 38

Viewing Connections with �lsof�:

[root@demo ~]# lsof -i :ssh

COMMAND PID USER FD TYPE DEVICE NODE NAME
ssh 5581 bkw1a 3u IPv4 16201308 TCP mypc.mydom.org:38860->print.mydom.org:ssh
sshd 5872 root 3u IPv6 13485 TCP *:ssh (LISTEN)
ssh 7362 bkw1a 3u IPv4 15108847 TCP mypc.mydom.org:37956->data.mydom.org:ssh
ssh 7405 bkw1a 3u IPv4 15109181 TCP mypc.mydom.org:47173->tracking.mydom.org:ssh
ssh 7491 bkw1a 3u IPv4 15109863 TCP mypc.mydom.org:37218->memory.mydom.org:ssh
ssh 11350 bkw1a 3u IPv4 17186056 TCP mypc.mydom.org:47548->test.mydom.org:ssh
ssh 15294 bkw1a 3u IPv4 15137397 TCP mypc.mydom.org:42177->test2.mydom.org:ssh
ssh 25409 bkw1a 3u IPv4 15883849 TCP mypc.mydom.org:54874->blarg.mydom.org:ssh
ssh 26185 nx 7u IPv4 6782492 TCP localhost.localdomain:60554->localhost:ssh
sshd 26190 root 3u IPv6 6782493 TCP localhost:ssh->localhost.localdomain:60554
sshd 26192 elvis 3u IPv6 6782493 TCP localhost.localdomain:ssh->localhost:60554

You can also view network connections with �lsof�. The �-i� switch will
show all network connections or, if followed by a port name or a port
number, will show only the connections to or from that port.

lsof is a tool for seeing which files were currently being
used by various processes. It can also show us
network connections being used by processes.

 39

Using �iptraf� to Monitor Traffic in Real Time:
You can use the �iptraf�
command to monitor network
traffic in real time. Iptraf is
menu-driven, and has several
modes.

In the mode shown at top, it
will show information about
each new connection in the
top pane, and a running
stream of information about
incoming packets in the
bottom pane.

In the mode shown below,
iptraf gathers statistics about
traffic on each port.

 40

Using �wireshark� to Monitor Traffic in Real Time:
Wireshark is an invaluable tool for analyzing network traffic. It allows you
to capture (optionally filtered) traffic, dissect it, do offline filtering, and
produce graphs and statistics.

 41

Part 7: Firewalls

In the terminology we'll use today, a firewall is anything
that blocks or modifies network traffic. Most desktop
computers today have some sort of firewall
capability. They can, for example, selectively block
incoming IP packets.

Even if your computer is behind a department firewall,
or is running other security software, it's very
important to have a properly-configured local firewall
on your computer. This reflects a security philosophy
called �defense-in-depth�, which says that you need
multiple layers of defense. Multiple layers provide
redundancy, in case one layer fails, and they tend to
fill in the gaps in each other's coverage.

 42

PREROUTING

FORWARD

POSTROUTING

INPUT OUTPUT

Incoming
Packets

Outgoing
Packets

Lo
ca

l P
ro

gr
am

s

Forwarded Packets

Locally-Generated
Output

Input for Local
Programs

Netfilter:
Built into the Linux kernel is a system called �Netfilter� that allows for
monitoring, modifying or blocking IP packets as they pass through the
kernel, based on packet header information. Netfilter associates user-
defined functions with pre-defined �hooks� at various points along a
packet's path through the kernel. These functions are managed by
programs like �iptables�.

The diagram below shows some of the available hooks, in blue:

Netfilter is just a framework within the kernel. To use it,
you need a program like iptables.

The input and output hooks let you filter traffic going to
or coming out of local program. The forward hook
allows you to filter network traffic that's just passing
through your computer. The prerouting and
postrouting hooks allow you to do things like re-
writing the address on incoming/outgoing packets.

 43

Tables, Chains and Rules in iptables:
Iptables binds a set of functions to the Netfilter hooks. These functions
use lists of rules (called �chains�) to decide what to do with a packet as
it passed through each hook. The chains are organized in tables, such
as:
�filter� Table: �nat� Table:

�raw� Table:�mangle� Table:

� INPUT Chain
� OUTPUT Chain
� FORWARD Chain
...etc.

� PREROUTING
� OUTPUT
� POSTROUTING
...etc.

� PREROUTING
� INPUT
� OUTPUT
� POSTROUTING
...etc.

� PREROUTING
� OUTPUT
� POSTROUTING
...etc.

The list of tables is
hard-coded into
iptables, but chains
can be added by the
user, through the
�iptables� command.
Each table starts
with a set of built-in,
empty, chains. The
built-in chains are
used directly by the
functions iptables
binds to the Netfilter
hooks.

Note that the names of tables and chains are case-
sensitive.

 44

ra
w

PR
ER

O
U

TI
N

G
m

an
gl

e
P

R
E

R
O

U
TI

N
G

na
t

PR
E

R
O

U
TI

N
G m

an
gl

e
FO

R
W

AR
D

fil
te

r
FO

R
W

AR
D

m
an

gl
e

P
O

S
TR

O
U

TI
N

G
na

t
P

O
S

TR
O

U
TI

N
G

m
an

gl
e

IN
PU

T

fil
te

r
IN

PU
T

m
an

gl
e

O
U

TP
U

T

fil
te

r
O

U
TP

U
T

na
t

O
U

TP
U

T

ra
w

O
U

TP
U

T

Incoming
Packets

Outgoing
Packets

Lo
ca

l P
ro

gr
am

s

Forwarded Packets

Locally-Generated
Output

Input for Local
Programs

How iptables Chains are Bound to Netfilter Hooks:
Here's how iptables binds various built-in chains to the Netfilter hooks:

This shows where the iptables chains from the
previous slide plug into the hooks provided by
Netfilter.

 45

The �filter� Table:

FORWARD
chain

INPUT
chain

OUTPUT
chain

Local
Programs

Incoming
Packets

Outgoing
Packets

The most often-used table is the �filter� table, which initially contains
built-in chains called �INPUT�, �OUTPUT� and �FILTER�. These chains
of rules are used by functions plugged into the Netfilter hooks shown
below:

Input for Local
Programs

Locally-Generated
Output

Forwarded Packets

These built-in chains are directly connected to the
Netfilter hooks. As we'll see, you can also create
user-defined chains, but they're used indirectly.

Targets that cause rule traversal to stop are called
�terminating� targets. Those that don't are called
�non-terminating� targets.

Only built-in chains have policies. The built-in chains
are the ones that are directly attached to Netfilter's
hooks. User-defined chains are always called by
one of the built-in chains.

Here, the INPUT chain is a built-in chain, and the
MYSSH chain is user-defined.

 48

Some iptables Targets:

ACCEPT

DROP Stop traversal, ignore the packet.
REJECT

LOG Log the packet, then continue traversal.
TARPIT

...etc.

Stop traversal, allow the packet to con-
tinue.

Stop traversal, ignore the packet, but no-
tify the sender.

Wait forever without responding to
sender (TCP only).

Here are some examples of built-in iptables targets:

 49

Viewing Chains:
You can look at the the current chains by using the �iptables -L -v�
command. By default, this will show you the chains in the �filter� table.
You can look at other tables by adding the �-t� switch (e.g., �-t nat�). This
is what the �filter� table looks like by default. Three built-in chains are
defined, but the chains are empty of rules:

[root@demo ~]# iptables -L -v
Chain INPUT (policy ACCEPT 16 packets, 1274 bytes)
 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 8 packets, 1088 bytes)
 pkts bytes target prot opt in out source destination

You can also just use �iptables -L�, but if you have non-
trivial firewall rules you'll find that the output is
misleading. For one thing, �iptables -L� doesn't tell
you which network interfaces a given rule applies to.

 50

Adding Rules to a Chain:

iptables -A INPUT -s 1.2.3.4 -p tcp --dport 22 -j ACCEPT

Add a
rule...

to this
chain.

Packets from
this source...

using this
protocol...

and destined
for this port...

jump to
this target.

� Adding a rule to match packets from a given host, destined for port 22
on the local computer:

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

Add a
rule...

to this
chain.

Packets using
this protocol...

and destined
for this port...

jump to
this target.

� Accept all incoming traffic destined for port 80 on the local computer:

iptables -A INPUT -s 4.3.2.1 -j DROP

Add a
rule...

to this
chain.

jump to
this target.

� Ignore all incoming traffic from a particular computer:

Packets from
this source...

A few simple examples. Later, we'll see how to define
firewall rules automatically at boot time.

 51

More Rule Examples:

iptables -P INPUT DROP

Apply this
Policy...

to this
chain.

The policy.

� Setting a default policy:

iptables -A INPUT -i eth1 -p tcp --dport 22 -j ACCEPT

Add a
rule...

to this
chain.

Packets from
this interface...

using this
protocol...

and destined
for this port...

jump to
this target.

� Adding a rule that only applies to one network interface:

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

� Adding a rule that allows incoming traffic that is associated with an
already-established outgoing connection:

Add a
rule...

to this
chain.

jump to
this target.

Load the
�state�

module.

If the packet is related to an
established connection...

You'll find many more examples here: http://danieldegraaf.afraid.org/info/iptables/examples

As you can see from the last example, iptables can be
extended through �modules�. Many of these
modules are already installed in most Linux
distributions. These make iptables very powerful.
You can, for example, do rate limiting, or limit the
number of connections from a given host. You can
filter by MAC address. You can select every nth
packet (!). You can assign tags to packets for use in
later rules. You can filter packets based on their
length. You can even match strings within packets.

 52

Minimal Firewall Rules:

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD DROP

[root@demo ~]# iptables -L -v
Chain INPUT (policy DROP 36 packets, 5000 bytes)
 pkts bytes target prot opt in out source destination
 60 3644 ACCEPT all -- any any anywhere anywhere state RELATED,ESTABLISHED
 0 0 ACCEPT all -- lo any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 33 packets, 4564 bytes)
 pkts bytes target prot opt in out source destination

Here's a set of minimal firewall rules. They allow anything to go out, but
only allow incoming packets that are associated with an already-
established outgoing connection. Everything else is dropped.

This is similar to the default firewall rules you'll find
under Red Hat/Fedora/CentOS, or in any home
internet router/firewall.

 53

The �iptables-save� and �iptables-restore� Tools:
The firewall rules you create with iptables are volatile. They won't automatically
be restored the next time you restart your computer, unless you take steps to
restore them. One mechanism for doing this is the �iptables-save� and
�iptables-restore� commands. If you've configured a set of firewall rules and
want to save that configuration, issue a command like:
[root@demo ~]# iptables-save > myfirewall.conf
Then you can restore these rules later by typing:

[root@demo ~]# iptables-restore < myfirewall.conf

Generated by iptables-save v1.3.5 on Tue Mar 3 14:38:46
2009
*filter
:INPUT DROP [18:2119]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [28:2832]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -i lo -j ACCEPT
COMMIT
Completed on Tue Mar 3 14:38:46 2009

The output of iptables-save is just text, and can be edited with any text editor.
It looks like this:

 54

Iptables Configuration Files:

On Red Hat/Fedora/CentOS distributions a minimal set of
firewall rules is enabled by default. These rules are in the
same format that iptables-save produces, and are stored
in the file /etc/sysconfig/iptables. At boot time, this file is
automatically read by iptables-restore to set up the firewall
rules.

Ubuntu distributions don't have firewall rules enabled by
default, and don't use /etc/sysconfig/iptables, but recent
versions of the Ubuntu distribution include a front-end to
iptables called �ufw�. The ufw program stores its
configuration in /var/lib/ufw/user.rules.

See https://wiki.ubuntu.com/UbuntuFirewall for more
information about ufw.

Inexpensive home routers use NAT to connect
computers in your home to the Internet. Many of
these routers are actually running Linux, and use
iptables, just as you'd use it on your desktop
computer or a Linux server.

 56

iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -i eth1 -j ACCEPT

iptables -A INPUT -i eth1 -j ACCEPT

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Setting up NAT Using iptables:
You can use iptables to configure a Linux computer with two network
interfaces to perform network address translation. (Indeed, many
home routers are small Linux computers configured in this way.)
Here's a set of iptables commands to do that. In this example, eth0 is
on the external (public) network and eth1 is on the internal (private)
network:

Proto NATed Address Foreign Address State
tcp 192.168.1.3:53094 balrog-e.psi.ch:ssh ESTABLISHED
tcp 192.168.1.7:56063 lm4.license.Virginia.EDU:16286 TIME_WAIT
tcp 192.168.1.4:56065 lm4.license.Virginia.EDU:16286 TIME_WAIT
udp 192.168.1.4:ntp dns1.unix.Virginia.EDU:ntp UNREPLIED

You can use the �netstat-nat� command to monitor NATed connections:

The netstat-nat command is similar to the netstat
command we looked at earlier, except that it shows
you information about NATed connections passing
through your computer.

This type of NAT is also called �source NAT�, or SNAT,
since it re-writes the address of the source computer.
As we'll see, there's also �destination NAT� or DNAT.

iptables actually has two possible targets for source
NAT. The one shown above, MASQUERADE, is
appropriate for devices that have variable IP
addresses, supplied by a DHCP server. The other
target is SNAT, which is more appropriate for hosts
with fixed IP addresses. See the iptables man page
for more information about the differences between
the two.

You could use port forwarding to connect a home web
server to the Internet, for example. The details of
how to do this will depend on the particular network
hardware you have at home. In general, you'll need
to connect to your router or DSL modem (or both)
through these devices' web interfaces and configure
NAT appropriately. If you have a DSL modem and a
router, you may need to tell the DSL modem to
forward packets to the router, and then tell the router
to forward packets to your internal server.
Documentation for most of these devices can be
found on the web.

 58

iptables -t nat -A PREROUTING -i eth0 -p tcp \
--dport 80 -j DNAT --to-destination 192.168.1.4

Setting up Port Forwarding Using iptables:

Port forwarding can also be done with the rules in the �nat� table. Again,
eth0 is on the external (public) network. The host 192.168.1.4 is a web
server on the internal (private) network. The rule below forwards
incoming traffic bound for port 80 (the standard port for web traffic) to
the internal host.

Here we see an iptables target (DNAT) that requires an argument. In
this case, we need to specify the address of the internal computer to
which we want to send the packets.

If you were running an Internet business and you
expected a lot of traffic on your web servers, you
might want to be able to spread the traffic around, so
that the load is handled by several web servers.
IPVS is one way of doing this.

IPVS doesn't use iptables, but they both use the
underlying Netfilter framework.

 60

Using ipvsadm to Set Up Load Balancing:

ipvsadm -A -t 128.143.210.157:http -s wlc

Ipvsadm is different from iptables, although they both use Netfilter as a
backend. Ipvsadm lets you create a �Virtual Server� that actually
corresponds to a cluster of many real computers. Incoming connections
for this virtual server will be forwarded to one of the real computers
based on a predetermined policy (�scheduling method�). Here's an
ipvsadm configuration for a cluster of six web servers:

ipvsadm -a -t 128.143.210.157:http -r 192.168.1.2:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.3:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.4:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.5:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.6:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.7:http -m -w 1

Add this
service.

TCP
Host Port

Scheduling method:
�weighted least-connections�

First, add the service:

Then, add the servers:

Add this
server... to this service. Real server.

Use Masquerading.
Weight=1

Like iptables, there are ipvsadm-save and ipvsadm-
restore commands to save and restore an ipvsadm
configuration. In the Red Hat/Fedora/CentOS world,
the file /etc/sysconfig/ipvsadm will automatically be
used to configure ipvsadm at boot time if the
ipvsadm service is turned on.

Available scheduling methods include round-robin,
fixed target based on source address, and many
others in addition to the wlc method shown above.

 61

Using �fail2ban�:

2009-03-03 10:28:31,776 fail2ban.actions: WARNING [ssh-iptables] Ban 85.233.64.178
2009-03-03 10:38:31,986 fail2ban.actions: WARNING [ssh-iptables] Unban 85.233.64.178
2009-03-03 13:31:18,984 fail2ban.actions: WARNING [ssh-iptables] Ban 195.14.29.12
2009-03-03 13:41:19,264 fail2ban.actions: WARNING [ssh-iptables] Unban 195.14.29.12
2009-03-03 13:45:47,325 fail2ban.actions: WARNING [ssh-iptables] Ban 195.14.29.12
2009-03-03 13:55:47,555 fail2ban.actions: WARNING [ssh-iptables] Unban 195.14.29.12
2009-03-04 06:49:17,178 fail2ban.actions: WARNING [ssh-iptables] Ban 116.7.255.86
2009-03-04 06:59:17,421 fail2ban.actions: WARNING [ssh-iptables] Unban 116.7.255.86
2009-03-04 08:35:42,481 fail2ban.actions: WARNING [ssh-iptables] Ban 122.9.63.150
2009-03-04 08:45:42,623 fail2ban.actions: WARNING [ssh-iptables] Unban 122.9.63.150

/var/log/fail2ban.log:

One of the most common types of malicious activity on the Internet is
the �brute-force ssh attack�. In these attacks, Bad Guys use
automated tools to try logging into your computer by ssh. They use a
dictionary of common usernames and passwords, and they may make
thousands of login attempts. In the best case, this uses some of your
computer's resources. In the worst case, they stumble upon a valid
username/password combination and gain access to your computer.
One of the best tools for dealing with these attacks is �fail2ban�.
Fail2ban looks for groups of unsuccessful login attempts and
automatically blocks the attacking machine, using iptables firewall
rules. Fail2ban remembers which hosts are blocked, and automatically
unblocks them after some timeout period.

 62

Arno's Iptables Firewall:

�Arno's Iptables Firewall� (AIF) is a script to help automate the creation
of a complex set of firewall rules. The script reads a configuration file
that describes, at a high level, the layout of the desired firewall. The
configuration is usually �/etc/arno-iptables-firewall/firewall.conf�.
AIF can be used for even trivial firewalls, but it's invaluable for setting
up complex firewalls with multiple network interfaces, NAT, forwarding,
etc.

...
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,PSH,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,ACK,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS-PSH scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS-ALL scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN -m limit --limit 3/min -j LOG --log-prefix "Stealth FIN scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags SYN,RST SYN,RST -m limit --limit 3/min -j LOG --log-prefix "Stealth SYN/RST scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN FIN,SYN -m limit --limit 3/min -j LOG --log-prefix "Stealth SYN/FIN scan(?): " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -m limit --limit 3/min -j LOG --log-prefix "Stealth Null scan: " --log-level 7
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,PSH,URG -j DROP
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,ACK,URG -j DROP
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -j DROP
-A VALID_CHK -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN -j DROP
...

Here's a tiny section of the firewall rules produced by AIF for a non-trivial configuration:

AIF can be downloaded here: http://rocky.eld.leidenuniv.nl/

 63

TCP Wrappers:
Before firewall rules, we had �tcp_wrappers�. Tcp_wrappers is a library of
functions that helps programs decide on their own whether they will allow a
network connection from a particular remote computer. The library, called
�libwrap�, provides routines for parsing rules stored in the files /etc/hosts.deny
and /etc/hosts.allow, and applying those rules to incoming network
connections.
Each line in these files specifies a service and a list of clients (i.e., computers
to be allowed or denied access to that service). As a special case, the word
�ALL� can be used for either service or client.
The files are processed in this order:

� Access will be granted when a (service,client) pair matches an
entry in the /etc/hosts.allow file.
� Otherwise, access will be denied when a (service,client) pair
matches an entry in the /etc/hosts.deny file.
� Otherwise, access will be granted.

ALL: ALLhttpd: ALL
ALL: .virginia.edu

hosts.denyhosts.allow

For example, here are files that allow web server access to everybody, and
allow computers at UVa to have access to all services, but deny all other
computers access to anything:

 64

The End

Thanks!

