N\ A
nr\ Lmux for ,/ i

Resea'rchers

Chapter 2:

Today we'll start talking about things that are specific to
Linux and other unix-like operating systems.

We'll come back to these concepts again and again, so
this is just a quick first pass.

Part1: The Command Line Shell

This is a teletype terminal of the type | used back in the 1970s, when
all we had was the command line, and We Liked IT!

Linux is still maybe a little more weighted toward the command line
than Windows. Looking at the Linux World, you could say that
almost anything you can do at the command line can also be done
graphically. In the Windows world, | think it's fair to say that almost
anything you can do grapically can also be done from the
command line.

The two worlds are converging: Linux's graphical interfaces are
continually improving, and Windows keeps improving its
command-line interface.

We can all appreciate the value of a graphical interface. It's intuitive
(if it's well-designed) and its “discoverable”, in that you can browse
around a graphical program's menus and find out what the
program can do. But what's the value of a command-line
interface? If graphical interfaces are good, why do all major
operating systems continue to improve their command-line
interfaces?

The Command Line:

Prorq<‘ Command Res‘ults
~/demo> 15
clus.pdf data-for-everybody.1l.dat phase2
cluster.pdf ForYourEyesOnly.dat readme. txt
cpuinfo.dat phasel ReadMe. txt

Output of the “Is” command, which lists the files in the current directory.
Why should you do things from the command line?:

* In Linux, graphical tools provide a front-end to help you do tasks, but you
can do more from the command line.

* There are several sets of graphical tools available for Linux, so if you learn
one of them you may find that it's not available on the next computer you
use.

* There's no guarantee that a given computer will have graphical tools
installed, or even a monitor.

* Text commands are easily reproduced. It's easy to document what you've
done, or to tell someone else how to do it, or to automate what you've done.

The answer is that the command line has its own
advantage. Here are some of the things that might
make someone choose to use the command line
under Linux.

The last item is the most important, | think. This is true
for all operating systems, not just Linux, and it's why
all major operating systems still have a command-
line interface and continue to improve it.

What's a Shell?

The Shell intermediates between the user
and the operating system. It accepts
commands from the user, uses the
operating system to execute them, and
then returns results to the user.

Ldji @ @

v

The Operating
System

The User Shell

|
The Shell

There are graphical shells and command-line shells.
When you log in to Microsoft Windows, you're using
a graphical shell. In that case, you communicate
with the shell by pointing and clicking. Today we'll be
talking about command-line shells, where you
communicate by typing commands.

The diagram in the corner explains why we call it a
“shell”. It's the interface between the inner “kernel”
of the operating system and the outer world.

Command-line Shells:

Command-line shells accept typed commands, parse them and execute
them. They also:

* Expand wild-card expressions.

« Usually store a history of previously-typed commands, and provide a
way of recalling these.

* Provide a set of built-in functions that supplement (or sometimes
replace) the commands provided by the operating system.

* Provide the user with the ability to define abbreviations for commands
(aliases).

» Maintain a set of user-defined variables that can be used in command
lines (environment variables and shell variables).

Command-line Shells (cont'd):

+ Often have the ability to auto-complete partially typed commands or file
names.

* Provide control structures (if/then/else, while/do) that allow the user to
write programs in the shell's language (shell scripts).

* Provide the plumbing to connect commands together with pipes and to
redirect the input and output of commands.

The two most commonly used shells used on Linux systems are bash
and tcsh, which behave somewhat differently. Bash is Richard
Stallman's re-implementation of the original Bourne Shell (sh), which he
named the “Bourne Again Shell”. Tcsh is an enhanced version of csh,
which was an early alternative to the Bourne Shell.

A Few Useful Linux Commands:

Show the name of the current directory.

Show the contents of a file, one page at
more a time.

Move (rename, relocate or both) a file.

Make a new directory.

Show docs (manual pages) for a command.

Spit out the concatenated contents of one
or more files, without paging.

which Find a command in the search path.

This is just a list to get you started.

As you can see, the commands are typically terse.

Command Syntax:

~/demo> 1s -1

total 60

lrwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rW-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rw-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
SrW------- 1 bkwla bkwla 41 Jan 18 10:56 ForYourEyesOnly.dat
drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel

drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2

-rW-r----- 1 bkwla demo 72 Jan 18 10:52 readme. txt

SrW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 ReadMe.txt

Linux commands are often modified by the addition of switches or qualifiers like the “-I”, for
“long”, switch used in the Is command above. These modifiers will often take one of these
forms:

* A dash followed by a letter or number, optionally followed by an argument
* Two dashes followed by a word, optionally followed by an argument.

For Is, some useful switches are:

-1 Gives more information about the files.

-T Combined with -I, sorts the files in reverse time order.

-S Combined with -1, sorts the files in order of descending size.
-a Lists all files, including hidden files.

Multiple single-letter switches can often be combined, like “Is -IT” instead of “Is - -T”

In this case, we can change the behavior of the “Is”
command by adding the “-I" switch.

Note, though, that Linux commands were all developed
independently, and they have a long history. Syntax
conventions have evolved over time, and different
developers have used different conventions.

We'll see examples of some odd command syntax with
commands like “tar” and “ps”.

Command-Line History:

~/demo> history
349 16:14 wget http://download.adobe.com/pub/adobe/magic/svgviewer. ...
350 16:15 tar tzvf adobesvg-3.01x88-1inux-i386.tar.gz
351 16:15 tar xzvf adobesvg-3.01x88-1inux-i386.tar.gz
352 16:15 cd adobesvg-3.01
353 16:15 dir
354 16:15 cd ..
355 16:15 rm adobesvg-3.01*
356 16:15 rm -rf adobesvg-3.01*
357 16:19 git clone git://people.freedesktop.org/~cworth/svg2pdf
358 16:19 cd svg2pdf
359 16:19 dif
360 16:19 dir
361 16:19 git pull
362 16:19 make
363 16:19 dir
364 16:20 ./svg2pdf ../drawing.svg
365 16:20 ./svg2pdf ../drawing.svg junk.pdf
366 16:20 acroread junk.pdf

The “history” command shows you commands you've recently entered.

You can use the up and down arrow keys to recall previously-typed
commands and re-use them. If you know the beginning of a previously-
entered command, you can re-run it by entering a “!” followed by the
beginning of the command.

The PATH Environment Variable:

~/demo> echo $PATH
.:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

The PATH variable defines a search path for the shell to use when
looking for a program. It's composed of a list of directory names,
separated by colons. When looking for a program, the shell starts
at the left of the list and looks in each directory until it finds a
program with the matching name (or fails).

~/demo> which 1s
/bin/1s
The “which” command looks through the search path, just as the

shell would, and tells you where the shell would find a given
program.

With the PATH shown above, a local administrator can add local
programs to /usr/local/bin to make them available to users.

Note that:

1. %7, the current directory, is included. This is not
generally the case for users with administrative
privileges, for security reasons.

2. By putting an alternative program with the same
name in /usr/local/bin, a local administrator can
provide a modified version of a program that
overrides any version that might already exist in /bin
or /usr/bin.

Modifying the PATH Variable:

In the bash shell:

~/demo> echo $SHELL
/bin/bash
~/demo> export PATH="/home/bryan/bin:$PATH"

In the tcsh shell:

~/demo> echo $SHELL
/bin/tcsh
~/demo> setenv PATH ”/home/bryan/bin:$PATH”

Aliases and Shell Built-in Commands:

~/demo> which echo
echo: shell built-in command.

~/demo> which rm

rm: aliased to rm -1i
Creating aliases:
In the bash shell: In the tcsh shell:
~/demo> alias blarg=1ls ~/demo> alias blarg 1ls

A

~/demo> blarg

clus.pdf data-for-everybody.1.dat phase2
cluster.pdf ForYourEyesOnly.dat readme . txt
cpuinfo.dat phasel ReadMe. txt

Shell Startup Files:

Both bash and tcsh read a set of startup files when the user logs in.
These files can be used to automatically set environment variables (like
“PATH”), define aliases, or execute other shell commands.

For bash:
Add commands to the file “.bash_profile”, in your home directory.

For tcsh:
Add commands to the file “.login”, in your home directory.

Each of the shells actually looks at different startup files under different circumstances,
but the files above are a good place to start.

Plugging Commands Together With Pipes (|):

Linux commands are modular, and can be plugged together easily to do
complex things. The output of one command can be sent to the input of
another, and so on. (We'll see more of this when we start talking about
shell scripts.) There are two common ways of doing this, “pipes” and
“backticks”:

~/demo/phasel> 1s -1 | less (shows output of “Is” one page at a time)

~/demo/phase2> 1s -1

total 16

drwxr-x--- 2 bkwla bkwla 4096 Jan 19 10:41 .
drwxr-x--- 4 bkwla bkwla 4096 Jan 19 10:39 ..

-rw-r--r-- 1 bkwla bkwla 0 Jan 19 10:41 even_more_junk. txt
-rw-r--r-- 1 bkwla bkwla 0 Jan 19 10:41 junkl.txt
-rw-r--r-- 1 bkwla bkwla 0 Jan 19 10:41 junk2.txt
-rw-r--r-- 1 bkwla bkwla 32 Jan 19 10:38 more_stars. txt
-rw-r--r-- 1 bkwla bkwla 18 Jan 19 10:38 some_stars. txt

~/demo/phase2> 1s -1 | grep stars | sed -e 's/star/STAR/' | awk '{print
$3, SNF}'

bkwla more_STARS. txt
bkwla some_STARS. txt

Here we've introduced the “less” command, which will
show you its input one page at a time. You can use it
to view the contents of a file one page at a time by
typing, e.qg., “less file.txt” or “cat file.txt | less”.

Less is the GNU project's successor to the “more”
command found in the original Unix. On most Linux
systems, “more” is an alternative name for “less”.

We've also mentioned the grep, sed and awk
commands, which we'll talk more about when we
discuss scripting. For the example above, grep
selects only certain lines from its input, sed modifies
its input in a specified way, and awk selects only
certain columns of its input.

Stdin, Stdout, and Stderr:

stdout Channel through which output is print-
ed by a program.

stdin Channel from which a program obtains
input data.

stderr Channel through which a program re-
ports errors.

1s -1 | grep stars | sed -e 's/st/ST/'

s | stdout stdin_ - stdout stdin sed stdout

o o oy

Stdin, stdout and stderr are the connectors through
which commands are plumbed together.

You can think of each command as a little device that
has one input (stdin) and two outputs (stdout and
stderr). By plugging outputs and inputs together, you
can build up a long pipeline of commands that work
together to do a complex task.

Redirecting Output to a File:

1s -1 | grep stars > output.dat

Redirecting stdout into a file

1s -1 | grep stars >> output.dat

Appending lines to an existing file

Redirecting Both Stdout and Stderr to a file:

Under tcsh:
1s -1 | grep stars >& output.dat

Under bash:
1s -1 | grep stars > output.dat 2>&1

Plugging Commands Together With Backticks ('):

~/demo/phase2> 1s

bad_users.txt laundry_list.txt recipes.txt
good_users.txt random_junk.txt ugly_users.txt
...et cetera.

~/demo/phase2> 1s | grep users

bad_users.txt
good_users. txt
ugly_users.txt

~/demo/phase2> grep Bryan "1ls | grep users’

ugly_users.txt:Bryan

Commands between backticks are evaluated, then their output
is inserted into the command line just as though you'd typed it
there yourself, directly.

Here we see another way to use the grep command. If
it's given a list of flenames as arguments, it will
operate on the content of those files instead of on its
input. (In this mode it prints the name of the file in
addition to the matching line.)

This is typical of many Linux commands. If given an
input file name, they'll work on that file. Otherwise
they'll wait for input to be piped into them.

Pat 2: Files and Directories:

Listing the Files in the Current Directory:

~/demo> 1s

clus.pdf data-for-everybody.1.dat phase2

cluster.pdf ForYourEyesOnly.dat readme. txt

cpuinfo.dat phasel ReadMe. txt

~/demo> 1s -1

total 60

lrwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rwW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rwW-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rw-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
SrW------- 1 bkwla bkwla 41 Jan 18 10:56 ForYourEyesOnly.dat

drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel
drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2
-rwW-r----- 1 bkwla demo 72 Jan 18 10:52 readme. txt
-rwW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 ReadMe.txt

The first thing a user will probably want to do is look
around. We can do this with the “Is” command. Note
that “Is” and “Is -I” do different things.

Let's spend some time dissecting the output of the Is -
command.

Case-sensitive File Names:

~/demo> 1ls -1

total 60

lrwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rwW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rw-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rw-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
SrW------- 1 bkwla bkwla 41 Jan 18 10:56 ForYourEyesOnly.dat

drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel
drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2
-rW-r----- 1 bkwla demo 72 Jan 18 10:52 |readme. txt
-rW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 [ReadMe. txt

Under Linux, files are typically case-sensitive. This means that “readme.txt” is a
completely different file from “ReadMe.txt”. This is unlike Windows or OS X, where a
filename's case is preserved, but ignored.

We see that Linux file names are usually case-
sensitive.

This is a feature of the filesystem, not the operating
system, per se. We'll talk about filesystems at
another time. Some filesystems used under Linux
are not case-sensitive, but the most common ones
are.

Understanding the Output of the “Is” Command:

~/demo> 1ls -1

total 60

Jrwxrwxrwx |1 |bkwla bkwla 11| Jan 18 11:39 |clus.pdf -> cluster.pdf
-rw-r----- 1 bkwla bkwla|20601| Jan 18 10:51 cluster.pdf

ArW-r----- 1 bkwla demo 983| Jan 18 10:53 |cpuinfo.dat

-rw-r--r-- |1 |bkwla bkwla 29| Jan 18 10:59 |data-for-everybody.1.dat
ArW------- 1 /bkwla bkwla 41| Jan 18 10:56 |ForYourEyesOnly.dat
drwxr-x--- 3 |bkwla bkwla| 4096/ Jan 18 11:35 phasel

drwxr-x--- 2 bkwla bkwla| 4096 Jan 18 10:55 phase2

ArW-r----- 1 bkwla demo 72| Jan 18 10:52 |readme.txt

SrwW-r----- 1 bkwla bkwla| 9552 Jan 18 10:52 |ReadMe.txt

TW / Y /
User and group File modification time

Type of file ownership

Permissions for user,

File size (bytes)
group and others

Here are some other features of the output of our “Is”
command.

For now, we'll ignore the third column. This is the
number of “hard links”. For files, it will almost always
be 1. For directories, it will be 2 + the number of
subdirectories inside the directory. We'll talk about
“‘why” later.

The “file size” colum reports what you'd expect for files.
For directories, though, it reports the the size of the
directory excluding its contents. For a directory, this
number is the size of all of the “metadata” associated
with this directory: the file names, permissions, et
cetera. This isn't generally very useful.

Symbolic Links:

~/demo> 1ls -1

total 60

lrwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 |clus.pdf -> cluster.pdf
-rwW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rw-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rw-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
SrW------- 1 bkwla bkwla 41 Jan 18 10:56 ForYourEyesOnly.dat

drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel
drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2
-rW-r----- 1 bkwla demo 72 Jan 18 10:52 readme. txt
-rW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 ReadMe.txt

Symbolic links are like alternative names for a file or directory. In the example above,
“clus.pdf’ is a symbolic link pointing to a real file called “cluster.pdf”. You can have as
many symbolic links as you like pointing to a given real file. (Symbolic links can even point
to other symbolic links, but there's a limit on how many levels of this you can do.)

To create a symbolic link, use the “In” command:

In -s RealFile SymlinkFile

Be careful of the order! It's easy to get the file names reversed.

Symbolic links can be a wonderful way to solve
otherwise thorny problems. Many Unix
administrators, when asked what's the most useful
Unix command, will say “In -s”, the command used
for creating symbolic links.

Directory files:

~/demo> 1s -1
total 60
lrwxrwxrwx 1 bkwila
SrW-r----- 1 bkwla
SrW-r----- 1 bkwla
-rw-r--r-- 1 bkwila
SrW------- 1 bkwla
drwxr-x--- 3 bkwla
drwxr-x--- 2 bkwla
SrW-r----- 1 bkwla
SrW-r----- 1 bkwla

bkwla
bkwla
demo

bkwla
bkwla
bkwla
bkwla
demo

bkwla

11
20601
983
29

41
4096
4096
72
9552

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

18
18
18
18
18
18
18
18
18

11
10
10
10
10
11
10
10
10

139
151
153
159
:56
135
155
152
152

clus.pdf -> cluster.pdf
cluster.pdf

cpuinfo.dat
data-for-everybody.1.dat
EyesOnly.dat

readme. txt
ReadMe. txt

Directories can contain other directories, and these subdirectories show up in the output of
“Is -I”. In the example above, “phase1” and “phase2” are two subdirectories of the directory
we're looking at. Each of these subdirectories may contain its own files and more

subdirectories.

The “Current Directory’:

You can see what directory you're currently working in by using the “pwd” command:

~/demo> pwd
/home/bryan/demo

Note that the path to a file or directory is given as a list of parent directories,
separated by slashes, starting with the root directory (“/”). In this case, the current

working directory is “/home/bryan/demo”.
You can change your current directory by using the “cd” command, like:

~/demo> cd phasel

Or, equivalently:
~/demo> cd /home/bryan/demo/phasel

In the first case, we specify the name of a directory relative to the current
directory, and in the second case we explicitly give the full path name (the
complete name of the directory we're interested in.)

Let's pause for a minute to look at the way directories
are laid out on a typical Linux system.

First, there's the concept of a “current directory”.

The “Home Directory”:

Each user has a “home directory”. This directory will be your current
directory right after you log in.

~/demo> echo $HOME
/home/bryan

You can use the $HOME environment variable in commands, to refer to
your home directory.

~/demo> 1s $HOME/demo

You can also refer to your home directory as “~”, in most shells.

~/demo> 1ls ~/demo

If you just type “cd” by itself, it will take you to your home
directory.

$HOME is an “environment variable”. These are similar
to the variables used in computer programs. In fact, you
can write programs in the shell language, too. These are
usually called “scripts” or “shell scripts”. They can be
used to automate shell tasks you do often.

The $HOME variable is set for you automatically when
you log into the computer. We'll talk later about how
modify the values of environment variables, or create
new ones of your own.

The file here is
/home/bryan/file.txt,
which can be interpreted as

/ — home/ — bryan/ — file.txt

4

pwd

P

bryan/ y

bryani
L lfile.txt
elvis/|

elvis/

Here's a graphical representation of a highly simplified Linux directory
tree. One of the basic principles of Linux (and other varieties of Unix)
is that there's only one directory tree. Everything lives somewhere
under the “/” (root) directory.

This is unlike Windows, for example, where each device has a separate
directory tree. In Windows we have a directory tree on drive C:, a
different one on drive D:, and so on. As we'll see a little later, under
Linux all files on all devices show up somewhere in the same directory
tree, with “/” at its top.

Note that, whereas Windows uses “\" as the directory separator,
Linux uses “/".

To find out how much space is used by all the files underneath a given
directory, you can use the “du” command, like “du -s -k phase1”, which
would tell you the total size of all files under the subdirectory
“phase1”, in kilobytes.

D ose Mounting a Device at a “Mount
Point” Within a Directory Tree:

1s O Disk 2
N e
) 4
K — -
— |bryan/

L Jlfile.txt

The directory tree of each physical device is grafted onto the same tree,
with the root directory (“/”) at the top. There are no “C:” or “D:” drives
under Linux. Every file you have access to lives in the same tree, and
you don't need to care what device the file lives on.

Viewing Mounted Filesystems with “df”’:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVoloo
73545144 37268984 32479988 54% /

/dev/sda2 101105 45519 50365 48% /boot
/dev/sdb1l 721075720 630461080 53986040 93% /data
tmpfs 2008536 (0] 2008536 0% /dev/shm
home.private:/home 721075744 621413088 63034048 91% /home
mail.private:/var/spool/mail

721075744 621413088 63034048 91% /var/spool/mail

For now, just notice the last column of this output,
which shows several different filesystems mounted
within the directory tree. We'll talk about the details
of this when we discuss filesystems, in a later
meeting.

The Linux Directory Tree:

From the Linux Filesystem Hierarchy Standard: http://proton.pathname.com/fhs/

/

/bin
/boot
/dev
letc
/home
Nlib
/media
/mnt
lopt
Iproc
Iroot
Isbin
Isrv
tmp
lusr
Ivar

Top directory of the entire file system hierarchy.

Essential programs that need to always be availale for all users.

Boot loader files.

Special files representing various devices.

System-wide configuration files specific to this computer.

Users' home directories.

Libraries essential for the binaries in /bin/ and /sbin/.

Mount points for removable media such as CD-ROMs.

Temporarily mounted filesystems.

Optional application software packages.

Virtual filesystem, documenting kernel and process status as text files.
Home directory for the root user.

Essential system programs.

Site-specific data which is served by the system.

Temporary files (see also /var/tmp).

Secondary tree, containing the majority of user utilities and applications.
Tertiary tree for local data, specific to this computer.

Two important principles in Linux are:
1. There's only one directory tree.
2. Everything is a file.

Although it's possible to arrange the directories on a
Linux system in many ways, there's an evolving
standard layout called the Linux Filesystem
Hierarchy Standard (fhs). All major Linux distributors
use this now.

File Types (“Everything is a File”):

Regular files (-):
-rwW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

Directories/folders (d):
drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel

Symbolic Links (I):
Irwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf

Block or Character Device Special Files (b or c):
~/demo> 1s -1 /dev/sdal

brw-r----- 1 root disk 8, 1 Dec 26 10:23 /dev/sdal
~/demo> 1s -1 /dev/ttySoO
Crw-rw---- 1 root uucp 4, 64 Dec 26 10:22 /dev/ttySo

Unix Domain Sockets or Named Pipes (s or p):

~/demo> 1s -1 /var/lib/mysql/mysql.sock
srwxrwxrwx 1 mysgl mysql 0 Jul 1 2008 /var/lib/mysql/mysql.sock

~/demo> 1s -1 /var/run/xdmctl/xdmctl
prw--w---- 1 root root 0 Dec 26 10:24 /var/run/xdmctl/xdmctl

For now, we'll only talk about regular files, symbolic
links and directories. We'll save the other types for

another time.

File Permissions:

rwxXrwxrwx

- WX - |- -

UGO

For each file, three sets of permission bits can be set, referring to three
different classes of people: The user who owns the file (u), the group that
owns the file (g) and everybody else (“other”, or 0). For each of these
classes, several permission bits can be set (or not), including read (r),
write(w) and execute (x).

1 bkwla demo 20601 Jan 18 10:51 myprogram
User Group

For the file above, the user (bkw1a) has permission to read, write or execute
the file. The owning group (demo) has permission to read the file, but not to
write it or execute it. Other users have no permission to do anything with the
file.

Note that permissions are interpreted as though they were read from right to
left. For example, if the user permissions give no write access, but the
“other” permissions grant write access, then the user still won't be able to
write the file, even though others can. This is true since the user has been
explicitly denied access in the user permissions.

Looking back at the output of “Is”, let's examine the file
permissions column.

There are other things besides permissions that control
access to files. We'll talk about attributes, ACLs and
other things later.

File Timestamps:

mtime: The file's “modificaton time”. This is the time that the
file's contents were last modified. This is the time that “Is”
displays by default.

ctime: Somewhat confusingly, this is the “change time”. This
is the time at which the file's properties (excluding contents)
were last changed. For example, if the file's permissions are
changed, or its ownership is changed, the ctime will change.
To see the ctime of files, use “Is --time=ctime”

atime: This is the file's “access time”, showing the last time
the file was looked at. Many administrators currently disable
the updating of atime stamps, since they entail some 1/O
overhead and are seen as being of little value.

To see the atime of files, use “Is --time=atime”

Typically, Linux filesystems store several different
timestamps for each file.

Ctime is useful because hackers will often modify the
mtime stamps of any files they've changed, to hide
the hackers' activities. The almost always forget to
change the ctime stamp, though.

“Hidden” Files:

~/demo> 1ls -1

total 60

lrwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rwW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rw-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rw-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
SrW------- 1 bkwla bkwla 41 Jan 18 10:56 ForYourEyesOnly.dat

drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel
drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2

-rW-r----- 1 bkwla demo 72 Jan 18 10:52 readme. txt

SrW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 ReadMe.txt

~/demo> 1s -al

total 100

drwxr-x--- 4 bkwla bkwla 4096 Jan 18 11:39 .

drwxr-x--x 269 bkwla bkwla 28672 Jan 18 18:45 ..

-rW-r----- 1 bkwla bkwila 45 Jan 18 10:55 .anotherexample
Irwxrwxrwx 1 bkwla bkwla 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rW-r----- 1 bkwla bkwla 20601 Jan 18 10:51 cluster.pdf

-rwW-r----- 1 bkwla demo 983 Jan 18 10:53 cpuinfo.dat

-rwW-r--r-- 1 bkwla bkwla 29 Jan 18 10:59 data-for-everybody.1.dat
-rwW-r----- 1 bkwla bkwila 34 Jan 18 10:54 .examplel

SrW------- 1 bkwla bkwila 41 Jan 18 10:56 ForYourEyesOnly.dat
drwxr-x--- 3 bkwla bkwla 4096 Jan 18 11:35 phasel

drwxr-x--- 2 bkwla bkwla 4096 Jan 18 10:55 phase2

-rwW-r----- 1 bkwla demo 72 Jan 18 10:52 readme.txt

SrW-r----- 1 bkwla bkwla 9552 Jan 18 10:52 ReadMe.txt

Another switch to use with “Is”. Look at the difference between the
output of the two commands.

Any file whose name begins with a dot is a “hidden” file. These
aren't hidden for any security reason, they're just not shown so
things will be less cluttered. Generally, these files contain
configuration information of one type or another.

Two particular hidden files will always appear in every directory.

These are “.” and “..”. These files give you a way to refer to the
current directory (.) and its parent directory (..). For example, the
command “Is .” does the same thing as “Is”. To move up one

directory with cd, you could type “cd ..”. The properties of the “.”

and “..” directories, as shown by Is, tell about permissions,
ownership, etc. of the respective directories.

Note that the root directory also contains a “..” entry. In this case,

since there's nothing above the root directory, the “..” entry just
points back to root itself. (“/” is its own parent.)

Wild-cards (“globbing’):

The commands ‘Is -l junk.ixt” or “Is /home/bryan/demo/phase1” will
tell us about the named file or directory. We can also use wild-cards
to specify filenames that match a pattern. This process is called
“globbing” in Linux:

* Match any string of
characters.
D Match any single character.

[abC] Match a single a, b or c.

Match any character in the
[a ZA Z range a-z or A-Z.

‘ Note that these patterns won't match filenames beginning with a dot (“hidden” files). ‘

It's important to remember how wild-cards work on the Linux
command line. If we type a command like “Is *.txt”, here's what
happens internally:

“Is *.txt” is expanded to read “Is a.txt b.txt c.txt....” by inserting the
names of any files that match. Then the resulting expanded
command line is executed.

The “Is” command itself never sees the wild-card characters. The
command-line interpreter (the “shell”) expands the wild-card
expression before invoking “Is”. Because of this, wild-cards work for
any command, since wild-card support doesn't have to be built into
the command itself. Commands just get this functionality for free.
This is another example of the modular philosophy behind the design
of Linux and other varieties of Unix.

There are two types of pattern-matching in Linux, “globbing” and
“regular expressions”. For most things you'll do on the command-
line, globbing is used. We'll talk about regular expressions, which
are much more powerful but also more difficult to understand, when
we discuss scripting.

Some Examples of Wild-card Matching:

~/demo> 1s -1

total 2

SrW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 a.1
SrW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 b.1
SrW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 c.1
SrW-rw-r-- 1 bkwla bkwla 466 Aug 6 17:48 t2.sh
SrW-rw-r-- 1 bkwla bkwla 758 Jul 30 09:02 testl.txt
~/demo> 1ls -1 t?.sh

-rW-rw-r-- 1 bkwla bkwla 466 Aug 6 17:48 t2.sh
~/demo> 1ls -1 [ab]*

-rW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 a.1
-rW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 b.1
~/demo> 1ls -1 [a-c]*

-rW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 a.1
SrW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 b.1
-rW-rw-r-- 1 bkwla bkwla 0 Aug 6 18:42 c.1

Here are a few examples of glob-style wild-card
matching.

Part 3: Documentation

Documentation: Command-line help:

Many commands will tell you about themselves if you give them a “-h”
or “--help” switch on the command line. For example:

~/demo> 1ls --help

Usage: 1ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.

-a, --all do not ignore entries starting with .

-A, --almost-all do not list implied . and ..
--author with -1, print the author of each file

-b, --escape print octal escapes for nongraphic characters
--block-size=SIZE use SIZE-byte blocks

-B, --ignore-backups do not list implied entries ending with ~

-C with -1t: sort by, and show, ctime (time of last

modification of file status information)
with -1: show ctime and sort by name
otherwise: sort by ctime

-C list entries by columns
--color [=WHEN] control whether color is used to distinguish file

types. WHEN may be “never', “always', or “auto'

-d, --directory list directory entries instead of contents,
and do not dereference symbolic links

-D, --dired generate output designed for Emacs' dired mode

-f do not sort, enable -aU, disable -1st

-F, --classify append indicator (one of */=>@|) to entries

Note that this is just a convention, and not all
commands will honor it. As we noted before, these
commands have a long history, and were written by
many authors.

Documentation: Man Pages:

“Man Pages” (online documents in a standard format) are available for
most common commands. The “man” command will show these to

you, one page at a time. To exit from man, type “q” (for “quit”). To go to
the next page, press the spacebar. To go back up, press “b”.

~/demo> man 1s
LS(1) User Commands LS(1)

NAME
1ls - 1list directory contents

SYNOPSIS
1s [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

g=quit, b=back, space=forward, h=help

For information about using the man command, don't
hesitate type type “man man”.

Man pages are the most common type of online
documentation for Unix-like operating systems.

Documentation: Info Paqges:

“GNU Info Pages” are another standard format for online documentation. Fewer
commands have info pages, but when present this documentation may be more
extensive than the command's man page. Info pages are arranged in a tree, with
links between documents, much like a primitive version of the World Wide Web.

~/demo> info 1ls
File: coreutils.info, Node: 1ls invocation, Next: dir invocation, Up: Directo\

ry listing

10.1 “1s': List directory contents

The “1s' program lists information about files (of any type, including
directories). Options and file arguments can be intermixed
arbitrarily, as usual.

For non-option command-line arguments that are directories, by
default “1s' lists the contents of directories, not recursively, and
omitting files with names beginning with *.'. For other non-option
arguments, by default “1s' lists just the file name. If no non-option
argument is specified, "1ls' operates on the current directory, acting
as if it had been invoked with a single argument of ~.'

By default, the output is sorted alphabetically, according to the
locale settings in effect.(1) If standard output is a terminal, the
output is in columns (sorted vertically) and control characters are
output as question marks; otherwise, the output is listed one per line
and control characters are output as-is.

--zz-Info: (coreutils.info.gz)ls invocation, 54 lines --TOp------------=---------
Welcome to Info version 4.8. Type ? for help, m for menu item.

Some commands have only info pages. These
commands will typically have a minimal man page
that only refers you to the info page.

For information about navigating around inside info, try
typing “info info” at the command line.

Part 4: Text Editors

Text Files vs. Word Processor Files:

If | open a text editor, type the line “This is a test” and save the file as
“file.txt”, the file will have the following data inside it:

file. txt

This is a test.

If | open a word processor, type the line “This is a test” and save the file as
“file.doc”, the data inside the file will look like this:

file.doc

It's important to know how to use a text editor because

66Q0 AZ60 0 @@ @ @ @ @ @ @ @ @ @ @ @ @; A C ABE A@AFA@N@N@N@NANENENANANS
A@A@N@AKA@N@N@ALA@A@N@AMA@N@N@ANA@N@N@NON@N@NBAPARN@NENQAEN@NBNRABN@N@NSA@NRNANS
A@A@N@AKA@A@N@ALA@A@N@AMA@A@M@ANA@N@N@N0N@N@NBNAPARN@NENQAAN@NBNRABN@N@NSA@NRNANS
NONQBHEEF ABA@A@N@MNOM@BAN@NMN@M@NBF AXA@MN@N@MicTrosoft Word-DocumentA@
A@A@N@MSWordDocA@APA@A@A@Word . Document . 8A@86q @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Q"
A@AAN@ [A@NON@ABA@A@N@N@N@N@N@\ @ @M PHBNBAE\N@N@N@NGA @D A@e AT ABaNQUA@LARE QNN
A@APA@ASGA@AAATEXA@N@N@ N@/APAANAARNA A@A@A@ADA@LA@LNA@SA@EA@A@N@NBA@AQA@ADARNINS
@/0"@"0B686/0" @70/ 0"0"0"0"0"0"@ 0" 0" 00" @"00"0 02 002 00" 00" 00" 0 "
A@A@N@N@M@N@M@N@M@"@MQ @M @ N @ M@ e @ e @ e @ @ @ A @ A @ @ @ @ @ @ N AN NS
A@A@N@TA@N@NENKA@N@NE ™ A@MN@MLA@NEN@LA@N@AN@AMA@N@A@XANEN@NENQABN@NBN\ 2047N@N@NANBAS
6/_BAVA_BAVA_86ACBAANGAANBABBAAANAA/GAA : AAN[ABBAABAABACBAANABBA@AE%NONQ4BA@NBS
BA@"$N@?BAYN@AR, AN@ANZ)N]BANKY% 3NEBAX-NZ2)AK2BANA@AXAR: ABBANANEAAABADBAB"A@ASAGNA@S
AN/BAV/BAV/ANQACBAA I AAAABBAA . AANOGAAARNAN [ABBAANANAAQAEBA@AP/ N[A_$SAABANABAOAT ($
1!BAOA[(AFBAA9AFBAAANALIABBA@ADL ! AR+AEBAAARNA+ABBAANVAA/ ABAANABABAANAZAANKABBA@AS
OA@NXB<A@AFAN@/ADBAA, ABAAA@AQ=ATAKAFBARSAHA [#ARBAFA@AGA@ADBAASAANKAFBA@ACA _A@ATS
ANAOBIALANAALIAMACBAA4NA - A BBAAANWAANANBBA@AST | ARNAA%AA >+NLBANAALIAMIAN@ABBAANS
ANAOBLALAAAAATIAMAEBA@A@NEBAAN@ABACAAADADACAAADACACA@ACADACADA@ANCACAANDABACAANGAS
AEA_BAH, APATBAOANACBAANGAANUABBAATAA . ABBAANAAANXACBA@AEANASAY "A@ABBA@AGAPA]BAONS
AEA_BAH, APATBAOANAFBA@A@NEBAAA@ABACAAADAHACA@ACADACADA@AFACAAN@ABBA@AFAMANGAPANS

BA@A_; 3@NFA@9"ANNB: *ASSAG ; BRAOAFH#ARAMAV * AM B"AV.A@\B2/ABBA@NFBA@NK<NO?/ABS$
AY1AM BAQAHAA[AOADBABAQA@AHAYAQBAG+HAA . AUNEBA@ AHAT>AFAWAEQ>AHA@ABBABAQA@ANAYAS
...etc.

most Linux configuration files are text files. For

example, the “.login” or “.bash_profile” shell startup

files are just plain text files.

Some Common Linux Text Editors:

vi The original Unix “visual editor”. Found on all
Unix-like computers. Rather non-intuitive.

pico A small, intuitive editor included with the
“pine” mail program. Found on systems

where iine is installed.

| recommend you learn to use emacs, but any of these are fine. It may be easiest
to start out by learning pico/nano.

Using nano:
~/demo> nano purplecow. txt

\ GNU nano 2.2.4 File: purplecow.txt Modified

I've never seen a purple cow.
I never hope to see one.

But I can tell you anyhow,
I'd rather see than be one.

AG Get Help A0 WriteOut AR Read File AY Prev Page AK Cut Text AC Cur Pos
AX EXit AJ Justify AW Where Is AV Next Page AU UnCut TextAT To Spell

Instructions at the bottom show you how to do basic operations, like saving the file
and exiting nano. Note that “V" is just shorthand for “hold down the CTRL key”.

Some Emacs Commands:

Starting emacs

> emacs
10 SLart emacs.
> emacs filename
to start emacs and load a file
> emacs -nw filename
o start emacs with no new window (load file)

Cursor Positioning

For

forward (right) one character.
Bor

‘ack (left) one character

Ug|

down one character
Cle
left one word
EDF
right one word

Search and Replace

s patterntext
search for patterntext; cursor moves as you type. Press
once at the correct location
R patterntext
search backwards for patterntext; cursor moves as you type.
search for the next occi
Tl oldstring

urrence
newstring [ENIER

Search for oldstring and replace it with newsiring. The ¥ key

confirms each replacement, N skips it, to exit

Quitting

x CEDe
quit emacs (Can be used with impunity — the system will
prompt if the workspace has not yet been saved.)

Ue

aborts any command in progress

o0 beginning of line
to end of line

start of document

end of document

page up
L) v

page down

Regions

sPC
set mark at cursor
L w

kill region
W
copy region to kil ring

Y
yank back last thing killed

1o see the wtorial
H A topic
to see help about topic
Xu
undo the last command

L
cursor in middle of screen
u zo ETELIN
advance 20 lines
x W
display the line nursber where the cursar is located
[EEDx goto-line 399
g0 o line number 999

Loading and Saving

F filename

create new filename for editing (clears workspace)
filename

lename for editing

W filename

wiite (save) as filename

s

resave under the current filename (based on above or name
given when starting emacs)

Emacs cheat sheet:http://ccrma.stanford.edu/guides/package/emacs/emacs.html

This is copied from the Stanford site, above.

Thanks!

