\ /4
N MLinux for i

Researchers

Chapter 3: Users and Groups

Until now, most of the things we've talked about have
been for regular users. Now we'll start talking about
real administrative tasks that only privileged users
can perform.



Part 1: Users

Typical Computer User:

The first thing every user does when he or she sits
down at a computer (even if he uses Windows) is log
in. He:

1. Tells the computer who he is, and
2. Proves that he's who he says he is, by supplying a
password (or equivalent).

Today we're going to talk about how this process works
under Linux.



File-based Authentication Mechanism:

Traditionally, in Unix-like systems, authentication information was stored in two files,
/etc/passwd and /etc/group. In the late 80s and early 90s, two more files were added,
called /etc/shadow and /etc/gshadow, in an effort to increase security. These four files
are still the most commonly used mechanism for storing authentication information on
Unix-like computers.

/etc/passwd

/ e t C / g r O u p 1 Traditional Unix
-+

/etc/shadow = "

/etc/gshadow

There are other ways of storing authentication
information: NIS, LDAP, Kerberos and others. These
are usually used when several computers need to
share a common database of users. For standalone
computers, file-based authentication is still the most
common mechanism, though.

One exception is Mac OS X (another Unix-like
operating system). Before version 10.5 (“Leopard”)
OS X used a different type of user database, called
Netlnfo. After that, OS X switched to storing user
information in “plist” files (XML-formatted files) in the
directory /var/db/dslocal/nodes/default/users. Each
of these files contains the information you'd find in
the Unix-style password files, along with other OS X-
specific information.



The /etc/passwd File:

~/demo> less /etc/passwd
root:x:0:0:root:/root:/bin/tcsh
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
1p:x:4:7:1p:/var/spool/1pd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

bkwla:x:500:501:Bryan K. Wright:/home/bkwla:/bin/tcsh
elvis:x:502:503:Elvis Aaron Presley:/home/elvis:/bin/tcsh

The file has one account per line, with each account's information given
as a colon-separated list of fields:

username:password:UID:GID:GECOS:homedir:shell

The files we're going to talk about are all plain text
files, that can be edited with any text editor.



Passwd Fields:

elvis:x:502:503:Elvis Aaron Presley:/home/elvis:/bin/tcsh
username uid gid GECOS homedir shell
password

The name under which the user logs in.

A unique numerical identifier for this user.

Originally “General Electric Comprehen-
sive Operating System”. Now used to
optionally store the user's full name, office
and phone numbers.

The user's login shell.



The GECOS Field:

From the passwd documentation:

“GECOS means General Electric Comprehensive Operating System, which has been
renamed to GCOS when GE'’s large systems division was sold to Honeywell.

Dennis Ritchie has reported: 'Sometimes we sent printer output or batch jobs to the
GCOS machine. The gcos field in the password file was a place to stash the information
for the $IDENTcard. Not elegant.”

These days, the GECOS field is used to store an optional
comma-separated list of information about the user. Often,
the only item present is the user's real name, but the field
may even be completely blank.

GECOS

a N

elvis:x:502:503:Elvis Aaron Presley,Physics 315,4-7218,555-1212:/home/elvis:/bin/tcsh

Name Office Office Home
Phone Phone



The Root User:

\root:x:é:@:root:/root:/bin/tcsh

uiD

In Linux systems only one UID has any special privileges, and this is
UID=0. UID=0 is reserved for the “root” user, or root equivalents.
Usually, there is an account with the username “root” that has this
UID. Any account with UID=0 has complete control of the computer.

For example, the root user can:

* read or write all files*,

 change any user's password, and

+ can take on the identity of any other user without the user's
password.

System vs. Real Accounts:

UID values under 500 are, by convention, reserved for “system
accounts”, like root. Accounts for real users usually begin with UID
500. But this is only a convention, and has no real significance.

* But he/she may first need to make the file writeable or readable.

Note that the “UID 500" convention is changing. Most
Linux distributions are changing to a range of zero to
1000 for system accounts. But again, this is only a
way of keeping things organized. The only uid
number that has any special privileges is uid=zero.



The Difference Between Username and UID:

Internally, accounts are identified by their unique numerical UID, but any UID may
have more than one username associated with it. Each username may have
different properties (password, home directory, shell, etc.). You might think of
these as the same user, but with different default settings.

Different Different Properties
Usernames SameUDD I

/ N
bkwla:x:500:501:Bryan K. Wright:/home/bkwla:/bin/tcsh
WPryan:x:500:501:Bryan K. Wright:/home/bryan:/bin/tcsh
goofy:X:500:503:That goofy guy:/home/bkwla:/bin/bash

The ownership of a file is stored as a UID, not a username. When “Is” displays a
file's owner, it looks up the UID in the list of accounts, and shows the first username
that matches that UID. You can cause Is to show you the numerical user and group
ownership of a file instead by using the “-n” switch:

~/demo> 1s -1 readme.txt
-rwW-r----- 1 bkwla demo 72 Jan 18 10:52 readme.txt

~/demo> 1s -1n readme.txt
SrW-r----- 1 500 505 72 Jan 18 10:52 readme.txt

In the example above, if we wanted to have “Is” display
the file's owner as “goofy” instead of “bkw1a”, all
we'd need to do is move the line for goofy above the
line for bkw1a in /etc/passwd. We could do this with
any text editor.



Cryptographic Hashes:

(also called “message digests”)

“hounddog”——» F(X) — ™ “68e04426deb4c6792120cf80db215f81”
Plain Text Hash
Hash Function

A cryptographic hash function, F(x), has the following properties:

* It's deterministic. For any particular input, F(x) will always produce
the same output (called a “hash” or a “message digest”).

* The output of F(x) is always the same length.

* The output is almost always unique. Different inputs are very
unlikely to produce the same output, even if they differ only slightly.

* F(x) is relatively easy to compute.
* The inverse function is extremely difficult to compute. It's very

hard ( ideally, impossible) to determine what plain text produced a
given hash. This is called “trapdoor encryption”.

So why is this relevant to what we're talking about?
We'll see in a minute.



How Passwords are Stored:

When a new account is created, or when a password is
changed, here's what happens:

Enter New Password: hounddog \

Hash Function: F(X)

/etc/passwd file: Y
‘elvis:68e04426deb4c6792120cf80db215f81:502:503:elvis:/home/elvis:/bin/tcsh ‘

The plain text password is never stored. Only the cryptographic
hash is stored. Because hash functions are almost impossible to
invert, nobody but “elvis” can know what his password is. So how
can the system verify that a user knows his or her own password?

I'm simplifying things a little here. We'll explore some
of the complications soon.



How Passwords are Verified: A ogin time:

1. The operating system prompts

- the user for a username and
Enter username and password to log in.|  password.

Username: elvis
Password: hounddog

2. A hash is created from the
provided password.

\ 3. This hash is compared to the
hash stored in /etc/passwd.

F(X) —» “68e04426deb4c6792120cf80db215F81"

Hash Function \ B 7\
, |
‘
| H |
Lo

/etc/passwd file:

‘elvis:68e04426deb4c6792120cf80db215f81:502:503:elvis:/home/elvis:/bin/tcsh

Do they match?
If so, you're allowed.

This means that the operating system doesn't need to
know the password in order the verify that the user
knows the password. Clever!



Dictionary Attacks:

Word Hash
aardvark 88571e5d5e 13a4a60f82cea7802f6255
abnegation f8ec9b74a9b9aa1131abbfcOb8dca989
acrimony a246c59fdccead2bcd8202156a5f72de
adumbration e6b65039a16dc9ffd4cca73e7f1b973f
advil a3d4b48aebd5c6b9aaf57583601f1857
aerie 70f1f8799ad6af309af5434cb065bd59
affinity 1474047fb00b2d8d95646f7436837ed0
agnatha c6bf04438cd39591695454ea4c755ach
aherne e177eedf9e5b91c39d0ec9940c9870b9
aida 2991a6ba1f1420168809c49ed39dba8b
ajax 2705a83a5a0659cce34583972637edab
AKKA 004ab7976e8b4799a9c56589838d97a6
algae 4360ef4885ef72b644fb783634a7f958

anthocyanin

antidisestablishmentarianism

anxiety

apple
aurora

7c425ea7f2e8113f6calebe5c3ab54a9
2a3ec66488847e798c29e6b500a1bcct
d3af37c0435a233662c1e99dbff0664d
1f3870be274f6c49b3e31a0c6728957f
99c8ef576f385bc322564d5694df6fc2

Even though it's computationally expensive to compute the inverse of F(x), it's easy to
generate hashes for thousands of words and store the results in a file. Once we've
created this dictionary of hashes, we can just look up a given hash on the right, and
match it with the plain text on the left. Since users are inclined to use common words as
passwords, this is a security problem.



Adding Salt:

One way to reduce the effectiveness of dictionary attacks is to add some
random “salt” to the plain text before creating the hash. This is always done

now.
The operating system generates
\ Enter New Password: hounddog \ two random characters: mx
thounddog The random two characters of salt

means that any given password

may result in thousands of
different hashes. In order to use a
dictionary attack, the attacker
would need to compute and store
thousands of hashes for each
word in the dictionary, instead of
just one hash per word.

Hash Function: F(X)

Hash of “mXhounddog”
/\

elvis:mx92d7dec6604780a82fcd116a229ea224:502:503:elvis:/home/elvis:/bin/tcsh

Salt gets recorded here. When testing passwords in the future, add
this salt, then create a hash and compare it with what's store here.



Password Hash Algorithms:

DES:

Based on National Bureau of Standards' Data Encryption
Standard (DES).

“hounddog” = | MX1ECOUuR8fX7w

MD5:
RSA's “Message Digest 5" algorithm.

“hounddog” =| $LPSG. 2TLOLSVQUZCcYNVA7kgMwg3gEB2RA

SHA-256:
NSA “Secure Hash Algorithm (256-bit)”.

“hounddog’ =| $5$SG . 2TLOI$NScvuFO0zU/1kdIMod1g8Sn59muU

A r

Format Salt  Delimiter Hash

and...

There's also an SHA-512 algorithm. These hash

strings will begin with “$6$” when used in a
password file.

The SHA-256 and SHA-512 are used in current Linux
distributions. The person behind this effort is Ulrich
Drepper, the same person who wrote the long
document about PC memory, that we referred to in
an earlier talk. Here's his documentation about the
SHA password hash standards:

http://people.redhat.com/drepper/SHA-crypt.txt

See the following Wikipedia article for more information
about various password hash formats:
http://en.wikipedia.org/wiki/Crypt_(Unix)



Password Hash Algorithms (cont'd):

SHA-512:
NSA “Secure Hash Algorithm (512-bit)”.

Format Salt Delimiter Hash

i

"hounddog"= | 36 SDBVUFhXpSr nNMSEOPSMkXUTEStsrOz5pvJIfO
P3k10RvtuvczZXWpliByuDaRZbVmrbKP29julGPT
c7chu.bQipR8.RoOPpHWO

This is the format you'll usually see these days in /etc/password or /etc/shadow.



The /etc/shadow File:

For many reasons, all users need to be able to read the /etc/passwd file. Commands run by
users, such as “Is”, use information in /etc/passwd to map UIDs to usernames, for example.
Most of the information in /etc/passwd isn't confidential, and for many years, it was assumed
that, since the password field was stored as a hash, it was safe to let users see it.

Advances in computing power have made it more and more likely that hashed passwords
can be “cracked”. Because of this, in the 1990s systems started moving away from storing
password hashes in /etc/passwd.

The alternative location for password hashes was /etc/shadow, the “shadow password file”.
This file is readable only by root. The completely new file also gave room to add more
information about each account.

Passwords may still be stored in either file. If a password hash is present in /etc/passwd, it is
used. If the password field in /etc/passwd contains an “x”, then /etc/shadow is consulted. All
major distributions now store password hashes exclusively in /etc/shadow.

~/demo> 1ls -al /etc/passwd
-rw-r--r-- |1 root root 3565 Jan 25 00:12 /etc/passwd

Permissions

\~/demo> 1s -al /etc/shadow
‘-r -------- 1 root root 2024 Jul 1 2008 /etc/shadow

Permissions

One example, showing why it's not safe to allow just
anyone to read password hashes:

When two different plain text strings produce the same
hash, this is called a "hash collision”. Hash functions
are designed to make hash collisions extremely
unlikely, but they're still possible. Security
researchers have recently found methods for
producing hash collisions at will for the SHA-1
algorithm. Through these mechanisms, a plain text
string can be produced which results in a given hash.
The plain text may not be the same plain text that
was used to originally produce the hash, but that
doesn't matter for authentication purposes.



The Format of /etc/shadow:

elvis:$1$SG.2TLOI$5Xx2X1T7nWgLrRgKNJaYc59:14057:0:99999:7: ::

- username
- password hash

- days since Jan 1, 1970 that password was last changed
- days before password may be changed

- days after which password must be changed

- days before password is to expire that user is warned

- days after password expires that account is disabled

- days since Jan 1, 1970 that account is disabled

- areserved field



Some Tools for Managing User Accounts:

getent Get information about users, groups, etc.

userdel Delete a user account.

usermod Change a user's home directory, account ex-
piration, etc.

chsh Change a user's login shell.




Using “su” to Become Root:

You can use the “su” command to temporarily change your
identity. For example, if you wanted to temporarily become the
root user, to perform some administrative task, you could enter a
command like this:

Note spaces

~/demo> su - root
Password:
[rOOt@demO ~]# <4—F——— Root prompt

Once you're done, type “exit” to return to your original unprivileged
state.

Note that there are two ways to use “su”. If you use it as shown above, with a
dash, the result will be just as though you'd logged out and logged back in as
root. Root's login scripts (if any) will be executed, and you'll start in root's home
diretory. Alternatively, if you type just “su root”, root's login scripts won't be
executed, and you'll be left in the directory where you started. This may cause
unexpected results.



Using “su” as root to Become Another User:

You can also use “su” as root to become another
user:

[root@demo ~]# su - elvis
~/demo>

Note that root isn't required to enter a password
to do this.



Getting User Information:

~/demo> getent passwd
root:x:0:0:root:/root:/bin/tcsh
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
1p:x:4:7:1p:/var/spool/1pd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

bkwla:x:500:501:Bryan K. Wright:/home/bkwla:/bin/tcsh
elvis:x:502:503:Elvis Aaron Presley:/home/elvis:/bin/tcsh

~/demo> getent passwd elvis
elvis:x:502:503:E1lvis Aaron Presley:/home/elvis:/bin/tcsh

Or just look at /etc/passwd. The advantage of getent is that it will work
even if account information isn't stored in /etc/passwd. (Some
alternative storage schemes are NIS, LDAP and Kerberos.)



The “finger” Command:

~/demo> finger elvis

Login: elvis Name: Elvis Aaron Presley
Directory: /home/elvis Shell: /bin/tcsh

Office: Physics 315, 4-7218 Home Phone: 555-1212

Last login Fri Dec 12 10:57 (EST) on pts/15 from
localhost.localdomain

Mail last read Fri Sep 5 08:14 2008 (EDT)

No Plan.

The “finger” command shows a user's GECOS information and
information from other sources. If the user has a file called “.plan”
in his or her home directory, the contents of this file will be
displayed at the end of finger's output.

When he started Linux development in the early "90s, Linus
Torvalds' .plan file read:

World Domination.

Finger can, in principle, be used to look at user
information on other computer, across the network,
but this isn't often done today, for security reasons.
To enable this functionality, the remote computer
must be running a server called a “finger daemon”.



The “whoami” and “id” Commands:

The “whoami” and “id” commands can be used to find out who the
current user is:

~/demo> whoami
elvis

~/demo> 1id
uid=502(elvis) gid=503(elvis)
groups=503(elvis),505(demo)




Adding a New User:

[root@demo ~]# useradd gandalf *

[root@demo ~]# passwd gandalf =
Changing password for user gandalf.
New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens
updated successfully.

[root@demo ~]# chfn gandalf =
Changing finger information for gandalf.
Name []: Gandalf the Grey

Office []: Lothlorien

Office Phone []: 777-7777

Home Phone []: 777-8888

Add entries in
passwd and shadow.

Set password.

Set GECOS
information.

At many sites, local administrators have created an “adduser” script, or
something with a similar name, to automate this process, create accounts
that conform to local standards, and perhaps perform additional tasks

such as e-mailing an initial password to the new user.



Changing the Default Settings for New Accounts:

You can use the “-D” switch with useradd to change
default settings used when creating new accounts:

Setting the default login shell to tcsh instead of bash:
‘[root@demo ~]# useradd -D -s /bin/tcsh

See “man useradd” for other options.



Pgrt 2: Groups_

e

|

It's often useful to define groups of users. The main
reason this is done is so that these groups can be
granted access permissions. We might say, for
example, that all members of the “accountants”
group have access to a particular file, but nobody
else has access.



The /etc/group File:

~/demo> less /etc/group
root:x:0:root
bin:x:1:root, bin,daemon
daemon:x:2:root, bin, daemon
sys:x:3:root,bin,adm
adm:x:4:root, adm, daemon
tty:x:5:

disk:x:6:root
lp:x:7:daemon, 1p

bkwla:x:501:
elvis:x:503:

The file has one group per line, with each group's information given as a
colon-separated list of fields:

\groupname:password:GID:userlist\

Again, this is just a text file that can be edited with any
text editor.



Fields in the /etc/group File:
demo:x:5£5:bkw1a,elvis

groupname i users
password

groupname The name of the group.

gid A unique numerical identifier for the
group.




The User's Primary Group:

Each user has a “primary group” specified in /etc/passwd. Note that
the user doesn't need to be explicitly listed in the /etc/groups file as a
member this group.

~/demo> getent passwd elvis
elvis:x:502:503:Elvis Aaron Presley:/home/elvis:/bin/tcsh

~/demo> getent group 503
elvis:x:503:

Most major Linux distributions, in their default configuration, are set
up so that a new group will be created whenever a new user is
added. This group will have the same name as the user, and will be
the new user's primary group. This is part of what's called a “User
Private Group” configuration. By making it safe to allow group
read/write permission on files by default, UPG is intended to make it
easier to create collaborative directories shared by several users.
See the following web page for more details:

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-users-groups-private-groups.htmi

Traditionally, all users had a single group (called
something like “users™) as their primary group.
Because of this, the default permissions on newly-
created files couldn't allow the group to read or write
the file, since that would allow all other users.



Some Commands for Working with Groups:

groups Shows user's group member-
ships.

groupdel Delete a group.

gpasswd Set a group password, or man-
age the information in
/etc/gshadow.



Viewing Group Information:

Information about the “demo” group:

~/demo> getent group demo
demo:x:505:bkwla, elvis

Which groups do | belong to?

~/demo/> groups
bkwla demo

Which groups do | belong to? (Another way to find out)
~/demo> id

uid=500(bkwla) gid=501(bkwla)
groups=501(bkwla), 505(demo)

Or, if your group information is stored in /etc/group,
just look at this file.



Group Passwords and the “newagrp”’” Command:

Administrators can set a password for a group,which will be stored
in /etc/group.

[root@demo ~]# gpasswd demo

Changing the password for group demo

New Password:
Re-enter new password:

This has no effect on group members, but it allows non-members
to temporarily join the group by using the “newgrp” command and

supplying the password.

~/demo> newgrp demo
Password:

I've never seen this actually used, but it's interesting.



Adding Groups and Members:

Groups can be added with the “groupadd” command,
and members can be added through “usermod”:

[root@demo ~]# groupadd whitecouncil
[root@demo ~]# usermod -a -G whitecouncil gandalf

[root@demo ~]# groups gandalf
gandalf : gandalf whitecouncil




The /etc/gshadow file:

For the same reasons that /etc/shadow was created as a supplement
to /etc/passwd, the file /etc/gshadow was created as a supplement

to /etc/group. The gshadow file is only readable by privileged users,
and is primarily intended to contain the password hashes that
originally lived in /etc/group.

The new file also provided an opportunity to add new functionality to
the group system. This extra functionality is primarily accessed
through the “gpasswd” command.

~/demo> 1s -al /etc/group
-rw-r--r-- |1 root root 3565 Jan 25 00:12 /etc/group

Permissions

~/demo> 1ls -al /etc/gshadow
“r-------- 1 root root 2024 Jul 1 2008 /etc/gshadow

Permissions



The Format of the gshadow File:

demo:$1$2tbB2/9gG$UXUzIujq/2GMXhF3xrhtBO: :

The fields are:
- group name

- encrypted password
- comma-separated list of group administrators
- comma-separated list of group members

Note that the gshadow file allows for the existence of “group
administrators”. These are users (possibly otherwise unprivileged,
and possibly not even members of the group) who are allowed to
change the group's password or add/remove members from the
group, using the gpasswd command:

~/demo> gpasswd -a elvis demo




The “setqid” Bit:

It is possible to set the permissions and ownership on a directory
so that files created within the directory will inherit the group
ownership of the directory. This is accomplished by setting the
“setgid” bit in the directory's permissions:
‘ drwxrw§r-x 2 bkwla demo 4096 Jan 27 13:12 shared ‘
Files subsequently created in the “shared” directory will have

their group ownership set to “demo”, making it easier to share
them with other members of this group.

Setgid bit



Part 3: Managing File Ownerships and Permissions:




The “chown” and “chqrp” Commands:

Afile's user ownership and group ownership can be changed
with “chown” (change ownership) command:

[root@demo ~]# 1s -1 junk.dat
-rw-r--r-- 1 bkwla bkwla 0 Jan 25 00:07 junk.dat

[root@demo ~]# chown elvis junk.dat
[root@demo ~]# 1s -1 junk.dat
-rw-r--r-- 1 elvis bkwla 0 Jan 25 00:07 junk.dat

[root@demo ~]# chown elvis.demo junk.dat
[root@demo ~]# 1s -1 junk.dat
-rw-r--r-- 1 elvis demo 0 Jan 25 00:07 junk.dat

Group ownership can also be changed with the “chgrp” command:

[root@demo ~]# chgrp demo junk.dat

Ownership of all files in an entire directory tree can be
changed by using the “-R” (for “recursive”) flag on
chmod and chgrp. For example:

chown -R elvis.demo phase
where “phase1” is a directory.



The “stat” Command:

The set of permissions pertaining to a file is called the file's “mode”.
The mode is displayed symbolically by commands like “Is”:

-rw-r----- 1 bkwla demo 72 Jan 18 10:52 readme.txt
mode

Internally, though, the file's mode is represented by four sets of three

bits (12 bits in all), which can collectively be written as a four-digit

octal number. The “stat” command shows the mode in both formats:

~/demo> stat readme.txt
File: "readme.txt'
Size: 72 Blocks: 8 I0 Block: 4096
regular file
Device: fdoOh/64768d Inode: 17008595 Links: 1
Access: (0640/-rw-r----- ) uid: (500/bkwla) Gid: (505/demo)
Access: 2009-01-19 10:58:02.000000000 -0500
Modify: 2009-01-18 10:52:29.000000000 -0500
Change: 2009-01-18 11:38:30.000000000 -0500




Internal Representation of File Mode Bits:

u g t Special Bits: setuid, setgid and sticky.

Ur
Gr
Or

X User (owner) Permissions

=

X Group Permissions

=

Other (Everyone Else) Permissions

0
I Bit Number

=2
<

File permissions are actually stored as a set of 12 bits,
shown above.



The “chmod” Command:

Permissions on files can be changed with the “chmod” (“change mode”)

command. Permissions can either be specified symbolically or as an octal
number. The symbolic form is most useful when modifying an existing set
of permissions.

permission

person r

u add
+ W
chmod 9 = x file.dat

O set

S

All = a remove ‘t

Give all users read permission: Give user and group read permission:

~/demo> chmod a+r readme.datH~/demo> chmod ug+r readme.dat

Alternatively, modes can be set directly as octal numbers:

Set the file's mode to rw-r-r-:

\~/demo> chmod 0644 readme.dat\

You can use “chmod g+s directory” to set the “setgid
bit on a directory. We'll see later that you can use
“chmod u+s” to turn on a “setuid” bit.



Permissions on Directories:

* You need read permission on a directory in order to
list its contents, even if all of the individual files within
the directory are readable by you.

* If you have write permission on a directory, you can
delete any file within the directory, regardless of
whether you have ownership or write permission on the
particular file.

* You need execute permission on a directory in order
to traverse it. For example, to “cd” into a directory, you
need execute permission.

The meaning of permissions on files if fairly clear, but
the meaning of read, write and execute on a
directory may need some explanation.



The “Sticky Bit”:

One of the bits in a file's mode is called the “sticky” bit. If this bit is
set on a directory, only a file's owner (or root) is allowed to delete or
rename files in this directory, no matter what would otherwise be
allowed. The sticky bit is most often used on temporary directories,
like /tmp, where everyone needs to have write access, but it's
desirable to prevent users from deleting one another's files.

drwxrwxrwt 34 root root 36864 Jan 27 15:49 tmp

The sticky bit shows up in the symbolic representation of the
permissions as a “t” in the last position if the “x” bit is set for
“others”, and as a “T” in this position otherwise.



Attributes, and Immutable Files:
In addition to the file permissions available on all Unix filesystems,
the common filesystems under Linux also support a set of extended
file attributes. Some of these are quite esoteric, but one, at least, is
widely useful. This is the “immutable” attribute.

Files marked as immutable cannot be changed or deleted, even by
the root user (although the root user has the power to remove the
immutable attribute). This is useful for preventing accidental or
malicious modification of files that are normally unchanging.

Attributes can be listed with “Isattr” and changed with “chattr”:

[root@demo ~]# lsattr junk.dat
————————————— junk.dat

[root@demo ~]# chattr +i junk.dat

[root@demo ~]# lsattr junk.dat
EEE T EE junk.dat

The attribute can be removed with the “-i” flag.



Complex Access Permissions:

Except this
guy... He should
only be able to
read the file.

Group1

;

Group2

1 Group3

But what if we want to have a really complex system of
access permissions for a file? We can't do this with
just user, group and other.



Access Control Lists (ACLSs):

In addition to the read/write/execute permissions for user/group/other, the most common
Linux filesystems also offer a mechanism to deal with more complex access restrictions. This
mechanism is called Access Control Lists (ACLs).

When ACLs are available, each file or directory can have a complex set of access
permissions associated with it. These permissions consist of an arbitrarily long list of access
control rules. A rule can be created, for example, to give a particular user read-only access to
a file, or to allow read-write access to a particular group.

ACLs can be modified with the “setfacl” command, and viewed with the “getfacl” command.

[root@demo ~]# getfacl myfile.dat
# file: myfile.dat

# owner: elvis

# group: demo

user::rw-
group::r--
other::---

[root@demo ~]# setfacl -m user:priscilla:rw

[root@demo ~]# getfacl myfile.dat
# file: myfile.dat

# owner: elvis

# group: demo

user::irw-
user:priscilla:rw
group::r--

other::---




Part 4: Allowing Users to Act as Root




Multiple “Root” Accounts:

Since there can be more than one username associated with a
given UID, it's possible to have multiple root accounts with
different passwords. This is often how things are arranged when
two or more people need to have administrative access to a

machine.
Different

Usernames Same UID

— /etc/passwd:
root:x:0:0:root:/root:/bin/tcsh
<\aroot:x:0:0:alternate root:/root:/bin/tcsh
broot:x:0:0:another alternate root:/root:/bin/tcsh

/etc/shadow:
root j$1$k1SeekKWf$0978924352rLXawaldjl3/|:13766:0:99999:7: ::
aroot ($1$1UkJerwWf$r686jbmy85NwgoegXj/Lr.[:13766:0:99999:7:::
broot ($1$SG.2TLO1$5X2575j98hm9adf3gk0931:13766:0:99999:7:::

Different Passwords



The “setuid” Bit: (CAUTION!)

It is possible to set the permissions and ownership on an
executable file so that the program will always automatically run
as though it had been invoked by a specified user. This is most
often used to allow unprivileged users to do something that only
the root user could normally do. Changing a password, for
example:

~/demo> 1s -al /usr/bin/passwd
-rwsr-xr-x 1 root root 22984 Jan 6 2007

/usﬁ/bin/passwd
When the setuid bit is set, the file will run as though it had
Setuid bit been invoked by the file's owner (root, in this case).

\ [root@ayesha ~J# chmod u+s /usr/bin/passwd \
Setting the setuid bit.

When invoked by a non-root user, passwd runs as root and allows the
user to change his or her own password, but no others. But if it's running
as though it was invoked as root, how does passwd know that it was really
invoked by a non-root user? The answer is that each process actually
maintains two UID records, called an “effective” UID and a “real” UID.
Because of this, passwd can look at the real UID to decide how it wants to
behave.

It's important to note that it's up to setuid programs to
decide on their own what they will and won't do.
Mistakes often lead to security problems.

What happens if the setuid bit is set, but the file isn't
executable? In that case, the output of “Is” would look
like:

“-rwSr-xr-x" (with a capitol S), indicating that the file
would execute as root if it were exectuable.



The /etc/sudoers File:

The “sudo” command and its associated configuration file,
/etc/sudoers, allow an administrator to selectively dole out
administrative privileges to certain users, under certain
circumstances. For example, the sudoers file might be configured to
grant root access to all members of the “wheel” group through the
sudo command.

~/demo> groups
elvis demo wheel

~/demo> sudo useradd priscilla
Password:

To execute privileged commands, the user types “sudo” followed
by the command. The user is then prompted for his or her own
password, to verify the user's identity. The sudoers file can be
configured to allow the user to execute all commands, or only
selected ones.

Some distributions come configured this way by
default. (Ubuntu Linux, for example.) This is also
the way Mac OS X is configured.

Note that the name “wheel” has been used since the
beginnings of Unix. It refers to people who are “big
wheels”.



Thanks!



