\ A
lr\ LInux for /A

Resea-rchers

- Chapter 6. Introduction to x,

Up until now we've talked about command-line things.
Now we'll take a look at a graphical interface.

There's no way we can thoroughly cover X in an houir,
so what I'm going to say will just skim very lightly
over the top of this enormous subject. | hope | can at
least show you where the seams are, so you an go
back later and pry it apart yourself, to look deeper
inside.

Part 1: The X Window System

We're all used to graphical interfaces now. Most
people have never used a computer without one.
But think back to those days of yore (say, 1980)
when computers weren't graphical. Think about just
how weird it is to point at what you want, instead of
just telling the computer what to do. It's like being in
a foreign country where you don't speak the
language. All you can do is point to the visible
choices. If something's available, but not visible, you
can't select it.

Just like visiting a foreign country, a novice computer
user doesn't know the language. The advantage of a
graphical interface is that it lets the novice get work
done right away, without any special training.
Graphical interfaces made it possible for non-
technical people to start using computers in fairly
sophisticated ways.

What is X?:

X is a OS-agnostic, hardware-agnostic, network-transparent, client-
server system that provides a graphical user interface. It is highly
configurable:

X is the most common, and most powerful, graphical
interface used under Linux. X's configurability is
great, but challenging. As we'll see, desktop
environments like KDE and Gnome impose some
order on what might otherwise be a daunting system,
suitable only for computer geeks, and make it usable
by novices.

The History of X: _
+ 1981, Xerox PARC develops the “Star” /

computer, with the first modern GUI.

18

» 1983, Apple releases the “Lisa” computer.

* 1984, X version 1 developed for the MIT (7 '
“athena” project. Development began as a port W #
of Stanford's “W” window system for the “V”

operating system. First Mouse~ Bouglas Engelbart,

Stanford Research Institute, 1964

» 1984, Apple releases the first “Macintosh”.

* 1985, Microsoft releases Windows 1.0.
» 1987, Current version (11) released. X development overseen by the “MIT X
Consortium”, a collaboration between MIT and industry (DEC, HP, Sun, etc.)

» 1992, Volunteers begin working on “XFree86”, an X server for PC hardware, based
on the MIT X distribution.

+ 1992, Microsoft releases Windows 3.1.

» 1993, X Development taken over by “X Consortium, inc.”, a non-profit vendor-
controlled corporation. XFree86 continues to work in parallel.

» 1997, Taken over by “The Open Group”, another vendor group. Attempted
unsuccessfully to change X licensing. By this time, XFree86 is the most dynamic part
of the X world.

» 2004, X development taken over by the “X.org Foundation”, a community project
open to (and governed by) individuals and funded by corporate sponsors.

X development was almost dead for a long time during
the 90s. In recent years, since the x.org foundation
took over, development sped up considerably. The
new community model, with bright, enthusiastic
leaders like Keith Packard, brings frequent
improvement and innovation.

Also note that “the mouse™ was actually around for a
long time before the folks at Xerox PARC started
using it. Here's a nifty demo of this new device from
1968:

http://www.youtube.com/watch?v=1MPJZ6M52dI

How X Works:

X uses a “client/server” model.
The X Server has control of your
monitor, keyboard and mouse.
Other programs, called X clients,
send requests to the X server
when they want to get some
input, or display something on the

Your Computer

monitor.

X Client ﬁGraphics

(firefox) Mouse
Keystrokes and Events
Mouse Events XS

X Client ™ ()e(')"er Y

(xterm) | :
Drawing
Commands d

X Client

(skype) ﬁzystrokes

£ \

In the example above, an X client program (xterm, in
this case) is connected to a local X server. The
server sends keyboard and mouse input to the client,
and the client sends display commands to the server.

Note that the client doesn't need to care about what
hardware the computer has. It just talks to the X
server, and it's up to the X server to know how to
draw on the display or get input from the
mouse/keyboard.

Network Transparency:

Your Computer
(Virginia)

X Client
(xterm)

Illllllllllémﬂjﬂlll

Remote Computer
(Switzerland)

Graphics

\ Mouse
Xis “network transparent”, Events

meaning that X clients don't X Server \
care whether they're running
inside your computer or on a

different computer, half a ﬁeystrokes

world away. / \\

X clients don't even have to be running on the same
computer as the X server. Clients can talk to the
server over a network connection. As far as the user
is concerned, things look just the same as if the
client program were running locally.

Advantages of X:

« Clients can run anywhere, and display anywhere.
(Network transparency.)

* Clients don't need to care what type of video
hardware your computer has. (The X server takes
care of all that.)

* Clients don't even need to be running on the same
type of operating system. (All X clients use the
same protocol, and can work together, no matter
whether they're running under Linux, OS X or
Windows.)

X Display Names:

To tell an X application which X server it should talk to, we use a
"Display Name".

A computer can have multiple X servers running, and each X server
process can control multiple physical monitors (“screens”). So, the
Display Name has several parts:

hostname:displaynumber.screennumber

mypc.virginia.edu:0.0 Scr(;aen Scr1een mypc.virginia.edu:0.1

On the local computer,
we can just refer to

these as :0.0 and :0.1,
- omitting the hostname.

Y — =\

X Server
(Display 0)

mypc.virginia.edu | \\N\

Later we'll see a good use for multiple X servers
running on a single computer.

The "DISPLAY" Variable:

export DISPLAY=:0.0
firefox

Type "echo $DISPLAY"
to see the current value
of the DISPLAY
variable.

The "DISPLAY" environment variable tells X
applications which display they should use. Most
applications will let you override this value by
specifying the display on the command line, like:

xterm -d :0.0

Part 2: Running X:

The X server is just a program called “X". There are
many ways to start X, but it's usually started by a
“display manager”.

X Display Managers:

Welcome to kubobo X ‘ The most commonly-used dlsplay

. managers are:
Username:
. § [-gdm
. Password: ° dem
L :
* lightdm

A Display Manager has several jobs:

- Start the X server, if it isn't already running.

- Connect to the X server as a client, and show a
username/password dialog box on the X display.

- Wait for a user to successfully log in, and then start an X
“session” (a predetermined set of X applications).

- Hang around silently until the session ends, and then re-
display the username/password box.

There are many different display managers, but these
are the most common:

Gdm. This is the Gnome display manager.
Sddm. This is the default display manager for KDE.

Lightdm. This is a highly-configurable display manager
used by many distributions.

Starting the Display Manager:

* If you use init:
In /etc/inittab there will usually be a line like this:

Run dm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

The “respawn” flag in /etc/inittab tells init to re-start the display
manager if, for whatever reason, it dies.

* If you use systemd:
You'll find a "unit" file like /usr/lib/systemd/system/lightdm.service
which contains lines like:

[Service]
ExecStart=/usr/sbin/lightdm
Restart=always

along with other lines that describe the service and instruct systemd
about other services it depends on.

X Sessions:

An X session is just a set of X clients that get started up when you log in. Sometimes, the
display manager starts these by running a script (Xsession, xinitrc, etc.). Alternatively, the
display manager might start a "session manager" to run this script.

Display
Manager

—

ro. - -
H|:> Session IHHl:>
| ManagerJ

1]

Sometimes, there's one program in Xsession that acts
like a stopper, keeping the script from exiting until the

Xsession

#!/bin/sh

xterm Windows:
/usr/bin/xterm &
/usr/bin/xterm &
/usr/bin/xterm &

Misc:
/usr/bin/xclock &
/usr/bin/xcalc &
/usr/bin/exmh &

Window Manager:

Note that most of these
are started in the
background. If they
weren't, the script would
stop at the first 'xterm’
command and wait there
until that xterm window
had been closed.

The session script will
start a "Window
Manager".

/usr/bin/twm 4—’/

session is over. This can be done as above, by

putting this application (twm here) at the end of the

script, but there are other ways to do it, too.

The Xsession script will typically be much more
complicated than this example. Usually, it will be

generalized so that the display manager can give the
user a choice of desktop environments. The user's
choice is then passed to Xsession as a command-

line argument or environment variable.

By choosing a display manager and configuring its

Xsession script, you can have very great control over

how your computer's graphical environment

behaves.

Window Managers:

A window manager is a special X client that has the ability to add decorations to other X
clients, and to control them in various ways. For example, the window manager might let you
move windows around on the display, resize or iconify windows.

Here's what an xterm and
an xclock look like without a
window manager....

...and here's what they look o

like when a window
manager is running. Note
the borders, banners and
buttons.

There are tons of window managers. The one shown

deno> []

A B

above is a lightweight window manager called

“fluxbox”. One of the earliest window managers was
“twm”, or “Tom's Window Manager”, written by Tom

LaStrange in 1987. Modern integrated desktop

suites like KDE and Gnome have their own window

managers.

Window managers interact with other X clients through

a set of standards known as the “Inter-Client
Communication Conventions Manual”, or ICCM.
Most modern window managers are ICCM-

compliant, and so are to some degree drop-in
replacements for each other.

What Window Managers Do:

* Decorate the windows displayed by other X clients, by adding
banners, borders, buttons, etc.

* Allow the user to resize, move, iconify/deiconify windows.

* Provide the user with menus for configuring the window manager's
behavior or performing other tasks.

If we used "ps auxf" to look at the process tree, we
might see something like this while we're logged into

the computer:

lightdm
_ /bin/sh /etc/xdg/xfced4/xinitrc

\ xfced-session

_ xfwm4
_ xfce4-panel
_ xterm
| _ -tesh
| _ acroread
_ xterm
| _ -tcsh

\ firefox

Here, the computer is using lightdm as the display
manager, running an X session script named "xinitrc'

and using the xfwm4 window manager.

Desktop Environments:

A “desktop environment” is a suite of X applications
that have a unified look and feel, and are designed to
work well together.

The illustration above shows some of the most popular
desktop environments right now, but there are many
others.

It's important to remember that there's no reason you
can't use applications from different desktop
environments at the same time. The X server
doesn't care. The choice of desktop environment is
primarily primarily about the "look and feel" of the
applications.

Confiquring the X Server:

Usually, you can configure the X server using graphical tools provided
by your Linux distribution. Here are a couple of examples:

Use dual head

Second Monitor Type: LCD Panel 1024x768

Second Video Card: | S3 Savaged

Resolution: [1024758
Monitor: Laj
Color Depth: | Millions of Calors R
r
Besidapayaut | Spann g Deskings Resolution: | 1366x768(16:9) +
Laptop Refresh rate: |60Hz
"C | 0K
=HIEE ot M. 'mal
Detect monitors
el ic
Show monitors in panel
Maki Faull pply il

Beyond the graphical tools for configuring your display,
you might someday need to dig deeper using
command-line tools like xdpyinfo, xset, xlsclients,
and xrandr. The last of these, in particular, will give
you a lot of information about all of the display
devices connected to your computer.

X Servers for Windows and OS X:

am Windows

vexsrv: https://sourceforge.net/projects/vexsrv/files/vexsrv/

& Os X

Xquartz: https://www.xquartz.org/

X servers are available for MS Windows and Apple OS
X. At the moment, | recommend using "vcxsrv”
under Windows. This is a free package that isn't
officially supported by Microsoft, but it works very
well. Apple itself provides the Xquartz X server.

Neither of these entirely controls your display, as an X
server would do when used with Linux. Instead,
these X servers allow you to display remote X clients
on your Windows or OS X desktop.

Part 3: Security

CC BY-SA 4.0 Edmund N Gall

This is the first time we've talked about programs that
use the network, so it's time to start thinking about
security. Any network-aware software can open your
computer up to abuse, if improperly used.

In the following, I'll mention a program called “ssh”,
which allows you to get command-line access to
another computer on the network. Don't worry about
the details of this right now. We'll talk more about it
at a later time. The main point is that ssh creates an
encrypted connection between the two computers,
so that nobody can snoop on your communications.

Sending Commands Securely to Remote Hosts:

BT OETECEN T EPOECECHBII 9T T oa
Y

KEEPING YOUR COMMUNIQUES SECRET j:

QL. R8:2.9:9.0 8. 9.3 9829209 9.3 58

ssh is a tool that lets you securely connect to a remote computer,
and issue command-line commands there.

bkwla@udc-ba35-36:

“> ssh bkwla@rivanna.hpc.virginia.edu
bkwla@rivanna.hpc.virginia.edu's password
udc-ba35-36 “$ echo $DISPLAY
10.153.0.23:42.0

udc-ba35-36 %

The syntax is:
username@hostname

When you ssh into a remote computer, you are talking
to a command-line shell running on that computer.

We'll talk much more about ssh in a later meeting.

Security: Remote Clients:

Remote Computer ‘
— The old, bad way... |

] X Protocol X Server
0000 (unencrypted)
HAtQ: = “xhost + remotehost” —
— N J “export DISPLAY=mypc:0.0”
Remote Computer ‘
- \/;‘ The new, good way... !
ﬂ Ssh Protocol

X Client
e (xterm)

sshd § — — — — — — — ssh — X Server
g@ (encrypted)
J
© g g <2
V QO¢ Tunnelled X Protocol / \

t

In the bad old days we used to use X in the way shown
in the top picture. We'd use an xhost command on
the local computer to allow a specific remote
computer access to our X server, and then on the
remote computer we'd set the DISPLAY environment
variable to point to our local computer's X display.

This is insecure for a couple of reasons: (1) the X
protocol connection between the computers is
unencrypted, and (2) the “xhost” command allows
any process on the remote computer (which may not
be completely trustworthy) to read our local
keystrokes.

The better way to do it is shown in the bottom
illustration. Just let ssh set up an encrypted,
tunnelled X connection between the machines. This
Is easy to do, and it Just Works.

Enabling X Tunnelling for Ssh:

With luck, the default settings for your ssh client will already be configured properly,
so that all you need to do is ssh into the remote host, and type “xterm” (or whatever X
application you want to run). If this doesn't work, take a look at your ssh client's
configuration:

* OpenSSH (Linux and OS X):
* You can tell ssh to create an X tunnel by typing “ssh -Y” instead of just “ssh”.
> Alternatively, look in the file /etc/ssh/ssh_config or ~/.ssh/config and make sure it
contains lines like:

ForwardX1l yes
ForwardX11iTrusted yes

* Putty (MS Windows):

= Sestich Diptans contraling S5H nneling

Logging 11 Fonwaiding
Taumingt ¥ Enabls 11 bormarding

Keyboard * displap location
tel ocahest
Featees

- Window Port fonwandng
::E::::ce I Local poits accept conmachons lhom other hosts
Teansdsbion ™ Remsls parts do the same [S5H v2 o)

Selection Foewarded pors: Remove !
e

Talnet

Aodd nevs fonsarded pat:

Aath Soulca pot Add
- I

Here's how to set up ssh so that it creates an
encrypted, tunnelled X connection between the local
and remote computers. Once the defaults are set
properly, you shouldn't need to do anything other
than ssh to the remote computer and start invoking X
applications.

Putty is a free program that you can download from
various web sites (just do a Google search for it).

OpenSSH is pre-installed on OS X computers and
most Linux computers.

Rules of Thumb for X Security:

You should never need to set the DISPLAY
variable by hand.

You should never need to use xhost.

Beware of documentation that
tells you to do these things!

If you don't remember anything else from this talk,
remember these two things.

The xhost warning is particularly important. One of the
most dangerous commands you can type is
“xhost +”, which allows any host in the world to
connect to your X server and read your keystrokes.
This used to be common practice. (Some X server
software for Windows even came pre-configured to
do this automatically.) Many years ago, this caused
a major security breach at our university. Please
don't do that!

Security: Remote Sessions:

FAST

- GpenNX

https://www.starnet.com/fastx/ http://opennx.net/

Fast, secure graphical
sessions over slow
network connections.

Virtual Frame Buffer

: o
\X Sllent NXS(;rnll::rStX, sshd [~ ~Ssh Protocol— - ssh X gﬁan?StX* X Server
X Client / Xencwpted) L

vUQ \,H/ <ﬂ 3 :
X ClienLJ/Tunnelled, Compressed X Protocol / \
- =

So, what if you want to start up a whole session running on a remote
computer? The best way to do this is by using a tool like OpenNX or Fastx

The OpenNX is a free program available for Windows, Linux and OS X. It
talks to a remote “NX server” that maintains a local virtual display in
memory, called a “Virtual Frame Buffer” (VFB). The NX server starts up
applications which send their display information to the VFB. The VFB can
then be displayed locally by the nxclient application. All traffic between
server and client is tunnelled through an encrypted SSH connection.

NX has the added benefit that its NX protocol is a highly compressed version

of the X protocol, and will give fast performance even over a slow network
connection.

FastX is a commercial product that provides similar functionality. At UVa, we
currently use FastX to establish graphical connections to our
supercomputing cluster, rivanna.

Part 4: Virtual Consoles

One of the simple advantages of a graphical interface
Is that you can have several terminal windows open
at the same time. This can be very convenient if
you're working on several different things at once.

Under Linux, you can accomplish something similar
without a graphical interface, too. The Linux kernel
implements something called “virtual consoles”.
These allow one monitor and one keyboard to act
like several independent text-based terminals.

Virtual Consoles: + Up to 64 VCs.

* Created on demand.
In Linux, the monitor and Switch bet i)
keyboard can be connected to * Switch between them using
an);/ of several “virtual ~/dem0> Ctrl-Alt-Fn keyStrOkeS.
cons_oles"_. These let you_have - May be configured to have
multlp_le simultaneous logins, “getty” running, to listen for
even if you only have a text logins
interface. '

* Or, may just be blank, and

available for something else.
(ctrl)-alt-F1 (ctrl)+alt-F2 (ctr)-alt-F3 etc...

~/demo> echo 'VC1'

~/demo> echo 'VC2' ~/demo> echo 'VC3'

etc...

/ \

To understand how X works under Linux, it's useful to
understand Linux's idea of “virtual consoles”. A virtual
console is an abstraction, created by the kernel, that can be
connected to a real display and keyboard. The kernel
creates virtual consoles on demand (up to 64 of them).

Normally, the program “getty” is running on the first few
virtual consoles. The “getty” program is the thing that asks
you for your username and password, and spawns off a login
shell for you when you log in.

Even if you only have a text interface, you can still have
access to multiple simultaneous terminal sessions, through
“virtual consoles”.

When you're outside of X, you can switch to a different virtual
console by typing “alt-Fn”, but when you're inside X, you'll
need to type “ctrl-alt-Fn”, because X typically traps the “alt-
Fn” sequence for its own use.

X servers and Virtual Consoles:

_ ~/demo>
The X server runs in

the first unused virtual
console.

First unused virtual
console

~/demo> echo 'VC1' ~/demo> echo 'VC2'

X Server

/ \

When the “X” program starts, it takes over the first
unused virtual console. On most Red Hat-based
systems (including Red Hat Enterprise Linux, Fedora,
CentOS, etc.), this will be virtual console number 7.
On older Ubuntu systems this will be virtual console
number 3, or number 7 on newer systems.

While X is running, you can switch to another virtual
console by typing “ctrl-alt-Fn”, where n is the virtual
console number.

"Switch User":

_ ~/demo>

The "switch user"

system works by

starting additional X

servers on other VVCs.

~Idemo> echo 'VC1' J -
bkw1a l, elvis H(

X Server X Server
(Display 0) (Display 1)

4 \

When you "switch users" a new X server is started up
on the next unused virtual console, and the display
manager presents a login box there. This way, the

original user's session can stay running on the first X
server.

Part 5: Fonts

This is one of those things you seldom need to think
about, but you may someday find that you need to
debug a font problem, so let's take a quick look at
the two font systems commonly in use under Linux.

Server-Side Fonts (the old way):

Originally, X used server-side fonts. When an application wanted to
draw some text, it would send the text to the X server, and tell the
server the name of the font it should use to display the text.

This

Remote Computer

| 1
Fonts
\ X Client Write “This”, in Chancery 7 St Arial
O% Chancery
Helvetica...

Lo
@@@8

The advantage of this is that very little data needs to
be passed across the network. This is important for

slow networks.
The disadvantage is that the server's fonts might not

exactly match what the client expects, and the client
can't control exactly what the displayed text really

looks like.

Confiquring Server-Side Fonts:

Server-side fonts are usually implement through a “font server”, called “xfs”, started at boot
time. The font server supplies font information to the X server on demand. It's capable of
dealing with several different types of fonts, and translating them into a format that the X server
can use. The main xfs configuration file is usually /etc/X11/fs/config .

allow a max of 10 clients to connect to this font server
client-1limit = 10

when a font server reaches its limit, start up a new one
clone-self = on

where to look for fonts

catalogue = /usr/share/X11/fonts/misc:unscaled,
/usr/share/X11/fonts/75dpi:unscaled,
/usr/share/X11/fonts/100dpi:unscaled,
/usr/share/X11/fonts/Typel,
/usr/share/X11/fonts/TTF,
/usr/share/X11/fonts/0TF,
/usr/share/fonts/default/Typel,

in 12 points, decipoints
default-point-size = 120

75 x 75 and 100 x 100
default-resolutions = 75,75,100,100

To add a font, it should generally be sufficient to drop the font file into
one of the “catalogue” directories and restart xfs.

Listing Server-Side Fonts:

The “xlsfonts” command will give you a list of all the fonts known
to the X server:

~/demo> xlsfonts
-adobe-courier-bold-o-normal--0-0-100-100-m-0-is08859-2
-adobe-courier-bold-o-normal--0-0-100-100-m-0-is08859-2
-adobe-courier-bold-o-normal--0-0-75-75-m-0-1s08859-2
-adobe-courier-bold-o-normal--0-0-75-75-m-0-1s08859-2
-adobe-courier-bold-o-normal--0-0-75-75-m-0-koi8-ub
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1s010646-1
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1s08859-1
-adobe-courier-bold-o-normal--10-100-75-75-m-60-i1s08859-14
-adobe-courier-bold-o-normal--10-100-75-75-m-60-i1s08859-15
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1s08859-2
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1s08859-2
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1508859-2
-adobe-courier-bold-o-normal--10-100-75-75-m-60-1508859-9
-adobe-courier-bold-o-normal--10-100-75-75-m-60-koi8-r
-adobe-courier-bold-o-normal--10-100-75-75-m-60-koi8-r
-adobe-courier-bold-o-normal--10-100-75-75-m-60-koi8-u
-adobe-courier-bold-o-normal--10-100-75-75-m-60-koi8-u

Client-Side Fonts (the new way):

Server-side fonts are now deprecated. Instead, applications should use
client-side fonts. Current versions of most major software packages
now use client-side fonts.

With client-side fonts, the X client has direct access to the font files.
The client lays out the text as it wishes, then sends graphical commands
to the X Server, telling it to draw exactly what the client wants.

Remote Computer

Write “This”

This
3

X Server

X Client

0 VO FontsiE
Arial

14 Chancery
Helvetica...

N

Current versions of KDE, Gnome, the Mozilla browsers
(firefox, seamonkey) and Thunderbird all use client-
side fonts. Only a few applications still use server-

side fonts.

Confiquring Client-Side Fonts:

Client-side fonts are configured through a system called “fontconfig”. The main fontconfig
configuration file is /etc/fonts/fonts.conf . This is an XML file containing, among other
things, a list of font directories:

<!-- Font directory list -->

<dir>/usr/share/fonts</dir>
<dir>/usr/share/X11/fonts/Typel</dir>
<dir>/usr/share/X11/fonts/0TF</dir>
<dir>~/.fonts</dir>

To add a font, the font file should be put into one of these directories (e.g., ~/.fonts) and then the
“fc-cache” command should be used to update the fontconfig cache:

~/demo> fc-cache -f -v ~/.fonts

To get a list of the fonts known to fontconfig, use the “fc-list” command:

~/demo> fc-list
Verdana:style=Regular,Normal, Standard
Dustismo:style=Regular
Candara:style=Italic

Luxi Serif:style=Regular

Liberation Mono:style=Regular
MiscFixed:style=Regular
Utopia:style=Bold Italic

Part 6: The Future

We've talked a little about the shift from "init" to
"systemd" for system startup. Another major change
Is on the horizon, although not yet widely used.

Some Linux distributions have begun to replace the X
window system with a successor known as Wayland.

Wayland:

10:04

07/04/2014

o~

In recent years, Kristian Hogsberg (a programmer who works on
graphics software for Linux) has developed an alternative to
the X server. He calls his new server “Wayland”. This new
graphics system has been written from scratch, without
inheriting any of the 20-year-old baggage from X. Hogsberg
aims to make Wayland simple, fast and light. It uses existing
features in the Linux kernel and modern video chipsets to do
most of the work.

Wayland is controversial though, because it doesn't natively
support existing X clients and (more controversial yet) it
doesn't have network transparency. Nonetheless, one major
linux distribution (Fedora) has recently switched to wayland.

For more information about Wayland, see:

http://en.wikipedia.org/wiki/Wayland_(display_server_ protocol)

X Graphics with Wayland:

1ibDRM

proprietary BLOB

USB, PS/2, ... Display controller

In order for X applications to be used under Wayland,
you need an intermediary called "Xwayland". This
acts as a traditional X server with respect to the
clients, but instead of directly displaying their output,
it passed the clients' requests along to Wayland.

With this arrangement, native Wayland and X
applications can coexist.

Thanks!

