\ A
lr\ LInux for /A

Resea-rchers

Now that we've discussed networking in some detail,
it's time to talk about network services. Along with
that comes concern about security, so we'll also start
looking at firewall configurations.

This will be hodgepodge of topics, but they all revolve
around those two themes: servers and firewalls.

Part 1: Firewalls

In the terminology we'll use today, a firewall is anything
that blocks or modifies network traffic. Most desktop
computers today have some sort of firewall
capability. They can, for example, selectively block
incoming IP packets.

Even if your computer is behind a department firewall,
or is running other security software, it's very
important to have a properly-configured local firewall
on your computer. This reflects a security philosophy
called “defense-in-depth”, which says that you need
multiple layers of defense. Multiple layers provide
redundancy, in case one layer fails, and they tend to
fill in the gaps in each other's coverage.

Netfilter:

Built into the Linux kernel is a system called “Netfilter” that allows for
monitoring, modifying or blocking IP packets as they pass through the
kernel, based on packet header information. Netffilter associates
user-defined functions with pre-defined “hooks” at various points
along a packet's path through the kernel. These functions are
managed by programs like “iptables”.

The diagram below shows some of the available hooks, in blue:

Forwarded Packets
FORWARD

Outgoing

Incomin
o POSTROUTING| py ket

Packets PREROUTING

INPUT OUTPUT
Input for Local Locally-Generated
Programs Output

Netfilter is just a framework within the kernel. To use it,
you need a program like iptables.

The input and output hooks let you filter traffic going to
or coming out of local program. The forward hook
allows you to filter network traffic that's just passing
through your computer. The prerouting and
postrouting hooks allow you to do things like re-
writing the address on incoming/outgoing packets.

Tools for Controlling Netftfilter:

firewall-config — firewall-cmd — Z
Default for RHEL/CentOS/Fedora m

. —

— iptables - ==h

r~=

gufw - ufw —— D
Default for Ubuntu/Debian -

N /
—

High-level interfaces that run the
"iptables" command for you.

Most Linux distributions provide tools for manipulating
firewall rules at a very abstract level, but these tools
generally are just wrappers that use the iptables
command to actually do the work. Today we'll be
using iptables directly, to give us a better
understanding of how firewalls really work.

Tables, Chains and Rules in iptables:

Iptables binds a set of functions to the Netfilter hooks. These
functions use lists of rules (called “chains”) to decide what to do with
a packet as it passed through each hook. The chains are organized

in tables, such as:

“filter” Table:

* INPUT Chain

* OUTPUT Chain

* FORWARD Chain
...etc.

“nat” Table:

* PREROUTING
« OUTPUT

* POSTROUTING
...etc.

“mangle” Table:

* PREROUTING
* INPUT

« OUTPUT

* POSTROUTING
...etc.

“raw” Table:

* PREROUTING
« OUTPUT

* POSTROUTING
...etc.

The list of tables is
hard-coded into
iptables, but chains
can be added by the
user, through the
“iptables” command.
Each table starts
with a set of built-in,
empty, chains. The
built-in chains are
used directly by the
functions iptables
binds to the Netfilter
hooks.

Note that the names of tables and chains are case-
sensitive.

How iptables Chains are Bound to Netfilter Hooks:

Here's how iptables binds various built-in chains to the Netfilter hooks:

Forwarded Packets

ol o
2% 5%
_ ,|8=)2=
Y |+ 0] 0]
2| 2| 2 =0 @ 2 2
. EQF| E o E .
Incoming |23 @2 523 6)8 *&38 Outgoing
Packets |8Q |59 [O ™G oS¢ Packets
[nd e e
v o o w 3 38
al| ol a e S L
| HlegH| HI
QO El 5.2 D|.D
»27 22 S3T 28 5E BE
gz &z 2 =585 |2 ¥5
- s @) @ (@) (@)
(o)
-
Input for Local Locally-Generated
Programs Output

This shows where the iptables chains from the
previous slide plug into the hooks provided by
Netfilter.

The “filter” Table:

The most often-used table is the “filter” table, which initially contains
built-in chains called “INPUT”, “OUTPUT” and “FORWARD”. These
chains of rules are used by functions plugged into the Netfilter hooks
shown below:

Forwarded Packets

_ FORWARD

chain

Incoming _| |, Outgoing
Packets Packets

-

|,/ INPUT | Local OUTPUT _

chain |Programs| chain

-

Input for Local Locally-Generated
Programs Output

Remember, again, that these names are case-
sensitive. It's “INPUT”, not “input”.

Iptables Chains:
Each iptables chain is a list of rules. Each rule consists of a test and a
“target”. The target can either be selected from a list of built-in targets
(e.g., “ACCEPT” or “DROP?”), or it can point to a different, user-defined,
chain of other rules. The rules in the chain are processed (“traversed”)
from top to bottom, like a program. Some targets (like “DROP”) will
cause the “program” to halt. Others (like “LOG”) will allow the
‘program” to keep running. Built-in chains each have a “policy” that
determines what happens to packets that reach the end of the chain.

INPUT Chain: —
1. From 192.168.100.1? ~ ACCEPT
2. From 192.168.301.5? - DROP

3. From anywhere to port 22?\\ ACCEPT

4. From anywhere to port SOL\
ACCEPT
5. ...otherwise... -
<[DROP *Policy’

Targets that cause rule traversal to stop are called
“terminating” targets. Those that don't are called
“non-terminating” targets.

Rules
sjeblie|

Only built-in chains have policies. The built-in chains
are the ones that are directly attached to Netfilter's
hooks. User-defined chains are always called by
one of the built-in chains.

User-Defined Chains as Targets:

INPUT Chain:
1. From 192.168.100.1? » ACCEPT
" 2. From 192.168.301.5? > DROP
(O]
S| 3. From anywhere to port 227
14 . “MYSSH Chain:
4. From anywhere to port 80 1. From 192.168.100.*?
S. ...otherwise... 2. From 10.0.0.57?

3. From 172.16.5.3?
DROP 4. From 172.16.5.7?
ACCEPT

Here, the INPUT chain is a built-in chain, and the
MYSSH chain is user-defined. To save space, I've
omitted the targets for the MYSSH chain, but these
rules would actually have targets also.

Some iptables Targets:

Here are some examples of built-in iptables targets:

ACCEPT Stop traversal, allow the packet to con-
tinue.

DROP Stop traversal, ignore the packet.

REJECT Stop traversal, ignore the packet, but no-
tify the sender.

LOG Log the packet, then continue traversal.

TARPIT Wait forever without responding to
sender (TCP only).

...etc.

Viewing Chains:

You can look at the the current chains by using the “iptables -L -v”
command. By default, this will show you the chains in the “filter” table.
You can look at other tables by adding the “-t” switch (e.g., “-t nat”).
This is what the “filter” table looks like by default. Three built-in chains
are defined, but the chains are empty of rules:

[root@demo ~]# iptables -L -v
Chain INPUT (policy ACCEPT 16 packets, 1274 bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT @ packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 8 packets, 1088 bytes)
pkts bytes target prot opt in out source destination

You can also just use “iptables -L”, but if you have non-
trivial firewall rules you'll find that the output is
misleading. For one thing, “iptables -L" doesn't tell
you which network interfaces a given rule applies to.

Adding Rules to a Chain:

* Accept all incoming traffic destined for port 80 on the local computer:
\iptables -A INPUT -p tcp --dport 80 -j ACCEPT
/‘ T w_/\ \ J
N Y
Adda tothis Packetsusing anddestined jump to
rule... chain. this protocol... forthis port... this target.

* Adding a rule to match packets from a given host, destined for port 22
on the local computer:

iptables -A INPUT -s 1.2.3.4 -p tcp --dport 22 -j ACCEPT
/4 T \ J\ JAN VAN J
Yo Y
Adda to this Packets from using this ~ and destined jump to
rule... chain. this source... protocol... for this port... this target.

* Ignore all incoming traffic from a particular computer:
iptables -A INPUT -s 4.3.2.1 -j DROP

/o1

Adda to this Packets from jump to
rule... chain. this source... this target.

A few simple examples. Later, we'll see how to define
firewall rules automatically at boot time.

Note that "-A" appends the rule to the end of the chain.
If you want to insert a rule at the top of the chain, use
"-I1" instead.

More Rule Examples:
* Setting a default policy:

|iptables -P INPUT DROP

fot

Apply this to this The policy.
PO"Cy... chain.

* Adding a rule that only applies to one network interface:
iptables -A INPUT -i ethl -p tcp --dport 22 -j ACCEPT

71 T T T

Adda tothis Packets from usingthis —and destined jump to
rule... chain. this interface... protocol... for this port... this target.

* Adding a rule that allows incoming traffic that is associated with an
already-established outgoing connection:

|iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT |
\ J

/4

Adda tothis Loadthe If the packet is related to an jump to

rule... chain. state” established connection... this target.
module.

You'll find many more examples here: http://www.frozentux.net/iptables-tutorial/chunkyhtml/

As you can see from the last example, iptables can be
extended through “modules”. Many of these
modules are already installed in most Linux
distributions. These make iptables very powerful.
You can, for example, do rate limiting, or limit the
number of connections from a given host. You can
filter by MAC address. You can select every n™
packet (!). You can assign tags to packets for use in
later rules. You can filter packets based on their
length. You can even match strings within packets.

More Rule Examples:

* Accept all incoming traffic destined for port 443 on the local computer:
\iptables -A INPUT -p tcp --dport 443 -j ACCEPT
/‘ T H_/ \ J\ J
Yo 4
Adda tothis Packetsusing anddestined jump to
rule... chain. this protocol... for this port... this target.

* Delete the rule created above:
iptables -D INPUT -p tcp --dport 443 -j ACCEPT

* Insert a rule at the top of the chain:
iptables -I INPUT -s 192.168.1.1 -j ACCEPT
N J
T .
Inserta atop this Packets from jump to
rule... chain. this source... this target.

Minimal Firewall Rules:

Here's a set of minimal firewall rules. They allow anything to go out,
but only allow incoming packets that are associated with an already-
established outgoing connection. Everything else is dropped.

iptables
iptables
iptables
iptables
iptables

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -i lo -j ACCEPT

-P INPUT DROP
-P OUTPUT ACCEPT
-P FORWARD DROP

Chain
pkts
60

0

Chain
pkts

Chain
pkts

[root@demo ~]# iptables

-L -v

INPUT (policy DROP 36 packets, 5000 bytes)

bytes target prot opt in
3644 ACCEPT all -- any
0 ACCEPT all -- 1lo
FORWARD (policy DROP 0 packets,
bytes target prot opt in

out
any
any

0 bytes)
out

source
anywhere
anywhere

source

OUTPUT (policy ACCEPT 33 packets, 4564 bytes)
bytes target prot opt in

out

source

destination
anywhere state RELATED, ESTABLISHED
anywhere

destination

destination

This is similar to the default firewall rules you'll find
under Red Hat/Fedora/CentOS, or in any home
internet router/firewall.

The “iptables-save” and “iptables-restore” Tools:

The firewall rules you create with iptables are volatile. They won't
automatically be restored the next time you restart your computer, unless you
take steps to restore them. One mechanism for doing this is the “iptables-
save” and “iptables-restore” commands. If you've configured a set of firewall
rules and want to save that configuration, issue a command like:

[root@demo ~]# iptables-save > myfirewall.conf

Then you can restore these rules later by typing:

[root@demo ~]# iptables-restore < myfirewall.conf

The output of iptables-save is just text, and can be edited with any text editor.
It looks like this:

Generated by iptables-save v1.3.5 on Tue Mar 3 14:38:46
2009

*filter

: INPUT DROP [18:2119]

: FORWARD DROP [0:0]

:OUTPUT ACCEPT [28:2832]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -1i lo -j ACCEPT

COMMIT

Completed on Tue Mar 3 14:38:46 2009

Iptables Configquration Files:

To save your iptables configuration, either use one of the high-level
configuration utilities like ufw or firewall-config, or...

On Red Hat/Fedora/CentOS firewall rules can
be stored in:

/etc/sysconfig/iptables

At boot time, this file is automatically read by
iptables-restore to set up firewall rules if the
"iptables" service is enabled.

~

redhat

Under Ubuntu you can install the package
iptables-persistent, which will automatically
read firewall rules from:

/etc/iptables/rules/rules.v4

ubuntu

Network Address Translation (NAT):

To an external computer, all hosts

X . 192.168.1.2
behind a NAT firewall appear to have
the firewall's address.
ethO eth1
128.143.210.157 192.168.1.1 i __}
192.168.1.3
/ \
A ___ & \\
The firewall rewrites Packets
the source address originate with 182 168 1.8
on each outgoing the source
‘ packet to address
128.143.210.157 192.168.1.4

LTS T <j E> o AR\

External network Internal network
Remote Computer 128.143.210.* 192.168.1.*

The internal hosts are on
a private network with its
own |IP addresses.

Inexpensive home routers use NAT to connect
computers in your home to the Internet. Many of
these routers are actually running Linux, and use
iptables, just as you'd use it on your desktop
computer or a Linux server.

Setting up NAT Usingq iptables:

You can use iptables to configure a Linux computer with two
network interfaces to perform network address translation. (Indeed,
many home routers are small Linux computers configured in this
way.) Here's a set of iptables commands to do that. In this
example, eth0 is on the external (public) network and eth1 is on the
internal (private) network:

iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -i ethl -j ACCEPT

iptables -A INPUT -i ethl -j ACCEPT

iptables -t nat -A POSTROUTING -o eth® -j MASQUERADE

You can use the “netstat-nat” command to monitor NATed connections:

Proto NATed Address Foreign Address State

tcp 192.168.1.3:53094 balrog-e.psi.ch:ssh ESTABLISHED
tcp 192.168.1.7:56063 1m4.license.Virginia.EDU:16286 TIME_WAIT
tcp 192.168.1.4:56065 1m4.license.Virginia.EDU:16286 TIME_WAIT
udp 192.168.1.4:ntp dns1.unix.Virginia.EDU:ntp UNREPLIED

The netstat-nat command is similar to the netstat
command we looked at earlier, except that it shows
you information about NATed connections passing
through your computer.

This type of NAT is also called “source NAT", or SNAT,
since it re-writes the address of the source computer.
As we'll see, there's also “destination NAT” or DNAT.

iptables actually has two possible targets for source
NAT. The one shown above, MASQUERADE, is
appropriate for devices that have variable IP
addresses, supplied by a DHCP server. The other
target is SNAT, which is more appropriate for hosts
with fixed IP addresses. See the iptables man page
for more information about the differences between
the two.

Port Forwarding (DNAT):

With “port forwarding” (aka “Destination NAT” or

DNAT) incoming packets for a particular port 192.168.1.2
have their destination address rewritten and are
forwarded to a computer on the private network.
eth0 eth1
128.143.210.157 192.168.1.1) s =
192.168.1.3
Port 80 Port 80
Packets arrive with The firewall rewrites -
the destination the;idestlnatlon P
address address to _—
128.143.210.157 192.168.1.4 ‘ f
D ||
=) L
p—— \\ O v\]‘ //
External network Internal network Tl
128.143.210.* 192.168.1.* 192.168.1.4

Y

Remote Computer

You could use port forwarding to connect a home web
server to the Internet, for example. The details of
how to do this will depend on the particular network
hardware you have at home. In general, you'll need
to connect to your router or DSL modem (or both)
through these devices' web interfaces and configure
NAT appropriately. If you have a DSL modem and a
router, you may need to tell the DSL modem to
forward packets to the router, and then tell the router
to forward packets to your internal server.
Documentation for most of these devices can be
found on the web.

Setting up Port Forwarding Using iptables:

Port forwarding can also be done with the rules in the “nat” table.
Again, eth0 is on the external (public) network. The host 192.168.1.4
is a web server on the internal (private) network. The rule below
forwards incoming traffic bound for port 80 (the standard port for web
traffic) to the internal host.

iptables -t nat -A PREROUTING -i eth® -p tcp \
--dport 80 -j DNAT --to-destination 192.168.1.4

Here we see an iptables target (DNAT) that requires an argument. In
this case, we need to specify the address of the internal computer to
which we want to send the packets.

Load Balancing with “ipvsadm”:

ipvs does dynamic port forwarding,
sending incoming connections to

different internal hosts according to a 192.168.1.2
pre-set policy.

(e)
ethO eth1
128.143.210.157 192.168.1.1 192.168.1.3
/[oye) / — o\
TR T
l%/;] (e)
192.168.1.4
/ \
(e)

e

External network Internal network
128.143.210.* 192.168.1.*

A_A\
Remote Computer

If you were running an Internet business and you
expected a lot of traffic on your web servers, you
might want to be able to spread the traffic around, so
that the load is handled by several web servers.
IPVS is one way of doing this.

IPVS doesn't use iptables, but they both use the
underlying Netfilter framework.

Using ipvsadm to Set Up Load Balancing:

Ipvsadm is different from iptables, although they both use Netffilter as a backend.
Ipvsadm lets you create a “Virtual Server” that actually corresponds to a cluster of

many real computers. Incoming connections for this virtual server will be forwarded
to one of the real computers based on a predetermined policy (“scheduling method”).
Here's an ipvsadm configuration for a cluster of six web servers:

First, add the service:
|ipvsadm -A -t 128.143.210.157:http -s wlc |

A A
Add this TCP\ N / \—\/J %/JScheduling method:

service. Host Port “weighted least-connections”

Then, add the servers:

ipvsadm -a -t 128.143.210.157:http -r 192.168.1.2:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.3:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.4:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.5:http -m -w 1
ipvsadm -a -t 128.143.210.157:http -r 192.168.1.6:http -m -w 1
ipvsadm -a t 128.143.210.157:http -r 192.168.1.7:http -m -w 1
_, N J
Add this N
server... to this service. Real server. Weight=1

Use Masquerading.

Like iptables, there are ipvsadm-save and ipvsadm-
restore commands to save and restore an ipvsadm
configuration. In the Red Hat/Fedora/CentOS world,
the file /etc/sysconfig/ipvsadm will automatically be
used to configure ipvsadm at boot time if the
ipvsadm service is turned on.

Available scheduling methods include round-robin,
fixed target based on source address, and many
others in addition to the wlc method shown above.

Part 2: Services

Now we'll look at how services are started and
stopped, including how to start them automatically
when the computer is booted.

Two Service Management Systems:

init (aka “Sys V Init”): systemd:

* Service configurations * Service configurations
under under
/etc/rc.d/init.d /usr/lib/systemd/system
* Services started/stopped * Services started/stopped
with the “service” with the “systemctl”
command command

* Services * Services enabled/disabled
enabled/disabled with the with the “systemctl1”
‘chkconfig” command command, too

Most current Linux distributions use systemd, but older
systems used init. In many cases, systemd can
understand "legacy" init-style service configuration
files, letting you start/stop those services with
systemd's own tools, just as if they were native
systemd services.

Starting and Stopping Services with Systemd:

This service is named “ssh”
on current Ubuntu/Debian
systems.

Start this service now:

systemctl start sshd

Stop this service now:

systemctl stop sshd

Confiquring Services to Start Automatically:

Automatically start this service at boot time:

systemctl enable sshd

Do not automatically start this service at boot time:

systemctl disable sshd

Checking Status of a Service with Systemd:

systemctl status sshd
e sshd.service - 0penSSH server daemon
Loaded: loaded
(/usr/1lib/systemd/system/sshd.service; enabled;
vendor preset: enabled)
Active: active (running) since Mon 2019-01-21
13:37:25 EST; 1 months 24 days ago
Docs: man:sshd(8)
man:sshd_config(5)
Main PID: 5627 (sshd)
Tasks: 3
CGroup: /system.slice/sshd.service
5627 /usr/sbin/sshd -D
24349 sshd: [accepted]
24350 sshd: [net]

A Systemd “Unit” File:

lusr/lib/systemd/system/sshd.service

[Unit]
Description=0penSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]

Type=notify
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

Restart=on-failure

RestartSec=42s

[Install]
WantedBy=multi-user.target

Part 3: System Logging

iptables and most services will generate warnings or
error messages when appropriate. Here's a little
information about where to find these messages.

The “dmesq” Command:

The kernel keeps an internal buffer of messages it has recently
generated. You can view this buffer with the “dmesg” (“display
messages”) command.

~/demo> dmesg

eth@: Tigon3 [partno(BCM95784M) rev 5784100 PHY(5784)] (PCI
Express) 10/100/1000

Base-T Ethernet 00:23:ae:74:d6:f1

eth0: RXcsums[1] LinkChgREG[0] MIirq[0] ASF[0] WireSpeed[1]
TSOcap[1]

eth0: dma_rwctrl[76180000] dma_mask[64-bit]

SCSI device sda: drive cache: write back

sda:<6>usb 2-1.1: configuration #1 chosen from 1 choice

sdal sda2
sd 0:0:0:0: Attached scsi disk sda

Vendor: Optiarc Model: DVD+-RW AD-7200S Rev: 102A

Type: CD-ROM ANSI SCSI revision:
05

usb-storage: device found at 25
usb-storage: waiting for device to settle before scanning
Vendor: Myson Model: CS8819A2-109 0 Rev: 1.01
Type: Direct-Access ANSI SCSI revision:
00

The messages shown by dmesg are in a “ring buffer”
in kernel memory. This is a fixed-length storage area
that wraps back to the top whenever the bottom is
reached. So, dmesg will only show you the most
recently-issued messages.

As you can see above, you can find out some useful
information about the system by looking at the output
of dmesg.

System Log Files:

System messages are also stored in log files, typically in the directory /var/log.
These are plain text files. Each line begins with a date and time, followed
by the name of the computer that generated the message (usually the local
computer). The format of the rest of the line is left up to whatever program
generated that particular message. The names of the log files will vary from
one distribution to another:

Red Hat/Fedora/CentOS: Ubuntu:

* /var/log/messages * /var/log/messages
* /var/log/secure * /var/log/syslog
* /var/log/maillog * /var/log/auth.log

* /var/log/mail.*
* /var/log/kern.log

A standard facility, called “syslog”, exists for logging messages.
Programs aren't required to use it, but many do. The location of log
files controlled by syslog is determined by the file /etc/syslog.conf.

Part 4: Auditing Security

How do you know if your computer is secure? Here
are some tools to help.

The Problem:

Today, any computer on the Internet is under constant attack. The graph
below, created by the Internet Storm Center (ISC), which tracks malicious
traffic on the internet, shows the mean time, in minutes, between attacks on
a given computer. They call this the “survival time”, since there's a good
chance that a computer with an unpatched security vulnerability will be
broken into by one of these attacks.

(Minutes)

Windows (Minutes)

Cumulative

Start Date: | 2018-03-16 | End Date: | 2019-03-16 LeftYAxis: RightYAxis:m
https://isc.sans.edu/survivaltime.html

We tend to think of our computers as relatively safe from intrusion,
but as you can see, they're under constant attack. There are 3.9
billion Internet users, and each of them has equal access to your
computer. It's as easy for a hacker in Hong Kong to break into
your computer as it is for him to break into his next-door
neighbor's computer (and it's probably much less likely that he'll
be prosecuted).

The attacks on your computer are automated. One hacker can
simultaneously try breaking into thousands of computers, with
very little effort. And even if most computer users are friendly,
with 3.9 billion users worldwide, from there are many who aren't.

Imagine that your house was surrounded 24 hours a day by
burglars trying to break in at every door and window. How long
would it be before one of them succeeded? That's the situation
we have now with computers connected to the Internet.

Security Principles:

* Don't run services you don't need.

* Use firewall rules that only allow as much
network access as you need.

» Use difficult passwords, and write them down if
you need to.

» Keep up with software updates.

* Only log in as the “root” user when you need
to, and only for as long as you need .

Some Tools for Auditing Security:

Local Scanners:

* rkhunter: http://rkhunter.sourceforge.net/
* lynis: https://cisofy.com/lynis/

* chkrootkit: http://www.chkrootkit.org/

* tiger: https://www.nongnu.org/tiger/

Network Scanners:
e nmap: https://nmap.org/
* OpenVAS: http://www.openvas.org/

The local scanners above are all good tools. Each of
them will give you slightly different
recommendations, but all of them are very verbose.
You'll need to think about their results, and consider
whether their recommendations are right for you.

The nmap scanner can be used to scan for open ports
on computers on your local network. It's a good tool
for checking the configuration of your computers.

OpenVAS is a powerful tool that scans for known
security vulnerabilities on your network. It's
optionally available as a ready-to-use virtual machine
image. OpenVAS is the open-source descendant of
the (previously open-source) proprietary Nessus
scanning system from Tenable.

Thanks!

System V Init Scripts and the “service” Command:
Services are usually started or stopped through scripts that live in the /etc/rc.d/init.d
(RHEL) or /etc/init.d (Ubuntu) directory. These scripts can be written in any
language, and they can do anything the author wants them to do, but they must
accept a standard set of command-line arguments, including at a miniumum a
single argument consisting of the word “start” or the word “stop”.

~/demo> 1ls /etc/rc.d/init.d
apcupsd apmd arpwatch atd
condor conman cpuspeed crond
cups cups-config-daemon cyrus-imapd dc_client
dc_server ddclient dellknob dhcdbd
dhcpér dhcpés dhcpd dhcrelay
dictd dkms_autoinstaller dnsmasq dovecot
dund elogd exim fail2ban
gfs2 gpm haldaemon halt
hsgldb httpd ibmasm ifplugd
ip6tables ipmi iptables ipvsadm
...etc.

To start a service (say, httpd) the script is called with the argument “start”:
/etc/rc.d/init.d/httpd start
Jetc/rc.d/init.d/httpd stop When called with “stop”, the script stops the service.
/etc/rc.d/init.d/httpd restart Restart is equivalent to stop followed by start.

Most Linux distributions provide a “service” command that invokes the appropriate script:

‘ [root@demo ~J# service httpd start ‘

The “System V" or “SysV” init script standard originally
came from AT&T System V Unix.

A Simple Init Script Example:
Here's a simple init script for starting the “condor” queue management

service:
#!/bin/sh

MASTER=/common/1lib/condor/sbin/condor_master

case $1 in
'start')
if [-x $MASTER]; then
echo "Starting up Condor"
$MASTER
else
echo "$MASTER is not executable. Skipping Condor startup."
exit 1
fi

'stop')
pid="ps auwx | grep condor_master | grep -v grep | awk '{print $2}'"
if [-n "$pid"]; then
echo "Shutting down Condor (fast-shutdown mode)"
kill -QUIT $pid
else
echo "Condor not running"
fi

rr
)

echo "Usage: condor {start|stop}"

rr
esac

As | said earlier, these scripts can be written in any
language, but most of them are Bourne shell scripts.
The one above is a simple example, that just uses a
“case” statement to decide what to do when the
script is given a “start” or “stop” command.

Init Scripts and Runlevels:

For each runlevel in /etc/inittab, there's a directory under /etc/rc.d (RHEL)

or /etc (Ubuntu). For runlevel 5, for example this directory is named “rc5.d”".
In each runlevel directory are symbolic links for every service that should be
started (or stopped) when init enters that runlevel. These symbolic links just
point to the init scripts in the init.d directory. The names of the symbolic
links determine (1) whether the service should be started or stopped, and (2)
which services should be started first. __Runlevel 5

[root@demo ~]# 1ls -al /etc/rc.d/rc5.d/S*

S@3sysstat -> ../init.d/sysstat S28autofs -> ../init.d/autofs
SO5kudzu -> ../init.d/kudzu S55cups -> ../init.d/cups
Se@6cpuspeed -> ../init.d/cpuspeed S55sshd -> ../init.d/sshd
S08iptables -> ../init.d/iptables S56xinetd -> ../init.d/xinetd
Si10network -> ../init.d/network s58ntpd -> ../init.d/ntpd

S12syslog -> ../init.d/syslog S6é0apcupsd -> ../init.d/apcupsd
S13irgbal -> ../init.d/irgbal S90crond -> ../init.d/crond
S13portmap -> ../init.d/portmap S92fail2ban -> ../init.d/fail2ban
S22msgbus -> ../init.d/msgbus S98hald -> ../init.d/hald

S26dkms -> ../init.d/dkms S99local -> ../rc.local

* Links beginning with “S” are started (equivalent to “service httpd start”),
* Links beginning with “K” are stopped (equivalent to “service httpd
stop”),

* Services are started or stopped in dictionary order, by the link names.

So, here's how services get started automatically at
boot time.

The “chkconfig” Command:

In the Red Hat/Fedora/CentOS world, the “chkconfig” command
provides an easy way to maintain symbolic links in the rc*.d
directories:

[root@demo ~]# chkconfig httpd on
[root@demo ~]# chkconfig httpd off

The first command looks for any K* symbolic links for httpd in
runlevels 2,3,4 and 5. If any are found, they are renamed to S*.
The second command does the opposite, renaming S* links to K*.

Note that, in order to be managed by chkconfig, new services need
to be checked into its database and their init scripts need to include
some special comment lines. See “man chkconfig” for more
information.

In the Ubuntu world, the “update-rc.d” command provides similar
functionality.

Note that chkconfig doesn't actually start or stop the
service. It just configures the service to start
automatically (or not) at boot time. If you want to
start or stop a service right now, use the “service”
command.

More About /etc/inittab, and rc.local:

When init enters the given runlevel, it executes the program
/etc/rc.d/rc with the runlevel as an argument. This program is the
thing that looks at the /etc/rc.d/rc*.d directory and executes the
appropriate init scripts to start services.

10:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
12:2:wait:/etc/rc.d/rc 2
13:3:wait:/etc/rc.d/rc 3 ggﬁﬁiﬁi%
l4:4:wait:/etc/rc.d/rc 4 '
15:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6 J

Also note that, for runlevels 2,3,4 and 5, the rc*.d directories usually
contain a symbolic link named “S99local”, pointing to the file
/etc/rc.d/rc.local. This script will be one of the last init scripts executed
when entering the given runlevel. It's a good place to put miscellaneous
commands that you'd like to run each time your computer boots.

~/demo> 1ls -al /etc/rc.d/rc5.d/S99local
/etc/rc.d/rc5.d/S991ocal -> ../rc.local

Using “nmap” to Audit Security:

Nmap is a “port scanner”. e ——
When pointed at aremote |
computer, it attempts to
connect to a each of a set of
ports. Based on these
connection attempts, nmap
determines what network
services are listening on the
remote computer. Nmap is ¢

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2009-03-04 13:21 EST

Target(s): [128.143.100.148 | @\ \g\

Discover | Timing ‘E\ Options |

Scan

Scan Type Scanned Ports

‘ SYN Stealth Scan 3 ‘ ‘ Default 3 ‘

Scan Extensions

[] RPC Scan [] OS Detection [] Version Probe

commonly run through a el i S
H H PORT STATE SERVICE
graphical interface called e open s

:
13 LI AT \. [904/tcp open unknown
nmapfe” (“nmap front end”): [5ow G oo

6000/tcp open X11
MAC Address: 00:23:AE:74:D6:F1 (Unknown)

Nmap finished: 1 IP address (1 host up) scanned in 0.542 secon ds

Nmap can be used to see g
what services your computer | .
is offering to the outside
world.

Command: \nmap -s5 -PI -PT 128.143.100.148 ‘

Nmap is a great tool for looking for security problems
on your own computer, but please don't point it at
computers you don't own.

Using “fail2ban”:
One of the most common types of malicious activity on the Internet is
the “brute-force ssh attack”. In these attacks, Bad Guys use
automated tools to try logging into your computer by ssh. They use a
dictionary of common usernames and passwords, and they may
make thousands of login attempts. In the best case, this uses some
of your computer's resources. In the worst case, they stumble upon a
valid username/password combination and gain access to your
computer.

One of the best tools for dealing with these attacks is “fail2ban”.
Fail2ban looks for groups of unsuccessful login attempts and
automatically blocks the attacking machine, using iptables firewall
rules. Fail2ban remembers which hosts are blocked, and

automatically unblocks them after some timeout period.
/var/log/fail2ban.log:

2009-03-03 10:28:31,776 fail2ban.actions: WARNING [ssh-iptables] Ban 85.233.64.178
2009-03-03 10:38:31,986 fail2ban.actions: WARNING [ssh-iptables] Unban 85.233.64.178
2009-03-03 13:31:18,984 fail2ban.actions: WARNING [ssh-iptables] Ban 195.14.29.12
2009-03-03 13:41:19,264 fail2ban.actions: WARNING [ssh-iptables] Unban 195.14.29.12
2009-03-03 13:45:47,325 fail2ban.actions: WARNING [ssh-iptables] Ban 195.14.29.12
2009-03-03 13:55:47,555 fail2ban.actions: WARNING [ssh-iptables] Unban 195.14.29.12
2009-03-04 06:49:17,178 fail2ban.actions: WARNING [ssh-iptables] Ban 116.7.255.86
2009-03-04 06:59:17,421 fail2ban.actions: WARNING [ssh-iptables] Unban 116.7.255.86
2009-03-04 08:35:42,481 fail2ban.actions: WARNING [ssh-iptables] Ban 122.9.63.150
2009-03-04 08:45:42,623 fail2ban.actions: WARNING [ssh-iptables] Unban 122.9.63.150

Arno's Iptables Firewall:

™

I FATIrs
PAGRIENIO L e

@®Projects

“Arno's Iptables Firewall” (AlIF) is a script to help automate the
creation of a complex set of firewall rules. The script reads a
configuration file that describes, at a high level, the layout of the
desired firewall. The configuration is usually “/etc/arno-iptables-
firewall/firewall.conf”.

AIF can be used for even trivial firewalls, but it's invaluable for setting
up complex firewalls with multiple network interfaces, NAT,
forwarding, etc.

Here's a tiny section of the firewall rules produced by AIF for a non-trivial configuration:

"AVALID_CHK -p tcp -m tcp —
--tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,ACK,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS-PSH scan: " --log-level 7

-AVALID_CHK -p tcp -m tcp

-AVALID_CHK -p tcp -m tcp -

level 7

-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -
-AVALID_CHK -p tcp -m tcp -

tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,PSH,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS scan: " --log-level 7
tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -m limit --limit 3/min -j LOG --log-prefix "Stealth XMAS-ALL scan: " --log-

tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN -m limit --limit 3/min -j LOG --log-prefix "Stealth FIN scan: " --log-level 7
tcp-flags SYN,RST SYN,RST -m limit --limit 3/min -j LOG --log-prefix "Stealth SYN/RST scan: " --log-level 7

tcp-flags FIN,SYN FIN,SYN -m limit --limit 3/min -j LOG --log-prefix "Stealth SYN/FIN scan(?): " --log-level 7

tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -m limit --limit 3/min -j LOG --log-prefix "Stealth Null scan: " --log-level 7
tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,PSH,URG -j DROP

tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RSTACK,URG -j DROP

tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -j DROP

tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN -j DROP

AIF can be downloaded here: http://rocky.eld.leidenuniv.nl/

TCP Wrappers:

Before firewall rules, we had “tcp_wrappers”. Tcp_wrappers is a library of
functions that helps programs decide on their own whether they will allow a
network connection from a particular remote computer. The library, called
“libwrap”, provides routines for parsing rules stored in the files
/etc/hosts.deny and /etc/hosts.allow, and applying those rules to incoming
network connections.

Each line in these files specifies a service and a list of clients (i.e.,
computers to be allowed or denied access to that service). As a special
case, the word “ALL” can be used for either service or client.

The files are processed in this order:
* Access will be granted when a (service,client) pair matches an
entry in the /etc/hosts.allow file.

* Otherwise, access will be denied when a (service,client) pair
matches an entry in the /etc/hosts.deny file.

* Otherwise, access will be granted.

For example, here are files that allow web server access to everybody, and
allow computers at UVa to have access to all services, but deny all other
computers access to anything:

hosts.allow hosts.deny

httpd: ALL | ALL:ALL |
ALL: .virginia.edu

