\ A
lr\ LInux for /A

Resea-rchers

"jChapterl 9: Files

This time we'll talk about filesystems. We'll start out by
looking at disk partitions, which are the traditional
places to put filesystems. Then we'll take a look at
“logical volumes”, which are an abstraction that
moves us away from physical disk partitions.

Part 1: Partitions

A partition is just a section of a hard disk. We'll look at
why we'd want to chop up a hard disk into partitions,
but we'll start by looking at the structure of a hard
disk.

Spinning Disk Geometry:

Disks are made of stacks of spinning
platters, each surface of which is read by
an independent “read head”.

Track/
Cylinder

Originally, the position of a piece of data
on a disk was given by the coordinates
C,H and S, for “Cylinder”, “Head” and
“Sector”.

Block, or
“Track Sector”

The intersection of a cylinder with a
platter surface is a “Track”.

The intersection of a sector with a track
is a “Block”. Confusingly, the terms

“Track Sector” or just “Sector” are also
often used to refer to blocks. Heads

8 Heads,

Today, the CHS coordinates don't really Z Platics

refer to where the data is actually
located on the disk. They're just
abstractions. A more recent coordinate

scheme, “Logical Block Addressing” . .
(LBA) just numbers the blocks on the Each block is typically 512

disk, starting with zero. bytes.

The CHS coordinate system began with floppy disks, where the
(c,h,s) values really told you where to find the data. Some
reasons CHS doesn't really tell you where the data is on a
modern hard disk:

As disks became smarter, they began transparently hiding bad
blocks and substituting good blocks from a pool of spares.
Modern disks actually increase the number of blocks per track
for the outer cylinders, since there's more space in those
tracks.

These disks also try to optimize 1/0O performance, so they want
to choose where to really put the data.

You can have arrays of disks (e.g. RAID) that appear (to the
operating system) to be one disk.

The same addressing scheme can be applied to non-spinning
devices, like solid-state disks.

If (c,h,s) is hard to grasp, realize that it's just equivalent to (r,z,0).
They're coordinates in a cylindrical coordinate system.

Partitions:

Sometimes, it's useful to split up a disk into smaller pieces, called
“partitions”. Some motivations for this are:

* The operating system may not be able to use storage devices as
large as the whole disk.

* You may want to install multiple operating systems.
* You may want to designate one partition as swap space.

* You may want to prevent one part of your storage from filling up the
whole disk.

One potential problem with having multiple partitions on a disk is that
partitions are generally difficult to re-size after they are created.

MBR Partition Table:

The first block on a disk is the “Master Boot Record” (MBR). This
block contains a boot program, used to boot an operating system,
and a “partition table”. The partition table contains slots for up to four
primary partitions. For each partition, the table specifies the starting
position of the partition (in LBA coordinates) and the size of the
partition (in blocks). Since the size is stored as a 4-byte value, the
size of a partition is limited to about 2 Terabytes.

16 bytes
Master Boot Record (MBR)
pi: p2: p3: p4:
estart |estart |estart |estart«— 4 bytes
Boot Code *size |esize |°size |°size =« 4 bytes
440 bytes
Partition Table
—
512 Bytes

Each disk will have at least one partition. Note that
you can only have up to four primary partitions. We'll

talk about how to get around the 2 Terabyte size limit
later.

The MBR also contains a few other values, like a disk
signature, but you can see by adding up the numbers

that the boot code and the parition table make up the
bulk of the MBR.

In LBA coordinates, the MBR is LBA=0.

Extended Partitions:
Any one (but only one) of the primary partitions can be an “extended
partition”. At the start of an extended partition is an “Extended Boot
Record” (EBR). This describes a “logical partition” within the
extended partition. If there's more than one logical partition, the EBR
will also point to the next logical partition in the chain. There's no
fixed limit on the number of logical partitions.

Master Boot Record (MBR)
pi: p2: |p3: |p4:

Exten-
Boot Code ded

Extended Partition

EBR

Logical Partition

Logical Partition

|
|
|
| EBR
I
I

i

In practice, you seldom see disks with more than half a
dozen partitions. These days, the typical desktop
Linux computer's disk has only two or three.

GUID Partition Tables:

For disks larger than 2 TB, we need to use a different kind of partition
table. A“GUID Partition Table” (GPT) can accommodate much larger
disks. GPT uses 8 bytes to store addresses, so the maximum
theoretical size of partitions is about 9.4 Zettabytes (9.4 billion TB).
That should hold us for the near future.

Backup
GPT GPT

o Header
. |
| The [

B Rest Backup
Partition Table | of the : Partition Table

| Disk |
| _ _ _ _ _ _

Protective
MBR

The successor to MBR partition tables are GUID
partition tables. They have no fixed number of
partitions, and can accommodate much larger disks.

At the front of the disk there's still an MBR. In this
case, the MBR's own partition table just says there's
one big partition on the disk, of type "GPT", causing
non-GPT-aware operating systems to ignore it.

The GPT header has information about the size of
each entry in the parition table, and how many
entries there are (128 is a typical default value).

Notice that the GPT header and the partition table are
duplicated at the end of the disk.

UEFI and GUID Partition Tables:

The successor to the PC BIOS is called “Unified Extensible
Firmware Interface” (UEFI). Rather than using boot code
stored in the MBR, UEFI| uses bootloaders stored in a
special partition on the disk.

MS Windows and Apple OS X require UEFI when using
GPT partition tables, but Linux allows you to use either
UEFI or the traditional MBR boot code with GPT partitions.

Notice that the terms "GUID", "GUID parition table",
and "UEFI" are often associated with each other, but
they're really independent things.

GUID (aka UUID) is just a scheme for creating unique
identifiers without needing some central registry. It
can be used for anything, and isn't limited to partition
tables.

GUID partition tables use GUIDs to identify partitions,
but they'd work about the same if some other ID
were used. The magic of GPT is its ability to work
with large disks and many partitions.

UEFI was developed with GPT in mind, but you don't
need to use UEFI to use GPT.

Disk and Partition Files in /dev:

In Linux, each whole disk drive or partition is represented by a special file in
the /dev directory. Programs manipulate the disks and partitions by using
these special files. The files have different names, depending on the type of
disk.

* SATA, SCSI, USB (or other external) Disks:

These disks are represented by files named /dev/sd[a-z]. They're
named in the order they're detected at boot time. Partitions have
names like “sda1”, “sda2”, etc.

Non-logical partitions on each disk are numbered sequentially, 1
through 4. Logical partitions are numbered beginning with 5.

* NVME Disks:

These disks are represented by files named /dev/nvme[0-9]n[1-9].
The first number identifies the device controller, and the second
identifies the device. Usually the first NVME disk will be
“/dev/nvmeOn1”. Partitions will have names like “nvmeOn1p1”,
‘nvmeOn1p2”, etc.

Note that you're unlikely to encounter an IDE/PATA
disk these days. If you do, these disks will have
names like /dev/hda, hdb, etc.

Part 2: Manipulating Partitions

KEEP HANDS
AWAY
FROM GEARS

o4
{r

Now we'll look at how to create and otherwise
manipulate partitions on a disk. This can be
dangerous work. You always need to be careful
about which disk you're working on. I've tried to
indicate clearly which commands require special
caution.

Viewing MBR Partitions with “fdisk”:

You can use the “fdisk -I” or “gdisk -I” (for GPT) commands to view

the partition layout on a disk:
[root@demo ~]# fdisk -1 /dev/sda

Disk /dev/sda: 160.0 GB, 160000000000 bytes
255 heads, 63 sectors/track, 19452 cylinders Partition Type
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sdal * 1 13 104391 83 Linux
/dev/sda2 14 19452 156143767+ 8e Linux LVM

Near the top, you can see the number of heads, sectors and cylinders. These
may not represent physical reality, but they're the way the disk presents itself
to the operating system.

Fdisk reports the size of each partition in 1024-byte “blocks”. The two
partitions above are about 100 MB and about 156 GB. The “+” sign on the
size of the second partition means that its size isn't an integer number of
1024-byte blocks.

The “start” and “end” values are in units of cylinders, by default. You can use
the “-u” switch to cause fdisk to display start and end in terms of 512-byte
“track sectors”.

To add to the confusion about terms like “block™ and
“sector”, fdisk uses a size of 1024 bytes (not 512)
when it reports the number of “blocks™ in a partition.
The Linux kernel uses blocks of this size, and many
Linux programs will assume that a “block” is 1024
bytes. Filesystems typically use “blocks™ of 1024,
2048 or 4096 bytes.

The disk-drive industry is currently pushing new
standards that would make the on-disk block size
4096 bytes.

Viewing GPT Partitions with “gdisk”:

[root@demo ~]# gdisk -1 /dev/sda

Disk /dev/sda: 488397168 sectors, 232.9 GiB
Model: ST9250315AS

Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): A1080619-34D1-4C04-96D7-97C720D8773A
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 488397134

Partitions will be aligned on 2048-sector boundaries Partition Type
Total free space is 4397 sectors (2.1 MiB)

4 Y
Number Start (sector) End (sector) Size Code Name
1 2048 476108799 227.0 GiB 8300 Linux filesystem
5 476110848 488396799 5.9 GiB 8200 Linux swap

Here's how to view the layout of a GPT partition table.
The tool in this case is "gdisk".

Partition Types:

Here's the list of partition types that fdisk knows about. The most
common ones are highlighted.

0 Empty le Hidden W95 FAT1 80 01d Minix be Solaris boot

1 FAT12 24 NEC DOS 81 Minix / old Lin bf Solaris

2 XENIX root 39 Plan 9 [82 Linux swap / So|cl1 DRDOS/sec (FAT-
3 XENIX usr 3c PartitionMagic |83 Linux lc4 DRDOS/sec (FAT-
4 FAT16 <32M 40 Venix 80286 84 0S/2 hidden C: c¢6 DRDOS/sec (FAT-
5 Extended 41 PPC PReP Boot 85 Linux extended c¢7 Syrinx

6 FAT16 42 SFS 86 NTFS volume set da Non-FS data

7 HPFS/NTFS \4d QNX4 . x 87 NTFS volume set db CP/M / CTOS / .
8 AIX 4e QNX4.x 2nd part 88 Linux plaintext de Dell Utility

9 AIX bootable 4f QNX4.x 3rd part[8e Linux LVM |df BootIt

a 0S/2 Boot Manag 50 OnTrack DM 93 Amoeba el DOS access

b W95 FAT32 \51 OnTrack DM6 Aux 94 Amoeba BBT e3 DOS R/0

c W95 FAT32 (LBA) 52 CP/M 9f BSD/0S e4 SpeedStor

e W95 FAT16 (LBA) 53 OnTrack DM6 Aux a® 1IBM Thinkpad hi eb BeOS fs

f W95 Ext'd (LBA) 54 OnTrackDMé a5 FreeBSD ee EFI GPT
10 OPUS 55 EZ-Drive a6 OpenBSD ef EFI (FAT-12/16/
11 Hidden FAT12 56 Golden Bow a7 NeXTSTEP fO@ Linux/PA-RISC b
12 Compaq diagnost 5c Priam Edisk a8 Darwin UFS f1 SpeedStor
14 Hidden FAT16 <3 61 SpeedStor a9 NetBSD f4 SpeedStor
16 Hidden FAT16 63 GNU HURD or Sys ab Darwin boot f2 DOS secondary
17 Hidden HPFS/NTF 64 Novell Netware b7 BSDI fs fd Linux raid auto
18 AST SmartSleep 65 Novell Netware b8 BSDI swap fe LANstep
1b Hidden W95 FAT3 70 DiskSecure Mult bb Boot Wizard hid ff BBT
1c Hidden W95 FAT3 75 PC/IX

Note that the partition type is just a label. You can put
anything you want into a partition of any type. The
partition type designation just provides the operating
system with clues about what to expect.

GPT incorporates and extends this list by using 4-digit
identifiers. In a GUID partition table, "8300" identifies
a Linux partition, and "8e00" identifies a Linux LVM
partition, for example.

Creating Partitions with “fdisk’:

You can use fdisk to create or delete partitions on a disk. If you type “fdisk
/dev/sda”, for example, you'll be dropped into fdisk's command-line
environment, where several simple one-character commands allow you to
manipulate partitions on the disk.

Some fdisk commands: [root@demo ~]# fdisk /dev/sdb

Command (m for help): n

p Print the partition table

Command action
e extended
p primary partition (1-4)

n Create a new partition

d Delete a partition

p
Partition number (1-4): 1

t Change a partition's First cylinder (1-9726, default 1): +

type Using default value 1
. . . Last cylinder or +size or +sizeM or +sizeK (1-9726,
g Quit without saving default 9726): +40G
changes

Command (m for help): p
w Write the new partition Disk /dev/sdb: 80.0 GB, 80000000000 bytes
: 255 heads, 63 sectors/track, 9726 cylinders
table and exit Units = cylinders of 16065 * 512 = 8225280 bytes

Note: In fdisk, the term “primary” Syg?g\ﬂ:lce Boot Start End Blocks Id
partition means one that's notan | /ey /sdb1 1 4864 39070048+ 83
“extended” partition.

Linux

Notice that nothing you do in fdisk is actually written to
the disk until you type “w”. If you decide you've
made a mistake, you can always quit without saving

anything by typing “q”.

I'll only show fdisk here, but usage for gdisk is similar.

Changing a Partition's Type:

Here's how to change a partition's type, using fdisk. In this example,
we change the partition from the default type (“Linux”) to mark it as a

swap partition.

Command (m for help): p

Disk /dev/sdb: 80.0 GB, 80000000000 bytes
255 heads, 63 sectors/track, 9726 cylinde

Units = cylinders of 16065 * 512 = 822528
Device Boot Start End

/dev/sdb1l 1 4864

/dev/sdb2 4865 9726

Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 82
Changed system type of partition 2 to 82

Command (m for help): p

Disk /dev/sdb: 80.0 GB, 80000000000 bytes
255 heads, 63 sectors/track, 9726 cylinde

Units = cylinders of 16065 * 512 = 822528
Device Boot Start End

/dev/sdb1l 1 4864

/dev/sdb2 4865 9726

rs
0 bytes

Blocks Id

39070048+ 83
39054015 [83

(Linux swap /

rs
0 bytes

Blocks Id
39070048+ 83

System
Linux\
LinuxJ

Solaris)

System
Linux

39054015 (82

Linux swap / 501arls‘

Again, gdisk usage is similar.

Formatting a Swap Partition:

Before a swap partition can be used, it needs to be formatted. You
can do this with the “mkswap” command:
WARNING!
[root@demo ~]# mkswap /dev/sdb2

Setting up swapspace version 1, size=39054015 kB
WARNING!

Note that this will re-format the designated partition immediately,
without asking for confirmation, so be careful!

To start using the new swap space immediately, use the “swapon”
command:

‘[root@demo ~]# swapon /dev/sdb2

As we'll see later, you can also cause this swap partition to be used
automatically, at boot time.

Here's one of those very dangerous commands.
Please make sure you point mkswap at the right disk
partition.

A swap partition is a chunk of disk space that can be
used as "fake memory" if your computer runs out of
physical memory. This prevents programs from
crashing, as they otherwise would. Swap space is
much slower than physical memory, though.

Saving Partition Layout with “sfdisk”:

You can save a partition layout into a file, so that it can later be restored.
One way to do this is the “sfdisk” command. For example, this
command will save the disk partitioning information into the file sdb.out:

‘[root@demo ~]# sfdisk -d /dev/sdb > sdb.out

If the disk is replaced later, or if you have another identical disk that you
want to partition in the same way, you can use this command:
WARNING!
[root@demo ~]# sfdisk /dev/sdb < sdb.out

WARNING!

Note that this command should be used very carefully, since it will
(without asking for confirmation) wipe out any existing partition table
on the disk. The content of hda.out looks like this:

partition table of /dev/sdb
unit: sectors

/dev/sdbl : start= 63, size= 208782, 1d=83, bootable
/dev/sdb2 : start= 208845, size=312287535, Id=8e
/dev/sdb3 : start= 0, size= 0, Id= 0
/dev/sdb4 : start= 0, size= 0, Id= 0

Another dangerous command.

Saving Partition Layout with “sqgdisk”:

For disks with GPT partition tables, you can use “sgdisk” to save or
restore partition layouts. For example, this command will save the disk
partitioning information into the file sdb.out:

[root@demo ~]# sgdisk -b - /dev/sdb > sdb.out

If the disk is replaced later, or if you have another identical disk that you
want to partition in the same way, you can use this command:

WARNING!
[root@demo ~]# sgdisk -1 - -Gg /dev/sdb< sdb.out

WARNING!

Note that this command should be used very carefully, since it will
(without asking for confirmation) wipe out any existing partition table
on the disk.

This is the GPT equivalent of sfdisk.

Part 3: Filesystem
Structure

In order to understand filesystems, it's important to
have a little knowledge about how they're laid out on
disk. Terms like “superblock™ and “block group”
show up in error messages sometimes, and knowing
what they mean can save you a lot of grief. Here's a
primer on filesystem structure.

What is a Filesystem?

Afilesystem is a way of organizing data on a block device. The filesystem
organizes data into “files”, each of which has a name and other metadata
attributes. These files are grouped into hierarchical “directories”, making it
possible to locate a particular file by specifying its name and directory path.
Some of the metadata typically associated with each file are:

* Timestamps, recording file creation or modification times.
* Ownership, specifying a user or group to whom the file belongs.
* Permissions, specifying who has access to the file.

Linux originally used the “minix” filesystem, from the operating system of the
same name, but quickly switched to what was called the “Extended
Filesystem” (in 1992) followed by an improved “Second Extended
Filesystem” (in 1993). The two latter filesystems were developed by French
software developer Remy Card.

The Second Extended Filesystem (ext2) remained the standard Linux
filesystem until the early years of the next century, when it was supplanted
by the “Third Extended Filesystem” (ext3), written by Scottish software
developer Stephen Tweedie. In 2008 this has been superseded by exi4,
developed by Ted Ts'o. Since version 7 of RHEL/CentOS, that distribution
has switched to the xfs filesystem, developed by SGI in 1991.

Linux also supports many other filesystems, including
Microsoft's VFAT and NTFS, and the ISO9660
filesystem used on CDs and DVDs.

A block device is a device like a disk where you can
directly address individual “blocks” of data. Linux
separates devices into “character” devices, which
just read and write streams of bytes, and “block”™
devices, in which parts of the device's storage can
be directly addressed.

RHEL/CentOS switched to xfs primarily because it
gives better performance than ext4 for very large
filesystems. See:
http://tate.cx/using-the-xfs-file-system/
for some details.

How ext2, ext3 and ext4 Work:

The ext2, ext3 and ext4 filesystems are very similar. Each divides a disk
partition into “block groups” of a fixed size. At the beginning of each block
group is metadata about the filesystem in general, and that block group in
particular. There is much redundancy in this metadata, making it possible to
detect and correct damage to the filesystem.

Disk Partition Data

Block Group 0

Block Group 1

Super-
block

All Group

Descriptors

Data Blocks

This Group's Descriptor

Superblocks:
The ext2/ext3/ext4 filesystem as a whole is described in a chunk of data
called the “Superblock”. The superblock contains:

* a name for the filesystem (a “label”),

* the size of the filesystem's block groups,

* timestamps showing when the filesystem was last mounted,

* a flag saying whether it was unmounted cleanly,

* a number showing the amount of unused space in the filesystem,

and much other information. The superblock is duplicated at the beginning
of many block groups. Normally, the operating system only uses the copy
at the beginning of block group 0, but if this is lost or damaged, the data can
be recovered from one of the other copies. During normal operation, the
operating system keeps all copies of the superblock synchronized.

Block Group

Super- All Group

block Descriptors Data Blocks

This Group's Descriptor

The superblock is actually duplicated at the beginning
of each block group for ext2 filesytems. For ext3 and
ext4, there's the option of only duplicating it in some
block groups. If this option is turned on (as it is by
default), the superblock is only duplicated in block
groups 0, 1 and powers of 3, 5 and 7.

Inodes and Group Descriptors:

Each file's data is stored in the “data blocks” section of a block group. Files are
described by records stored in chunks called “index nodes” (inodes). The inodes
are stored in the “inode table” in a part of the block group called the “group
descriptor”. Data in each inode includes:

* the file's name,

* the file's owner,

* the group to which the file belongs,

* several timestamps,

* permission settings for the file,

* pointers to the data blocks that contain the file's data,

and other information. The group descriptors are so important that copies of the
block descriptors for every block group are stored in each block group. Normally,
the operating system only uses the descriptors stored in block group 0 for all block
groups, but if a filesystem is damaged or has been uncleanly unmounted it's
possible to verify the filesystem's integrity and repair damage by using other copies.

Super- All Group

block Descriptors Data Blocks

This Group's Descriptor

As with the superblock, the operating system normally keeps all of
the copies of a given group's group descriptors in sync.

Directories are also described by inodes. Each inode has a “type”

that identifies it a a file, a directory, or some other special type of
thing.

The inodes are numbered sequentially, and files can be identified
by their inode number as well as their name.

The “data bitmap” is a set of ones and zeroes, each corresponding
to one of the blocks in the block group's data section. If a one is
set in the bitmap, that means that this block is used. A zero

means that it's free. The data bitmap lets us know which blocks
we can use.

Similarly, the “inode bitmap” tells us which entries in the inode
table are free.

The Journal:

Although ext2, ext3 and ext4 are very similar, ext3/4 have one
important feature that ext2 lacks: journaling. We say that ext3/4 are
“‘journaled” filesystems because, instead of writing data directly into
data blocks, the filesystem drivers first write a list of tasks into a
journal. These tasks describe any changes that need to be made to
the data blocks.

The operating system then periodically looks at the journal to see if
there are any tasks that need doing. These tasks are then done, in
order, and each completed task is marked as “done” in the journal.

If the computer crashes, the journal is examined at the next reboot to
see if there were any outstanding tasks that needed to be done. If so,
they're done. Any garbled information left at the end of the journal is
ignored and cleared.

Journaling makes it much quicker to check the integrity of a filesytem
after a crash, since only a few items in the journal need to be looked
at. In contrast, when an ext2 filesystem crashes, the operating
system needs to scan the entire filesystem looking for problems.

Other than journaling, ext2 and ext3 are largely the
forward- and backward-compatible. An ext2
filesystem can easily be converted to ext3 by adding
a journal. Going the other way may be possible, too,
if an ext3 filesystem doesn't use any features that
aren't present in an ext2 filesystem. Similar
considerations apply when going between ext3 and
ext4 filesystems.

The journal is described by a special inode, usually
inode number 8.

Inode Structure, and Filesystem Limits:

Made
Dwmer info
Size

Timcstamps

Drirect Blocks

Indirect Blocks I |

Demble Indivect | .

Tripk Indircct

i

d

il

Some size limits for filesystems:

Size Limits ext2 ext3 ext4
Max. File Size: 2TB 2TB 16 TB
Max. Filesystem Size:| 16 TB 16 TB 1EB

The diagram above shows the structure of a single
inode. The file it represents might have data stored
in many different data blocks. (And note that the
blocks aren't necessarily contiguous.)

Part 4: Filesystem Tools:

Now lets look at some tools for creating and
manipulating filesystems.

Making an ext3 or ext4 Filesystem:

To make an ext3 or ext4 filesystem, use one of the “mkfs” commands:

WARNING!

[root@demo ~]# mkfs.ext4 -Lmydata /dev/sdbl
Use mkfs.ext3 instead, if Give it this Create it on this
you want to make it ext3. label. partition.

Note that the command above will format (or re-format) the
designated partition without asking for any confirmation. Please
make sure you point it at the partition you really want to format.

The filesystem label can be any text you choose, but usually the label
is chosen to be the same as the name of the location at which you
expect to mount the filesystem. For example, a filesystem intended
to be mounted at “/boot”, would probably probably be created with
“L/boot”. For the “/” and “/boot” filesystems, this should always be
done, but it's good practice for other filesystems, too.

Another dangerous command.

Example mkfs.ext4 Output:

[root@demo ~]# mkfs.ext4 -Lmydata /dev/sdbl
mke2fs 1.41.12 (17-May-2010)
Filesystem label=mydata
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
121896960 inodes, 487585272 blocks
24379263 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
14880 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200,
884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872,
71663616, 78675968,
102400000, 214990848
Writing inode tables: done.
creating root dir

Note that mke2fs divides the disk up into 14,880 block
groups, but only (!) 18 copies of the superblock are
created. If this were an ext2 filesystem, there would
be 14,880 copies. The total number of inodes
available (including all inodes in all block groups) is
121,896,960. This is the maximum number of files
that this filesystem will hold.

You might notice the reference to “fragments per
group” in the output above. In this context, a
“fragment” is a chunk of storage space that's smaller
than a block. This is seldom used, and in this case
you can see that the fragment size is just set to the
block size.

Changing the Attributes of a Filesystem:

The tune2fs command can be used to change the attributes of an
ext2/ext3/ext4 filesystem after it has been created. For example, to
change the filesystem's label:

\[root@demo ~]# tune2fs -L/data /dev/sdb1l

Some other useful things that tune2fs can do:
-l List superblock information.

-c Set the maximum mount count for the filesystem, after which a
filesystem check will occur (O = never check).

-i Set the interval between filesystem checks (0 = never check).

Changing a filesystem's label is perfectly safe. It won't
cause you to lose any data. (But it might cause
confusion if you're already referring to the old label
somewhere.) The same is true for the other flags
listed above.

Looking at Filesystem Metadata:

“tune2fs -I” will show you a filesystem's superblock information:

Filesystem volume name:
Filesystem state:
Inode count:

Block count:

Reserved block count:
Free blocks:

Free inodes:

First block:

Block size:

Blocks per group:
Inodes per group:
Inode blocks per group:
Filesystem created:
Last mount time:

Last write time:
Mount count:

Maximum mount count:
Last checked:

Check interval:
Reserved blocks uid:
Reserved blocks gid:
First inode:

Inode size:

Journal inode:

etc...

[root@demo ~]# tune2fs -1 /dev/sdal
tune2fs 1.39 (29-May-2006)

/boot

clean

26104

104388

5219

55562

26037

1

1024

8192

2008

251

Mon Sep 10 10:58:16 2007
Fri Dec 26 10:23:03 2008
Fri Dec 26 10:23:03 2008
60

-1

Mon Sep 10 10:58:16 2007
0 (<none>)

0 (user root)

0 (group root)

11

128
8

You can see this plus block group information by using the “dumpe2fs” command.

Note the “mount count”, “maximum mount count”, “last
checked” and “check interval” entries. We'll see later

that the “fsck” command uses these.

Checking a Filesystem:
[root@demo ~]# fsck /dev/sdbl

If a computer loses power unexpectedly, the filesystems on its disks may be left in
an untidy state. The “filesystem check” (fsck) command looks at ext2/ext3/ext4
filesystems and tries to find and repair damage. Fsck can only be run on
unmounted filesystems.

Each filesystem's superblock contains a flag saying whether the filesystem was
cleanly unmounted. If it was, fsck just exits without doing anything further.

If the filesystem wasn't cleanly unmounted, fsck checks it. Under ext3/ext4, fsck
first just looks at the journal and completes any outstanding operations, if possible.
If this works, then fsck exits.

If the ext3/ext4 journal is damaged, or if this is an ext2 filesystem, fsck scans the
filesystem for damage. It does this primarily by looking for inconsistencies between
the various copies of the superblock and block group descriptors. If inconsistencies
are found, fsck tries to resolve them, using various strategies.
The filesystem's superblock also contains a “mount count”, “maximum mount
count”, “last check date” and “check interval”. If the mount count exceeds the
maximum, a scan of the filesystem is forced even if it was cleanly unmounted. If
the time since the last check date exceeds the check interval, a scan is also forced.
Both of these forced checks can be disabled, by using tune2fs.

Modifying fsck's Behavior:

Some useful fsck options:

-f Force a scan, even if the filesystem appears to have been cleanly
unmounted.

-b Specify an alternative superblock, in case the primary superblock
has been damaged.

-y Answer “yes” to any questions fsck asks.
-A Check all filesystems.

-C Show a progress bar as fsck works. (It can sometimes take a
very long time.)

Fsck is actually a wrapper that calls a different type-
specific filesystem checker for each different type of
filesystem that it knows about.

Mounting Filesystems:

The root (“/”) filesystem is mounted by
O /dev/sda2 the kernel, at boot time. Other
filesystems are then mounted at
E] “‘mount points” underneath “/”. A
mount point is just a directory. It's
. usually empty, but it doesn't have to
be. If it's not, its original contents will
be hidden until the mounted filesystem
> | Is :
. IS unmounted.
- O /devisda3
L/
- &=

Mount Point ——————— —

This command would mount /dev/sda3 on /home:

mount /dev/sda3 /home | L»

This command would unmount the filesystem:
; L——» |
umount /home |

The directory tree of each physical device is grafted
onto the same tree, with the root directory (“/") at the
top. There are no “C:” or “D:” drives under Linux.
Every file you have access to lives in the same tree,
and you don't need to care what device the file lives
on.

Mounting Filesystems Automatically at Boot Time:

The file /etc/fstab (“filesystem table”) contains a list of filesystems to
be mounted automatically at boot time. It looks like this:

/etc/fstab
Disk partition —» | /dev/sdal / ext3 defaults 1 1
Specified by label— | LABEL=/boot /boot ext3 defaults 1 2
devpts /dev/pts devpts mode=620 0 0
Specia|fi|esystems{ tmpfs /dev/shm tmpfs defaults 0 0
created by the kernel proc /proc proc defaults 0 0
sysfs /sys sysfs defaults 0 0
Disk partiton —» | /dev/sda2 swap swap defaults 0 0

-
L

(Note that this file also _)\ J\ J\
lists swap partitions.) Y Y

Filesystem Mount Point Type Options

* The “dump” flag is used by a backup utility called “dump” Flag
“dump”. Filesystems marked with a 1 here will be
backed up by dump. fsck Order

* The “fsck order” field determines what order
filesystems are checked when fsck is run automatically
at boot time. A value of zero means that this
filesystem won't be checked. Others are checked in
ascending order of these values.

Among the “options” settings you can use “noauto” to
cause the given filesystem not to be automatically
mounted at boot time. In that case, you'd need to
manually mount it later, using the “mount” command.

If you have a filesystem listed in /etc/fstab, you can
mount it either like this, with two arguments:

mount /dev/sda1l /

or like this, with one argument:
mount /dev/sda

or

mount /

since /etc/fstab lets “mount” know what you mean by
these.

Part 5: Logical Volume Management

.! F 'g 3 I L |

) . ! Ml ;
v ;

i

s i |, ‘

: } i | " N
| -
u ‘
[

uuuuuu

RHEL/CentOS/Fedora distributions use Logical
Volume Management by default. You'll need to
know a little about LVM to understand how these
computers' filesystems are laid out.

The LVM System:

The ext2, ext3 and ext4 filesystems are limited by the size of the
partitions they occupy. Partitions are difficult to resize, and they can't
grow beyond the whole size of the disk. What can we do if we need
more space than that for our filesystem?

One solution is the Logical Volume Management (LVM) system. LVM
lets you define “logical volumes” that can be used like disk partitions.
Unlike partitions, logical volumes can span multiple disks, and they
can easily grow or shrink.

These days, when you install a Linux distribution on a computer,
some of the filesystems that are created will (by default) be on logical
volumes, not physical disk partitions. This makes it important to
understand how LVM works.

As we'll see, LVM also provides us with another,
software-based, way to avoid the 2 TB partition limit
imposed by MBR-style partition tables.

Logical Volume Structure:

LVM divides each disk (or “physical volume”) into chunks called “physical extents”
(PEs). Disks are added to “volume groups” (VGs). Each VG is a pool of physical
extents from which “logical volumes” (LVs) can be formed. An LV can be expanded
by adding more PEs from the pool. If an LV needs to grow even larger, more PEs

can be added to the pool by adding disks to the volume group.

VolGroup00 — Volume Group
sda P — Physical Volume (PV)
PE PE PE PE PE PE PE
[

sdb_ ~_ v
PE PE PE PE PE PE PE
I 1N A
i:>'z,\“‘“i:::::::.:ik—-—PhysicalExtent(PE)
LogVol00 N

Note that LVM can use either a whole disk or a disk

Logical Volume

partition as a physical volume.

Creating Logical Volumes:

First, let's make a new disk available to the LVM system by initializing
it as an LVM “physical volume” using “pvcreate”

[root@demo ~1# pvcreate /dev/sdb |

Then, let's create a new volume group and add the newly-initialized
disk to it:
‘[root@demo ~]# vgcreate VolGroup0l1l /dev/sdb ‘

Now, let's create a 500 GB logical volume from the pool of space in
our new volume group:

\[root@demo ~]# lvcreate -L500G -nLogVol00 VolGroupOl \

Now we can create a filesystem on the logical volume, just as we'd
use a partition:
| [root@demo ~]# mkfs.ext4 -L/data /dev/VolGroup@1/LogVvoleo |

Finally, we can mount the logical volume just as we'd mount a partition:
'[root@demo ~]# mount /dev/VolGroup@1/Logvolee /data

Note that you can point pvcreate at either a whole disk,
as above, or a disk partition (like “/dev/sdb1”). If you
use a whole disk, the disk's partition table is wiped
out, since LVM doesn't need it. Thus, LVM can be
used to completely avoid the 2 TB limit imposed by
MBR-style partition tables.

This is one reason some distributions began using
LVM by default. LVM provides a way to support
large disks without requiring GUID partition tables.

Examining Volume Groups:
You can find out about a volume group by using the “vgdisplay” command:

[root@demo ~]# vgdisplay VolGroup0©oO
--- Volume group ---
VG Name VolGroup0o
System ID
Format 1vm2
Metadata Areas 1
Cgtzdata Sequence No 3 — Notice these. They tell
ccess read/write i
VG Status resizable you how ma.ny physical
MAX LV 0 extents are in the volume
cur LV 2 group, and how many are
Open LV 2 still available for making
Max PV 0 new logical volumes.
Cur PV 1
Act PV 1
VG Size 148.91 GB
PE Size 32.00 MB
Total PE 4765
Alloc PE / Size [4765 / 148.91 GB
Free PE / Size 0/ 0
VG UUID [bleoy-zOSZ-DzTQ-PH4p-uYfJ-jkHS-29onq

If you move a disk to a different computer that already has a volume group
with the same name, you may need to use the UUID of the volume groups to
rename one of them. Use “vgrename” for this.

Growing a Logical Volume:

If we don't have any free PEs in our volume group, we can add
another disk:

‘[root@demo ~]# vgextend VolGroup0l1l /dev/sdc ‘

Now that we have more PEs, we can assign some of them to one of
our existing logical volumes, to make it bigger:

‘[root@demo ~]# lvextend -L+100G /dev/VolGroup01l/LogVolo0

Extending the logical volume doesn't extend the filesystem on top of
it. We have to do that by hand. For ext2/ext3/ext4 filesystems, you
can use the resize2fs command to do this. The command below will
just resize the filesystem so that it occupies all of the available space
in the logical volume:

‘[root@demo ~]# resize2fs /dev/VolGroup01/LogVol0O0

For many more “stupid LVM tricks” see: http://www.howtoforge.com/linux_lvm

Thanks!

