\ A
N “\Linux for /| A

Resea-rchers

Chapter 1. Ssh and_

We've talked about using command-line tools on the
local computer and, until now, we've just assumed
that there were ways to execute the same
commands on remote machines, too. Today we'll
look in detail at how to log in to a remote computer
and excecute commands there, using the ssh
protocol.

We'll also look at “rsync”, a very useful tool that uses
ssh. When [finished these slides | realized that
there was only one slide devoted to rsync, but don't
let that fool you. Rsync is a very powerful and very
useful command.

Part 1: Remote Shells

Computer networks have been around for a long time
now. One of the first uses of these networks was the
execution of commands on remote computers.

The Old Way (telnet): Your Computer

(Virginia)

“\%

. o

~/demo> telnet srvr.cern.ch
Connected to 192.168.5.7.

e AT
Telnet . JCP port 23 Escape character is A]".
\& sever Login: elvis
) VOO0 Password; *****

©©@® Welcome to the Server!
V00 Remote Computer elvis$
\ (Switzerland)

Telnet (“Telecommunications
Network”) was developed in 1969,

and is one of the oldest internet
protocols. A telnet client running on "

the local computer connects to a —
telnet server on a remote computer. Telnet communications are not

The telnet server accepts the user's encrypted. Everything the local

name and password, and starts a user types is passed as-is across
command-line session on the remote the network connection to the
computer. remote computer.

“rlogin” (sometimes invoked by “rsh”) is similar to
telnet. It also creates an unencrypted command-line
connection to a remote computer.

Note that nothing telnet transmits is encrypted,
including your username and password when you
log in.

Telnet was written at a time when computers were
behemoths, and few people had access to them (or
the networks that connected them). Just getting
access to a remote computer was a Big Deal.
Security was of little or no concern.

The New Way (ssh):

In 1995, Finnish researcher Tatu Ylonen wrote “ssh” (“Secure Shell)
as a more secure replacement for telnet. This soon evolved into a
proprietary commercial product.

In 1999, Bjorn Gronvall began with earlier, free versions of Ylonen's
code and began writing what was to become OpenSSH, a
completely open-source re-implemention of ssh. This is now the de
facto standard ssh implementation, and is included in many
operating systems.

OpenSSH uses a blowfish as its logo
because “blowfish” is the name of the
strong, public-domain encryption algorithm
it uses (by default) to encrypt network

traffic. See:
http://en.wikipedia.org/wiki/Blowfish_(cipher)

blowfish was developed in 1993 by Bruce
Schneier.

From 1969 to the 1990s, telnet was the standard way
of getting a command-line connection to a remote
computer. It still had little security, but the world had
changed. Now many people had access to
computers and the network. Following a breakin at
his University, Tatu Ylonen finally got fed up with the
lack of security in telnet, and wrote “ssh” as a
replacement.

Some of the Advantages of ssh:
*Encryption of all communications.
Ssh makes use of public-key cryptography principles to securely
encrypt all communication between client and server.

* Ability to verify the identity of a server.
This allows you to be sure you're really talking to the server you
intended, and not some third party masquerading as that server.

* Freedom from many security bugs of telnet.

Telnet was written in an age when security was an afterthought, if it
was thought of at all. Ssh was written from scratch, with security in
mind from the beginning.

In addition, ssh provides these new features:

* Secure File Transfer.
The ssh protocol also includes mechanisms for transferring files
securely (allowing it to replace the insecure “ftp” protocol).

* Encrypted Tunnels.

Ssh allows you to create encrypted tunnels between two hosts.
Tunneling gives users a way to put a wrapper of encryption around
other protocols that didn't natively support encryption.

Part 2: Some Encryption Principles

(L) Wi
HE L 2 o M

3

Before we go any further, we need to talk a little about
encryption. The following is useful for understanding
ssh, but it applies to a lot of other things, too: secure
web connections, personal certificates, and e-mail

encryption are some examples.

Private-Key (Symmetric) Encryption:

The price is
$5.98!

Encrypted
message

In private-key encryption, i
Alice and Bob both have
identical copies of an
encryption key. This key
is a “shared secret”. It's

something Alice and Bob
both know, but it's not yf
known by anyone else. A

Key

Wy : - =
\o Secret

Key

When Alice wants to send a message to Bob, she encrypts it with this key. After
Bob receives the encrypted message, he can decrypt it with the same key.

Since the same key is used for encryption and decryption, this is called
“symmetric” encryption.

Symmetric encryption has been used since ancient
times. It's something every schoolchild comes up
with on his or her own, making up secret codes to
share messages with friends.

As we'll see, it has some problems.

(Alice and Bob are common in cryptography examples.

There's a T-shirt for crypto geeks that says “l know
Alice and Bob's shared secret.”)

Some Problems with Private-Key Encryption:

* Key distribution is hard, and possibly insecure.

What if Alice is in Portugal and Bob is in Hong Kong? How do they
initially get the secret key to each other? What if they need to change
it later?

* Anyone who steals the key can masquerade as Alice or Bob.

This system has no way of verifying the identity of the sender. If a
third party obtains the key, he can send messages that appear to
come from Alice or Bob.

* “A secret shared by two is compromised. A secret shared by
three is no secret.”

Can Alice really trust Bob to keep the key a secret? Can Bob trust
Alice? And what if we have a whole organization full of people who
all need to know the secret key?

Even if we ignore most of these problems, we still have
to face up to the problem of key distribution. This
started out with “How do we get keys to our secret
agents scattered around the world?”. By the 1990s it
had changed to “How do we get keys to all of the
people on the internet who want to buy things from
our e-commerce site?”

Public-Key (Asymmetric) Encryption:

Bob's a/

Public key

The price is
$5.98!

Encrypted
message

In “public-key” encryption,
each user has two keys: a
public key and a private key.
The public key is available to
anybody, but the private key is
known only to one person, its

> owner. L T
The public and private keys are mathematically I r@% ==
related in such a way that messages encrypted @ Public | \g/ Private
by one key can only be decrypted by the other. Key ‘ Key
When Alice wants to send an encrypted message to Bob, she first obtains his

public key. Then she uses this key to encrypt the message. Only Bob, the
holder of the matching private key, can read the resulting message.

Because encryption and decryption are done with different keys, this is called
“asymmetric” encryption.

In 1973-4, Clifford Cocks, James Ellis and Malcolm
Williamson, working for British Intelligence, came up
with a solution to the key distribution problem. It
remained secret for a few years, though, until itheir
techniques were rediscovered and published by
researchers Whitfield Diffie and Martin Hellman in

1976, and Ron Rivest, Adi Shamir and Leonard
Adleman in 1978.

Now, each individual could have a unique pair of keys,

generated locally. There was no longer any need to
distribute keys.

Advantages of Public-Key Encryption:

* No need to distribute secret shared keys.

Each person has his or her own public/private key pair, generated
locally. Private keys always stay in the hands of their owner, and
never need to be transmitted.

* The sender's identity can be verified.
Since each sender has a unique public/private key pair, we can
verify his/her identity.

* Security risks are limited to a single user.

Alice is responsible for the security of her keys, and Bob is
responsible for the security of his keys. The theft of one person's key
doesn't compromise the security of the other keys.

Key Distribution by Public-key Encryption:

Public-key cryptography is more computationally expensive than
symmetric-key cryptography. Usually, public-key encryption is only used
to exchange a temporary secret key, which is then used to conduct the

remainder of the conversation via symmetric cryptography. This is what
ssh does, for example.

Alice @ S

PR Bob's W/ S

Public key 5
M A/ hLJsethis ;

; : secret key!”

Message encrypted
with Bob's public key.

“OK, now we

< — can talk
S securely.” |
\ Randomly-Generated h | h
Temporary Secret \ Public | \§ Private

Key Key . Key

Encryption and Legal Problems:

Ssh adoption was delayed for many years by legal problems in the
United States. These problems fell into two categories:

* Patent Restrictions:

The earliest versions of ssh relied on the patented RSA public-key
encryption algorithm. The patent-owner provided a free RSA
“reference version” (RSAref), but only allowed it to be used for non-
commercial applications. OpenSSH worked around this by
substituting the freely-available DSA algorithm. The RSA patent
expired in 2000, so this is no longer an issue.

* Export Restrictions:

U.S. export restrictions on cryptography were very strict at the time
ssh was first written. They've relaxed considerably since then, and
primarily apply to a list of seven “terrorist countries”. The law is still
very confusing, though. Fortunately, OpenSSH is based in Canada,
and the U.S. has no import restrictions on cryptography. To avoid
possible legal problems, the OpenSSH project does not accept help
from software developers in the U.S.

Additionally, In some other countries (e.g., France, Russia, and Pakistan)
it may be illegal to use encryption at all.

From U.S. export law's point of view, the seven
“terrorist countries” are Cuba, Iran, Iraq, Libya, North
Korea, Sudan and Syria.

As an example of the dizzying confusion of U.S. law, a
1997 ruling permitted financial-specific cryptographic
applications to be exported only if they could, by
design, only be used to encrypt financial data. For
much more information on U.S. cryptography export
law, see:

http://www.cryptolaw.org/cls2.htm#us

Now let's look at some concrete examples.

Using ssh to Log In:

By default, ssh tries to log into the remote computer using your local
username:

~/demo> whoami
elvis

~/demo> ssh server.example.com
elvis@server.example.com's password: ****x***
Welcome to server.example.com!

~>

You can tell ssh to use a different user name like this:

\~/demo> ssh bryan@server.example.com

or, equivalently, this:

‘~/demo> ssh server.example.com -1 bryan

Executing Commands Remotely:

Instead of starting a command-line session you can run a command
on the remote computer by appending the command to the end of the

ssh command:

~/demo> ssh server.example.com df
elvis@server.example.com's password:

kkkkkkk*k

Filesystem 1K-blocks Used Available Use%
on

/dev/sda3 149280940 132674576 8900972 94%
/dev/sdal 101086 45524 50343 48%
tmpfs 969692 0 969692 0%

Mounted

/
/boot
/dev/shm

You need to be careful to quote or escape expressions that would

otherwise be interpreted locally:

~/demo> ssh server.example.com 'ls *.txt'

The command above would execute “Is *.txt” on the remote

computer.

Host Keys:
When you connect to an ssh server, it first sends over its public key. If this
doesn't match they key the server sent you last time, this server may not

reall the on lieve it t . i . .
ea/y be the one you believe it to be The first time you ssh to this server:
~/demo> ssh server.example.com

The authenticity of host 'server.example.com (192.168.5.9)' can't
be established.

RSA key fingerprint is
94:f0:1b:b7:d2:6b:3a:9c:e4:06:f2:e3:98:c4:62:64a.

Are you sure you want to continue connecting (y®s/no)? yes
Warning: Permanently added 'server.example.com,192.168.5.9' (RSA)
to the list of known hosts.

~/demo> ssh server.example.com ConneCtmg again, later: 1

000eeeeECeeEEEEEEEEAEEEEEAEECAEECEAEECERECEAEAEECEAEEEAREEEEA
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
000eeeeeCeEEEEEEEEEAEEEECAEEEAEECEREEEEEECEAAEECEAEEEAREEEE
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-t
attack)!
It is also possible that the RSA host key has just beén changed.
The fingerprint for the RSA key sent by the remot ost is
14:36:11:81:ef:a1:69:9a:25:64:80:bf:36:00:65:d7.

Different host
keys
-middle

Keys are here, and in
Please contact your system administrator. 1q/////’//(/ekﬂsQanown hosts
Add correct host key in /home/elvis/.ssh/known”hosts to get riu o1 nis
message. Offending key in /home/elvis/.ssh/known_hosts:424

RSA host key for server.example.com has changed and you have requested
strict checking.

Host key verification failed.

When you first connect to a given ssh server, that server sends you its public
“host key”. Depending on your ssh configuration, the key will either be
accepted automatically, you'll be asked if you want to accept it, or ssh will
refuse to connect until you manually add to your known_hosts file. A
“fingerprint” of the key will be displayed for you to look at. The fingerprint is
just a short, readable checksum that is highly unlikely to be the same for two
different host keys.

Once accepted, a key is stored in the user's known_hosts file. On subsequent
connections, ssh will check to make sure the remote host presents the same
key. If the key differs, depending on configuration, ssh will either warn you and
replace the key in your known_hosts, or just refuse to connect until you
manually edit you known_hosts file.

The local computer can also have a global known_hosts file:
letc/ssh/known_hosts. This might contain keys for computers in your
department that users are likely to connect to. This saves the user the trouble
of adding keys for these hosts when first connecting to them.

On the remote host, the ssh server's host keys are stored in /etc/ssh. The public
keys are named ssh_host_key.pub, ssh_host dsa_key.pub and
ssh_host _rsa_key.pub. Which key gets used depends on which version of the
ssh protocol the client chooses. If you tell your client to connect using a
different version of the protocol, you may see a different host key.

Identity Keys:
Ssh can verify your identity in several ways. Usually, it does this by
asking you for a username and password. Alternatively, you can
generate a public/private key pair, and use these for authentication.

Keys can be generated with the “ssh-keygen” command:
~/demo> ssh-keygen -t dsa Private Key

Generating public/private dsa key pair.
Enter file in which to save the key (/home/elvis/.ssh/id_ﬁiil}//

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/elvis/.ssh/id_dsa.
Your public key has been saved in /home/elvis/.ssh/id_dsa.pub.

The key fingerprint is:
ff:8d:df:59:aa:7f:74:ce:44:98:90:1b:76:a9:ea:ab elvis@pc.example.com
It's very important that your private key be protected. It Public
shouldn't be readable or writeable by anyone but you. Key

Ssh version 2 understands keys in two formats, called “rsa” and “dsa”.
Ssh version 1 understands a format called “rsa1”. You can choose the
format with the “-t” switch. (You may want to generate one of each.)

You can optionally protect your key with a passphrase. If you do this,
you'll have to supply the passphrase whenever ssh needs to use the

key.

Ssh keys serve the same purpose as digital
certificates.

Ssh may refuse to use a key if it (or its parent
directory) has the wrong permissions.

Configuring Passwordless ssh Logins:

If your ssh identity key isn't protected by a passphrase, you can use it
to enable passwordless ssh logins to a remote computer. Here's how:

After generating your keys, type:
ssh-copy-1id me@remote.host.edu

Alternatively, you can do it by hand like this:

On the remote computer, edit the file “~/.ssh/authorized_keys”.
To the end of this file, append the contents of your public key
file.

(Under older operating systems, you may need to use the file
“authorized_keys2” instead of “authorized_keys”. If one doesn't work,
try the other.)

The ssh server may refuse to use a key if permissions
aren't set properly on the authorized keys2 file or its
parent directory. These should only be readable (or
writeable) by the user.

To debug problems with passwordless logins, try the
following:

ssh -v -0
PreferredAuthentications=publickey
remotehost.example.com

This will cause ssh to report, in detail, what's
happening (-v for “verbose”) and cause it to only try
to use public key authentication (otherwise, it might
fail over to a different type of autentication).

OpenSSH Configuration Files:
The OpenSSH ssh client is configured primarily through two files:
* letc/ssh/ssh_config
System-wide configuration file for all users on the local computer.

* ~/.ssh/config
A user's personal configuration file. This can supplement or override
the options in the system-wide configuration file.

Some useful configuration options are:
StrictHostKeyChecking=ask
This option controls how ssh behaves when presented with a new
host key, or a host key that differs from one already stored. Options
are:

* “ask” (the default), which causes ssh to ask the user for confirmation
before accepting a new key, and refuse to connect if a key changes.

* “no”, which causes ssh to blindly accept any key, even if it changes.
* “yes”, which requires you to manually add each key.

ForwardXil=yes

This option determines whether ssh automatically creates a tunneled
X connection to the remote computer. The default is “no”, but many
system administrators (and some Linux distributions) set it to “yes”.

StrictHostKeyChecking=yes is very unfriendly. With
this setting, even if you're connecting to a new ssh
server, ssh will refuse to connect until you manually
edit your known_hosts file and add the host key for
the new computer.

There are many other configuration options. See “man
ssh_config” for all of them.

Note that, in your personal configuration file, it's
sometimes useful to define options that apply only to
a particular computer. You can do this by adding a
line like “Host myhost.example.com” to your config
file. Any subsequent options will apply only to this
host, up to the next “Host” line, if any.

Remaining Uses for Telnet:

* Debugging:

_/

Telnet accepts an optional
port number (default is 23)

~/demo> telnet www.mydomain.orqg 80)
Trying 192.168.3.7...
Connected to www.mydomain.org.
Escape character is 'A]'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 24 Mar 2009 13:20:31 GMT
Server: Apache/2.2.3 (Cent0S)
Last-Modified: Mon,
Accept-Ranges: bytes
X-Powered-By: ModLayout/5.0
Connection: close
Content-Type:

<head>
<title>My Home Page</title>
</head>
...etc.

14 Oct 2002 22:16:57 GMT

text/html; charset=UTF-8

In this example, we telnet to
port 80, the standard port on
which web servers listen, and
manually send a “GET”
command to the web server.

This is what happens behind
the scenes when you point your
web browser at a web server.
the GET command is a part of
“HTTP”, the “HyperText
Transport Protocol”.

Telnet essentially gives you a (almost) raw TCP
connection to a port on a remote computer. By
default, telnet connects to port 23 (where the telnet
server listens), but you can tell it to connect to any
other port. This makes telnet useful for manually
sending data to servers on remote computers.

Remaining Uses for Telnet (cont'd):

e Pranks: ~/dgmo> telnet my.mailserver.org 25
Trying 192.168.1.5...

Connected to my.mailserver.org.

Escape character is 'A]'.

220 desktop.mydomain.org ESMTP Postfix
HELO desktop.mydomain.org .
250 desktop.mydomain.org In this example we use telnet

MAIL From: god@heaven.org to connec:tto p((j)rt 25, the mail
250 2.1.0 Ok server port, ana compose an

e-mail message.

RCPT To: bryan@virginia.edu
250 2.1.5 0k

DATA

354 End data with <CR><LF>.<CR><LF>

Subject: Repentence This is how mail programs
talk to mail servers (and how

Dear Bryan, mail servers talk to each
other). These commands are

Repent! part of “SMTP”, the
“Symmetric Mail Transport
Sincerely, Protocol”.

The Management

250 2.0.0 Ok: queued as 83EBE1540934
N

telnet> quit

Connection closed.

This is actually useful sometimes for diagnosing
problems with mail servers.

Remaining Uses for Telnet (cont'd):
* Bulletin Board Systems (!):

telnet mono.org

bkwla@glamdring: /home/bryan

File Edit View Search Terminal Help

(AVA] Monochrome (1.101y 01-Jun-11 wtf 1lpm pub) (Last on Fri Apr 5 20:43) |AVAl
| | | |

DAPPRMAN'S ANIME AND MANGA SECTION
<EA> from the main menu.
/ \
vvwvvwy /| /|
| /0,0 |
| A— | /171
| /00 | /71|
| | /~~\ | /00 |

dapprman ~~

Menu [I] = Help and Information on Monochrome

Menu [N] = News and Media
Menu [T] = Science, Technology and Medicine
Menu [E] = Entertainment
Menu [C] = Society and Culture
Menu [R] = Recreation
Menu [M] = Monochrome Users
Hello 'Guest User'. (guestl:1)
<< 1 other user at Sat Apr 6 15:10 GMT (You have new messages) >>

Remaining Uses for Telnet (cont'd):

* Configuring network appliances:
(Printers, routers, etc.)

~/demo> telnet 192.168.1.5
Trying 192.168.101.11...
Connected to physics_315
(192.168.10601.11).

Escape character is 'A]"'.
HP JetDirect

Password is not set

Please type "menu" for the MENU system,
or "?" for help, or "/" for current
settings.

>

The example above shows a telnet connection to a
networked printer with an HP JetDirect network card
installed.

Part 4: Tunnels

Many older network protocols are still unencrypted.
Ssh provides us with a way to wrap these legacy
protocols in a layer of encryption, by creating an ssh
tunnel between two computers.

Creating Tunnels with ssh:
You can use ssh to wrap encryption around legacy protocols that aren't
natively encrypted. For example:

Local Computer Remote Computer
Iﬂstead of Port 110
Mail Client this... -
. opd
(e.g., Thunderbird) ~ POPProtocol | °oP
Client connects to port (unencrypted)
110 on mail server

POP connection tunneled through ssh:
\ ssh -L 9110:remotehost.example.com:110 remotehost.example.com \

Port 9110 ...you can do Port 110 -
Mail Client A

(e.g., Thunderbird) this. popd
Client connects to port I
9110 on localhost Ssh Protocol

ssh = % — — — — — — — sshd

encrypted
T\(\yp) —

Tunnelled POP Protocol

We've already talked about the special provisions in
ssh that make it easy to create an encrypted tunnel
for X connections. Here we see that this functionality
isn't limited to X. It can be extended to any protocol.

Tunneling through Firewalls:

\ ssh -L 9110:mail.example.com: 110 firewall.example.com \

Port 9110

Mail Client -
(e.g., Thunderbird)
Client connects to port
9110 on localhost Ssh Protocol

—
ssh — — — — -sshd popd
[E—
Port 22 Port 110
Local Computer Firewall Mail Server

ssh -L 9022:internal.example.com:22 firewall.example.com

Client connects to Port 9022
port 9022 on [ssh]_
localhost

Ssh Protocol | ———

ssh — — — — -—sshd sshd
[E—
Port 22 Port 22
Local Computer Firewall Internal Computer

The choice of local port number is arbitrary, as long as the local port isn't
already in use by something else. Remember that ports below 1024
are “privileged” ports, so only the root user can use them.

In the second case, after you've set up the tunnel you'd get to the
internal remote computer by typing:
ssh -p 9022 localhost
This may cause your ssh client to complain that the host key has
changed (since it may already know a different key for “localhost”). In
this case, you can add a section at the bottom of your ~/.ssh/config
file like this:

Host sneakyssh
Hostname localhost
HostKeyAlias sneakyssh
Port 9022
CheckHostIP no

You can then just type “ssh sneakyssh” to connect to the internal remote
computer, after you've set up the tunnel.

Part 5: The ssh Server

sshd Configuration Files:

The ssh server (“sshd”) is primarily configured through the file
letc/ssh/sshd_config. Here's a typical sshd_config:

Comment lines look like this.

Protocol 2
SyslogFacility AUTHPRIV
PasswordAuthentication yes
ChallengeResponseAuthentication no
GSSAPIAuthentication yes
GSSAPICleanupCredentials yes

UsePAM yes
X11Forwarding yes

Subsystem sftp /usr/libexec/openssh/sftp-server

The “X11Forwarding” option controls whether the server will allow ssh
clients to establish a forwarded, tunneled X connection when they
connect. The default is “no”, but Linux distributions often set this
value to “yes”.

See “man sshd_config” for many more options.

Part 6: Transporting Files Securely

The ssh protocol also lets us transfer files securely
over the network.

The “scp” Command:

You can also use the ssh protocol to securely copy files across the
network. One way to do this is through the “scp” command, which is
analogous to the “cp” command for copying files locally.

Copying files locally:

cp file.dat otherfile.dat

cp file.dat /other/directory/

Copying files to a remote computer:
scp file.dat pc.example.com:otherfile.dat
scp file.dat pc.example.com:/other/directory/

In the first example, the file ends up in the user's home directory on the
remote computer.

Copying files from a remote computer to the local computer:
scp pc.example.com:file.dat otherfile.dat ‘

If the username is different on the remote computer, do this:
'scp file.dat elvis@pc.example.com:otherfile.dat |

Whenever you specify a directory into which you want
to move or copy a file, it's good practice to append
the optional slash at the end of the directory name.
This is true with myv, cp, scp or anything else. If you
don't append the slash, and mis-type the directory
name, the target will be interpreted as a file name,
not a directory. This may cause you file to end up
someplace unexpected, perhaps even overwriting an
existing file. If you mis-type the name, but append a
slash, you'll get an error message saying that no
such directory exists.

Copying Multiple Files with scp:

The following command would copy all files ending in “.txt” to the
user's home directory on the remote computer:

\scp *.txt pc.example.com: ‘

Copy *.txt from a remote computer to the current directory locally:
'scp pc.example.com:'*.txt' . |
Notice that here we need to put quotes around ".txt' so that the local shell

won't expand it before its passed to scp. (We want to send the string "™.txt'
literally to the remote machine, where the shell there will expand it.)

Recursively copy the directory tree “stuff/” to the remote computer:
scp -r stuff/ pc.example.com:stuff/ |

The “sftp” Command:

Alternatively, you can use the “sftp” command. This also copies files
securely across the network using the ssh protocol, but it gives you
an ftp-like user interface:

~/demo> sftp pc.example.com

Connecting to pc.example.com...
elvis@pc.example.com's password:

sftp> cd demo

sftp> dir

Fortran.dat ReadMe.txt clus.pdf

cluster.pdf cpuinfo.dat data-1.dat

phasel phase2 readme. txt

shared

sftp> get readme.txt

Fetching /home/elvis/demo/readme.txt to readme.txt
/home/elvis/demo/readme.txt 100% 72 0.1KB/s 00:00
sftp> put junk.1

Uploading junk.1 to /home/elvis/demo/junk.1
junk.1l 100% 3301 3.2KB/s 00:00

sftp> quit

Graphical scp/sftp Clients:

[SFTP Login

site:

Username:

Password:

Please enter your username and password.

sftp:/ipc.example.comfhomeielvisidemo

Most modern Linux file browsers
(konqueror, nautilus, etc.) will
accept scp:// or sftp:// URLs as
addresses. After prompting you to
log in, they allow you to graphically
browse the remote directory.

Location Edit

EXSETEA NG

a sftp:iflocalhostfhomelelvis/demo - Kongqueror
View Go Bookmarks Tools Settings Window

Help

aa @Abg=

In the Windows world, WIinSCP is a free tool that can

E» Location: [ia. sftp:/ipc.example.comfhomefelvisidemo |'| AJ
|Name - | Size | File Type | Modified Fermi55i0n5| Ownel‘ Group
iEphasel! 4.0 KB Folder Jan 18 09 11:35 drwxr-x— elvis elvis
phase2 4.0 KB Folder Jan 19 09 11:03 drwxr-x--- elvis elvis
[Edshared 4.0 KB Folder Jan 27 09 1:18 drwxrwsr-x elvis elvis

.anotherexample 45 B Unknown Jan 18 09 10:55 -rw-r----- elvis elvis

.examplel 34 B Unknown Jan 18 09 10:54 -rw-r----- elvis elvis
L=lclus.pdf 11 B PDF Document Mar 25 09 4:14 Irwxrwxrwx elvis elvis
[Fcluster.pdf 20.1 KB PDF Document Jan 18 09 10:51 -rw-r----- elvis elvis

~Icpuinfo.dat 983 B Unknown Jan 18 09 10:53 -rw-r----- elvis elvis
~|data-for-everybody.1.dat 29 B Unknown Jan 18 09 10:59 -rw-r--r-- elvis elvis
~/ForYourEyesOnly.dat 41 B Unknown Jan 18 09 10:56 -rw------- elvis elvis
Jjunk.1 3.2 KB Unknown Mar 25 09 4:08 -rw-r--r-- elvis elvis
I readme.txt 72 B Plain Text Document Jan 18 09 10:52 -rw-r----- elvis elvis
|ReadMe.txt 9.3 KB Plain Text Document Jan 18 09 10:52 -rw-r----- elvis elvis
1 | 1D
13 Items - 10 Files (33.8 KB Total) - 3 Folders

add similar functionality to Windows Explorer.

Now let's take a look at another tool. Rsync can be
used to “synchronize” two directories. When copying
files from one computer to another, rsync (by default)
uses the ssh protocol. Rsync is an incredibly useful
and versatile program that you should become
familiar with.

The “rsync” Command:
One of the most useful commands that works in conjunction with ssh
(and one of the most useful commands of any kind) is “rsync”.

Rsync can be used to synchronize a local directory with a remote
directory, or vice versa. By default, each time you run rsync it will
only copy files that are new, or have been changed.

Synchronize a remote directory with the local directory “demo/”:
rsync -av demo/ pc.example.com:demo/

The “-a” switch tells rsync to copy the entire tree, and to preserve the
properties of the files. The “-v” switch tells rsync to be verbose as it tells
you what it's doing. This will, among other things, cause it to show the
name of each file that's copied.

Synchronize a local directory with a remote directory:
‘rsync -av pc.example.com:demo/ demo/ |

If the remote user name is different, do this:
‘rsync -av demo/ elvis@pc.example.com:demo/ |

See “man rsync” for many more options.

Note that rsync is directional: it copies things from the
source directory to the target directory. If “file.dat” is
different in the two places, the source directory's
version will overwrite the target directory's version,
even if the version in the target directory is newer.

In the example above, any extra files in the target
directory would be left alone. If you want rsync to
make the target an exact copy of the source, with no
extra files, add the “--delete” option. Before you do
this, it's a good idea to run the command with the
addition of the “-n” option, which will tell rsync to
show you what it would do, without actually doing it.

Local-to-Local Copying with rsync:

You can also use rsync to copy files to a different location on the
local computer. Rsync does a very good job of preserving
ownerships, permissions and other file properties, so it's the best
tool for moving files from place to place locally.

rsync -av /here/files/ /there/files/

In general, rsync takes the names of a “source” and a “target”. Each
of these names has the form:

username@host:path

If the source or target is on the local computer, you can omit the
username@host: part

Using Trailing Slashes:

Notice the difference between these two commands:

‘rsync -av /here/mydir/ /here/otherdir/

‘rsync -av /here/mydir /here/otherdir

In the first case, the contents of “mydir” would be copied into the
directory “otherdir”. This is usually what you want to do.

In the second case rsync interprets this as a command to copy the
directory “mydir” into the directory “otherdir”. Afterward, we'd find a
new directory called “/here/otherdir/mydir”. This might not be what
you want.

In general, if the source includes a trailing slash, rsync copies the
contents. If not, it copies the directory.

Deleting Unwanted files in the Tarqget:

If the target directory already includes some files, but you want to make
it into an exact copy of the source directory, you can use the “--delete”
qualifier:

rsync -av -delete /here/mydir/ /here/otherdir/

This will cause rsync to delete any files in “otherdir” that aren't
present in “mydir”. You obviously want to use this with care!

One way to be cautious is by using the “-n” qualifier:

rsync -n -av -delete /here/mydir/ /here/otherdir/

This will cause rsync to show you what it would do, without actually
doing anything. Once you've done a successful trial run, you can
repeat the command without the “-n” switch.

Finally, you might want to add the “--delete-delay” switch. This
causes any deletions to happen after files have been copied, and
may prevent problems in cases where rsync is interrupted
unexpectedly.

Keeping Backup Copies of Deletia:

If you want to be even more cautious, you can retain copies of any files
that have been deleted or modified in the target directory. To do this,

use the qualifiers “-b” and “--backup-dir”:

rsync -av -delete -b -backup-dir=/deletia/ \
/here/ /there/

In this example, any files that are deleted or modified in “/there” will
be preserved in the backup directory “/deletia”.

You might even think of keeping multiple deletia directories, organized
by the times at which rsync was run:

N N This gives a string like
NOW="date +%y%m%d%H%M%S - | "1804091 139399",
based on the current date and time.

rsync -av -delete \
-b -backup-dir=/deletia/$NOW/ \

/here/ /there/

Thanks!

