N\ A
'r\ LInux for /A

Researchers

~ Chapter 12::lhelAorld \Vide Web

This is a huge subject that's very relevant to many of
us these days. Because it's so large, I've had to pick
out just a few topics to talk about. | hope the things
I've chosen will be useful for you.

Part 1: What is the Web?
777 Z

Ty 77272 ﬁ ==
o

Let's start out by defining terms, beginning with “web
servers’.

Note that the term “web server” is commonly used in
two different ways. It might refer to an actual,
physical computer, or it might refer to the software
inside that computer that actually does the work. |

hope it'll be clear from context which one of these |
mean.

What's a Web Server?:

Web clients can request
documents from a web server.

The server sends back the

requested document, along with “Here it is. e
information about it (size, date, It's an HTML

file type, etc.) document.”

Web
Server

|
o “Please give —
me that
z document.” By default, web servers
listen on TCP port 80 (or

port 443, for encrypted
connections). The web

- server understands a

Web Client language called “Hypertext

/ \ Transfer Protocol” (HTTP).

A web server is a computer that's capable of serving
up documents through the “Hypertext Transfer
Protocol” (HTTP). A network service running on
these computers listens to TCP port 80 and/or port
443, and responds to HT TP requests.

When the web server returns a document, it also
returns some metadata about the document: its size,
creation time, and file type. The file type is
expressed as one of the “Multimedia Internet Mail
Extention” (MIME) types. Some common types are
“text/html”, “application/pdf’, and “text/plain”. The file
type helps the client decide how to deal with the file.

Interactive web clients are usually referred to as “web
browsers”.

The Five Layer Model:

Frame
Header

Header

Segment

Segment Data

Examples: TCP, UDP

Frame
Footer

5. Application Layer

4. Transport Layer

3. Internet Layer

2. Link Layer

Examples: Twisted Pair Cable, Fiber, Coaxial Cable, Radio Waves

1. Physical Layer

Http is an example of the 5" layer of our five-layer
network model. It sits at the “application layer”, on
top of the physical layer (cables, radio waves...), the
link layer (ethernet, usually), the internet layer (which
lets us connect to the internet) and the transport
layer (which gives us access to port numbers,
among other things).

The ssh protocol is another example of something that
works in the application layer.

Uniform Resource Locators (URLSs):

Each document on the web is identified by a unique address called
a “Uniform Resource Locator” (URL). Here's an example:

\ http://myserver.example.com/products/swatters/flyswatters.html

e

Protocol Web Server Document Path

The “protocol” will be either “http:” or “https:” for documents on web
servers. URLs beginning with other protocols refer to other types of
server (“ftp:”, for example). Web browsers are usually capable of
talking to more than just web servers.

If the URL begins with “https:” the web client will use an encrypted
(“secure”) version of http to fetch the document from the server.

The most general form of a URL is:
protocol://host:port/documentpath?querystring#anchor
The “querystring” can be used to send information to the web server

(e.g., search terms) and the “anchor” can be used to refer to a
specific location within the given document.

If we gave the first URL to a web client, we'd be telling
the client: “Connect to a web server running on port
80 on myserver.example.com, and ask the server to
give you '/products/swatters/flyswatter.ntml'.”

Default Documents:
In the following URL, the document path ends with the file name
“flyswatters.html”:
http://myserver.example.com/products/swatters/flyswatters.html
If you specify a URL without a file name, like:
http://myserver.example.com/products/swatters

the web server will decide, on its own, what to do. Usually, the
server will look in the specified directory for a default document with
a name like “index.html”, “default.html”, “home.html”, “welcome.html”,
or something similar, as defined in the configuration options for the
particular web server.

For example, the web server might convert the URL above into:
http://myserver.example.com/products/swatters/index.html

If only the server name is given, like this:

http://myserver.example.com N
It might be converted to this: Q)
http://myserver.example.com/index.html

~

If a given directory doesn't contain a default document,
like “index.html”, the server may alternatively choose
to return an automatically-generated index of all of
the files in the given directory. The format of this
index, and whether or not the server is willing to
generate it, will depend on the server configuration.

Hypertext Documents:

The native format for
documents on the web is
HTML. HTML documents
can contain links that point document.html
to other documents, by /

their URLs.

Links can point the same
computer, or a different

_\L computer somewhere else.
Web
Server | ‘
|
J\

Each HTML document is
called a “Web Page”.

Web Browsers display HTML
documents, and let us fetch other

documents by following these
links.

The links form a “web”

of documents.

Even though web servers can serve up any type of document,
the native format for documents on the web is “hypertext”.
Hypertext documents are just text documents that have been
“marked up” (annotated) to indicate:

 font and other layout preferences,

* document structure (e.g., paragraphs, sections),
* references to other documents,

etc.

This markup is done using “Hypertext Markup Language”
(HTML).

The references (called “links”) to other documents are
particularly important. These links allow you to jump directly to
related documents, and from there to other documents,
following a “web” of references.

HTML Synt

ax.

HTML markup
tag consists of

is done by adding tags to the text in a document. Each
directives enclosed in angle brackets (“<>").

Most HTML tags mark the beginning
and end of a section of text. —

: <html>
- <head> The header isn't displayed
8{ <title>This is a web page!</title> with the rest of the page. It
T </head> contains information about
= | <body> the page, such as a title.
g This is some text. It will appear in the web page.
3 Here is a link to
8< another page.
2 |2
E 8 Here's an image:
T
\\ J This text will be linked
The end. ~N to another document,
</body> elsewhere.
Ll mages are sl eferences o
in this case.)

For a complete list of HTML tags and other information, see:

http://www.w3.org/TR/html5/

This isn't a course in HTML, but here's a simple
example showing what an HTML document looks

like, in case

you're not familiar with it.

The “Internet” versus»the/‘Web”:

Since the web is so important to us now, it's sometimes
conflated with the internet that underlies it. There are many
types of computers on the internet. Only some of them are
web servers. There are also mail servers, ssh servers, ftp
servers, X servers, and many others. Some computers have
several of these roles. Some computers don't provide services
at all, and only act as clients.

I'll give you three definitions of “the web”. Here's Definition #1:
“The web is the set of all HTTP servers on the internet”.

Alternatively, here's Definition #2: “The web is the set of
interlinked documents served up by HTTP servers.”

Finally, the broadest, Definition #3: “The web is the set of
documents accessible through a web browser.”

What Web Servers Do:

* Deliver documents on demand.

* Let you specify which document by giving a slash-
separated document path.

« Can deliver documents in any format (HTML, PDF, Word,
Excel, plain text, etc.).

e Listen on TCP port 80 (by default), or 443 (by default) for
encrypted connections.

* Understand the HTTP protocol (e.g., GET and POST).

These are necessary and sufficient requirements for a
web server.

Part 2: Web Clients

This is the symbol for Mosaic, the web browser
developed in 1993 by the National Center for
Supercomputing Applications (NCSA). | think you
could make a good argument that Mosaic was one of
the most important pieces of software ever written.

It was web browsers that made the web popular, not
web servers. Mosaic gave the average person easy
access to resources on the internet for the first time.

The “wget” Command:

“‘wget” is a command-line web client. It's very useful for fetching
documents from the web:

~/demo> wget http://example.com/products/catalog.pdf
--08:47:33-- http://example.com/products/catalog.pdf
Resolving example.com... 192.168.7.3

Connecting to example.com|192.168.7.3|:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 1009277 (986K) [application/pdf]

Saving to: "catalog.pdf'

100%[=================>] 1,009,277 1.41M/s in 0.7s

08:47:34 (1.41 MB/s)- catalog.pdf' saved
[1609277/1009277]

We usually think of graphical, interactive web clients
(web browsers), but here's a text-based, non-
interactive web client.

An alternative to wget is “curl”. If you don't have wget,
try this instead. If neither is available, you can fetch
a text version of a single web page with “links -dump
http://example.com” or “lynx -dump
http://example.com”.

More “wget’ Examples:

The following command would fetch the document, along with any
associated documents that are necessary to display the page properly
(images, for example):

‘~/demo> wget -p http://example.com/products/list.html

Suppose we want to get all of the PDF files linked to from a particular

web page. Here's how to do it:

~/demo> wget -r -11 --no-parent -A “*.pdf” \
http://example.com

wget can also create a mirror of an entire web site:
‘~/demo> wget --mirror http://example.com

With “--mirror”, wget will start with the specified URL, the follow all links
from it to other URLs on the same server, and repeat the process until it
has downloaded all the pages it can find on that server. Please take care
with this. See “man wget” for more information.

For mirroring, also see “httrack™ http://www.httrack.com/

Interactive Web Clients (“Browsers”):
1991 -- “WorldWideWeb”

1993 -- NCSA Mosaic
|
1994 -- Netscape Navigator

| 1995 --
1998 -- Mozilla Internet

Explorer 2000 -- Konqueror
2001 -- Firefox |
2003 -- Safari

2006 -- SeaMonkey |

_ J 2015-- 2008 -- Chrome
Edge |
Gecko Rendering Engine — 2019 -- Edgium/Crudge
Web browsers naturally fall into several - /
families, based on their choice of “rendering Khtml/WebKit/Bink
engine”. The browser's rendering engine is Rendering Engine

responsible for interpreting HTML and
displaying it correctly on the user's screen.

It would be hard to overstate the importance of NCSA Mosaic. It
was the first popular web browser. It was freely available for
many platforms, most importantly Microsoft Windows. Mosaic
gave users a new way to explore the resources on the internet.

Many of these resources had been available for a long time
(ftp archives, usenet newsgroups), but accessing them
required some skKill and effort. Mosaic suddenly put all of these
resources just a click away.

Web browsers are almost solely responsible for the “web
revolution” of the 1990s. Without them, all of the other web-
related technologies (web servers, the HTTP protocol, the
HTML file format) would have been irrelevant to the average
person.

A note on the name "Mozilla”, coined by Jamie Zawinski: While
developing Netscape Navigator, he gave it the internal name
“Mosaic Killer”, shortened to “Mozilla”.

Popular Web Browsers:

* Browser share from netmarketshare.com as of March, 2019:

W Chrome M Intemet Explorer
Firefox H Edge
W Safari Op
o QQ Sogou Expl:
F|ref0X o Yandex UC Brows:
B Unknown B Maxthon
O) % B Baidu B Chromium
Vivaldi B Yunhai
H Amigo Cheetah
H Opera Mini Swing
C h rom e B Sleipnir Comodo Dragon

W Baidu Spark @ CoolNovo

65 o 5% b | Konqueror B SeaMonkey

Qihoo 360 B Android Browser

B Lunascape SRWare Iron

W Opera Mobile = Nintendo Browser

W QuickLook Internet Explorer Mobile
m Silk M Playstation

W HTTrack

Although different sources see different distributions of
browsers, most agree that Chrome is currently the
most widely-used web browser.

What Web Browsers Do:

All web browsers can do the following:
* Interpret URLSs, to extract the protocol, host and path.

* Connect to a web server and request a document.

* Display HTML documents, and provide the user with a mechanism
for easily following links.

Most web browsers can also do these things:
* Fetch documents from FTP servers, or other types of server.

* Understand “mailto:” URLs, and invoke a local mail program to
handle them.

* Maintain a list of external viewers for various MIME types (e.g.,
PDF, Word, Excel) and invoke the appropriate viewer for non-HTML
documents.

* Allow for plug-in extensions to handle some types of delivered
content within the browser itself (e.g., Flash, Java)

» Save a list of selected URLs (“bookmarks” or “favorites”).
* Maintain a cache of recently-fetched documents.
* Maintain a repository of “cookies”.

In the past, most web browsers included a wysiwyg
editor for HTML. This was even true for the first
graphical browser, created by Tim Berners-Lee.
Then, it was commonly believed was that most
people browsing the web would also be creating
documents on the web. As it turned out, the vast
majority of users only read things from the web.
Web documents are created by a relative few.

Of course, this is changing as social networking sites
like Facebook lead more and more people to
indirectly create documents on the web. These
documents don't require the user to create actual
HTML documents, though. None of the currently
most popular web browsers (Firefox, Internet
Explorer and Chrome) includes an HTML editor.

Part 3: Web Servers

This is the world's first web server, a NeXT computer
owned by Tim Berners-Lee, while he was at CERN.

NeXT was a company founded by Steve Jobs, after he
was temporarily kicked out of Apple in the 1980s.
Jobs referred to this machine as “3M”: it had a
Megabyte of memory, a Megapixel display and a
Megaflop of computing power. The design of the
NeXT operating system was very influential on the
Macintosh after Jobs returned to Apple.

The first web browser, also written by Tim Berners-Lee,
was written for the NeXT operating system, and
could only run on these computers.

Web Server History and Market Share:

1991 — CERN httpd

1993 -- NCSAHTTPd
| 1995 -- lIS
1996 -- Apache

2004 -- Nginx

1S

W Apache

B Nginx
Microsoft-IIS

B LiteSpeed

W Google Servers

W Apache Traffic Server

Data from w3techs.com, Apil 2019

Apache, IIS, and Nginx dominate the market. Apache is the most

widely used, sowe'll be talking exclusively about the Apache
web server.

Apache is also available for Windows, and is included as part of
Mac OS X.

The latest contender is “nginx”, a fast, lightweight web server
originally developed for Russian search engine “Rambler”.

“httpd”, and Apache Configuration Files:
Most of the configuration files for Apache usually live under the /etc/httpd
directory. The most important of these is “/etc/httpd/conf/httpd.conf.

Here's the beginning of a typical httpd.conf:

ServerRoot "/etc/httpd"«———————— Default place for log files and additional

StartServers 8 configuration files.
MinSpareServers 5 Apache starts up several copies of itself
MaxSpareServers 20 to serve incoming requests. These

ServerLimit 256 directives control the creation and
MaxClients 256 lifetime of these child processes.
MaxRequestsPerChild 4000

List 80
1sten All Apache processes will be owned by

User apache this user and group.
Group apache ‘ . .
E.g., for display in error messages.
-

ServerAdmin root@localhost

The port on which the server will listen.

The directory under which our web
DocumentRoot "/var/www/html"e———7 documents live.

DirectoryIndex index.html home.html ««—— Alist of default documents to look
for, if none is specified in the URL.

The Apache server is started as a service called “httpd”:
[root@demo ~]# service httpd start

You can use this command to check
[rOOt@d emo ~] # htt pd -t the syntax of your Apache config files.

The httpd.conf file is a text file containing single-line
“directives” that control Apache's behavior.

All files served up by this web server must be
readable by whichever user you specify with the
“User” directive.

The “httpd -t” command won't do anything except
check the syntax of the configuration files.

The main apache server program is usually
/usr/sbin/httpd.

For full information about Apache configuration
directives, see:
https://httpd.apache.org/docs/2.4/configuring.html

Scope of Directives, and User Directories:

Here's another excerpt from httpd.conf, showing how the scope of a set

of directives can be limited to a particular directory:

<Direct9ry ”/var/www/hpml">
Xﬁgﬁgiefﬁﬂgwﬁzﬂgl”“ - These directives only apply to
order allow,deny files under “/var/www/html”.
Allow from all

</Directory>

These apply to files in
/home/*/public_html.
<Directory /home/*/public_html> |
Options FollowSymLinks Includes ,////
AllowOverride AuthConfig Indexes FileInfo }>¥
</Directory> —

UserDir public_html

The “Options” directive sets various options for this directory.

The “AllowOverride” directive controls which system-wide options
users are allowed to change in their own configuration files.

The “UserDir” directive sets the name of a personal web directory
underneath each user's home directory. This can be disabled by
saying “UserDir disabled”.

By default, directives apply to all documents
on the server, but the scope of a directive can
be limited by placing it between delimiters that
specify a particular directory, URL, filename
pattern, etc.

We'll see an example later where some
directives only apply to files with names
matching a particular pattern.

Controlling Access:

The “Allow”, “Deny” and “Order” directives can be used to control who
has access to your web server, based on |IP address or host name.
This would allow hosts in the domain “example.com”, but reject all others:

Order allow,deny
Allow from example.com

More examples:
Allow from example.com
Allow from mydomain.net mydomain.org
Allow from 192.168.5.3
Allow from 192.168.0.0/255.255.0.0
Allow from mypc.example.com
Deny from badpeople.com
Order Allow,Deny

First, all Allow directives are evaluated; at least one must match, or
the request is rejected. Next, all Deny directives are evaluated. If any
matches, the request is rejected. Last, any requests which do not
match an Allow or a Deny directive are denied by default.

Order Deny,Allow

First, all Deny directives are evaluated; if any match, the request is
denied unless it also matches an Allow directive. Any requests which
do not match any Allow or Deny directives are permitted.

The descriptions of “Order Allow, Deny” and
“Deny,Allow”, at the bottom of this slide, are taken
directly from the Apache documentation. Maybe it's
just me, but I've always found they make my head
hurt. That's why | came up with the diagram in the
next slide.

How the “Order’” Directive Works:

Order Order
Allow,Deny Deny,Allow

Here's a graphical representation of the description on
the preceding page. You can think of “Allow” and
“Deny” as two sieves. If an address matches an
Allow rule, for example, it falls through that sieve.
Otherwise it's caught. The address of an incoming
connection is filtered through these sieves until it's
allowed or rejected.

One thing to notice: you can determine the default
behavior by looking at the last item in the “Order”
statement. When you say “Order Allow,Deny”, the
effect is to deny incoming connections unless they're
explicitly allowed. When you say “Order Deny,
Allow”, the effect is to accept incoming connections,
unless they're explicitly denied.

Determining the file types of documents:

When Apache sends a document to
a web client, it passes along a file
type describing the file. These types P
are taken from the list of “Multimedia | MIMEMagicFil

TypesConfig /etc/mime.types
DefaultTypeytext/plain
\é\conf/magic

Internet Mail Extensions” (MIME)

types. The Apache “TypesConfig” DefaultType is used if the file's type can't be

directive points at a local file that determined.

maps MIME types to file extensions.

application/msword doc

application/pdf . pdf The mime.types file consists

application/postscript ai eps ps of a list of MIME-types and

application/vnd.ms-excel x1s associated file extentions.

audio/mpeg mpga mp2 mp3

image/gif gif J

image/jpeg jpeg jpg jpe -

text/html html htm If the file's type can't be

text/plain asc txt determined by extension,

etc. .. apache can try the “magic”
file. This is a list of byte-

0 string \376\067\0\043 application/msword combinations to look for in
0 string \333\245-\0\0\0 application/msword a file, with matching MIME
0 string %! application/postscript types.
0
0
e

string \004%! application/postscript ‘*J
string %PDF- application/pdf

The “Include” Directive and .htaccess Files:

The httpd.conf file can refer to other configuration files through the
“Include” directive. For example, the following line would include
all the files matching /etc/httpd/conf.d/*.conf:

Include conf.d/*.conf

The directives in each of these files would be parsed just as
though they were typed into the main httpd.conf at the point where

the Include directive appears.

Also, directories can contain local configuration files that
supplement or override the directives in the main Apache
configuration files. These files are usually named “.htaccess”, but
their name can be set using the AccessFileName directive in one

of the main configuration files:

AccessFileName .htaccess
<Files ~ "A\.ht'">
Order allow, deny
Deny from all
</Files>

.htaccess files are often used to
password-protect web documents.
It's a security risk to allow the
.htaccess file itself to be visible over
the web. Here we use the “Files”
scope to restrict access to any file
with a name beginning in “.ht".

This shows how other files, besides httpd.conf, can
influence the behavior of Apache.

Password-Protecting Pages:
A user can password-protect documents in a web directory by creating
a .htaccess file in that directory containing Apache directives like the

following: o ——
. . IS WIll cause ache 1o
AuthUserFile /home/elvis/htpasswd require visitors topsupply
AuthType Basic password, matching an
entry in the user's
require valid-user “AuthUserFile”.
. T For this to work, the

The user can create the AuthUserFile and add @ girectory will need to be
user to it using commands like this: marked with

_ . “AllowOverride AuthConfig”
/demo> touch /home/elvis/htpasswd i 1s SyE e AR e

~/demo> htpasswd /home/elvis/htpasswd webuser configuration.
New password:

Re-type new password:

Adding password for user webuser

The file /Thome/elvis/htpasswd will look like this:
‘webuser :F3t8MGOKLI1UH. |

Note that, as in the example above, the user can have
his or her own “htpasswd” file. It can actually have
any name, as long as it matches the name given to
“AuthUserFile”. The htpasswd file should always live
in a directory that's NOT available through the web.
For example, if a user has web files under
“public_html”, the htpasswd file could be stored
above that, directly in the user's home directory.

In the example above, we've created an entry for the
user name “webuser”, but we could use any name.
You can add more username/password pairs to the
htpasswd file by repeatedly using the htpasswd
command. You can use the “require” directive to
require either “valid-user” (any user) or a specific
user (e.g., ‘require user elvis”).

Username and Password Prompt from Browser:

After a directory is password-protected, browsers will require that you
enter a valid username and password (as defined in the associated
.htaccess file) to get access to the directory.

#) Prompt olx

B Enter username and password for "Sekrit Stuff' at http://fexample.com
User Name:

Password:
| |

[OK l [Cancel

Apache Modules:

Extra features can be added to Apache through plug-in modules.
Most Linux distributions will have many popular Apache modules pre-
installed. To use a module, it must be loaded through a
“‘LoadModule” directive in httpd.conf or another Apache configuration
file.

LoadModule auth_basic_module modules/mod_auth_basic.so

LoadModule include_module modules/mod_include. so
LoadModule cgi_module modules/mod_cgi.so

An index of official Apache modules can be found here:
http://httpd.apache.org/docs/2.4/mod/

This shows three important Apache modules:
auth_basic handles the basic authentication we saw
earlier, mod_include enables Server-Side Includes,
which we'll talk about in the next section, and
mod_cgi enables server-side scripts. Unfortunately,
we don't have time to talk about the last of these
today.

Part 4: Server-Side Includes (SSI)

Server-Side Includes (SSI) are a very useful
mechanism that can make web pages more flexible
and easier to maintain. SSI gives you the ability to
use additional markup tags in your HTML files. The
SSI tags are evaluated by the web server, and are
never passed to a visitor's browser (if SSI is working
properly). Hence the term “Server-Side”.

What Does SSI Do?

SSI adds the following abilities to otherwise static HTML documents:

* Lets you dynamically include the content of other files.

You can, for example, have a standard header and footer that
you put at the top and bottom of each of your pages using the SSI
include statement.

* Gives you the ability to do “if” statements.

You can decide whether or not to display a section of your
HTML based on the values of several pre-defined variables, or
variables defined by you.

* Lets you display the values of some pre-defined variables.
Some of these hold the current time and date and the file's last
modification time.

* Lets you define and use your own variables.

These can be defined in the current document, another included
document, or in your .htaccess file.

For more information about SSI, see: http://httpd.apache.org/docs/2.4/howto/ssi.html

Enabling Server-Side Includes:

To enable SSI, you'll need to do the following:

* Make sure the mod_include module is loaded in your Apache
configuration.

* The “Options Includes” directive must be given in httpd.conf, or the
directive “Options +Includes” needs to be in the directory's
.htaccess file.

* You'll need to tell Apache which files should have server-side
includes enabled. You can do this with a directive like:

AddoutputFilter INCLUDES .html |

This tells Apache that any file with a name ending in “.html” should
be processed through the SSI module. This will take some extra
processing time for each file, so if performance is a concern you
may want to use a different file extension (like “.shtml”) for the files
that will use SSI.

There's also a mechanism called “XBitHack”, which will
cause Apache to enable SSI only for HTML files
whose “execute” permission bit has been set. For
more information about this, see:
http://httpd.apache.org/docs/2.4/howto/ssi.html

Including a File with SSI:

The syntax for SSI “include” statements is shown below. The
included files can include others, and so on. The contents of the
included files will be inserted into the HTML dynamically, before the

web server delivers the document to a visitor.

<html|>
<head>
<title>This is a web page!</title>
</head>
<body>

This is some text. It will appear in the web page.
another page.

Here's an image:

The end.
<!--#include virtual="footer.html"
</body>
</html>

<!--#include virtual="header.html"” -->

Here is a link to

-->

This space is
mandatory.

SSI Variables:

The following simple HTML file uses the SSI “printenv’ command to
generate a list of all current SSI variables and their values:

ssitest.html Output:

<html> SERVER_SOFTWARE=Apache/2.2.3 (CentOS)
SERVER_NAME=example.com

<b0dy> SERVER_ADDR=192.168.100.106

<pre> SERVER_PORT=80

<!--#p rintenv -->| REMOTE_ADDR=192.168.4.8
DOCUMENT_ROOQOT=/home/httpd/html

</pre> SERVER_ADMIN=root@example.com
</body> SCRIPT_FILENAME=/home/httpd/html/compfac/junk.html
</html> REMOTE_PORT=56304

GATEWAY _INTERFACE=CGI/1.1

SERVER_PROTOCOL=HTTP/1.1

REQUEST METHOD=GET

QUERY_STRING=

REQUEST_URI=/products/ssitest.html

SCRIPT_NAME-=/products/ssitest.html

DATE_LOCAL=Wednesday, 01-Apr-2009 20:32:22 EDT

DATE_GMT=Thursday, 02-Apr-2009 00:32:22 GMT

LAST_MODIFIED=Wednesday, 01-Apr-2009 20:31:51 EDT
i DOCUMENT_URI=/products/ssitest.html

The variables shpwn here USER_NAME=root

were all automatically DOCUMENT_NAME-=ssitest.html

generated by Apache. etc...

Conditional Statements:

The following example shows how to use an SSI “if” statement to test
the value of the “REMOTE_ADDR” variable, which contains the IP
address of the client computer that's connecting to the web server:

<html>

<body>

<pre>

<!--#if expr="$REMOTE_ADDR = /A192\.2\./" -->

Hi there!

This text is only visible to browsers
on the 192.2.*.* network.

<l--#endif -->

</pre>

</body>

</html>

In this example, we test the value against a regular expression.
Apache SSI regular expressions have the same syntax as those in
the Perl scripting language.

We could use this, for example, to display different
versions of a web page to internal or external
visitors. We might make a departmental web page
that has additional information that's only visible to
people within the department.

Setting and Echoing SSI Variables:
We can set the value of a variable, and then use that value later:

test.html

<html>

<body>

<!--#set var="bestcolor" value="fuchsia" -->
<pre>

The best color is <!--#echo var="bestcolor” -->
</pre>

<font color="<!--#echo var="bestcolor” -->">
Here is some text in this beautiful color.

</body>

</html>

Alternatively, we could set the value in the directory's .htaccess file,
using the Apache “SetEnv” directive:

\SetEnv bestcolor “fuchsia” \

Note that if you set the variable in a directory's
.htaccess file, then the variable will be available to all
pages underneath that directory, automatically.

Also note that it's sometimes convenient to define
variables in other files, that are then “include”ed via
SSl's <I--#include command.

Part 5: Cookies

HTTP connections are “stateless”, meaning that the
web server doesn't remember who you are from one
request to the next. It's like a person with severe
short-term memory loss, who needs to be constantly
reminded who you are.

HTTP cookies provide web servers with a mechanism
for storing information about visitors. Instead of
storing the information in the web server itself,
though, the information is sent to the visitor's
browser, and the browser caches the information on
the visitor's computer.

HTTP Headers:

When you get a document from a web server, the server sends
header information along with the document. Normally, these
header lines aren't seen by the user. They're used behind the
scenes by the browser, invisibly.

Date: Thu, 02 Apr 2009 02:08:03 GMT

Server: Apache/2.2.3 (CentOS)

Accept-Ranges: bytes

Connection: close

Content-Type: text/html

<html>
<head>
<title>This is a web page!</title>
</head>

<body>
F This is some text. It will appear in the web page.
Here is <a href="http://example.com”a link to

another page.

Here's an image:

The end.
body>

Y —

As we saw last time, you can see these headers if you
telnet to port 80 on the web server and manually use
the HTTP “GET” command. You can also see them
if you use the “-S” flag when you fetch a document
with wget.

Setting Cookies:

The HTTP header information can contain “cookies”. A cookie is just a
piece of data that the web server gives to the browser.

Date: Thu, 02 Apr 2009 02:08:03 GMT

Server: Apache/2.2.3 (CentOS)

Accept-Ranges: bytes

Connection: close

Content-Type: text/html

Set-Cookie: VisitorNumber=123456

Set-Cookie: FavoriteColor=blue; Expires=Wed, 09 Jun
2021 10:18:14 GMT

<html>
<head>
<title>This is a web page!</title>

</head>

<body>
This is some text. It will appear in the web page.
Here is a link to
another page.

When the browser
receives a cookie, the
cookie is stored on the
user's computer.
Cookies are grouped
according to the server
that sent them.

Whenever the browser
contacts the server
again, it tells the server
the values of any

cookies associated with

Here's an image: that server.

The end.
</body>
</html>

Cookies give a web server a way to store information
about a user. The data may include user
preferences, or a unique identifier for the user.
Instead of storing these values on the server, they're
stored on the client side, in each user's browser.

Cookies can optionally include an expiration date. In
the absence of a specified expiration date, the cookie
will be deleted by the browser at the end of the
current session (i.e., when you exit from the
browser). Expiration dates are specified like this:

Set-Cookie: name=value; Expires=Wed, 09 Jun 2021
10:18:14 GMT

Part 6: History

Tim Berners-Lee at Campus Party Brasil, 2009,
photo by Silvio Tanaka.

Tim Berners-Lee invented the Word Wide Web in
1991, while working at CERN. Today, many people
think of the Web and the Internet as almost
synonymous. But the internet began with the first
ARPANET links in 1969. What was happening in
the 22 years between the birth of the internet and the

birth of the Web?

The Yanoff List:
In the early 90s, Scott Yanoff maintained a list of “internet services”.
Here's an excerpt from a 1991 list, showing the range of resources

that extisted before the web:

-CARL telnet pac.carl.org or 192.54.81.128
offers: Online database, book reviews, magazine fax delivery service.

-Cleveland Freenet telnet freenet-in-a.cwru.edu or 129.22.8.82
offers: USA Today Headline News, Sports, etc...

-Ham Radio Callbook telnet marvin.cs.buffalo.edu 2000 or 128.205.32.4
offers: National ham radio call-sign callbook.

-IRC Telnet Client telnet bradenville.andrew.cmu.edu or 128.2.54.2
offers: Internet Relay Chat access, like a CB on the computer.

-Library of Congress telnet dra.com or 192.65.218.43
offers: COPY of Library of Congress (Assumes terminal is emulating a vt100).

-Lyric Server ftp vacs.uwp.edu
offers: Lyrics in text file format for anonymous ftp downloading.

-NASA SpacelLink telnet spacelink.msfc.nasa.gov or 128.158.13.250
offers: Latest NASA news, including shuttle launches and satellite updates.

-PENpages telnet psupen.psu.edu or telnet 128.118.36.5
offers: Agricultural info (livestock reports, etc.) (Login: PNOTPA)

-Weather Service telnet madlab.sprl.umich.edu 3000 or 141.212.196.79
offers: Forecast for any city, current weather for any state, etc.

By the 1980s the Internet was a bustling community,
with many useful resources. These were available
through Usenet newsgroups, mailing lists,
anonymous FTP servers, or telnet.

Anonymous FTP Archives:

Here's a small part of a list of anonymous-ftp file archives posted by Edward Vielmetti to the
comp.archives newsgroup in 1989. Comp.archives was a newsgroup devoted to

announcements and discussion of software archives.

a.cs.uiuc.edu
accuvax.nwu.edu
ahwahnee.stanford.edu
ai.toronto.edu
albanycs.albany.edu
allspice.lcs.mit.edu
ames.arc.nasa.gov
games
arisia.xerox.com
arizona.edu
arthur.cs.purdue.edu
athena-dist.mit.edu

EE S

B

parallel gnumake, TeX, dvi2ps, gif
PibTerm 4.1.3
pcip interface specs

Canada, Sun0S4.0 SLIP beta, lots of stuff

best of comp.graphics
RFC1056 (PCMAIL) stuff
pcrrn, gnu grep

lisp, tcp/ip, IDA sendmail kit
Icon, SR, SBProlog languages
RCS, Purdue tech reports
Hesiod name server, Kerberos

trwind.ind. trw.com
tumtum.cs.umd.edu
tut.cis.ohio-state.edu
ucbarpa.berkeley.edu
ucbvax.berkeley.edu
ucsd.edu
umn-cs.cs.umn.edu

unmvax.unm. edu

utadnx.cc.utexas.edu
uunet.uu.net

uxc.cso.uiuc.edu

Turbo C src for net.exe
NeWS pd software

GNU, lots of interesting things

tn3270, pub/4.3
nntp, gnews, awm

KA9Q archives, packet driver

Sendmail and related, vectrex

getmaps,

VMS sources (zetaps, laser,

usenet archives

sxlps

games, misc, HitchHiker's Guide

brownvm. brown.edu MAC uxe.cso.uiuc.edu amiga/Fish disks, PC-SIG 1-499
bu-it.bu.edu bunches of stuff vax.ftp.com FTP software, inc.
bugs.nosc.mil Minix venera.isi.edu statspy (NNstat)

c.isi.edu info-ibmpc (Tenex) venus.ycc.yale.edu SBTeX
cadre.dsl.pittsburgh.edu # jove for the Mac vgr.brl.mil bsd ping + record route
camelot.berkeley.edu # "pmake", yet another parallel make venera.isi.edu GNU Chess
cayuga.cs.rochester.edu # LaTeX styles, Jove, NL-KR mailing list watmath.waterloo.edu lots of stuff
celray.cs.yale.edu # ispell, dictionary wsmr-simtel20.army.mil MS-DOS, Unix, CP/M, Mac, lots!
(tenex)

charon.mit.edu # perl+patches, xdvi zap.mit.edu original Xi11 distribution

cheops.cis.ohio-state.edu

comp.sources.*, alt.sources

zaphod.ncsa.uiuc.edu

FH O OHHEREHEHREREERE BEERERR

NCSA Telnet source, binaries

citi.umich.edu # pathalias, CITI MacIP, webster

clutx.clarkson.edu # Turbo C stuff, net kit trwind.ind. trw.com # Turbo C src for net.exe
cs.cmu.edu # screen tumtum.cs.umd.edu # NeWS pd software

cs.orst.edu # Xlisp tut.cis.ohio-state.edu # GNU, lots of interesting things
cs.utah.edu # A Tour of the Worm ucbarpa.berkeley.edu # tn3270, pub/4.3
cunixc.cc.columbia.edu # MM mail user agent beta, Kermit ucbvax.berkeley.edu # nntp, gnews, awm
cygnusxl.cs.utk.edu # GCC, MM, Scheme ucsd.edu # KA9Q archives, packet driver
decwrl.dec.com # no FTP; gatekeeper.dec.com umn-cs.cs.umn.edu # Sendmail and related, vectrex
games

devvax.tn.cornell.edu # tn3270, gated unmvax.unm. edu # getmaps,

drizzle.cs.uoregon.edu # raytracing archive (markv) utadnx.cc.utexas.edu # VMS sources (zetaps, laser, sxlps
expo.lcs.mit.edu # a home of X, portable bitmaps uunet.uu.net # usenet archives

f.ms.uky.edu # lots of interesting things uxc.cso.uiuc.edu # games, misc, HitchHiker's Guide
flash.bellcore.com # Karn's RFC and IEN collection uxe.cso.uiuc.edu # amiga/Fish disks, PC-SIG 1-499
gatekeeper.dec.com # X11, recipes, cron, map, Larry Wall stuff

Even though there were many resources that the
average non-technical person would find useful, or at
least interesting, on the Internet, there were
technical, practical and social barriers that made it
hard for the average person to use these resources.

Microsoft Windows computers at that time didn't even
support the TCP/IP protocols natively. In order to
have any hope of using the Internet, Windows users
would need to find and install third-party software.

Then they'd need to learn (and remember) how to use
FTP, telnet and other programs, and somehow locate
(and remember) the locations and other necessary
information to connect to the resources they were
interested in.

Telnet:

This is what CERN's web site looked like to many people in the
early 1990s. Anyone in the world could type “telnet info.cern.ch”
and they'd be presented with a text-based interface to this thing
called the “World Wide Web”.

CERN LHelcoms

2 European Laboratory for Particle Phusics, located near Genewalll ik
Switzerland[2] and Francel2]. Also the birthplace of the Horld-Hide

. The support team Fr |jH q ==t of
and the | i

i1 — Actiwvities[89] - About Physics[101 -

This is the first view | had of the World Wide Web. There were
lots of similar things popping up at the time: WAIS, archie,
gopher, etc. The WWW was another attempt at making
Internet resources easy to find. | looked at it and thought,
“Well, this'll never amount to anything.”

Then, in the 1990s, along came Web browsers. In particular,
NCSA Mosaic suddenly made it easy for Windows users to
access the treasure-trove of resources on the Internet. Mosaic
supported the new-fangled World Wide Web, but it also

supported the older protocols like FTP. A world of resources
was just a click away.

The new HTML file format made it easier, going forward, to
create new resources that were easy for non-technical people
to use, but that just greased the skids. The web browser was
the engine that powered the Web revolution.

The First Graphical Web Browser:

WorldWideWeb Into X

Prerelease b of
Wersion 0,13

HyperMedia Browser/Editor

Nuvigete
Document

An excercise in global
information availability

by Tim Berners-Lee
Copyright 1930,31, CERN. Distribution restricted: ask for terms. TESTVERSION ONLY

HyperText: Text which is not constrained to be linear.

Engellazoit Hyperhledia: Information which is not constrained linear... or to be text.

Windows
Services

This version of the WWW application can pick up hypertext
infamation fram files in a number of formats, from local files, fram
emate files using NFS orananymaus FTR, from hypertext servers by
name or keywaord search, and from internet news. Hyperextfiles

ay be editied, and links made from hyperext files to ather flles or
any ather infarmation

Style or more help, use "Help" from the menu. Ifthat doesntwork, then
your application has been incompletely installed

you have any comments or have bugs, please mail
mhl@info.cern.ch. quoting the version number (above)

Navigation x|

<Previous | Backup [Next=

Haome Help

JEG Home |

JFG’s home page at InfoDesign

This hame page demonstrates some simple concepts afthe
World-Wide Web infrastructure for global information sharing.

Today, | showed Tim's ariginal Weh browser to Mare Weber. | justtook
50 notes abaut him and linked them o his name on the iy

| use thig World-Wide Weh editor exactly like any word processor, with
the power to create links from gensitive pieces oftext to other places,
forinstance to personal notes ar to any information source in the world

WWW research stuff

Mark all A

. Hypertext Resources (IN-Box)

G

Apply style to selection Style sheet Elux

Qpen T

Apply style to all similar text —
Find unstyled text

Formmat

Fistlneindent[100 |
Successive indent.lwan—
Font|Helvetica. |
F‘nimS\zE'lwz—
sehLtag<L> | | 8el

[1a0a00

Eetish Sala
Fave as. o

Iet Surf Prd

Jenny Holzer’s truisms take a turmn for the 'We

If you feel a need for speed _ surfi

M
What's a week without a Bill Gates
Corporate recruiting farm letters = i (&

Alleynicism .. What's the Point? | 4]

| HotWired: What's New Mark selection M

Style editor Geagraphical list of WWW servers (at O link to marked L

Welcome to Yarb , the elect same list. Example : CERM phone book| Link to fil 13

Style name:| List neighborhood it Inktofll...
Wired, 24 May. v WWW project documentation (at CERN|[Link fo New N
< | syleorselecton | > | inOnine Ay Weber— Hyperieat Follow link
Unlink 2
Med hears rumars of a deal between Gl Help

Marc Weber

A computer cansultant, small publisher and freelance journalistwho is
currently investigating the early history ofthe Web, to be published in
Wired. He loves HotWired

Welcome To HotWired!

Members Only:

S
What's New I %
=

Huow to Jain: Begister Mo
Unguided Tour Qverview leed Help?
Your View &capy; 1995 HotWired Wentures LLC

Powered by Silicon Graphics

This is Tim Berners-Lee's original graphical web
browser (and editor) for the NeXT. Berners-Lee

invented the web server, the HT TP protocol, and the
HTML file format. None of these would have made
much difference to the average person without the
web browser, though.

Even without the other things, | think we'd still have
ended up more or less where we are today, given
some sort of browser capable of connecting unskilled
users with the resources that were already on the
internet in the 1980s.

Thanks!

