N\
r\n\ Linux for,

Resea-rchers

Today we'll finally take a closer look at the boot process and the linux
kernel. The boot process is something every Linux administrator

needs to be familiar with, because you'll interact with it often and
you'll need to modify it from time to time.

You'll also need to be aware, at least, of kernel modules, and how to
use them. This knowledge will come in handy when dealing with
new hardware, or trying to understand errors.

These days, the process for building the Linux kernel is something
that can safely remain a mystery to many system administrators.
Kernel updates are usually made available by the vendor (Red Hat,
Ubuntu, etc.), and can easily be installed through the regular
package management system. Gone are the days when Linux
administrators regularly built their own customized kernels.

Still, there will some day come a time when you need to do it. Maybe
you'll need a bleeding-edge kernel to make some newfangled

device work, or maybe you'll need to turn off some kernel feature
that causes problems.

Part 1: The Boot Process

Once upon a time, computers like this PDP-11 were
booted by flipping a set of switches, to enter a
memory address, and then telling the computer to
start executing commands at that address.

(http://www.bitsavers.org/pdf/deo/pdp1 1/dos-batch/DosBatch Handbook_v9_Apr74/G.pdf)
The address pointed the computer to a particular
operating system on a particular device.

Although we only press one button now, things haven't
really changed that much internally. When a modern
PC starts, the CPU begins loading instructions from
a predefined, standard address in memory (FFFFO,
in hexadecimal). This memory location points to the
beginning of the BIOS, which then chooses (or lets
us choose) a boot device.

“Bootstrapping”:

Bootstrapping (shortened long ago to “booting”) is the process by which a
computer is moved from a completely quiescent, “dead”, state to a fully
initialized and running state. Usually it begins with a button press that
leads to a cascade of successively more complex events that eventually
results in a successfully running operating system.

Ty
o 4

] *h i
L ke
- l .. - . ; ™ -

Nl

Bootstrapping is hard. Here's an analogy: Imagine that
you have all of the parts necessary to build a robot.
The parts are scattered all over the floor. You'd like
the robot to assemble itself. How would you start?

Maybe you could imagine that there's a button you can
press on one of the hands to start the process. The
hand then starts crawling around, collecting other
parts, until it can assemble the legs and hips. Then
these parts can walk around and assemble more of
the robot. Eventually the robot is complete.

This is the kind of thing the computer has to do in order
to boot itself. It starts with little steps, then
progresses through several stages until it's in the
final, running state.

Booting Linux (BIOS/MBR version):

The “Basic I/0O System” (BIOS) is a tiny operating system installed on a
traditional PC's motherboard. It starts the boot process.

“Pre-Operating-System Test”: check the PC's

POST hardware for errors.
BIOS $
; Look for a bootable device. Load stage1
Runtime bootloader from disk's MBR.
‘ Load stage1.5 bootloader from disk's “DOS
Stage Compatibility Region”.
¢ Mount filesystem containing stage2. Load
GRUB< | Stage1.5 stage2 bootloader.
Read grub.conf. Present menu of boot options.
Stage2
age <L grub.conf
L -
Uncompress kernel and run it.
Kernel
Linux ¢ inittab
Start “init” process (process number 1).
- P R p (P)

Grub (the “GRand Unified Bootloader”) is the
successor to the original Linux boot system, called
LILO. With LILO, any time you made a change to
the boot configuration, the bootloader needed to be
re-installed in the disk's Master Boot Record (MBR).
Grub understands filesystems, though, so you an
reconfigure it by simply editing a text file that Grub's
“stage2” will read when you reboot.

Typically, the stage1 bootloader lives in the MBR's boot
code section. As we'll see, the stage1.5 bootloader
cleverly makes use of the disk's “DOS Compatibility
Region”. The stage2 bootloader is just a file living in
a filesystem.

MBR and DOS Compatibility Region:

(End of first cylinder)

DOS Compatibility Region
(padding)

MBR

Etc...

Grub cleverly uses

p1/p2|p3ip4 | other-wise wasted
space in the DOS

Stage1 Bootloader e .

446 bytes Partition T4ple| | COMPpatibility Region
to store its higher-level
stage1.5 bootloader.
Stage1.5 is capable of
mounting filesystems.

—
512 Bytes

Stage1.5 Bootloader
31.5 kilobytes

32 kB minus 512 Bytes

Some operating systems, like DOS, require that partitions start
at cylinder boundaries in the C,H,S coordinate system. To
accomodate this, most partition managers leave some
padding between the MBR and the beginning of the first
partition. This padding is called the “DOS Compatibility
Region”. On most disks, its size will be 32kB minus the 512
bytes needed for the MBR.

Since only 446 bytes are available in the MBR for boot code,
the “stage1” bootloader that lives there needs to be very
simple. But the DOS Compatibility Region provides ample
space for a more sophisticated bootloader. The stage1
bootloader does some initialization, then invokes the
stage1.5 bootloader to continue the boot process.

The stage1.5 bootloader is capable of mounting filesystems,
making it easy to reconfigure the boot process by editing
normal files with a text editor.

See: hitp://www.pixelbeat.org/docs/disk/ for more.

Extracting and Saving the MBR:

We can use “dd” (“data dump”) to extract the contents of the Master Boot
Record and save them in a file, for examination or for later restoring a
corrupt MBR:

|[root@demo ~1# dd if=/dev/sda of=mbr.dat bs=512 count=1 |
‘ *

Number of
Input File Output File Block Size Blocks

Following the Unix “everything is a file” philosophy, the device special
file /dev/sda represents the disk, and lets us treat it like just another file
from which we can read data.

The “file” command can be used to tell you about a file. In this case,
file identifies mbr.dat as a boot sector and tells us about the partition
table inside it:
[root@demo ~]# file mbr.dat
mbr.dat: x86 boot sector;
partition 1: ID=0x83, active,

starthead 1, startsector 63, 208782 sectors;

partition 2: ID=0x8e,
starthead 0, startsector 208845, 312287535 sectors,
code offset 0x48

Note the odd syntax for the “dd” command. This
command has been around for a long time, and
predates the conventions now used.

After you've save the MBR in a file, you could later
restore it to the disk if you wanted to. To do this,
you'd just revers the “if" and “of” arguments in the
first command, above. Be careful not to reverse
these unintentionally!

Booting with GUID Partition Tables:

No gap between MBR
and GPT Header

P

Partition Table Rest u
of the H
Disk |
Protective GPT
MBR Header

With GPT, there's still an MBR at the front of the disk
(the MBR's partition table just says there's one big
partition on the disk, of type "GPT") , but there’s no
“Compatibility gap” after this MBR. The GPT header
is written right after the MBR. Where can we put the
stage 1.5 bootloader now?

Booting Linux (BIOS/GPT version):

To use BIOS (aka “legacy”) booting with GPT, we need to have
one “BIOS boot partition”. This is a partition of type EF02 or,
equivalently, GUID 21686148-6449-6e6f-744€656564454649.
Translated into ASCII, this GUID spells "Hah!ldontNeedEFI".

) |

% § ghet u
O . es

. |

1s) 3 core.img of the |

= - Disk |

\)\ J Partition Table N v Y,

Protective GPT The BIOS boot partition must be at least 32 kB, but
MBR Header usually it's 1 MB. It doesn’t have a filesystem. It just
holds the bytes of the next stage of the bootloader.

Instead of putting the "stage1.5" bootloader into the
DOS compatibility region, we now need to make a
separate small partition for it. Instead of "stage1.5"
grub now calls this "core.img".

Booting Linux (UEFI/GPT version):

To use UEFI with GPT, we need to have one “EFI System

Partition” (ESP). This is a partition of type EF00. The ESP

contains a VFAT filesystem that holds (among other things) an

EFI application named “grub.efi”, which is capable of mounting
e the /boot filesystem and continuing the boot process.

EFI
System
Partition Rest

u 8] 0 G

grub.efi shim.efi ...

ESP

\ I j Partition Table

Protective GPT If “Secure Boot” is enabled, UEFI first invokes
MBR Header “shim.efi” from the ESP, which then starts grub.efi.
shim.efi is digitally signed in a way that satisfies the
motherboard’s “Trusted Platform Module” (TPM).

Finally, when we use UEFI instead of a BIOS, the UEFI
processor is smart enough to read the partition table
and mount a special filesystem. One or more of the
EF| applications (e.g. grub.efi) in this filesystem is
then run to continue the boot process.

Yo Dawg, | heard you like comsputers so |
put a computer in your compélter SO you
can compute while you comﬁute

See also: https://www.gwern.net/Turing- complete#how many-computers-are-in-your-computer

The UEFI processor, the TPM, and many other devices
in your computer are actually turing-complete
processors, capable of doing arbitrary calculations.
The article linked to above finds that typical
computers contain from 15 to several hundred
processors or various kinds, including those found in
network cards, disks, graphics cards, and even more
unlikely places.

The article also notes that Bad Guys have sometimes
exploited these processors to do Bad Things.

Managing UEFI Boot Options:

List boot options:

[root@localhost ~]# efibootmgr

BootCurrent: 0004

BootNext: 0003

BootOrder: 0004,0000,0001,0002,0003

Timeout: 30 seconds

Boot0000* Diskette Drive(device:0)

Boot0001* CD-ROM Drive(device:FF)

Boot0002* Hard Drive(Device:80)/HD(Partl,Sig00112233)
Boot0003* PXE Boot: MAC(00ODOB7C15D91)

Boot0004* Linux

Add a boot option:
efibootmgr -c -L "Testing" -1 '\EFI\centos\shim.efi'

-L = Label that appears on boot menu
-1 = Boot loader

Most computers will allow you to configure UEFI
through the firmware settings at boot time. You can
also use the "efibootmgr" command for this, though.

Part 2: GRUB

Grub (the “GRand Unified Bootloader”) was originally
written by Erich Boleyn, who says:

“I'm not a big fan of Microsoft products, but the
Microsoft spell-checker says my name must be
"Reich Boolean"... the thousand year rule of
computers. Scary, huh?”

He developed Grub as a more flexible alternative to
LILO. His intent was to make a general-purpose
bootloader that could boot any operating system.

Grub's Confiquration Files:

Grub's files usually reside in the directory /boot/grub or /boot/grub2.
The most important file is “grub.cfg”. You'll notice the following warning
at the top of this file:

#

DO NOT EDIT THIS FILE

#

It is automatically generated by grub2-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub

#

Earlier versions of grub encouraged you to modify grub’s

configuration by directly editing grub.cfg. Since version 2, however,
grub has provided tools tools that read other configuration files (and
examine your computer) and use this information to create grub.cfg.

Still, there’s no harm in looking...

In the Olden Days we edited grub.cfg by hand, but
nowadays its better to let grub's tools generate this
file for you. We'll see how to do that a little later.

Syntax for Entries in qrub.conf:

This defines the starting point to

BOOtmg Linux: look for the files in the “kernel” and
“initrd” lines, below. Note that this is
This is the title as it will the “root” for Grub only, it's not the
appear on the Grub menu. same as the operating system's root
AL filesystem.

title CentOS (2.6.18-92.1.22.el5)
root (hdo,0) ¢——————
—» kernel /vmlinuz-2.6.18-92.1.22.el5 ro root=/dev/VolGroup00@/LogVole0 rhgb quiet
r>initrd /initrd-2.6.18-92.1.22.el5.img

L Specify a file containing an “initrd” image. Arguments to pass to kernel.

—— Specify the file containing the kernel.

Booting Windows:

This is the root for Grub, Read one sector (“+1”) from the
but don't try to mount it start of this partition, and execute
(“noverify”). the code there.

title Microsoft Windows XP
rootnoverify (hdo,0)e———
chainloader +1 -=

The Windows bootloader is embedded in the “partition
boot sector” at the beginning of the partition on which
Windows is installed. The second example above
shows how Grub can just hand off the boot process
to the Windows bootloader.

In the “chainloader” command, we could either give a
filename (optionally prefixed with a Grub device
name) or we could (as we do in the example above)
specify a range of raw data on the disk, not inside
any filesystem. The latter is specified through
“blocklist” notation. The general form of this is
offset+length. If the offset is omitted, it's assumed to
be zero. We could also specify a device, like
“(hd0,0)+17. If the device is omitted, Grub's “root”
device is assumed.

Extracting the Windows “Partition Boot Sector”:
Just as we extracted the MBR from the first sector of the disk, we can
also extract the bootloader that Windows installs at the beginning of its
partition. Note that we specify a partition (/dev/sda1) rather than the
whole disk (/dev/sda):

|[root@demo ~]# dd if=/dev/sdal of=pbr.dat bs=512 count=1 |

Windows Partition

“file” understands the resulting file's format, and can tell us a few things

aboutit: [Troot@demo ~]# file pbr.dat

pbr.dat: x86 boot sector,

Microsoft Windows XP Bootloader NTLDR,
code offset 0x58, OEM-ID "MSD0S5.0",
sectors/cluster 32, reserved sectors 38,
Media descriptor 0xf8,

heads 255, hidden sectors 63,

sectors 40965687 (volumes > 32 MB) ,
FAT (32 bit), sectors/FAT 9997,
reserved3 0x800000,

serial number Oxadea®3af, unlabeled

As with the master boot record, we could restore the
saved “PBR" by swapping “if" and “of” in the dd
command. Again, be careful not to do this by
accident!

The /etc/default/qrub File:

/etc/default/grub is a text file that contains some configuration
information used when generating the grub.cfg file. It might

look like this:

Default entry: 0-n, name, or “saved”.
Timeout after which default Parameters passed to the
entry will be booted. Linux kernel.

- /

GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's; release .*$,,g' /e ystem-release)"
GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=cl/root
rd.lvm.lv=cl/swap rhgb quiet selinux=0"
GRUB_DISABLE_RECOVERY="true"

See:
https://www.gnu.org/software/grub/manual/grub/html_node/Simple-configuration.html
for a list of configuration options.

The /etc/default/grub file lets us choose configuration
options for grub. When grub's tools generate
grub.cfg for us, they read this file to get our advice
about how to do it.

Making qrub.cfqg:

On Debian/Ubuntu/etc.:
grub-mkconfig -o /boot/grub/grub.cfg

On RedHat/CentOS/Fedoraletc.:
grub2-mkconfig -o /boot/grub2/grub.cfg

2
3

“grub-mkconfig” reads /etc/defaults/grub, then uses helper scripts
located in the directory /etc/grub.d to probe the computer, looking
for installed operating systems, etc. It then writes an appropriate
grub.cfg file.

grub-mkconfig is the tool you should use to create or
update a grub.cfg file. Note that the location of the
file needs to be specified on the command line, and
that the location will be different depending on which
Linux distribution you're using.

Installing the grub Bootloader:

On Debian/Ubuntu/etc.:
grub-install -recheck /dev/sda

On RedHat/CentOS/Fedora/etc.:
grub2-install —recheck /dev/sda

2
3

“grub-install” reads grub.cfg and writes the appropriate boot code
into MBR, BIOS Boot Partition, and/or EFI System Partition, as
necessary.

You don't need to do this every time you change grub's
configuration. It only needs to be done if grub's boot
code has never been installed on this disk.

"They know that we know about their leader. We've
overheard their whisperings. This "Colonel" guy will be
tracked down, and he WILL be brought to justice..."

“...the captured nerds are model prisoners. 'They made a
crude but listenable crystal radio out of a light bulb, a
crayon, and a square of toilet paper, and a rock. They say
they'll have linux on it by next week. " ”

-- From media coverage of the well-known Seattle Linux
Riot of April 1, 1999:

http://web.archive.org/web/19990508115937/http://w3.one.net/~sunlion/linuxriot.html

What Does the Kernel Do?:

Linux kernel map

functions human
layers mwSVStem '_wl‘)‘rocesslng _ memory . storage . :etworking Ihtecface

interfa P memory access files & directories sockets access HI char devices
linuxisyscallsh system files access
sys_execve Y g socketc
user space sy e e o o Fmmar2 o e
interfaces .T. - o I = N Iprocssaltimaps da_path lookup. :::-""
s e gysts ops e it
‘cdev_map =

sys_raboot (module S¥s.nanosieep

virtual

A beautiful chart showing how some components of
the Linux kernel interact with each other. This shows
how complex the kernel is, and how many things it
does. Just look at the bottom, “electronics”, row.

The kernel is the only thing that talks directly to these
devices. All communication to and from them goes
through the kernel.

Kernel Version History:

* Version “0” -- April 1991.
First public release of Linux.

* Version 1.0.0 -- March 1994.
Supported single-processor computers based on the Intel i386 processor.

* Version 1.2.0 -- March 1995.
Added support for DEC Alpha, Sparc, and MIPS processors, etc.

* Version 2.0.0 -- June 1996.
Added multiprocessor support (SMP) and more processor types, etc.

* Version 2.2.0 -- January 1999.
More filesystem types (including NTFS) and more processor types, etc.

* Version 2.4.0 -- January 2001.
Plug-and-play, USB, PCMCIA, bluetooth, LVM, RAID, etc.

* Version 2.6.0 -- December 2003.
Up to 2% users (was 2'¢), up to 2%° PIDs (was 2'%), SELINUX, Infiniband, etc.

* Version 3.0 — July 2011.

No major changes from last 2.6.* release. Just a numbering change.
*...etc.

The current kernel version is 5. Since around version
3, Linux has emphasized that the version numbers
have no meaning. There's no big difference between
kernel 3.99 and 4.0. It's just a number to identify the
version.

Kernel Source Code:

001 1.001.1.01.20130200210220230240250260 30 40 410 415 419
Kernel Version

The Linux kernel is an example of a massive
distributed development project. Thousands of
people now contribute to the kernel code. This
pushes the bounds of project management, and has
led to the development of new tools, like git, to make
it possible.

Kernel Files in /boot:
The kernel itself usually lives in the /boot directory. In the example
below, there are two different kernels, “vmlinuz-*":

[root@demo ~]# 1s -1 /boot

-rw-r--r-- 1 root root 65411 Nov 12 09:54 config-2.6.18-92.1.18.el5
-rw-r--r-- 1 root root 65411 Dec 16 12:28 config-2.6.18-92.1.22.el5
drwxr-xr-x 2 root root 1024 Dec 17 01:38 grub

rw------- 1 root root 3133534 Nov 13 03:18 initrd-2.6.18-92.1.18.el5.img
rw------- 1 root root 3133544 Dec 17 01:36 initrd-2.6.18-92.1.22.el5.img
rw-r--r-- 1 root root 91738 Nov 12 09:54 symvers-2.6.18-92.1.18.el5.9z
rw-r--r-- 1 root root 91760 Dec 16 12:28 symvers-2.6.18-92.1.22.el5.9z
rw-r--r-- 1 root root 912912 Nov 12 09:54 System.map-2.6.18-92.1.18.el5
rw-r--r-- 1 root root 913350 Dec 16 12:28 System.map-2.6.18-92.1.22.el5
rw-r--r-- 1 root root 1806900 Nov 12 09:54 vmlinuz-2.6.18-92.1.18.el5

rw-r--r-- 1 root root 1805940 Dec 16 12:28 vmlinuz-2.6.18-92.1.22.el5

There are other files in /boot, too:
config-* These are copies of the kernel configuration file used when
compiling each of the kernels. They're kept here for your reference.

System.map-* These files list the memory location of all of the
symbols in the given kernel. This is useful for debugging.

symvers-* Each symbol in a Linux kernel module has a version
number identifying a particular version of the kernel. This version
information is stored in the symvers files, and is used when compiling
3rd-party kernel modules.

the config-*, System.map-* and symvers-* files are
optional. They aren't necessary if you only need to
run the kernel, and Grub (for example) doesn't use
them.

Notice that there are also “initrd=>" files here. We'll talk
about those in a few minutes.

What Kernels Do | Have?:

dpkg -1 | grep linux-image

rc linux-image-4.15.0-45-generic 4.15.0-
45.48 amd64 Signed kernel image generic
ii linux-image-4.15.0-46-generic 4.15.0-
46.49 amd64 Signed kernel image generic
ii linux-image-4.15.0-47-generic 4.15.0-
47.50 amd64 Signed kernel image generic

¢ d'
rpm -q kernel
kernel-3.10.0-957.1.3.el7.x86_64
kernel-3.10.0-957.5.1.el17.x86_64
~ o|kernel-3.10.0-957.10.1.el7.x86_64

yum.conf

You can limit the number of [main]
installed kernels by adding this
parameter to your /etc/yum.conf | | *° o
file. It won't remove kernels that | t1Sstallonly limit=3

are in use!

Installed kernels show up automatically in the boot
menus generated by grub-mkconfig. The
"Installonly _limit" option available in the
RedHat/CentOS/Fedora world helps keep these
menus uncluttered.

What Kernel Am | Running?:

The "uname" command will tell you about the kernel you're
currently running, among other things:

uname -a

Linux mypc.example.com 3.10.0-957.1.3.el7.x86 64
#1 SMP Thu Nov 29 14:49:43 UTC 2018 x86 64 x86 64
x86 64 GNU/Linux

"cat /proc/cmdline” will tell you this too, as well as giving you
the parameters that were passed to the kernel at boot time:
cat /proc/cmdline

BOOT IMAGE=/vmlinuz-3.10.0-957.1.3.el7.x86 64
root=/dev/mapper/cl-root ro crashkernel=auto
rd.lvm.lv=cl/root rd.lvm.lv=cl/swap rhgb quiet

selinux=0 net.ifnames=0 biosdevname=0
LANG=en US.UTF-8

Installing Bleeding-Edqge Kernels:

¥ ELRePO

www.elrepo.org

rpom --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org

yum install
https://www.elrepo.org/elrepo-release-7.0-3.el7.elrepo.noarch.rpm

Install the current "long-term support"

yum install kernel-It kernel.

yum install kernel-m|l — Install the current "mainline" kernel.

Linux distributions usually ship well-tested, stable
kernels, with the intent of supporting them for several
years. Although the distribution will provide security
updates for these kernels, the kernels may lack
features of newer kernels released later.

If you find that the distribution's current kernel doesn't
support a device in your computer, or provide a
feature you need, you might want to try a kernel from
the elrepo repository.

Kernels installed this way will receive updates from the
elrepo repository whenever you run "yum update”.

Part 4: Kernel Modules

Early on, Linux kernels were “monolithic”. Every
feature of the kernel was compiled into a single file.
The problem with this was that, whenever you
needed to add a driver for a new device or support
for a new type of filesystem, you needed to rebuild
the kernel, re-install it and reboot the computer.

To make things easier, many components of the kernel
can now be separated out into “kernel modules”.
Modules can be loaded or unloaded on-the-fly, as
needed. (Sometimes literally:
http://www.conceptlab.com/fly/)

Kernel Modules:

Many parts of the Linux kernel can be built as “modules”. These kernel
modules can be dynamically loaded or unloaded, without rebooting the
computer. Most of them are drivers for particular devices, filesystems,

etc. The modules for a particular kernel usually live under /lib/modules,
in a directory specific to that kernel version. For example:

[root@demo ~]# 1ls /lib/modules/2.6.18-92.1.22.el5/drivers/net
3c59x. ko dummy . ko natsemi.ko ppp_synctty.ko sunhme.ko
8139cp. ko €1000 ne2k-pci.ko gla3xxx.ko tg3.ko
8139too.ko e1000e netconsole.ko r8169.ko tlan. ko
8390.ko e100. ko netxen s2io.ko tokenring
acenic.ko epicl00.ko ns83820.ko $1s190.ko tulip
amd811le.ko fealnx.ko pcmcia $1s900. ko tun.ko
b44.ko forcedeth.ko pcnet32.ko skge.ko typhoon. ko
bnx2.ko ifb.ko phy sky2.ko via-rhine.ko
bnx2x. ko igb ppp_async. ko slhc.ko via-vel.ko
bonding ixgb ppp_deflate.ko slip.ko wireless
cassini.ko ixgbe ppp_generic.ko starfire.ko

chelsio mii.ko ppp_mppe.ko sundance.ko

cxgbh3 mlx4 pppoe . ko sungem. ko

dl2k.ko myril@ge pppox.ko sungem_phy. ko

The files with names ending in “.ko” are kernel modules. Other files are
directories containing more modules.

Listing Loaded Modules:
The “Ismod” command will show you a list of the currently
loaded kernel modules:

[root@demo ~]# lsmod

Module Size Used by

vfat 15809 0

fat 51165 1 vfat

usb_storage 76705 0

netloop 10945 0

ipt_MASQUERADE 7617 1

iptable_nat 11205 1

ip_nat 21101 2 ipt_MASQUERADE, iptable_nat
ext3 123593 2

tg3 109380 0

bluetooth 53797 5 hidp, rfcomm,12cap
sunrpc 144893 1

ipt_REJECT 9537 3

nfnetlink 10713 2 ip_nat,ip_conntrack
iptable_filter 7105 1

ip_tables 17029 2 iptable_nat,iptable_filter
video 21193 0

sbs 18533 0

backlight 10049 1 video

etc...

Each kernel module provides a set of “symbols”,
representing functions or variables. These functions
and variables can be used by other modules. Thus,
some modules will require that other modules be
installed in order to function properly.

Module Information and Loading Modules:
The “modinfo” command will tell you things about a particular module:

[root@demo ~]# modinfo ext3

filename: /1lib/modules/2.6.18-92.1.22.el5xen/kernel/fs/ext3/ext3.ko
license: GPL

description: Second Extended Filesystem with journaling extensions
author: Remy Card, Stephen Tweedie, Andrew Morton,

Andreas Dilger, Theodore Ts'o and others
srcversion: DO1BE9DB9B4D2A251EC9ACA
depends: jbd
vermagic: 2.6.18-92.1.22.el5 SMP mod_unload 686 REGPARM

4KSTACKS gcc-4.1
module_sig:
88313504947f4fbc6715965c252fdcbhl112aba90a08be4317172196118b79df f75c55eb
d8013d7c109e20208068e86646726d4b95ea4bb7a53b9ffa8e9

You can load a module with the “modprobe” command:
[root@demo ~]# modprobe joydev |

and you can use “modprobe -r” to remove (unload) it:
'[root@demo ~]# modprobe -r joydev |

modprobe looks at the modules.dep file to determine whether other
modules need to be loaded at the same time, and loads them
automatically.

Identifying Modules used by a Device:

Most of the interesting devices in your computer are connected through
the PCI bus. You can find information about devices on the PCI bus by
using the “Ispci” command. Among the things it can tell you are the
names of any kernel modules used by each PCI device. To find this
information, use the “-k” qualifier:

[root@demo ~]# lspci -k

04:00.0 VGA compatible controller: nvidia Corporation Device 0a76 (rev
a2)

Subsystem: ASUSTeK Computer Inc. Device 8446

Kernel driver in use: nouveau

Kernel modules: nouveau, nvidiafb

Type “man Ispci” to see more of Ispci's many capabilities.

Module Parameters:

Some modules allow you to control their behavior by setting parameters
when the module is loaded.

[root@demo ~]# modinfo el000

description: Intel(R) PR0O/1000 Network Driver

author: Intel Corporation, <linux.nics@intel.com>
depends:
vermagic: 2.6.18-92.1.22.e15 SMP mod_unload

686 REGPARM 4KSTACKS gcc-4.1
parm: Speed:Speed setting (array of int)
parm: Duplex:Duplex setting (array of int)
parm: AutoNeg:Advertised auto-negotiation setting (array of int)
parm: FlowControl:Flow Control setting (array of int)
parm: InterruptThrottleRate:Interrupt Throttling Rate (array of int)
parm: SmartPowerDownEnable:Enable PHY smart power down (array of int)
parm: debug:Debug level (O=none,...,16=all) (int)

We could load the e1000 ethernet controller driver and tell it to run at
1Gbps and full duplex:

\[root@demo ~]1# modprobe e1000 Speed=1000 Duplex=2

Documentation is left up to the author of the module, and may
sometimes be cryptic.

The modprobe “.conf” Files:

The modprobe command looks at files named *.conf in the
/etc/modprobe.d directory for configuration information:
[root@demo ~]# cat /etc/modprobe.d/my.conf
alias etho tg3

alias ethl e1000

alias scsi_hostadapter ata_piix

alias snd-card-0 snd-hda-intel

options snd-card-0 index=0

options snd-hda-intel index=0

The example above shows two types of configuration lines that can
be present in modprobe.conf:

* alias

These lines define aliases that can be used for module names in
modprobe commands. These aliases are also used, indirectly, by the
kernel. When the kernel encounters a new device, like “eth0”, it calls
“modprobe eth0” to load the appropriate module.

* options
These are parameters that modprobe will pass to the given module,
by default, when it is loaded.

Note that, in addition to any aliases defined in the
*.conf files, modules may have other aliases
compiled into them. These can be seen with the
“modinfo” command. When looking up a name,
modprobe first looks for an alias in the *.conf files,
then it looks for a module that actually has that
name, then it looks through all modules for one that
has the given name as a compiled-in alias.

Part 5: The Initial RAM Disk (initrd)

Although there were problems with a monolithic kernel
(needing to recompile and reboot to add drivers), this
type of kernel was a little easier to boot. Now that
we have modules, we may need not just the kernel
image, but also a few modules in order to get the
root filesystem mounted and start the init process.

For example, if our root filesystem is an ext3
filesystem, we'll need to have the ext3.ko kernel
module available to the kernel before the root
filesystem can be mounted. Unfortunately, this

kernel module normally lives inside that filesystem,
itself!

The initial RAM disk provides a mechanism for

providing necessary modules early in the boot
process.

The initrd File:

The kernel may need some modules early on in the boot process. How
can the kernel start the “init” program, for example, if it doesn't have the
modules necessary to mount the filesystem on which “init” lives?

Linux bootloaders like Grub allow you to specify an initrd file associated
with a kernel. The initrd file is a compressed archive containing a few
kernel modules, utilities and scripts that help the kernel out during the
early part of the boot process. For example, the initrd might contain the
ext3.ko module needed for mounting an ext3 filesystem.

[root@demo ~]# 1s -1 /boot

-rw-r--r-- 1 root root 65411 Nov 12
-rw-r--r-- 1 root root 65411 Dec 16
drwxr-xr-x 2 root root 1024 Dec 17

:54 config-2.6.18-92.1.18.
128 config-2.6.18-92.1.22.
138 grub

els
els

initrd /initrd-2.6.18-92.1.22.el5.1img

SrW------- 1 root root 3133534 Nov 13 03:18 initrd-2.6.18-92.1.18.el5.1img
SrW------- 1 root root 3133544 Dec 17 01:36 initrd-2.6.18-92.1.22.el5.1img
-rw-r--r-- 1 root root 91738 Nov 12 09:54 symvers-2.6.18-92.1.18.el5.9z
-rw-r--r-- 1 root root 91760 Dec 16 12:28 symvers-2.6.18-92.1.22.el5.9z
-rw-r--r-- 1 root root 912912 Nov 12 09:54 System.map-2.6.18-92.1.18.el5
-rw-r--r-- 1 root root 913350 Dec 16 12:28 System.map-2.6.18-92.1.22.el5
-rw-r--r-- 1 root root 1806900 Nov 12 09:54 vmlinuz-2.6.18-92.1.18.el5
-rw-r--r-- 1 root root 1805940 Dec 16 12:28 vmlinuz-2.6.18-92.1.22.el5
title CentOS (2.6.18-92.1.22.el5)
root (hdo,0)
kernel /vmlinuz-2.6.18-92.1.22.el5 ro root=/dev/VolGroup@0/LogVole0 rhgb quiet

Creating an initrd Image with “dracut”:

The best way to make an initrd image for the current kernel on RHEL-
based systems is by using the “dracut” utility:

‘[root@demo ~]# dracut initrd-new.img ‘

initrd File
To make an initrd for a different kernel:
\[root@demo ~]# dracut initrd-new.img 2.6.18-92.1.22

initrd File Kernel Version

Normally, dracut determines which modules to include by looking at the
computer on which it's running. If you want to force mkinitrd to include
some modules, you can use the “--add-drivers” switch:

dracut --add-drivers=mpt2sas initrd-new.img

On Debian-based systems, you can use a similar tool called
‘mkinitramfs”. Consult the man page for details.

A given initrd will only work with one version of the
kernel, because kernel modules are generally tied to
a particular kernel version. dracut needs to know the
intended kernel version so it can pack up appropriate
modules.

vvvvvvvvv
I U
Tl 5

AT ¢ i
I i
- o St S ma
‘ = B J
= S -
i i =
{ P 1
= _L3h —
9 e 1 5]] B =
2 [‘ : I
: bt - R <i Bl : L)
i\ - T
) ! — T] 1 —aa 4
........ 1w | V=15 -1) i
LIty 1 T i
il ¢ B v T, ma P> R 4 i
R > }
| U § / \ -
i

iy
AL S 1

In the 1990s, you absolutely needed to know how to configure
and build the Linux kernel if you were managing Linux
computers. You'd need to add a new driver, or turn off a
troublesome option, or you'd need to apply a patch to fix a bug.

These days vendors provide tons of pre-built kernel modules.
Kernels are also tested much more thoroughly than in earlier
years, so it's much less likely that you'll need to change any of
the compiled-in options in the kernel provided by your vendor.
When a bug fix needs to be made, the vendor will usually
promptly provide an updated package that can easily be
installed to fix it.

So, it's possible you'll never need the information that follows.
But let's look at it anyway, since | think it'll give you a little more
insight into how things work.

Source code for the Linux kernel can be downloaded from kernel.org:

The Linux Kernel Archives

Contactu FAQ Releases Signatures Site new

Protocol Location
8 e S Latest Stable Kernel:
HTTP https://www.kernel.org/pub/

GIT https://git.kernelLorg/ @ 5 0 9
RSYNC rsync://rsync.kernel.org/pub/ 8 WS

mainline: 5.1-rcé 2019-04-21 [tarball] [patch] [inc. patch] [view diff] [browse]

stable: 5.0.9 2019-04-20 ([tarball] [pgp] [patch] [inc. patch] [fl [browse] [changelog]
longterm: 4.19.36 2019-04-20 [tarball] [pgp] [patch] [inc. patch] [view {Em [browse] [changelog]
longterm: 4.14.113 2019-04-20 [tarball] [pgp] [patch] [inc. patch] [view diff] [browse] [changelog]
longterm: 4.9.170 2019-04-20 [tarball] [pgp] [patch] [inc. patch] [view diff] [browse] [changelog]
longterm: 4.4.178 2019-04-03 [tarball] [pgp] [patch] [inc. patch] [view diff] [browse] [changelog]
longterm: 3.18.138 [EOL] 2019-04-03 [tarball] [pgp] [patch] [inc. patch] [view diff] [browse] [changelog]
longterm: 3.16.65 2019-04-04 [tarball] [pgp] [patch] [inc. patch] [view diff] [browse] [changelog]

linux-next: next-20190418 2019-04-18 [browse]

The “master repository” for the source code for the
Linux kernel is kernel.org. You can always find the
latest version there. If you want to download the
complete source code for the current version, click
on “tarball" beside that version.

Much of the work on the kernel is done on the Linux
Kernel Mailing List (LKML). You can watch patches
flying back and forth here:

http://patchwork.kernel.org/project/LKML/list/

Unpacking the Kernel Source:

The kernel source you download will probably be in the form of a bzip2-
compressed tar file. The second command below will unpack it:

[root@demo ~]# cd /usr/src

[root@demo ~]# tar xJvf linux-5.0.9.tar.xz
[root@demo ~]# cd linux-5.0.9

[root@demo ~]# make mrproper

The “make mrproper” command will make sure the source tree is in a
pristine state, ready to build a new kernel.

Useful documentation in this tree includes:

* README

This file in the top directory contains general information about
Linux, and some fairly detailed instructions for building the Linux
kernel from source code.

* Documentation/kernel-parameters.txt
This file contains much useful information about the boot-time
parameters that can be passed to the Linux kernel.

Much other information is arranged by category under the
“‘Documentation” directory.

Configuring the Kernel:

Before compiling the kernel, you'll need a kernel configuration file called
“.config” in the kernel source directory. The easiest way to create one is
to use the “make menuconfig” command:

‘[root@demo ~]# make menuconfig

.. Galileo
Lconfig — Limee Kernel «2.6,29.1 Configuration

Limox Kernel Configuration
Arrow keys navigate the menu, <Enter> selects submenus ———>,
Highlighted letters are hotkeys, Presszing <Y> includes, <M> excludes,
<M> modularizes features, Press <Escr<Esc> to exit, <% for Help, <>
for Search, Legend: [*] built-in [] excluded <M> module < >

[*] Enable loadable module support -——-3
i

Enable the block layer -—>
type and features -——x
Power management and ACPI options ———3
Bus cptions (PCI etc,) -——3
Executable file formats / Emulations --—>
—*- Metworking support --—>
Device Drivers -——>
i ivers -———>

< Exit » < Help >

This will give you a text-based menu interface for creating a .config file.

If you want to re-use or build upon an old configuration,
just copy it into the kernel source directory before
you invoke “make menuconfig”. These settings will
then become the default values in the menu
interface.

As we noted before, you may find the configuration file
for your current kernel in /boot, with a name like
“config-2.6.18-92.1.22.el5”. Just copy this into a file
with the name “.config” in the kernel source directory.

Compiling the Kernel and Modules:

To compile the kernel and associated modules, type the following

commands:
[root@demo ~]# make clean
[root@demo ~]# make bzImage
[root@demo ~]# make modules
[root@demo ~]# make modules-install

The “make bzlmage” command will build a compressed kernel image.
“make modules” builds the modules (this may take a very long time)
and “make modules-install” puts the compiled modules into the
appropriate directory under /lib/modules.

The resulting kernel image will be in the “arch/x86/boot” directory.
You'll probably want to copy it into your /boot directory and rename it:

cp arch/x86/boot/bzImage /boot/vmlinuz-5.0.9

Then you'll need to make a matching initrd file:

dracut /boot/initrd-5.0.9.img 5.0.9

Finally, you'll need to edit your grub.conf to tell it about the new kernel.

Thanks!

