
INTRODUCTION TO
RIVANNA

Last revised: 02/15/2019

Terminology

• Node
• Basic building block of a cluster

• Usually a specialized computer

• Two types of nodes:
• Head Node – computer used for logging on and submitting jobs

• Compute Node -- computer that does most of the work

• Core – an individual processor on a computer

ALLOCATIONS & ACCOUNTS

Allocations

• Rivanna is allocated:
At the most basic level, an allocation refers to a chunk of
CPU time that you receive and can use too run your
computation.

• Allocations are measured in service units (SUs),
where

1 SU = 1 core-hour

• All accounts on a given allocation share the service
units.

Requesting an Allocation

• Faculty (including postdocs) are eligible for an
allocation (see www.arcs.virginia.edu/allocations).

• Students must be sponsored by a PI (e.g., an
advisor, a professor, a research mentor).

• The PI must complete the form at
https://arcs.virginia.edu/allocation
• To get to the form, scroll down and click on “Request a New or

Renewal Standard Allocation”

http://www.arcs.virginia.edu/allocations
https://arcs.virginia.edu/allocation

CONNECTING & LOGGING
ON TO RIVANNA

How to connect to Rivanna

• There are three ways to connect to Rivanna:

1. ssh client
• Instructions for installing and using an ssh client are provided in the

appendix of these slides.

2. FastX
• Using your web browser, go to URL

https://rivanna-desktop.hpc.virginia.edu
and log in.

• Click on “Launch Session”;
Select “MATE” and click on “Launch”

3. OpenonDemand
https://rivanna-portal.hpc.virginia.edu

• Authenticates with Netbadge.

Ssh and FastX require the UVa
Anywhere VPN when off-
grounds.

See http://its.virginia.edu/vpn/
for details.

https://rivanna-desktop.hpc.virginia.edu/
https://rivanna-portal.hpc.virginia.edu/
http://its.virginia.edu/vpn/

Connecting to the Cluster

• The hostname for the Interactive frontends:
rivanna.hpc.virginia.edu

(does round-robin among the front-ends)

• However, you also can log onto a specific front-end:
• rivanna1.hpc.virginia.edu

• rivanna2.hpc.virginia.edu

• rivanna3.hpc.virginia.edu

Connecting to the Cluster with
ssh

• If you are on a Mac or Linux machine your can connect with ssh.

• Bring up a terminal window and type:

ssh –Y userID@rivanna.hpc.virginia.edu

• When it prompts you for

for a password, use

your Eservices password.

• We recommend MobaXterm for Windows users.

• It will prompt you for your password but will not echo
asterisks. It can also remember your password.

Connecting to the Cluster with
MobaXterm

FastX

• In your web browser, go to URL:

https://rivanna-desktop.hpc.virginia.edu

https://rivanna-desktop.hpc.virginia.edu/

Starting up FastX

• Click “Launch Session”; Select MATE; Click Launch

FastX Environment

• A desktop for working on Rivanna

CLUSTER ENVIRONMENT

Your Home Directory

• The default home directory on Rivanna has 50GB of
storage capacity

• This directory is distinct from the 4GB home directory
provided by ITS.

• The ITS home directory is available as /tiny/$USER

Checking your Home Storage

• To see how much disk space you have used in your home
directory, open a Terminal window and type hdquota at
the command-line prompt:

$ hdquota

Filesystem | Used | Avail | Limit | Percent Used
qhome 39G 12G 51G 77%

Leased (Group) Storage

• Groups can lease space for longer-term storage
• Project: has snapshots.

• Value: no snapshots

• Overview at
• https://arcs.virginia.edu/storage

https://arcs.virginia.edu/storage

Your /scratch Directory

• Each user will have access to 10 TB of temporary
storage.
• It is located in a subdirectory under /scratch, and named

with your userID

• e.g., /scratch/mst3k

• You are limited to 350,000 files in your scratch directory.

Important:
/scratch is NOT permanent storage and files older than 90 days

will be marked for deletion.

Running Jobs from Scratch

• We recommend that you run your jobs out of your
/scratch directory for two reasons:

• /scratch is on a Lustre filesystem (a storage system
designed specifically for parallel access).

• /scratch is connected to the compute nodes with
Infiniband (a very fast network connection).

We also recommend that
• You keep copies of your programs and data in more permanent locations (e.g.,

your home directory or leased storage).

• After your jobs finish, you copy the results to more permanent storage.

Checking your /scratch Storage

• To see the amount of scratch space that is available to you,
type sfsq at the command line prompt.

$ sfsq

'scratch' usage status for ‘mst3k', last

updated: 2016-09-08 16:26:12

- ~28/10,000 GBs allocated disk space

- 153/350,000 files created

- 151/153 files marked for deletion due to

age limits

To view a list of all files marked for

deletion, please run 'sfsq -l'

Checking your Allocation

• To see how many SUs you have available for running jobs,
type allocations at the command-line prompt:

$ allocations

Allocations available to Misty S. Theatre(mst3k):

* robot_build: less than 6,917 service-units remaining.
* gizmonic-testing: less than 5,000 service-units remaining.
* servo: less than 59,759 service-units remaining, allocation will expire on

2017-01-01.
* crow-lab: less than 2,978 service-units remaining.
* gypsy: no service-units remaining

Moving data onto Rivanna

• You have several options for transferring data onto
your home or /scratch directories.
1. Use the scp command in a terminal window.

2. Use a drag-and-drop option with MobaXterm
(Windows) or Fugu (Mac OS). Cyberduck and Filezilla
are cross-platform (but always use ssh/scp protocol)

3. Use OpenOnDemand for small files.

4. Set up a Globus endpoint on your local computer and
use the Globus web interface to transfer files.

(See https://arcs.virginia.edu/globus for details)

https://arcs.virginia.edu/globus

MODULES

Modules

• Any application software that you want to use will
need to be loaded with the module load
command.

• For example:
• module load matlab
• module load anaconda/5.2. 0-py3.6
• module load gcc R/3.5.1

• You will need to load the module any time that you
create a new shell

• Every time that you log out and back in
• Every time that you run a batch job on a compute node

Module Details
• module avail – Lists all available modules and versions

for a given hierarchy (compiler or compiler+MPI).

• module spider – Shows all available modules

• module key <keyword> – Shows modules with the
keyword in the description

• module list – Lists modules loaded in your
environment.

• module load mymod – Loads the default module to set
up the environment for some software.
• module load mymod/N.M – Loads a specific version

• module purge – Clears all modules.

Learning more about a Module

• To locate a python module, try the following:

• To find chemistry/materials software packages, try this:

• The available software is also listed on our website:
https://arcs.virginia.edu/software-list

$ module avail python

$ module spider python

$ module key python

$ module key chem

https://arcs.virginia.edu/software-list

PARTITIONS (QUEUES)

Partitions (Queues)

• Rivanna has several partitions (or queues) for job
submissions.

• You will need to specify a partition when you submit a job.

• To see the partitions that are available to you, type queues at
the command-line prompt.

$ queues

Queue Availability Time Queue Maximum Maximum Idle SU Usable
(partition) (idle%) Limit Limit Cores/Job Mem/Core Nodes Rate Accounts

standard 43 13(72.2%) 7-days none 20 64-GB 195 1.00 robot-build, gypsy
dev 1833(65.2%) 1 hours none 4 254GB 59 0.00 robot-build, gypsy
parallel 3528(73.5%) 3-days none 240 64-GB 176 1.00 robot-build, gypsy
largemem 48(60.0%) 7-days none 16 500-GB 3 1.00 robot-build, gypsy
gpu 334(85.0%) 3-days none 8 128-GB 10 1.00 robot-build, gypsy
knl 2048(100.0%) 3-days none 2048 1-GB 8 1.00 robot-build, gypsy

Compute Node Partitions (aka
Queues)

Queue
Name

Purpose Job
Time
Limit

Memory /
Node

Cores /
Node

of Available
Nodes

SU /
Core
Hour

standard For jobs on a single
compute node

7 days 256 GB
384 GB

28
40

26+108 1.0

gpu For jobs that can use
general purpose
graphical processing
units (GPGPUs)
(K80 or P100)

3 days 256 GB 28 13 (max 4
nodes per
job)

1.0
(may
go up
to 2.0)

parallel For large parallel jobs on
up to 120 nodes (<=
2400 CPU cores)

3 days 128 GB 20 220 (shared
w/ standard
queue)

1.0

largemem For memory intensive
jobs (<= 16 cores/node)

7 days 1 TB 16 5 (max 2 per
user)

1.0

dev To run jobs that are
quick tests of code

1 hour 128 GB 4 2 0.0

SLURM SCRIPTS

SLURM

• SLURM is the Simple Linux Utility for Resource Management.
• It manages the hardware resources on the cluster (e.g. compute

nodes/cpu cores, compute memory, etc.).

• SLURM allows you to request resources within the cluster to
run your code.
• It is used for submitting jobs to compute nodes from an access point

(generally called a frontend).
• Frontends are intended for editing, compiling, and very short test runs.
• Production jobs go to the compute nodes through the resources

manager.

• SLURM documentation:
https://arcs.virginia.edu/slurm

http://slurm.schedmd.com/documentation.html

https://arcs.virginia.edu/slurm
http://slurm.schedmd.com/documentation.html

SLURM Script

• A SLURM script is a bash script with SLURM
directives (#SBATCH) and command-line
instructions for running your program.

#!/bin/bash

#SBATCH --nodes=1 #total number of nodes for the job

#SBATCH --ntasks=1 #how many copies of code to run

#SBATCH --time=1-12:00:00 #amount of time for the whole job

#SBATCH --partition=standard #the queue/partition to run on

#SBATCH --account=myGroupName #the account/allocation to use

module purge

module load gcc/7.1.0 #load modules that my job needs

./mycode #command-line execution of my job

Submitting a SLURM Job

• To submit the SLURM command file to the queue,
use the sbatch command at the command line
prompt.

• For example, if the script on the previous slide is in
a file named job_script.slurm, we can submit it as
follows:

-bash-4.1$ sbatch job_script.slurm

Submitted batch job 18316

Checking Job Status

• To display the status of only your active jobs, type:

squeue –u <your_user_id>

-bash-4.1$ squeue –u mst3k

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

18316 standard job_sci mst3k R 1:45 1 udc-aw38-34-l

• The squeue command will show pending jobs and
running jobs, but not failed, canceled or completed job.

Checking Job Status

• To display the status of all jobs, type:

sacct –S <start_date>

-bash-4.1$ sacct –S 2019-01-29

3104009 RAxML_NoC+ standard hpc_build 20 COMPLETED 0:0

3104009.bat+ batch hpc_build 20 COMPLETED 0:0

3104009.0 raxmlHPC-+ hpc_build 20 COMPLETED 0:0

3108537 sys/dashb+ gpu hpc_build 1 CANCELLED+ 0:0

3108537.bat+ batch hpc_build 1 CANCELLED 0:15

3108562 sys/dashb+ gpu hpc_build 1 TIMEOUT 0:0

3108562.bat+ batch hpc_build 1 CANCELLED 0:15

3109392 sys/dashb+ gpu hpc_build 1 TIMEOUT 0:0

3109392.bat+ batch hpc_build 1 CANCELLED 0:15

3112064 srun gpu hpc_build 1 FAILED 1:0

3112064.0 bash hpc_build 1 FAILED 1:0

• The sacct command lists all jobs (pending, running,
completed, canceled, failed, etc.) since the specified date.

Deleting a Job

• To delete a job from the queue, use
the scancel command with the job ID number at
the command line prompt:

-bash-4.1$ scancel 18316

MORE ADVANCED JOBS

High Throughput Job

• High throughput computing (HTC) runs a large
number of serial jobs (or sometimes minimally
parallel jobs).

• Usually the computations are identical but may use
different input files and should produce different
output files.

• Job arrays are usually the best way to handle HTC.

• You also can use job arrays to organize the input
and output.

Job Arrays

• Create a batch script describing how to do one job.

• And, submit by typing:

sbatch --array=1-30 hello.slurm

#!/bin/bash

#SBATCH --nodes=1 #total number of nodes for the job

#SBATCH --ntasks=1 #how many processes I will run

#SBATCH --time=00:05:00 #amount of time for the whole job

#SBATCH --partition=standard #the queue/partition I will run on

#SBATCH --account=Your_group_name #the account/allocation

module purge

module load gcc R/3.4.0

#command-line execution of my job with command-line arguments

Rscript hello.R ${SLURM_ARRAY_TASK_ID} `pwd`

Job Array Numbering

• An increment can be provided

sbatch --array=1-7:2 myjob.sh

• This will number them 1, 3, 5, 7

• Or provide a list
sbatch --array=1,3,4,5,7,9 myjobs.sh

Job Array Environment
Variables

• Each job will be provided an environment variable

SLURM_ARRAY_JOB_ID

• And each task will be assigned

SLURM_ARRAY_TASK_ID

based on the numbers in the range or list specified with --array.

• You can use these environment variables as labels for
input/output files, directories, etc.
• In the SLURM script, a variable
%A represents the overall SLURM_ARRAY_JOB_ID and
%a represents SLURM_ARRAY_TASK_ID

• These variables can be used with output and input file names.

Array Script

• Job arrays should be named (most jobs don’t have
to be named).
#SBATCH --job-name=<name>

or
#SBATCH -J <name>

• All subjobs will use the same global resource
requests.

Output File Specifications

• It would be prudent to separate stdout and stderror
in this case, and give them names corresponding to
job and task IDs, such as:
#SBATCH -o myjobs.%A_%a.out

#SBATCH -e myjobs.%A_%a.err

Hands-on Activity:

Modify the file
02_jobArray/hello.slurm
to create separate files for
output and error.

Multicore in SLURM

• Multicore programs run on a single node

• Different libraries, example will be for OpenMP

• SLURM scripts for multicore programs should use
the following combination of directives:

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=M

#where M is replaced

#with the actual number

#of cores that you want

Requesting Cores for Threads

• And, submit by typing:

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=10 #number of cores requested

#SBATCH --time=00:10:00

#SBATCH --partition=standard

#SBATCH --account=<Your_group_name>

module purge

module load gcc

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

./myexec

sbatch hello_mc.slurm

pluma hello_mc.slurm

• Update SLURM script

Multinode in SLURM

• Multinode programs run across nodes. Nearly all
use MPI.

• SLURM scripts for multinode programs should use
the following combination of directives:

#SBATCH --nodes=N

#SBATCH –-ntasks-per-node=M

#SBATCH –-partition=parallel

• Try to fill nodes when possible (20 cores per node on
parallel)

Requesting Cores for MPI

• And, submit by typing:

#!/bin/bash

#SBATCH --nodes=5

#SBATCH –ntasks-per-node=20

#SBATCH --time=00:10:00

#SBATCH --partition=parallel

#SBATCH --account=<Your_group_name>

module purge

module load intel

module load intelmpi

srun myexec

sbatch hello_mc.slurm

ACCESSING GPU NODES

Using GPUs

• Certain applications can utilize for general purpose graphics
processing units (GPGPUs) to accelerate computations.

• GPGPUs on Rivanna:
• K80: dual GPUs per board, can do double precision
• P100: single GPUs per board, double precision is software (slow),

better for machine learning
• More on the way (1 V100, 2 RTX2080)
• Build with gcc/5.4.0

• You must first request the gpu queue. Then with the gres
option, type the architecture (if you care) and the number
of GPUs.
#SBATCH -p gpu

#SBATCH --gres=gpu:k80:2

JupyterLab

• JupyterLab is a web-based tool that allows multiple
users to run Jupyter notebooks on a remote
system.

• We now provide JupyterLab on Rivanna.

Accessing JupyterLab

• To access JupyterLab, type the following in your
web browser:

https://rivanna-portal.hpc.virginia.edu/

• After logging in via Netbadge in, you will be
directed to the Open OnDemand main page.

https://rivanna-portal.hpc.virginia.edu/

Starting Jupyter Instance

• In the top, click on “Interactive Apps” and in the
drop-down box, click on “Jupyter Lab”.

Starting a Jupyter Instance

• A form will appear that allows you to specify the
resources for your Notebook.

• Our example will be using
TensorFlow; so, we need to make
sure that we select the Rivanna
Partition called “GPU”.

• Also, don’t forget to put in your
“MyGroup” name for the
Allocation

• Finally, click the blue “Launch”
button at the bottom of the form
(not shown here).

• Wait until a blue
button with
“Connect to
Jupyter” appears.

• Click on the blue
button.

Starting a Jupyter Instance

• It may take a little bit of time for the resources to
be allocated.

JupyterLab Environment

You should see
a list of folders
and files in
your home
directory.

And, a set of tiles with empty
notebooks or consoles.

• Or, if you want to
start a new
notebook, you can
click on the
notebook tile, for
the appropriate
underlying system.

Opening a Notebook

• If you have an existing notebook, you can use
the left-pane to maneuver to the file and click
on it to open it.

Classic Notebook

• If you feel more comfortable working with the
former Jupyter interface, you can select:

Help> Launch Classic Notebook

• But, for our example, we will stay with the Jupyter
Lab format.

Cautions

• Any changes that you make
to the notebook may be
saved automatically.

• When the time for your
session expires, the session
will end without warning.

• Your Jupyter session will
continue running until you
delete it.
• Go back to the “Interactive

Sessions” tab.
• Click on the red Delete

button.

NEED MORE HELP?

Website:
arcs.Virginia.edu

Or, for immediate help:
hpc-support@virginia.edu

Office Hours
Tuesdays: 3 pm - 5 pm, PLSB 430
Thursdays: 10 am - noon, HSL, downstairs
Thursdays: 3 pm - 5 pm, PLSB 430

mailto:Hpc-support@virginia.edu

