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Collaboration Publications

Improved branching ratio measurement of the decay K0
L → µ+µ−. [1]

First observation of the rare decay mode K0
L → e+e−. [2]

New limit on muon and electron lepton number violation from K0
L → µ±e∓

decay. [3]

A compact beam stop for a rare kaon decay experiment. [4]
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Introduction

W&M HEG worked on extracting B(K0
L → µ+µ−e+e−) from E871.

Measurement was made along side measurements of B(K0
L → µ+µ−) and

B(K0
L → e+e−) in order to extract information on the K0

L → γ∗γ∗ vertex
with similar systematics to the dileptonic decays.

The combination of B(K0
L → µ+µ−e+e−), B(K0

L → µ+µ−) and the
unitary bound give information on the CKM elements relating top and
charm quarks.

K0
L → µ+µ−e+e− decay spectrum is dependent on the type of form factor

used to compute the decay. In principle it is possible to distinguish
between a VDM, χPT, or CP violating form factor.
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Introduction (cont.)

Prior to the start of this analysis there was one event reported with a
branching fraction of 2.9+6.7

−2.4×10−9 by the KTeV experiment E799 [5].

• This result spanned almost a full order of magnitude in it’s
uncertainty.

• No differentiation between form factor models.

• Extraction of Kγ∗γ∗ vertex and � LD suffer large uncertainties.

During the analysis, 43 additional events were reported by the KTeV
collaboration[6], with branching ratio of 2.62×10−9.

• Still not enough data to differentiate between models.

A. Norman College of William & Mary January 2004
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Part I

Theory and Background
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Standard Model

Leptons are grouped into flavor doublets:

 e

νe





 µ

νµ





 τ

ντ


 (1)

Defines the “lepton number” L`
Processes that do not conserve L` are “Lepton Flavor Violating”.

Mixing between e, µ and τ has not been observed, but there are projects
under way to look for it [7, 8]
Evidence for mixing between νe, νµ and ντ exists from various sources.
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Standard Model (cont.)

Similarly the quarks form doublets:

u

d





c

s





t

b


 (2)

Defines the quantum numbers for Isospin (Iz), Strangeness (S), Charm,
Top and Bottom.

Horizontal mixing of quark flavors is observed through Cabibbo mixing:

 u

d′




L

=


 u

d cosθC + ssinθc




L

(3)

A. Norman College of William & Mary January 2004



Theory Slide 9

Cabbibo Mixing

Mixing leads to weak charged and neutral currents:

JCC
µ = (d̄ cosθC + s̄sinθC)γµ(1− γ5)u , and (4)

JNC
µ = (d̄ cosθC + s̄sinθC)γµ(1− γ5)(d cosθC + ssinθC) (5)

• Taking G as the weak coupling, the charged current ∆S = 0 couple as
GcosθC, while the ∆S = 1 interactions are suppressed by GsinθC or
approximately sin2 θC ∼ 1

20 .

For the neutral current the process becomes:

uū + d′d̄′ = uū + (dd̄ cos2 θC + ss̄sin2 θC︸ ︷︷ ︸
∆S=0

+ (sd̄ + ds̄)cosθC sinθC︸ ︷︷ ︸
∆S=1

(6)

• The ∆S = 1, first order flavor changing neutral current is now
suppressed by cosθC sinθC.
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Still not enough suppression to account for B(K0
L → µ+µ−)!

PSfrag replacements
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(a) Weak flavor changing
charged current diagram for
K+→ `+ν
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FIG. 1: First order weak flavor changing kaon decay processes
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GIM Mechanism
How do we explain the observed suppression of K0

L → µ+µ−?
Glashow, Iliopoulus and Maiani (GIM) proposed a second mixing doublet
with a charm quark.


c

s′


=


 c

scosθC−d sinθC


 (7)

The neutral current now becomes:

uū + d′d̄′+ cc̄ + s′s̄′ = uū + cc̄ + (dd̄ + ss̄)cos2 θC + (dd̄ + ss̄)sin2 θC︸ ︷︷ ︸
∆S=0

+ (sd̄ + s̄d− s̄d− sd̄)sinθC cosθC︸ ︷︷ ︸
∆S=1

(8)

The ∆S = 1 contribution cancels EXACTLY at first order!
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GIM (cont.)

More generally the quark mixing can be expressed via a Mixing Matrix
Vi j. So for down type quarks (d,s,b) mixing is expressed as:

q′i = ∑
j

Vi jq j (9)

The GIM identity then states:

N

∑
i

q̄′iq
′
i =

N

∑
i

N

∑
j

N

∑
k

q̄iV
†
i jV jkqk

=
N

∑
i

q̄iqi

(10)

There are no first order Flavor Changing Neutral Currents (FCNC).
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Additionally second order FCNC diagram approximately cancel leading
to addition suppression proportional to cosθC sinθC

PSfrag replacements
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(a) Up quark contribution to

K0
L → µ+µ−
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FIG. 2: Second order weak ∆S = 1 contributions to Γ(K0
L→ µ+µ−) which

approximately cancel through the GIM mechanism

A. Norman College of William & Mary January 2004



Theory Slide 14

CKM Matrix

Generalization of the Cabibbo mixing leads to the generalized rotation
matrix of Kobayashi and Maskawa [9].

The 3×3 CKM matrix mixes the down-like charge − 1
3 quarks.




d′

s′

b′


=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (11)
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The matrix is unitary resulting in three independent real parameters, the
mixing angles (θ1,θ2,θ3) and one phase δ .

It can be expressed as:

VCKM =




c1 −s1c3 −s1s3

s1c2 c1c2c3− s2s3eiδ c1c2s3 + s2c3eiδ

s1s2 c1s2c3 + c2s3eiδ c1s2s3− c2c3eiδ


 (12)

where:

ci ≡ cosθi and si ≡ sinθi. (13)

A non-zero value of the phase δ leads to off diagonal contributions to to
Vcb and Vts.

These off diagonal terms break the CP invariance of the weak interaction.
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PSfrag replacements

(ρ ,η)
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α
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FIG. 3: Geometric representation of the unitary triangle

The CKM matrix can be related to the unitary triangle by expanding in
powers of the Cabibbo angle λ = |Vus|.

V =




1− 1
2 λ 2 λ Aλ 3(ρ− ıη)

−λ 1− 1
2 λ 2 Aλ 2

Aλ 3(1−ρ− ıη) −Aλ 2 1


 (14)
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Wolfenstein Parameterization

This is the Wolfenstein parameterization of the CKM matrix.

The CKM matrix in this form can further be expanded to require unitarity.
Imposing unitarity on the imaginary part to � (λ 5) and the real part to

� (λ 3), the Wolfenstein representation becomes:

V =




1− 1
2 λ 2 λ Aλ 3(ρ− ıη + 1

2 ıηλ 2)

−λ 1− 1
2 λ 2− ıηA2λ 4 Aλ 2(1 + ıηλ 2)

Aλ 3(1−ρ− ıη) −Aλ 2 1




(15)

• All the CP violating terms are now � (λ 3).

• We can directly relate these CP terms to K± and K0 decays!

A. Norman College of William & Mary January 2004



Theory Slide 18

Unitary Bound

We can divide the decay rate into real and imaginary parts

B(K0
L → `+`−) = |Re � |2 + |Im � |2 (16)

In analogy to a scattering amplitude, the real component is the dispersive
amplitude and the imaginary component is the absorptive amplitude.

Since K0
L → `+`− has contributions from both the Weak interaction and

the electro-magnetic interactions, the amplitude is divided as:

� = ( � disp,weak + � disp,ld) + ı( � abs,weak + � abs,ld) (17)

A. Norman College of William & Mary January 2004
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Unitary Bound (cont.)

The weak absorptive amplitude, � abs,weak is explicitly zero.

The branching fraction can be written in the traditional notation as:

B(K0
L → `+`−) = | � disp|2 + | � abs|2

= | � weak + � ld |2 + | � abs|2
(18)

The absorptive portion of the amplitude is dominated by a real two photon
intermediate state as shown in Fig. 4.

• This diagram can be calculated from QED.

• This is the “unitary diagram.”

A. Norman College of William & Mary January 2004
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PSfrag replacements K0
L

γ

γ

`

¯̀

FIG. 4: Leading order absorptive contribution to K0
L → ` ¯̀ via a real two

photon intermediate state
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Unitary Limits

Decay Branch Unitary Bound Observation

B(K0
L → γγ) N/A (5.96±0.15)×10−4

B(K0
L → e+e−)/B(K0

L → γγ) 1.19×10−5 N/A

B(K0
L → µ+µ−)/B(K0

L → γγ) 5.32×10−9 N/A

B(K0
L → e+e−) (3.15±0.08)×10−12

(
9+6
−4

)
×10−12

B(K0
L → µ+µ−) (7.04±0.18)×10−9 (7.25±0.16)×10−9

TABLE 1: Unitary limits on dilepton decays of K0
L

The K0
L → µ+µ− branching fraction abuts the unitary bound.

A. Norman College of William & Mary January 2004
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The K Meson

The neutral K meson was first reported to have been observed in 1947 by
G. Rochester and C. Butler[10].

It is observed to have a mass roughly 900 times that of the electron.

The neutral Kaon is a two quark bound state containing a strange quark.

K0 = |s̄d〉 and K̄0 =
∣∣sd̄
〉

(19)

The quantum numbers for the Kaon include the “strangeness” S.

S
∣∣K0〉= +

∣∣K0〉 S
∣∣K̄0〉=−

∣∣K̄0〉 (20)

A. Norman College of William & Mary January 2004
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Kaon Quantum Numbers

Spin = 0

Parity =−1 (pseudoscalar)

K0 : T =
1
2
, T3 =−1

2
, S = +1

K̄0 : T =
1
2
, T3 = +

1
2
, S =−1

(21)

A. Norman College of William & Mary January 2004
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Kaon Mixing

Due to the presence of the strangeness changing weak interaction, the
kaon exhibits strangeness oscillations and regeneration effect unique to
the K system.

Oscillations occur through ∆S = 2 interactions (pion loops).
∣∣K0(t)

〉
→ a(t)

∣∣K0〉+ b(t)
∣∣K̄0〉 (22)

Weak splitting of the Hamiltonian leads us to write the kaon states as
linear combinations of new observables

∣∣K0
1
〉

and
∣∣K0

2
〉
.

∣∣K0〉=
(
a
∣∣K0

1
〉

+ b
∣∣K0

2
〉)
/
√

a2 + b2 (23)
∣∣K̄0〉=

(
c
∣∣K0

1
〉

+ d
∣∣K0

2
〉)
/
√

c2 + d2 (24)
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PSfrag replacements
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FIG. 5: K0 to K̄0 mixing via an intermediate pion loop
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FIG. 6: K0 to K̄0 mixing via a second order ∆S = 2 weak interaction
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CP Symmetries
The strange eigenstates K0 and K̄0 transform into one another under ĈP̂.

ĈP̂
∣∣K0〉=−

∣∣K̄0〉 ĈP̂
∣∣K̄0〉=−

∣∣K0〉 (25)

K0 and K̄0 are clearly NOT the CP eigenstates. Instead use a linear
combination:

∣∣K0
1
〉
≡ 1√

2

[∣∣K0〉+
∣∣K̄0〉]

∣∣K0
2
〉
≡ 1√

2

[∣∣K0〉−
∣∣K̄0〉]

(26)

The weak eigenstates are now states of definite ĈP̂:

ĈP̂
∣∣K0

1
〉

= +
∣∣K0

1
〉

ĈP̂
∣∣K0

2
〉

=−
∣∣K0

2
〉 (27)
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K0
L and K0

S

Kaons can be produced through a strong interaction using associated
hyperon production:

π−p→ K0Λ (28)

Experimentally we do observe two distinct neutral kaons with radically
different lifetimes. We denote these as the Short-lived (K0

S ) and
Long-lived Kaons (K0

L).

Kaon Species Lifetime τ (s) cτ Spin ĈP̂

K0
S 0.89×10−10 2.67 cm 0 even

K0
L 5.17×10−8 15.51 m 0 odd

TABLE 2: Experimentally observed kaon properties

A. Norman College of William & Mary January 2004



Theory Slide 28

PSfrag replacements
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FIG. 7: Strong interaction production of a neutral kaon through associated
Λ0 hyperon production.

• A beam of kaons initially contains an equal proportion of K0
S and K0

L .

• To obtain a pure K0
L beam, force the short-lived component decay out.
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CP Violation

In 1964 Fitch and Cronin[11] observed the decay of K0
L into a two pion

final state. This demonstrated that the ĈP̂ symmetry of the standard
model is not exact.

In fact B(K0
L → π+π−) = 0.2067±0.035% [12], meaning roughly

1 in 500 decays of K0
L violate ĈP̂!

While strongly suppressed, the ĈP̂ symmetry is violated in weak decays.

This means that for CPT to hold, time reversal invariance must also be
violated!

As a result the transition amplitudes for K0↔ K̄0 oscillations are not
equal:

〈
K0∣∣ ˆ�

∣∣K̄0〉 6=
〈
K̄0∣∣ ˆ�

∣∣K0〉 (29)

A. Norman College of William & Mary January 2004
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To quantify this CP violation we rewrite the weak eigenstates K0
S and K0

L

in terms of the true CP eigenstates K0
1 and K0

2 and allow for a slight
mixing of the states through a violation parameter ε :

∣∣K0
S
〉

=
1√

1 + |ε |2
(∣∣K0

1
〉

+ ε
∣∣K0

2
〉)

∣∣K0
L
〉

=
1√

1 + |ε |2
(∣∣K0

2
〉

+ ε
∣∣K0

1
〉) (30)

Experimentally the parameter ε ≈ 2.3×10−3.
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CP Violation (Aside)

The semi-leptonic decay modes:

K0
L → π−µ+νµ and K0

L → π+µ−νµ

K0
L → π−e+νe and K0

L → π+e−νe
(31)

Exhibit a very slight asymmetry between their charge conjugate decay
modes.

The asymmetry allows us to find the ĈP̂ violating phase δ from the CKM
matrix.

δ =
Γ
(
K0

L → π−`+ν`
)
−Γ

(
K0

L → π+`−ν`
)

Γ
(
K0

L → π−`+ν`
)

+ Γ
(
K0

L → π+`−ν`
) (32)

A. Norman College of William & Mary January 2004
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Matter/Anti-Matter Asymmetry

• The semi-leptonic asymmetry is 0.327±0.012%

• The semi-leptonic asymmetry is a matter/anti-matter asymmetry

• The semi-leptonic asymmetry provide the unique distinction between
particles and anti-particles

• The semi-leptonic asymmetry proves the absolute definition of
positive electric charge, as being that flavor of lepton which is
preferred in the decay of the neutral kaon!

A. Norman College of William & Mary January 2004
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Part II

K0
L→ γ∗γ∗ and K0

L→ µ+µ−e+e−

A. Norman College of William & Mary January 2004
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LD and K0
L → γ∗γ∗

The dispersive contribution to K0
L → `+`− can be divided into the weak

and the long distance electromagnetic amplitudes.

Re � = � SD + � LD (33)

GIM cancellation of the tree level FCNC leave ASD confined to the second
order box and penguin diagrams.

To determine the contribution of these diagrams B(K0
L → µ+µ−) can be

related to the charged current process K+→ π+νν̄[13].

A. Norman College of William & Mary January 2004
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FIG. 8: Short distance weak diagrams contributing to K0
L → µ+µ−
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The amplitude can be written as∗:

Re( � )SD =
α2

4π2 sin4 θW

(1−4m2
µ/M2

K)1/2

(1−m2
µ/M2

K)2

∣∣∣Re∑i=c,t ηiV
∗
isVidCµ(xi)

∣∣∣
2

|Vus|2
(34)

The top quark diagrams dominate the short distance contribution. As a
result we relate the CKM matrix elements to the Wolfenstein
parameterization:

Re(V ∗tsVtd) =−A2λ 5(1−ρ) (35)

Re(V ∗csVcd) =−(λ − 1
2

λ 2) (36)

∗ηi are the QCD corrections, C(xup)≈ 10−9, C(xcharm)≈ 3×10−3, C(xtop)≈ 2.1
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As a result the short distance K0
L → µ+µ− amplitude becomes:

| � SD|2 = (4.17×10−10)A4 |ηtC(xt)|2
[

1−ρ +
474ηcC(xc)

A2ηtC(xt)

]2

(37)

The top quark dominates, which means simply:

| � SD|2 ∝ (1−ρ)2 (38)

• Measuring B(K0
L → µ+µ−) gives the Wolfenstein ρ!
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Kγ∗γ∗ Vertex

To extract the Wolfenstein ρ from B(K0
L → µ+µ−) we need knowledge of

� LD.

� LD is found from the class of diagrams shown in Fig. 9 involving the
exchange of two virtual photons.

PSfrag replacements

K0
L

γ∗

γ∗

µ+

µ−

FIG. 9: Long distance dispersive diagram for K0
L → µ+µ− involving the

exchange of two virtual photons.
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Kγ∗γ∗ Model Dependence

Calculation of the Kγ∗γ∗ vertex requires knowledge of a form factor,
F(q2

1,q
2
2).

The manner in which of the form factor is computed is model dependent.

The theories that we examined for calculating F(q2
1,q

2
2) were:

• VDM - need K0
L → ` ¯̀γ and K0

L → ` ¯̀̀ ′ ¯̀′ information

• QCD - low energy perturbative, need K0
L → ` ¯̀γ and K0

L → ` ¯̀̀ ′ ¯̀′

information for parameter fits

• χPT - low energy, provides enhancement in high invariant mass
region, works for K0

L → µ+µ−γ

• CP Violating - allows for access to CP violation through knowledge
of the angular distribution φ and B(K0

L → µ+µ−e+e−)

A. Norman College of William & Mary January 2004
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VDM Diagrams
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FIG. 10: Long distance dispersive pole diagram for K0
L→ γ∗γ∗ as proposed

by Bergstrom, Masso, Singer, et. al. [14]
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More VDM Diagrams
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FIG. 11: Long distance dispersive diagram for K0
L → γ∗γ∗ as proposed by

Ko involving vector meson couplings. [15]
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QCD Diagrams
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FIG. 12: Loop order QCD diagrams contributing to K0
L → γ∗γ∗. [16]
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More QCD Diagrams
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FIG. 13: Lowest order effective quark diagrams contributing to K0
L→ γ∗γ∗

in the framework of a perturbative QCD expansion of F(q2,q2). [17]

A. Norman College of William & Mary January 2004



Phenomenology Slide 44

Form Factors (QCD)

• QCD Form Factor:

f
(
q2

1,q
2
2
)

=
F
(
q2

1,q
2
2
)

F (0,0)
= 1 + α

(
q2

1
q2

1−m2
V

+
q2

2
q2

2−m2
V

)

+ β
q2

1q2
2

(q2
1−m2

V )(q2
2−m2

V )

(39)

α is found from fits to B(K0
L → µ+µ−γ) and B(K0

L → e+e−γ).

β is found from B(K0
L → µ+µ−e+e−).

The ρ meson is chosen to dominate the interaction,
mV = mρ ≈ 770 MeV/c2
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Form Factors (χPT)

• χPT Form Factor:

F2(t, t ′) =
αemC8

192π3F3
π

[
−(a2 + 2a4)D(t, t ′,mV ) +C(µ)(t + t ′)

]
(40)

Where the momentum dependence is carried by D(t, t ′,µ):

D(t, t ′,mV ) = (t + t ′)
[

10
3
−
(

ln
M2

K
m2

V
+ ln

M2
π

m2
V

)]
+

4
[
F(M2

π , t) + F(M2
K , t) + F(M2

π , t
′) + F(M2

K , t
′)
] (41)

where

F(m2, t) =

((
1− y

4

)√y−4
y

ln
√

y−4 +
√

y√
y−4−√y

−2
)

m2 (42)
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Part III

K0
L→ µ+µ−e+e− at E871

A. Norman College of William & Mary January 2004
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Motivation for K0
L → µ+µ−e+e− at E871

• E871 was designed to measure ultra rare dilepton decays

• The µµ data set yielded 6216 candidate events for K0
L → µ+µ−

• Single event sensitivity for µµ was 1.15×10−12

• Measured B(K0
L → µ+µ−)=7.18×10−9.

Weak dispersive amplitude ( � SD) was computed by subtracting the
unitary bound and an estimate of the |Re( � LD)| as computed by
Ambrosio [17].

� LD is model dependent! Relies on knowledge of F(q2,q′2) and
parameters from VDM, QCD, χPT, etc...

A. Norman College of William & Mary January 2004
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Need to measure in a self consistent manner K0
L → `+`−`+`−

Want to have (roughly) the same systematics as the K0
L → µ+µ−

measurement.

K0
L → e+e−e+e− was observed as a background in the K0

L → e+e−

analysis, but final state is not distinct. Has in interference terms and other
physics backgrounds which make it impractical to measure.

Solution:

Measure K0
L→ µ+µ−e+e−!

A. Norman College of William & Mary January 2004
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Properties of K0
L → µ+µ−e+e−

• Totally distinct final state (no interference terms)

• Form factors result in enhancement of high mass signal

• Form factors soften the e+e−pair

• Kinematics similar enough to K0
L → µ+µ− to provide events in the

µµ data set

• Directly accesses � LD

• Might distinguish between F(q2,q′2) models

A. Norman College of William & Mary January 2004
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Prior Measurements

At the inception of the search for K0
L → µ+µ−e+e− in the E871 data set,

there was one observed event[5].

Fermilab Experiment E799 measured:

Γ(µ+µ−e+e−)/Γtotal = 2.9+6.7
−2.4×10−9, (43)

• This result spanned almost a full order of magnitude in it’s
uncertainty.

• No differentiation between form factor models.

• Extraction of Kγ∗γ∗ vertex and � LD suffer uncertainties.

During the analysis, 43 additional events were reported by the KTeV
collaboration[6], with branching ratio of 2.62×10−9.

• Still no clear differentiation between models.

A. Norman College of William & Mary January 2004
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Event Signatures for E871

E871 is essentially a two-body spectrometer. E871 was originally
designed to search for rare dileptonic decays of K0

L (µµ ,ee,µe).

• All events are mandated to have two fully reconstructed charged
particle tracks of opposite polarity which fulfill the dilepton trigger.

• Primary tracks must satisfy tracking and parallelism requirements

• Primary tracks must reconstruct to an invariant mass > 460MeV/c2

Only the µµ data stream is appropriate for this reconstruction
requirement.

A. Norman College of William & Mary January 2004
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In addition to the µ+µ− vertex reconstruction, the e+e−pair must register
in the forward spectrometer.

The e+e−pair is very soft and may not fully traverse the spectrometer.The
signature is broken down as follows:

1. Full four track vertex reconstruction of µ+µ−e+e− with invariant
mass at MKL

and low p2
T .

2. Three track vertex reconstruction with one missing e+ or e− with
invariant mass greater than 460MeV/c2.

3. Two track vertex reconstruction with invariant mass greater than
460MeV/c2 and two correlated e+e− tracking stubs projecting back
to an associated µ+µ− event vertex.

4. Two track vertex reconstruction with invariant mass greater than
460MeV/c2, and a single e+ or e− tracking stub projecting back to
the primary µ+µ− event vertex.

A. Norman College of William & Mary January 2004
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Partial Tracks (Stubs)

• The e+e−pairs are very soft and carry little of the available invariant
mass and momentum even when boosted into the lab frame.

• The e+e−pairs have high angular correlation and small opening
angle.

• In the first dipole magnet they experience a 416 MeV/c transverse
(inbend/outbend) momentum kick.

• Low momentum particles can be ejected from the spectrometer, or
bent across the beam line.

• These trajectories leave tracking information only in the first two
straw drift chambers.

Tracking information from SDC1 and SDC2 are combined to form a
partial track “stub”

A. Norman College of William & Mary January 2004
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Background

The K0
L → µ+µ−e+e− event signal can be mimicked by other real

physics events which undergo decays in flight, pair production, particle
misidentification or multi-event pile-up.

In particular the following decay channels were examined:

• K0
L → µ+µ−γ

• K0
L → π+π−γ

• K0
L → π+π−π0

• K0
L → π+π−e+e−

• Ke3 and Kµ3 pile-upa

asemi-leptonic decays K0
L → π±e∓νe and K0

L → π±µ∓νµ

A. Norman College of William & Mary January 2004



E871 Slide 57

K0
L → µ+µ−γ Background

Only K0
L → µ+µ−γ contributes to the real physics background.

Mimics the signal when γ converts to a e+e−pair forward of the second
layer of the first straw drift chamber.

Background rate is dependent on photon energy:

Energy Expected Background Events

10 MeV < 0.01 events

100 MeV < 0.03 events

1 GeV < 0.04 events

TABLE 3: Expected background events of the form K0
L → µ+µ−γ includ-

ing geometric acceptance weights for the E871 apparatus

A. Norman College of William & Mary January 2004
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Other Backgrounds

Other background channels are eliminated by choosing:

MKµµ
> 463.047 MeV/c2 (44)

Ke3 and Kµ3 pileup are still a problem.

• Difficult to model

• Pileup rate not known well

• End up just doing a background subtraction using sidebands

A. Norman College of William & Mary January 2004



E871 Detectors Slide 59

Part IV

E871 Experimental Apparatus

A. Norman College of William & Mary January 2004
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FIG. 16: Brookhaven National Labs AGS

A. Norman College of William & Mary January 2004



E871 Detectors Slide 61

E871 Detector System

• E871 was designed to reach a single event sensitivity of 10−12

(µe channel) over a 5600 hour run period at using the 24 GeV/c high
intensity proton beam (15 Tp/spill)

• Experimental apparatus was assembled at BNL in the B5 secondary
beam line of the AGS.

• Neutral beam stop was situated in the first analyzing magnet.

• Was upgraded in ’97 to E935 (light gg̃ bound state search)

A. Norman College of William & Mary January 2004
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BNL AGS (B5 Line)

• AGS produces 24 GeV/c proton beam

• Total machine intensity peaks at 60 Tp

• Slow extraction creates a 1.5s spill

• Repetition rate from 3.2-3.8s

• Up to 25 Tp delivered to B5 target per spill

• Nominal B5 extraction set at 15 Tp

A. Norman College of William & Mary January 2004
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E871 Production Target

• Platinum target material 1.44 hadronic interaction lengths for the
24GeV proton beam

• Target was segmented for heat dissipation (5 segments 1995, 15
segments 1996)

• Target brazed a to a water cooled beryllium heat sink

• Mounted at 3.75◦ to the horizontal

• At incident target angle produces 2×108 kaons per spill

• Neutron to Kaon ratio n : K0 ≈ 20
aAg-Cu-Sn alloy 1995, Ag-Cu-Li alloy 1996

A. Norman College of William & Mary January 2004
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FIG. 19: E871 Production Target

A. Norman College of William & Mary January 2004
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E871 Forward Spectrometer

• Six sets of Left/Right symmetric tracking chambers

• Two high field dipole magnets provide two independent momentum
measurements

• Trackers consist of 22 planes of x and y-view fast straw tubes wire
chambers using 50/50 mixture CF4 and ethane (SDC1-4)

• 100 µm/ns drift time.

• 800 kHz single channel hit rate in upstream chambers

• Over 6400 active straw tubes

• 8 planes of x and y-view hexagonal drift chambers (DCH5/6)

• 100 kHz single channel hit rate in downstream chambers

A. Norman College of William & Mary January 2004
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Beam Stop

• Situated in the first magnet (96D40)

• Designed to stop a neutron flux ∼ 4×109 per spill

• 5000 kg of Tungsten-nickel alloy (Heavimet) and 1880 kg of copper

• Surrounding in borated polyethylene.

Beam

2.62 m

1.12 m1.00 m23
.5

 c
m

17
.8

 c
m

8.
6 

cm
6.

0 
cm

0.64 m

0.31 m5.
7 

cm

CL

Zirconium Hydride

Polyethylene (B)Tungsten Copper Lead

Flex-Boron Polyethylene (Li)

18
.5

 c
m

13
.3

 c
m

15
.2

 c
m

14
.3

 c
m

FIG. 21: Cross sectional view of E871 compact beam stop
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Trigger Scintillation Counters (TSC)

• Two banks of X measuring slats

• One bank of Y measuring slats

• Organic Scint. (Bicron BC-408)

• 2ns decay time, 430nm emission peak

• Served as L0/L1 Trigger system

• Imposes a “parallelism” requirement
(±2 slats)

FIG. 23: TSC1/TSC2
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Čerenkov Counter

First Particle ID detector – used for electron tagging

Used hydrogen gas (H2) at a pressure of 7.6cm of water over atmosphere.

Particle Threshold (GeV/c) Particle Threshold (GeV/c)

e± 0.031 π± 8.396

µ± 6.357 p 56.233

• Used Burle 8854 5inch phototubes.

• Run at positive high voltage (photocathode head at ground)

• Average single channel response of 5.6 photoelectrons.

• Detector efficiency was 98.6% for electron detection

A. Norman College of William & Mary January 2004
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H2 Čerenkov Counter
PSfrag replacements

Access
Door

Front

Back

Window

Window

Beamline

PMT
Casing
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Lead Glass Array

Second Particle ID detector – used for electron/pion separation

• 6.4 tons of lead glass blocks in a light tight enclosure.

• Separated into forward (Convert) array and downstream (Absorber)
array.

• 13.8 radiation lengths of material for E&M showers

• 1.6 hadronic interaction lengths

• E&M showers are initiated in the converter and fully absorbed in the
back blocks.

• Hadronic showers have a low ratio of energy deposition between
converter and absorber.

A. Norman College of William & Mary January 2004
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Muon Range Stack
The muon range stack was a combination of two active detectors
interspersed between blocks of iron, aluminum and marble.

• Muon Hodoscope Fast scintillator hodoscope

• Muon Rangefinder Wire proportional counters

FIG. 28: E871 Muon ranger stack active detector placement
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Muon Hodoscope (MHO)

Third particle ID detectors – Used for muon identification and triggering

• 6 X/Y scintillator/phototube panels

• X0/Y0 used as primary µµ trigger planes for L0/L1 trigger

• Trigger planes rebuilt for high rates

Muon Hodoscope Planes

Plane Momentum Gap (GeV/c) Plane Momentum Gap (GeV/c)

MX1 0.85 MY1 1.6

MX0 1.0 MX2 3.25

MY0 1.0 MY2 7.0

TABLE 4: MHO detector panel momentum gaps
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Muon Range Finder

Last particle ID detector – Separate muons from hadronic showers

• Argon/Ethane Wire proportional counters

• Used extruded aluminum honeycomb cells (192 or 256 wires per
panel)

• 52 detector planes (X and Y measuring) 3×2.35m configs

• Spaced at 5% momentum gaps

• Measured out to maximum momentum of 10.258 GeV/c.

• Compared stopping point to measured spectrometer momentum.

A. Norman College of William & Mary January 2004
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Triggering and DAQ

E871 involved a three stage triggering system designed to filter event data
from an incident event rate of 106Hz down to 102Hz for output to tape.

• Level 0 – Hardware trigger. Imposed only TSC tracking and
parallelism.

• Level 1 – Hardware trigger. Imposed rough particle ID.

• Level 3 – Software trigger. Imposed vertex reconstruction and
pattern recognition.

Level 0 > 106Hz non-parallel, 250kHz parallel

Level 1 10kHz (µµ , µe, eµ , ee)

Level 3 ∼300 physics events per spill, ≈110Hz

A. Norman College of William & Mary January 2004
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Trigger Types
The L1 trigger used four “types” of particle labels

µ = L0 ·DC ·MHO

e = L0 ·DC ·Čer

π = L0 ·DC ·Cer ·MHO

MB = L0 ·DC (min-bias)

These define 6 Left/Right physics triggers

Trigger Bit Type Trigger Bit Type

1 e ·µ 4 µ ·µ
2 µ · e 5 MB ·MB

3 e · e 8 L0 ·L0

A. Norman College of William & Mary January 2004
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Example Trigger
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Part V

Monte Carlo Modeling
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Monte Carlo Systems

The K0
L → µ+µ−e+e− analysis used two different and distinct types of

Monte Carlo models to simulate the detector apparatus and kaon decay
kinematics.

• Geant Model – Used for superior particle transport and examination
of decay kinematics and distributions outside of sensitive volumes.

• E871 Simulation – Used for full detector response and
reconstruction efficiencies. Functions as a front end to the actual
E871 analysis code.

A. Norman College of William & Mary January 2004
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Blind Analysis

The K0
L → µ+µ−e+e− analysis and Monte Carlo conformed to a series of

“blinds” designed to prevent bias in the modeling, reconstruction
algorithms and data cuts that were applied.

Blinding consisted of:

• Monte Carlo Prescale – All models received a blind prescale
shifting the event generation parameters by up to ±50%. These
values were recorded for normalizations but not immediately
available.

• Primary Signal Region Blind – The primary signal region in
invariant mass MKµµ

and p2
t was blacked out.

• Secondary Signal Region Blind – The secondary signal box using
additional collinearity reconstruct was blacked out.
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Kaon Characteristics

The Monte Carlos need to correctly generate the K0
L spectrum and decay

modes to be useful (this includes regeneration, oscillations, decay form
factors etc...)
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Event Characteristics

Just some of the event characteristics that were examined in Monte Carlo:

• Primary/Secondary decay plane correlation

• Electron/Positron lab frame angular correlation

• Electron/Positron momentum spectra

• Electron/Positron transverse momenta

• Multiple Coulomb Scattering and e−/e+ opening angle

• Pair production and e−/e+ opening angle

A. Norman College of William & Mary January 2004
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Background Calculations

Monte Carlo simulations were used to investigate different sources of
background.

• K0
L → µ+µ−γ background

• Includes form factors (χPT and
Pseduoscalar meson exchange)

• Pair production included

• Pile up of Ke3 and Kµ3
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FIG. 38: Invariant
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L → µ+µ−γ
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Monte Carlo Form Factors

To model the decay K0
L → µ+µ−e+e− requires proper treatment of the

decay of the pseudoscalar meson into a four lepton final state.

In addition model dependent form factors and the effects they have on the
weighting of the final state particles distributions must be included.

This is not trivial!
We modeled:

• QED on-shell Kinematic [19]

• VDM with fits to µµγ [20]

• QCD with sum rules for α and β [17]

• χPT with multiple parameter sets [21]
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QED 4-Body Kinematic Phase Space

At the most basic level we model K0
L → µ+µ−e+e− as a straight 4-Body

decay of a pseudoscalar.

The general form factor f (q2
1,q

2
2)/ f (0,0) is taken to be purely on shell.

| f (q2
1,q

2
2)

f (0,0)
|2 ∼ 1 (45)

With a non-trivial change of variable the differential decay amplitude
becomes:

Γ =
1
π

( α
4π

)2 ∫
· · ·
∫

dx1dx2dy1dy2dφ
∣∣∣∣

f (x2
1,x

2
2)

f (0,0)

∣∣∣∣
2 [

1− 2(x2
1 + x2

2)

M2
K

+
(x2

1− x2
2)2

M4
K

]3/2

×
[[

1
x1x2

+

(
y2

1
x1

+
4m2

e
x3

1

)(
y2

2
x2

+
4m2

µ

x3
2

)]
sin2 φ +

[
y2

1 + y2
2

x1x2
+

4memµ (x2
1 + x2

2)

x3
1x3

2

]
cos2 φ

]

(46)

This is where most people stop.
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Monte Carlo Form Factors
• VDM

F(s)V DM = α
√

2eGF fK∗Kγ

(
m2

ρ

fK∗ f 2
ρ

)(
1− s

m2
K∗

)−1

×


 4

3
−
(

1− s
m2

ρ

)−1

− 1
9



(

1− s
m2

ω

)−1

+ 2

(
1− s

m2
φ

)−1





(47)

• QCD

fQCD

(
q2

1,q
2
2
)

=
F
(
q2

1,q
2
2
)

F (0,0)
= 1 + α

(
q2

1
q2

1−m2
ρ

+
q2

2
q2

2−m2
ρ

)
+ β

q2
1q2

2
(q2

1−m2
ρ )(q2

2−m2
ρ )

(48)

• χPT

FχPT (q1,q2) =
αemC8

192π3F3
π

[
−(a2 + 2a4)D(q1,q2,Mρ )+C(Mρ )(q1 + q2)

]
(49)
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Form Factor Enhancement

The form factors are momentum dependent. They alter the fundamental
way in which the available energy and momentum is shared out between
the final state particles.

• Both the QCD and χPT form factors lead to significant enhancement
in the high µµ invariant mass region near MK .

• Enhancement comes in the region to which E871 is most sensitive.

• Form factors soften the momentum spectrum of the e−/e+ pair.
Results in greater forward angle acceptance and decay plane
correlation.

The form factors greatly influence the geometric acceptance factor Aµµee

used to calculate the normalization to the K0
L → µ+µ− data stream.
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QCD Form Factor Enhancement
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FIG. 39: QCD form factor [17] with high invariant mass enhancement
bands.
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FIG. 40: Kµµ invariant mass spectrum with the QCD form factor

Model of the QCD form factor for β = 2.56 [17] used to simulate the
decay K0

L → µ+µ−e+e−. Kinematic restraints are placed upon the plot
regions to show high mass enhancement of the decay near the kaon
endpoint.
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χPT Form Factor Enhancement
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FIG. 41: Chiral form factor [21] with high invariant mass enhancement
bands.
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FIG. 42: Kµµ invariant mass spectrum with the Chiral form factor

Model of the Chiral form factor [21] used to simulate the decay
K0

L → µ+µ−e+e−. Kinematic restraints are placed upon the plot regions
to show high mass enhancement of the decay near the kaon endpoint.
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FIG. 43: Example K0
L → µ+µ−e+e− Monte Carlo event
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FIG. 44: Example K0
L → µ+µ−e+e− Monte Carlo event
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Part VI

Analysis
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Goals

The analysis for K0
L → µ+µ−e+e− is designed mirror the K0

L → µ+µ−

analysis in order to to preserve the same systematics for each data stream.

• All primary µµ tracking and reconstruction cuts follow those of the
production µµ analysis[1].

• Analysis focuses on identification of e−/e+ pairs and association of
those pairs with the event vertex defined by µµ tracking.

• Cuts are designed to minimize acceptance loss to µµ and µµee
events.

• Cuts are designed to provide a high certainty in identification of
K0

L → µ+µ−e+e− events.
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µµ Cut Differences

The K0
L → µ+µ− and K0

L → µ+µ−e+e− primary µµ track cuts differ
only in that the µµ track reconstructions for K0

L → µ+µ−e+e− receive an
explicit veto on the E871 signal box in kaon mass MKµµ

and transverse
momentum pT .

• The veto prevents contamination of the K0
L → µ+µ−e+e− signal by

K0
L → µ+µ− events.

• Contamination of the K0
L → µ+µ− signal by K0

L → µ+µ−e+e−

events is calculated at a ratio of 1:57 from Monte Carlo.

• Total K0
L → µ+µ−e+e− contamination of the K0

L → µ+µ− signal
peak is ≈ 2 events.
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FIG. 45: K0
L→ µ+µ− signal box. Region is explicitly vetoed for the K0

L→
µ+µ−e+e− data stream
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e+e− Track Finding (Basic)

Identification of the electron pairs is made using straw chamber hit
clusters in SDC1 and SDC2.

Since the e+e−pairs are known to be extremely soft, only partial tracks
(stubs) are searched for.

Basic method of stub finding:

• Search for all local hit clusters in SDC1/SDC2 in X and Y views

• Determine local track slopes for each hit cluster

• Perform X/X and Y/Y cluster matching to form segments

• Perform X/Y segment matching to form candidate stubs

• Check all possible ambiguities in matches for vertex DOCA

• Associate matches with µµ vertex.
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E871 Event Display

Top View: Pause

Run: 19999 Time: 23:37:00 11/13/03

Spill:    0 Event:  723 Rd: 1

L1 Trig:        0h


Primary Track

SDC2 Hit Clusters

SDC1 Hit Clusters
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Event Reconstruction

Once a candidate single stub or stub pair is identified, additional
algorithms are applied to determine:

Primary decay plane ] Vertex to Vertex Dist.

Secondary decay plane ] Stub to Vertex DOCA

Primary to Secondary decay plane ] Transverse Momentum

Stub to Decay Plane ] MKµµe

Stub to Stub Opening ] MKµµee

Tracking corrections Tracking uncertainties
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Invariant mass for the full event is then calculated in an N-body fashion
based on the number of Tracks/Stubs available:

M2 =
N

∑
i=1

m2
i + 2

N

∑
i=1

N

∑
j>i

(
EiE j−|Pi||Pj|

D

∑
k=1

aika jk

)
(50)
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Collinearity and PT

Most e+e−stubs are not momentum analyzed in the spectrometer magnets
due to the soft momentum spectrum and resulting trajectory.

For these events we recover the e+e−momentum through the angular
collinearity of the pair momentum vector with the target-vertex axis.

PSfrag replacements
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Target

~p1

~p2

Θ
θ12

~p1 +~p2
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FIG. 46: Muon pair trans-
verse momenta to electron
pair transverse momenta sum
relation through the collinear-
ity angles Θµ and Θe

FIG. 47: e− to e+ low en-
ergy momentum asymmetries
for K0

L → µ+µ−e+e−
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We recover an approximate electron pair momenta in fashion:

pe1,2
≈ 1

2
Pe =

|~Pµ |
2

sinΘµ

sinΘe
(51)

• Using this momenta we compute vertex invariant mass and pT again.

• These new MKµµee
and p′T form the basis for the primary signal box

with tight constraints, similar to the K0
L → µ+µ− signal box.

• Uncorrelated events either fail the stub and vertex criteria or are
forced to fall outside the signal region by the reconstruction algorithm
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Part VII

Production Analysis

A. Norman College of William & Mary January 2004



Production Analysis Slide 116

Data Sets

The production analysis involved building ntuples from the original µµ
data strip.

Data ntuples were built forming both a K0
L → µ+µ− data set and a

K0
L→ µ+µ−e+e− data set with no event overlap between the two streams.

• K0
L → µ+µ− Ntuple consisted of 1,015,209 candidate events

• K0
L → µ+µ−e+e− Ntuple consisted of 159,018 candidate events

This is an overall reduction from the 1.8 terra bytes of data representing
the initial E871 collected data.

This represents a single event sensitivity ≈ 5×10−12.
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K0
L → µ+µ− Cuts

The µµ Data set was subjected to the series of cuts in
Table 5 to obtain the K0

L → µ+µ− signal peak for both
the FT and QT fitters.

Vertex Parameter Cut (FT) Cut (QT)

Vx ±2.7 mrad ±2.7 mrad

Vy ±10.0 mrad ±10.0 mrad

Vz > 9.55 meters > 9.55 meters

Vz < 20.6 meters < 20.6 meters

Track Momentum Cut (FT) Cut (QT)

P
µ± > 1.05 GeV/c > 1.05 GeV/c

P
µ± < 6.50 GeV/c < 6.50 GeV/c

Track Momentum Cut (FT) Cut (QT)

Track χ2 25 35

Event Vertex Cut (FT) Cut (QT)

Vertex χ2 30 15

Mass Resolution FT QT

σMK
1.26 MeV/c2 1.43 MeV/c2

Invariant Mass (Kµµ ) Cut (FT) Cut (QT)

MKµµ
> 493.5 MeV/c2 > 493.0 MeV/c2

MKµµ
< 502.0 MeV/c2 < 502.5 MeV/c2

Transverse Momentum Cut (FT) Cut (QT)

pt < 0.010 GeV/c < 0.010 GeV/c

TABLE 5: K0
L → µ+µ− Analysis Cuts
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K0
L → µ+µ− Signal Peak (FT)
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FIG. 48: K0
L → µ+µ− invariant peak showing 6069 events in the signal

region consisting of 5657±75 signal events on an exponential background
of 412±20 events.
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K0
L → µ+µ− Signal Peak (QT)
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FIG. 49: K0
L → µ+µ− invariant peak showing 6133 events in the signal

region consisting of 5714±76 signal events on an exponential background
of 419±20 events.
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K0
L → µ+µ− Events

It is determined that the number of K0
L → µ+µ− events in the data sample

is 5685±83

• Number of K0
L → µ+µ− events is less than E871 publication due a

bad data tape from the Pass 3 output (0735 q2-q9,q16 roughly 7% of
data)

Method Signal Background Total

FT 5657±75 412.43±20.29 6069

QT 5714±76 419.42±20.47 6133

Average 5685±83 415.5±20.38 6101

TABLE 6: K0
L → µ+µ− signal and background events as observed in the

E871 data set and reconstructed under FT and QT fitting.
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K0
L → µ+µ−e+e− Cuts

Candidate events were subject to the cuts:

Cut Parameter Value Notes

Vx and V ′x ±2.7mrad Beam Divergence

Vy and V ′y ±10.0mrad Beam Divergence

Vz and V ′z 9.55−20.6meters Decay Tank Volume

P
µ± 1.05−6.5GeV/c High εµ−ID range

χ2
trk (FT ) 25 Track Fit

χ2
trk (QT ) 35 Track Match

χ2
vtx (FT ) 30 Vertex Fit

χ2
vtx (QT ) 15 Vertex Match

MKµµ
(FT ) 493.5−502.0MeV/c2 µµ signal box veto

MKµµ
(QT ) 493.0−502.5MeV/c2 µµ signal box veto

Pt 10MeV/c µµ signal box veto

µ− ID (Le f t/Right) Good/Golden Parallel MRG only

Total Segments 1024 Reconstruction Limit

Total Stubs 4 Limit Event Noise

Stub to Vertex DOCA 9.27cm ε = 0.959 σε = 0.0020

Vertex to Vertex Dist. 10.59cm ε = 0.959 σε = 0.0028

Stub to Decay Plane] 9.472◦ ε = 0.920 σε = 0.0049

Stub to Stub Opening] 3.68◦ ε = 0.959 σε = 0.0037

Primary to Secondary Plane] 15.8◦ ε = 0.993 σε = 0.0015

2-Body MKµµ
(Low) 463.5MeV/c2 Pion Mis-ID background

2-Body MKµµ
(High) 502.5MeV/c2 Unphysical MKµµ

4-Body MKµµee
(Low) 483.3MeV/c2 Signal Box

4-Body MKµµee
(High) 512.1MeV/c2 Signal Box

4-Body Pt 12MeV/c Signal Box

TABLE 7: Summary of Cuts for K0
L → µ+µ−
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K0
L → µ+µ−e+e− Signal Peak

The signal peak was found by applying the cuts in Table 7 to the 160,000
candidate events.

Additional particle identification was imposed to ensure a high event
quality and reconstruction certainty:

• Strict Electron Veto in Čerenkov

• Strict Electron Veto in Lead Glass Calorimeter

• Parallel Muon ID in Muon Range Finder

Non-parallel muons in the MHO and TSCs were not considered due to
trigger systematics (>±0.5 counter widths and >± 2 slats.)
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FIG. 50: K0
L→ µ+µ−e+e− invariant peak showing 171

events in the signal region composed of 119 signal and
52 background
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K0
L → µ+µ−e+e− Signal

The signal region was set a priori to extend from 483.3 MeV/c2 to 512.1
MeV/c2 based upon the width of the signal peak as reconstructed from
Monte Carlo data with a set of “loose” cuts. (±3.5σMC)

• Peak was fit to a Gaussian distribution on top of a flat background.

• Background was determined from linear fit to sidebands (< 488.3,
> 512.1)

• Data was binning at 1.03 MeV/c2.

• Centroid of the signal peak found at 497.0 MeV/c2.

• Width of the signal peak found to be 3.04 MeV/c2.

• Monte Carlo using production cuts predict 3.02 MeV/c2 width!
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Method Signal Background Total

Loose - - 941

Parallel MRG 222±20.7 57±7.5 279

Strict Cuts/PID 119±17.3 51.75±7.2 171±13

TABLE 8: K0
L→ µ+µ−e+e− signal and background events as observed in

the E871 data set.

Signal Peak contained 119 satisfying the strongest signal criteria.

Background from Ke3, Kµ3 pileup contributed a flat background of 52
events.
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Part VIII

Normalization
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Branching Ratio

The branching ratio B(K0
L → µ+µ−e+e−) was calculated using the

K0
L → µ+µ− data set for normalization.

B(K0
L → µ+µ−e+e−)

B(K0
L → µ+µ−)

= ·Nµµee

Nµµ
· � µµ

� µµee
×
(

εL1
µµ

εL1
µµee

)
×
(

εL3
µµ

εL3
µµee

)

×
(

εµ−ID
µµ

εµ−ID
µµee

)
×
(

ε trk
µµ

ε trk
µµee

)
×
(

εvtx
µµ

εvtx
µµee

)
×
(

1
εstubs

µµee

)

(52)

� µµee and � µµ are the Monte Carlo acceptances

εcut are the efficiencies for triggers and reconstruction
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Acceptance Ratios

The ratio of acceptances is highly model dependent.

Theory � µµ � µµee � µµ/ � ′
µµee

χPT 1.900×10−2 1.036×10−3 18.329

QCD 1.900×10−2 1.589×10−5 1196.090

Uniform (F = 1) 1.900×10−2 1.224×10−6 15522.876

TABLE 9: Acceptance Ratios for the form factor models considered in the
K0

L → µ+µ−e+e− analysis.
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Expected Events Per Model

The number of events expected under each model was calculated using
the computed acceptances, the current world averages for the branching
fractions, and the number of observed µµ events.

Theory � µµ/ � ′
µµee Events

χPT 18.329 111.23

QCD 1196.090 1.70

Uniform (F = 1) 15522.876 0.13

TABLE 10: Expected K0
L → µ+µ−e+e− Events
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Branching Fraction
For 119 observed events the resulting branching fraction under the
assumption of each model is calculated:

Theory B(Kµµee) σ statistical σ systematic

χPT 2.78×10−9 ±0.406×10−9 ±0.091×10−9

QCD 1.81×10−7 ±0.265×10−7 ±0.059×10−7

Uniform (F = 1) 2.36×10−6 ±0.344×10−6 ±0.077×10−6

TABLE 11: K0
L → µ+µ−e+e− normalized branching ratio for each of the

form factor models considered in the K0
L → µ+µ−e+e− analysis.

A. Norman College of William & Mary January 2004



Normalization Slide 131

Results

• We have measured the branching fraction B(K0
L → µ+µ−e+e−)

based on an sample of 119±17 events.

• The data is most consistent with enhancement of the high µµ
invariant mass region, similar to that of a non-uniform form factor
derived from chiral perturbation theory.

The branching fraction under this χPT hypothesis is:

B(K0
L → µ+µ−e+e−) = 2.78±0.406±0.091×10−9 (53)

This is consistent with the world average to within 1 standard deviation.
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Conclusions

• The measurement of B(K0
L → µ+µ−e+e−) has provided a self

consistent measure of the long distance dispersive amplitude, � LD.

• This should reduce systematic errors in the extraction of the
Wolfenstein ρ .

• This measurement was also a sensitive probe into the structure of the
K0

L → γ∗γ∗ vertex and formfactors.

• The measurement provide strong evidence for the existence of a χPT
formfactor.

• Additional investigation into the presence of chiral like formfactors
in the kaon system should be conducted. In particular
K0

L → e+e−e+e− and K0
L → π+π−e+e− should be examined.
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