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Abstract

In this dissertation, mechanisms of dephasing in a cold dipole-dipole coupled

Rydberg gas are discussed, and control sequences for suppressing dephasing

are introduced and experimentally demonstrated. Additionally, population

control in a two level non-Hermitian system facilitated by control loops in

2-dimensional parameter space is simulated and modeled analytically.

Detuning jump sequences inspired by quasi-phase matching in nonlinear

optics are introduced and utilized to suppress dephasing in a cold Rydberg gas.

Rabi flopping in random dipole-dipole coupled systems with more than a few

atoms is demonstrated for the first time by actively suppressing dephasing with

detuning jump sequences. The dephasing suppression mechanism is introduced

and experimental results at different detunings and different Rydberg atom

densities are compared.

Dephasing in cold dipole-dipole coupled Rydberg gases due to (1) inhomo-

geneities in dipole-dipole interaction strengths between atoms and (2) Ryd-

berg excitation hopping between different atoms, is considered. By comparing

experimental Rabi oscillation spectra with the results of simulations with hop-

ping effects turned on/off, it was found that excitation hopping plays a more

important role when the system is far detuned from energy transfer resonance.

Increased density results in proportional increases in the dephasing associated

with the two mechanisms.



The second part of the dissertation focuses on a numerical study of popula-

tion transfer in a two level non-Hermitian system subject to control loops along

which the coupling and energy separation betwen the two levels are adiabati-

cally varied. Contrary to previous studies, we found that population transfer

can be achieved even when the control loop does not encircle an exceptional

point (EP) of degeneracy in the chiral complex eigenvalue landscape.
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Chapter 1

Introduction

Quantum many-body physics can be extremely complex. As a matter of fact,

no analytical solution exists for a system as simple as a helium atom, which

consist of a nucleus and two electrons. Therefore, research in many body

quantum physics typically involves grasping the essence, or the dominant in-

teraction within the system with a simplified physics picture, with corrections

added as needed. In quantum physics, this philosophy dates back to the char-

acterization of spin-orbit coupling [7], the Born-Oppenheimer approximation

[8], the Hartree-Fock method [9] etc., and is still followed by modern physicists

today.

Embracing the philosophy of “grasping the essence,” the goal of this dis-

sertation is to accurately describe, with the simplest physics model, the char-

acteristics and behavior of many body quantum systems created in the lab,

and to identify the main contributors to, and simple remedies to combat de-

phasing/decoherence within those systems. Our efforts focus on a particular
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many body quantum system: an ensemble of cold Rydberg atoms in a diffuse

gas. Whilst the study of dephasing/decoherence has long been an important

topic in quantum physics, as interference has been long regarded as one criteria

that distinguishes quantum from classical systems, in recent years, the study of

many body quantum systems, including the study of dephasing/decoherence

mechanisms and control, has come under the spotlight. In large part this

is due to the realization of engineered many body quantum systems, namely

quantum computers/simulators that have the potential to serve as powerful

technologies that will help advance science (beyond physics) and reshape many

industries [10, 11, 12].

Originally proposed theoretically by R. Feynman [13] and popularized

by Shor’s algorithm [14], the laboratory realizations of quantum computa-

tion/simulation are fairly recent. A successful experimental realization of

quantum computer should meet DiVincenzo’s criteria [15], the first of which

is “a scalable physical system with well characterized qubits”. Unfortunately,

regardless of operating platforms, quantum computers/simulators suffer from

problems such as cross-talk and inhomogeneities involving unwanted or ill-

defined interactions between qubits, or between qubits and their environment.

The presence of such effects means that the qubits are no longer “well char-

acterized”, and results in dephasing and decoherence. Understanding interac-

tions between qubits, and between qubits and their environment, and further

designing protocols to eliminate or homogenize those interactions, is important

for the future development of quantum computation/simulation.

Albeit not explored directly in a quantum computer/simulator, those is-
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sues are exactly what the experiments in this dissertation set out to explore.

Rydberg atoms are a popular choice for facilitating quantum gates because

of their sensitivity to nearby atoms due to strong dipole-dipole interaction

[16, 17, 18, 19, 20, 21, 22]. These interactions will be defined and will be

discussed in more detail in forthcoming chapters. However, this same sensitiv-

ity to other Rydberg atoms and/or their environment hampers their ability to

function correctly as quantum gates. This dissertation focuses on how Rydberg

atoms are affected by each other and their environment, and how active con-

trol methods can be used to reduce or eliminate unwanted interactions. The

results that reveal sources of, and cures for, dephasing/decoherence might be

very valuable to the realization of quantum computers/simulators using Ry-

dberg atoms. Moreover, the principles of dephasing/decoherence, and their

foils, are to some degree universal, thus the results described here may be

applicable in other quantum systems as well, like ion traps [23] and supercon-

ducting circuits [24], and more generally to quantum control problems beyond

quantum computation and simulation.

1.1 Atomic Units

Atomic units are a system of natural units of measurement which are especially

convenient for atomic physics and computational chemistry [25]. Atomic units

are defined by setting the values of the reduced Planck constant, elementary

charge, Bohr radius, and electron mass to unity

ℏ = e = a0 = me = 1. (1.1)

17



From there, other units like energy, time, and electric field can be defined on

a scale relevant to typical parameters and processes. Some physical units used

in this dissertation can be converted between SI and atomic units using Table

1.1 [26].

1 atomic unit Value in SI units
Length 5.29177210903(80)× 10−11m
Velocity 2.18769126364(33)× 106 m·s−1

Energy 4.3597447222071(85)× 10−18 J
Electric field 5.14220674763(78)× 1011 V·m1

Time 2.4188843265857(47)× 10−17 s

Table 1.1: Atomic units.

1.2 Rydberg Atoms

Rydberg atoms are atoms in which one electron is excited to a state with a

large principal quantum number (n>10) [27]. In the experiments discussed in

this dissertation, the outermost electron of individual 85Rb atoms (5s ground

state) is excited to an n~30 state. In general, because of their large electron

orbits (with mean radii R ∝ n2), and small binding energies (W ∝ n−2),

Rydberg atoms have unique and exaggerated properties.

Because the outermost electron is far from the nucleus or any other elec-

trons, in many aspects Rydberg atoms essentially behave like Hydrogen atoms,

with the addition of core polarization and penetration effects due to the non-

hydrogenic ion core. Those effects can be viewed as perturbations to the

Hydrogen atom, resulting in modified eigenenergies and wavefunctions, char-

acterized by a quantum defect. The quantum defect can either be calculated

18



or experimentally measured [28]. Once obtained, most properties of Rydberg

atoms like their bare energy level structure and electronic wavefunctions can

be readily computed.

The experiments described in this dissertation utilize external electric fields

to manipulate Rydberg electrons. In the presence of external electric fields,

the zero field angular momentum eigenstates |nlm⟩ are coupled via matrix

elements of the form, ⟨nlm|Ez |n′l′m⟩. Here E is the external electric field

which defines the axis z for atom. In general, the electric field alters the Ry-

dberg eigenstates and their associated eigenenergies, through the Stark effect.

In the experiments described in this dissertation, the applied electric field are

relatively weak, such that the electric field induced couplings between Rydberg

states are small compared to the zero field splitting between those states. As

a result, the resulting Stark shifts are second order in the field, and the eigen-

states are approximately equal to those in zero field. Accordingly, we refer to

the Stark shifted states using their field free, angular momentum eigenstate la-

bels, and compute the matrix elements relevant to interactions between Stark

tuned atoms using the zero field states.

Given the large size and dipole moment of Rydberg atoms, strong interac-

tions between Rydberg atoms can be expected. In the physical regime of the

experiments in this dissertation, where the interatomic distances are ~5µm and

the diameter of the low angular momentum n~30 Rydberg atoms we study is

~100nm, the dominant interaction between Rydberg atoms is electric dipole-

dipole (∝ R−3).
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1.3 Dipole-Dipole Interaction and Resonant

Energy Transfer

It is well known that two molecules (or two excitation centers within a single

larger molecule) can exchange electronic energy through nonradiative dipole-

dipole coupling. If the process is resonant, with one excitation center ac-

quiring precisely the same electronic energy that was lost from the other, the

process is commonly referred to as Förster resonance energy transfer (FRET)

[29]. Similar couplings and resonant energy transfer processes can happen

between atoms. A transition dipole moment −→µ = e⟨−→r ⟩ = e ⟨nl| −→r |n′l ± 1⟩

exists between any two electronic states of an atom for which the angular mo-

mentum quantum number l differs by one. Thus, a pair of atoms can also

excite/deexcite through a nonradiative dipole-dipole coupling

VDD =

−→µ1 · −→µ2 − 3
(−→µ1 · R̂

)(−→µ2 · R̂
)

R3
, (1.2)

where −→µ1 and −→µ2 are the transition dipole moments within atoms 1 and 2,

respectively, and −→
R is the position of the nucleus of one atom relative to the

other. As alluded to above, it should be noted that dipole-dipole coupling

approximation works only for cases where the interatomic distance is much

greater than the size of an atom (~5µm vs. ~100nm as is the case for the ex-

periments in this dissertation). Otherwise, higher order couplings play a role,

and it may not be sufficient to describe the state of the outermost electron

in each atom using simple Rydberg atom orbitals. If one or both Rydberg
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electrons are subject to the potential of both nuclei (with similar strengths),

hybrid (molecular) orbitals need to be considered to describe the system ac-

curately.

When the excitation/deexcitation energy of the pair of atoms are closely

matched, resonant energy transfer can occur. Dipole-dipole interaction me-

diated resonant energy transfer process are affected by a variety of factors,

such as distance between atoms, the transition dipole moment strength, and

the energy difference between “donor” and acceptor transitions [27]. Details

of the process can be found in later chapters.

Rydberg atoms are good candidates for studying dipole-dipole interactions

in general [16, 17, 18, 19, 20, 22, 30, 31, 32, 33, 34, 35, 36], including dipole-

dipole interaction mediated resonant energy transfer. The transition dipole

moments between Rydberg states can be very large, the distance scale between

Rydberg atoms can be varied by changing the density of an atom cloud, or

precisely tuned with optical tweezers [21], and the energy difference between

donor and acceptor transitions can be broadly tuned with applied electric fields

via the Stark shift.

1.4 Evolution of Quantum State in a

Rydberg Atom Gas Ensemble

In a two-state quantum system (|0⟩ and |1⟩), a particle, such as an electron in

an atom, can occupy both states at the same time. When the energies of the

two states are different, the evolution of the quantum phase occurs at different
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rates for the two levels. Arbitrarily assigning the energy (and phase) of state

|0⟩ as 0, one can write the state of the electron in an atom as

Ψ = a0 |0⟩+
√

1− a20e
−iϕ(t) |1⟩ , (1.3)

where a0 is the amplitude of state |0⟩, and the phase difference between the

two states is ϕ(t) = ϕ0 +
∫
E(t)dt. The rate of phase evolution is governed by

the energy difference E between the two states.

For a pair of Rydberg atoms subject to dipole-dipole interactions, the de-

generacy of single Rydberg atom excitation is broken, creating two new eigen-

states of the atom pair, shifted from twice the single atom excitation energy

by ±VDD. As previously discussed, VDD is dependent on the interatomic dis-

tance as well as the transition dipole moments (both strength and relative

orientation) of the two atoms. In some situations, a large Rydberg gas en-

semble can be approximated as many isolated pairs of atoms, or many smaller

ensembles of atoms (more detailed discussions in Chapter 3). In the presence

of strong dipole-dipole interactions between neighboring atoms, the energies

of the eigenstates within isolated pairs or ensembles is shifted, depending on

interatomic distance, relative atom orientations, etc. Because neither inter-

atomic distances nor relative atom orientations is uniform throughout a ran-

dom ensemble of Rydberg atoms, the dipole-dipole energy shifts within each

atom pair or micro-ensemble, relative to twice the single atom excitation en-

ergy, is also not uniform, creating a different phase evolution in different local

ensembles, ultimately leading to a (nearly) random phase distribution across
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the ensemble as a whole. In addition to this ”dephasing”, due to atom motion

and/or fluctuating external fields, interatomic distances, relative atom orien-

tations, and pair energies are time dependent, meaning the phase evolution is

time-dependent and depends on the coupling of the electrons to other (unmea-

sured) degrees of freedom. These environmental couplings lead to decoherence

within the local atom ensembles, in addition to the time-independent energy

inhomogeneities which cause dephasing. In later chapters, more detailed mod-

els of dephasing and decoherence, as well as methods to alleviate them, will

be presented.

1.5 Dissertation Structure

The remainder of this dissertation consists of six chapters. Chapter two de-

scribes the apparatus used for the experiments discussed in subsequent chap-

ters, and in part serves as a lab manual for maintenance of the apparatus.

Chapter three describes how Rydberg gases can be mathematically modelled,

from a simple two-atom two-state picture, to fully interacting four atom sys-

tems including electronic fine structure. Chapter four shows how pulsed elec-

tric fields, in a sequence that was first introduced by Kutteruf and Jones for

measuring the coherence time of dipole-dipole coupled Rydberg atoms in a

random ensemble [37], can be employed to actively suppress macroscopic de-

phasing in the same system. Moreover, it includes a theoretical discussion of

how such a sequence could be used to suppress dephasing in more ordered

systems as well as actively reduce microscopic decoherence rates associated
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with time-dependent electronic energy variations. Chapter five explores two

main sources of dephasing, inhomogeneity and hopping of Rydberg excitation

and, by comparing experimental and simulation results, considers the con-

ditions under which hopping can be reasonably ignored. Chapter six utilizes

simulations to explore population transfer dynamics in non-Hermitian systems

subject to control loops which adiabatically change the coupling and energy

separation that define a two level system. Chapter seven summarizes the re-

sults reported in the dissertation and prospects for future work.
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Chapter 2

Experimental Setup

The experiments described in this dissertation involve exciting and detect-

ing Rydberg atoms within a cold 85Rb ensemble. In this chapter, the three

main components of the experimental apparatus are described: Laser systems,

Electronics systems and Vacuum systems. The Magneto-Optical Trap (MOT)

which is responsible for producing the cold 85Rb ensemble, and combines the

capabilities of all three systems, is then described in detail, from its operation

principles to characterization. Lastly, the data collection process is briefly

introduced.

2.1 Experimental Environment

All experiments described in this dissertation were performed in Room 166 of

the Physics Building at University of Virginia. The HVAC system is designed

to maintain lab temperature around ~72◦F, with the controlling thermostat
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sitting directly above the MOT. In practice, because the temperature control

system only reads the temperature at two locations within lab, temperature

gradients cannot be prevented and the gradient will differ depend on out-

side temperature. The humidity of air coming out of HVAC system is not

controlled beyond maintaining a dew point several degrees below the lab tem-

perature. Even though dehumidifiers in the lab can help control local humidity

level, a gradient of humidity cannot be prevented. With these factors com-

bined, the day to day consistency of the lab environment is not guaranteed

and experiments are always recommended to be performed on non-rainy days

without large day and night temperature fluctuation. Bluetooth and USB

based temperature and humidity sensors are purchased on Amazon to moni-

tor environmental conditions throughout the room.

2.2 Laser Systems

Lasers in our experiments are responsible for reliably transferring atom pop-

ulation from one state to another, and ideally without excitation of atoms

into any other states, while remaining at a relatively constant intensity thus

constant population transfer rate. Moreover, the flexibility of turning on and

off laser excitations (within ~100ns) is required. To meet those criteria, the

laser systems utilize the following components.
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2.2.1 External-Cavity Diode Lasers

External-Cavity Diode Lasers (ECDL) are widely used in modern laboratories

for their ease of maintenance and good stability. In an ECDL, a laser diode is

used as the gain element, and is incorporated within a tunable resonant cavity

to complete a laser system. The two laser systems utilized in this dissertation

both use angular dispersion from a diffraction grating to provide wavelength

selectivity [38, 39, 40, 41, 42, 43, 44]. For the ECDLs used in this dissertation,

one end of the laser diode chip has a high reflective (HR) coating, forming

one end of the resonant cavity while the other end of the laser diode chip

has antireflective (AR) coating to prevent the diode chip itself from acting

like a resonant cavity. The light from diode chip is then collimated using a

lens and directed onto the diffraction grating. In the Littman-Metcalf design

(used by our New Focus lasers), the other end of the resonant cavity is a

rooftop prism which reflects the first order diffraction off the grating to pro-

vide feedback. In the Littrow-Hänsch design (used by the Toptica laser), the

diffraction grating itself serves as one end of the resonant cavity, sending the

first order diffraction back into the diode to provide feedback. In both cases,

the angle of the retroreflecting element (prism or grating) can be coarse tuned

by hand and fine-tuned with a piezoelectric actuator for frequency selection.

For any selected angle within the large first order dispersion angular range,

only a narrow spectrum is retro-reflected and amplified. With this narrow

band feedback, the zero-order diffraction of the grating serves as the output

beam of laser. In the Littman-Metcalf design, the zero-order diffraction is
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angle independent, in the Littrow-Hänsch design, an output coupling mirror

rotates as the grating rotates to ensure that the output beam is grating angle

independent.

Additionally, to guarantee good feedback and mode-hop free operation, the

cavity length needs to vary with the wavelength of the laser. Specifically, the

cavity length needs to relate to the feedback angle of diffracted beam as

L(θd) =
Nλ(θd)

2
=

NΛ(sin θi + sin θd)

2
, (2.1)

where L is the cavity length, N defines the cavity mode (which should not

change in a mode-hop free laser), Λ is the groove spacing of diffraction grating,

and θi and θd are the angle of incidence and diffraction relative to the grating

normal. This condition can be achieved by carefully selecting the pivot point of

retroreflector. In the Toptica laser, the current to the laser diode also changes

in a synchronized way as the grating and output coupler rotates to change the

index of refraction of the semiconducting lasing material, thus matching the

internal resonator length with external cavity length, giving a large mode-hop

free range.

Three ECDLs are used in the experiments described in this dissertation.

Two of them are New Focus TLB 7000 lasers tuned near ~780nm, which act

as (and will be referred in this dissertation as) the trap and repump lasers

for the Magneto-Optical Trap (MOT). They are responsible for driving the

5s1/2, F = 3 to 5p3/2, F = 4 (with ~30MHz redshift), and 5s1/2, F = 2 to

5p3/2, F = 3 transitions in 85Rb, respectively. Typically, the trap laser operates
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Figure 2.1: Principle of operation for the Littman-Metcalf ECDL design [2].

Figure 2.2: Principle of operation for the Littrow-Hänsch ECDL design [3].
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at 89.5mA and has 39mW of laser output, the repump laser operates at 81.5mA

and has 23mW of laser output. The voltages on the piezoelectric actuators

that adjust the retroreflecing prism angles in both lasers are tuned on a daily

basis to account for frequency drifts.

The other ECDL used in this dissertation is a Toptica DL pro laser within

the Toptica SHG pro laser system. The 964nm beam from Toptica DL pro

is sent through a tapered amplifier, where the size of the beam is gradually

increased so that the beam interacts with a larger gain region as it propagates

to efficiently amplify beam power. After the tapered amplifier, the energy of

the 964nm beam can reach up to 635mW. To facilitate Rydberg excitation

from 5p to n~30, the output of the tapered amplifier is frequency doubled, as

discussed in next section.

2.2.2 Second Harmonic Generation

The emission frequency range of a diode laser is determined by the band gap of

the p-n junction in the diode [45, 46], which usually lies in the infrared regime.

To extend the frequency range of diode lasers, non-linear frequency-mixing

techniques can be used to convert the coherent infrared radiation produced

by diode lasers to desired frequencies. For excitation from 5p to n~30 in

Rb, the required wavelength is ~480nm. Narrow band CW laser light at this

wavelength can be obtained by frequency doubling a ~960nm CW beam in a

non-linear crystal. Here two infrared (e.g., 964nm) photons are annihilated,

to create a single blue (482nm) photon. To achieve maximum conversion fre-

quency, the Toptica SHG Pro employs a bow-tie-ring second harmonic genera-
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tion (SHG) cavity with frequency doubling crystal [47]. The SHG cavity length

is stabilized using the Pound-Drever-Hall(PDH) technique [48, 49], where the

cavity length is modulated, creating sidebands symmetrically centered around

the central frequency of fundamental laser (964nm). A fraction of the 964nm

laser within the SHG cavity is sent to a fast photodiode, where the intensity

of the two sidebands are compared. The power in the two sidebands should

be equal if the cavity length provides minimum loss at the central funda-

mental frequency, otherwise the signal difference between the two frequencies

provides feedback into the piezoelectric actuator which controls the length of

SHG cavity.

After a decade of operation, the angle and position of the frequency dou-

bling crystal may need tuning on a day to day basis due to damage in the

anti-reflection coating on the face of crystal, and loosening of mounts. The

mirrors on the edge of SHG cavity may also need tuning, although a lot less

frequently. The internal oscillator amplitude for PDH locking can also be fine-

tuned to maximize laser output power. A pair of prisms after the SHG cavity

can be utilized to optimize the spatial beam profile but is currently not in use

due to power loss. Currently, with a properly tuned SHG cavity, the system is

capable of outputting 130-140mW of blue (482nm) light. This completes the

operation principle and maintenance of Toptica SHG pro laser (referred to as

the blue laser in this dissertation).
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Figure 2.3: Principle of operation for second harmonic generation (SHG)
within SHG cavity of blue laser [3].

2.2.3 Frequency Locking with Feedback Circuit

Limited by the design of the tunable external cavity, the stability of a stan-

dalone ECDL may not be sufficient to maintain the output frequency within

atom linewidth precision over long periods of time (hours in the case of experi-

ments in this dissertation). Thus, to further increase the stability, the ECDLs

are frequency-locked to external sources. To achieve frequency locking via a

feedback circuit, a signal that varies monotonically as a function of frequency

is required. Such a signal can be one side of a transmission peak in a Fabry-

Pérot cavity as its length is scanned, or one side of the absorption peak of

an atomic transition as the laser frequency is scanned. The feedback circuit

compares the signal size with a desired value, usually midway through the

slope, via an op-amp. Any difference in the amplitude of the signal relative

to the reference is then amplified, and fedback into the control piezo of the

ECDL, adjusting the output frequency of the laser correspondingly. Taking

things a step further, the time integral, and derivative of the difference signal

can be used in addition to the proportional feedback, for better locking. This
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Figure 2.4: Circuit diagram of the homemade feedback circuit for frequency
locking of the infrared trap and repump lasers.

is known as PID (proportional–integral–derivative) control [50].

For the trap and repump lasers, the laser frequency is locked to the falling

edge (as frequency increases) of the 85Rb 5s1/2, F = 3 to 5p3/2, F = 4 and

5s1/2, F = 2 to 5p3/2, F = 3 transitions, respectively, using saturated ab-

sorption spectroscopy (discussed below) and a proportional feedback circuit.

The blue laser frequency is locked to the error signal of a Fabry-Pérot Inter-

ferometer (FPI) (ThorLabs SA200-3B), the length of which is tunable by a

piezoelectric actuator. The ThorLabs TPZ001 piezo driver applies a static

voltage to the piezoelectric actuator to define a cavity length, and the Thor-

Labs SA201 Spectrum Analyzer Controller sends a triangular wave on top of

the static voltage to modulate the length of Fabry-Pérot cavity. A photodiode

measures the transmitted light through the cavity. The change in the am-

plified photodiode output voltage provides an error signal that is sent to the

Toptica PID110 module locking the frequency of the master diode laser onto

the falling edge (as frequency increases) of the amplified error signal.
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2.2.4 Saturated Absorption Spectroscopy

In saturated absorption spectroscopy, a small fraction (4%) of the laser output

(both trap and repump lasers) is sent to a Rb vapor cell, serving as the “pump

beam”. After passing through the Rb cell, roughly 4% of the pump beam

is retro reflected through the cell, serving as a probe, and is incident on a

photodiode. When the lab frame frequency of the laser is tuned so that some

atoms are excited from a 5s to 5p state, fewer atoms are available to absorb

light from the probe, resulting in increased probe transmission through the

cell. By exposing atoms to light travelling in opposite directions, the Doppler

shift can be eliminated since only two kinds of atoms will absorb both beams

(depending on the common frequency of the two beams in the lab frame): (1)

Those that are not moving will see the pump and probe beams at the same

frequency and will absorb light only if it is resonant with a 5s to 5p transition

(producing a direct absorption peak in the probe beam transmission vs. laser

frequency); and (2) Those moving at a particular velocity such that the pump

beam is on resonance with one transition and the probe beam is on resonance

with another transition (producing a cross-over peak in the probe transmission

spectrum). Because of this, saturated absorption provides a straightforward

Doppler-free spectroscopic tool for laser frequency locking.

To reduce the effect of laser power variations that would result in error sig-

nal fluctuations not related to changes in the probe absorption, the feedback

signal is based on a differential input. Dual photodiodes in a push-pull con-

figuration provide a voltage signal proportional to the difference in the power
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Figure 2.5: Saturated Absorption Spectroscopy.

of the probe beam and that of a second reference beam that does not pass

through the pumped volume of the vapor cell. In practice, this is achieved

by passing the retro-reflected pump beam through a 50/50 beam splitter, one

beam through the vapor cell into one photodiode, and the other beam directly

into the other photodiode.

The trap and repump beams for the Magneto-Optical Trap (MOT) are

locked ~30MHz redshifted from 5s1/2, F = 3 to 5p3/2, F = 4, and locked to the

5s1/2, F = 2 to 5p3/2, F = 3 transitions, respectively. In practice a portion of

the trap laser is first redshifted by ~30MHz, then locked to the crossover peak of

5s1/2, F = 3 to 5p3/2, F = 4 and 5s1/2, F = 3 to 5p3/2, F = 4, which is ~60MHz

redshifted from 5s1/2, F = 3 to 5p3/2, F = 4. Since the MOT holds cold atoms

which move slowly and do not suffer from significant Doppler shifts, Doppler-

free saturated absorption spectroscopy is ideal for providing the required laser

frequency references for the MOT setup. The falling edge of either transition
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Figure 2.6: Saturated Absorption Spectroscopy signal of 85Rb and 87Rb. The
blue cross marks the locking point for the trap laser (edge of the crossover
peak of 5s1/2, F = 3 to 5p3/2, F = 4 and 5s1/2, F = 3 to 5p3/2, F = 4) while
the yellow cross shows the locking point for the repump laser (edge of the
5s1/2, F = 2 to 5p3/2, F = 3 transition) [51].

is sent to the frequency locking feedback circuit described earlier. Proper

detuning of trap beam, essential for MOT operation (as discussed later), is

achieved with an Acousto-Optic Modulator (AOM).

2.2.5 Acousto-Optic Modulator

Acousto-Optic Modulators (AOM) serve two purposes in the experiments, the

trap laser AOM is in continuous operation and provides a constant frequency

shift from the locking frequency as discussed earlier. For the blue laser, the

AOM serves as a fast optical switch. As the title of the dissertation suggests,

interactions between atoms, rather than between atom and laser, is our pri-
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mary concern in this dissertation. Thus, the excitation of atoms from the upper

trap state 5p) to a Rydberg state (n~30) is required only for a brief amount

of time. In addition, the use of rapid Rydberg excitation and relatively short

Rydberg-Rydberg interaction times reduces the impact of unwanted Rydberg

population transfer via collisions and van der Waals interactions.

In our AOMs, a piezoelectric transducer is attached to a quartz crystal. An

oscillating electric signal drives the transducer to vibrate, which in turn creates

sound waves in the quartz. The standing wave in the quartz compresses and

expands it at different locations, resulting in a periodic change in the index

of refraction so that the quartz crystal behaves like a diffraction grating. As

such, the AOM can deflect an incident laser beam into the first (or higher)

diffraction orders, and the frequency of the diffracted beam is the sum (or

difference) of the input laser frequency and the transducer frequency. Using

our AOMs, a maximum conversion efficiency of ~70% of the input power into

first order beam can be obtained. Another way of understanding the working

principle of AOM is a three-wave mixing process, where sum-frequency gener-

ation or difference-frequency generation between phonons and photons creates

new photons. At a specific deflection angle where a phase-matching criteria is

met(−−−→kinput ±
−−−−−→
kphonon =

−−−−→
koutput), the conversion efficiency is high, resulting

in a macroscopically deflected beam.

In continuous operation, the 1st order beam is utilized to provide a constant

~30MHz redshift to the portion of the trap laser beam used for saturated ab-

sorption locking (the portion used for trapping is not subject to the frequency

shift), the red shifted portion is locked onto a crossover peak ~60MHz red-
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Figure 2.7: Acousto-Optic Modulator (AOM).

shifted from 5s1/2, F = 3 to 5p3/2, F = 4 transition, meaning the trap laser

is ~30MHz redshifted from the transition (the reason for redshift will be dis-

cussed later). When operating as an optical switch, by switching on and off

the RF input to the transducer, the 1st order beam can be turned on and off.

In practice on/off switching times as short as 100ns for 1st order beam can be

achieved, enabling the creation of 300ns pulses to excite atoms into Rydberg

states. Notably, despite the loss in peak power, use of the 1st order diffracted

beam rather than the modulated 0th order beam, is essential for the Ryd-

berg excitation. This ensures that there is no Rydberg excitation when the

excitation pulse is nominally off, preventing continuous Rydberg excitation,

redistribution, and ionization.

2.3 Electronics Systems

The eigenstate energies of Rydberg atoms are modified in external electric

fields due to Stark effect. In our experiments, a high fidelity (small inhomo-
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geneity, quick turn on/off time) electric field generation device is incorporated

to shift Rydberg atom energies as we desire. Moreover, we use field ionization

for state-selective detection of Rydberg atoms, requiring a strong and con-

sistent ionizing field ramp as well as a sensitive ion detector. The timing of

distinct steps within each individual measurement, including laser excitation,

electric field pulses and ramps, etc., are precisely synchronized by a digital

delay generator.

2.3.1 Voltage Generation

To produce high fidelity electric fields, electronics capable of producing high fi-

delity time-dependent voltages are needed. Two voltage generation subsystems

are connected to two stainless steel plates which straddle the laser-atom inter-

action region and define the time-dependent electric fields in the experiments.

The first subsystem is an Arbitrary Waveform Generator (AWG, Tektronix

AWG 510), which is capable of generating arbitrary time-dependent voltages,

between ±2V with a fidelity of 1mV, in 1ns time-bins. Due to nonzero ca-

pacitance and resistance of the stainless steel plates, the actual response time

for voltage change on plates is ~2ns. The AWG defines the time-dependent

Stark shift and state composition of the Rydberg atoms excited in the MOT.

The second subsystem is based on a trigger transformer circuit and enables

the application of a DC voltage bias (via BK Precision BK1762 Power Supply)

and a HV ionizing field ramp (discussed later) to the Rydberg atoms.
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2.3.2 Electric Field Generation Plates

While electronics are capable of producing voltage signals, those voltages need

to be applied to a pair of parallel field plates to produce spatially uniform elec-

tric fields throughout the laser-atom interaction region. For our experiments,

a simple set of two solid parallel plates is not suitable because the operation

of the MOT and Rydberg excitation requires lasers to enter the interaction

region from at least six different directions along three (nearly) orthogonal

axes. Accordingly, the conductors that define the field must accommodate the

passage of the laser beams as well as ions moving from the interaction region

to detector.

Previous cold Rydberg atoms experiments in the lab have utilized 4 par-

allel stainless steel rods to define the electric field within the MOT. However,

the rods did not completely shield the atoms from stray fields due to high

voltage contacts on the MCP detector, and the experiments were affected by

the intrinsic field inhomogeneities produced by the rods. An alternative setup

we have tried with limited success is two parallel mesh held in place by solid

stainless steel frames. Although the mesh provided up to 97% light trans-

mission, the ordered wire array resulted in significant degradation of two of

the three retro-reflected MOT beams and substantially reduced MOT perfor-

mance. Eventually, we carefully calculated the paths of MOT beams as well as

the ion extraction path, and developed a new field plate design with clear holes

at the appropriate locations so that the lasers and ions were not hindered. The

plate voltages are fed into the vacuum chamber via Kapton insulated wires and
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Figure 2.8: CAD design of one of the electric field generation plates.

stainless steel rods. The two stainless steel parallel plates are clamped onto

the original parallel field rods using stainless steel screws, ensuring electrical

contact. The performance of the plates was analyzed with COMSOL Multi-

physics finite element analysis (FEA) software. The software suggests that the

field inhomogeneity within the 1mm×1mm×1mm volume at the center of the

vacuum chamber (where the MOT is located) is <0.5%, and that the electric

field within trapped atom region should be, F = Vdiff ∗ 0.92/cm, where Vdiff

is the voltage across the two electric field generation plates.

2.3.3 State-selective Field Ionization

Field ionization is an efficient and widely used tool to detect and distinguish

population in different Rydberg states [52]. When the ionization field is ap-
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Figure 2.9: Finite Element Analysis (FEA) of field inhomogeneity near the
MOT area.

plied as a pulse, with rise times of nanoseconds to microseconds [53, 54, 55],

detection selectivity can be achieved as different Rydberg states ionize at dif-

ferent times during the rise of the field. While the physical process of field

ionization of Rydberg atoms can be very complicated and has given birth to

a field of research in itself, for the purpose of our experiments, we only rely

on qualitative aspects of pulsed field ionization. Namely, Rydberg states that

are higher in energy in zero or small electric fields will be ionized earlier in a

slowly rising (adiabatic) field pulse, such that the probability of finding atoms

in Rydberg states of different energies is mapped to the time of ionization in

the field. This is known as state-selective field ionization (SSFI). It should

be noted that due to mixing of Stark manifolds at strong electric fields, ions

originating from different states may overlap in the time-dependent ion signal
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Figure 2.10: Time-dependent voltage pulse from the trigger transformer mea-
sured using a Tektronix P6015A high-voltage probe. When applied to the field
plates, similar pulses enable state-selective field ionization (SSFI) detection.

from the detector, thus in practice it is almost impossible to precisely resolve

and accurately assess the population in all states without careful engineering

of the ionization field ramp [56, 57, 58]. However, by focusing on the portions

of the time-dependent ionization traces where population is dominated by ions

originating from one state, it is still possible to determine the relative change

of the population in different states.

In this dissertation, SSFI is achieved with a trigger transformer, which

produces a ~2µs rise-time high-voltage (HV) pulse, the amplitude of which is

tunable using an external voltage source (BK Precision BK1762 Power Sup-

ply), when it receives a TTL trigger from the delay generator. The HV pulse

enables us to ionize n~30 Rydberg atoms and provide partial energy resolu-

tion for different Rydberg states (32p3/2, |mj| = 3/2 and 33s1/2, in particular)

initially in a small or zero electric field.
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2.3.4 Micro Channel Plate Detector

After field ionization, the resulting Rb+ ions are pushed by the ionizing field

toward a dual microchannel plate (MCP) detector. The MCP functions as a

particle amplifier, converting each incoming Rb+ ion into a pulse of electrons,

which can then be collected on the detector anode as a negative voltage pulse.

Each MCP is an array of tiny glass tubes or slots (microchannels) leading

from one face to the opposite. When ions strike the glass wall of a MCP mi-

crochannel, electrons are released from the electron-donating material on the

wall surface of the microchannel. The electrons are accelerated in a strong

electric bias field placed across the MCP, and hit the microchannel wall multi-

ple times, releasing more electrons upon each impact until reaching the other

end of the microchannel [4]. The resulting electron bunch exiting the channel

has sufficient charge to be detected through the transient change in voltage

on the collection plate or anode. The anode is held at a bias voltage of 100V

relative to the back plate of the chevron stacked MCP pair, pulling electrons

toward the anode. The electrons deposited on the anode temporarily reduce

its voltage. The time-dependent voltage change is measured with an oscillo-

scope. Provided the electron gain is not saturated, the area of the voltage

pulse is proportional to the number of Rb+ ions produced by field ionization

at a certain time (field strength).

The MCPs require no special maintenance, only turning off the high volt-

age across MCP when not running experiments and always storing MCPs in

vacuum. One special note on the use of MCPs with SSFI is signal bleaching.
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Figure 2.11: Micro Channel Plate Detector at work. [4]

After an ion creates an electron shower within a microchannel, some relaxation

time is needed before the microchannel walls are fully charged again. Accord-

ingly, the signal gain can be reduced if additional ions strike the same channel

during the relaxation time. In SSFI, especially in cases where large numbers

of ions are created, consecutive batches of ions (representing populations in

different states) can arrive at the MCP within the relaxation time, such that

the latter batch of ions does not receive the same gain as the earlier one, com-

plicating the analysis of population distribution in different Rydberg states,

pre-ionization. Whether the system suffers from bleaching can be checked by

changing the bias voltage across the MCP, which in turn changes the gain of

the MCP and relaxation time, enabling one to determine if the relative sizes

of the signals corresponding to population in two different Rydberg states

remains the same.

2.3.5 Delay Generator

So far, several time sensitive events during the experiment have been intro-

duced: Excitation of Rydberg atoms, Stark shift tuning, ionization, and de-
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Figure 2.12: Ion detection setup in this dissertation, consisting of a pair of
chevron stacked MCPs, a collection plate, and electronics to provide and detect
voltages on those components [5].

tection. All these events are synchronized with a Stanford Research Systems

DG645 delay generator, which is capable of producing 4 independent 0-5V

trigger pulses of variable length and at arbitrary times relative to a master

trigger. The DG645 has a relative temporal resolution of 5ps. In practical

operation the delay generator itself is triggered at 15Hz by frequency divid-

ing a reference pulse train from the 60Hz power line by a factor of four. This

minimizes the impact of 60Hz AC line noise on experiments because the exper-

iments are performed at the same phase of any 60Hz electrical noise. All the

events listed below are triggered by a 4V TTL signal, with their corresponding

detailed timing.

2.4 Vacuum Systems

The coherence inherent within quantum interactions between atoms is a frag-

ile beauty. If exposed to background air molecules travelling at ~500m/s, the

atoms in our experiments along with the coherences stored within/between

them would be lost. To avoid this from happening, an ultra-high vacuum

(UHV) system capable of achieving background pressures as low as 4×10−11torr
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Delay
Generator
Channel

Event Timing Length

AB 0(power grid)+108ns 10µs
EF AOM on/off (excitation

of Rydberg atoms)
A+10,276ns 300ns

GH AWG pulse begin (tun-
ing Stark shift)

F+1,108ns 10µs

CD Ionization (of Rydberg
atoms) / Oscilloscope re-
fresh

C+280-780ns, depend
on AWG pulse length

1.8µs

Table 2.1: Delay generator timing sequence, each letter represents a particular
edge of a pulse, the two letters in one channel (e.g., AB) represent the timing
for rising and falling edge of the pulse respectively.

is employed. The vacuum chamber (Kimball Physics MCF600-SS200408) is

constructed from stainless steel. Flanges containing electrical feedthroughs

and transparent windows for optical access are Conflat (CF), which use stain-

less steel knife edges to cut into copper gaskets to achieve tight seals. To

compliment the ultra-high vacuum chamber, all materials within the vacuum

chamber need to have as low outgassing rate as possible, including stainless

steel, ceramic, Kapton (for insulation of cooper wires within chamber) as well

as very limited use of silver paint. Electrical contacts are achieved with either

metal screws or spot-welds, avoiding the use of soft solder.

To pump down to such a low pressure, a two-stage process is employed.

The whole chamber can be connected to a TiTan 20S ion pump as well as a

turbo pump backed by an oil free mechanical scroll pump. A UHV compatible

valve is employed to allow the turbo pump to be connected/disconnected from

the main chamber without compromising the high vacuum. In the first stage,
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the turbo pump (backed by an oil free mechanical scroll pump) is connected

to the chamber, pumping the chamber from atmosphere pressure down to

~1 × 10−8torr while the whole chamber is baked-out at ~150◦C to release

trapped gaseous molecules within the chamber. When the pressure of the

chamber drops to ~1 × 10−8torr, the voltage across the MCP is gradually

increased to its 2000V operating voltage to push out residual molecules within

the channels. After outgassing the MCP, the valve connecting the chamber

to the turbo pump is shut, and the chamber is allowed to return to room

temperature before the ion pump is turned on. Eventually, with only the

ion pump connected, the vacuum chamber reaches a steady state background

pressure of 4× 10−11torr.

In normal operation, the turbo pump is then fully disconnected from the

vacuum chamber, while the ion pump maintains the high vacuum.

2.4.1 Atom Source

Within the vacuum chamber, 85Rb vapor for the experiments is generated

using alkali metal dispensers (AMD) [59], more commonly referred to as “get-

ters”. Getters are made of an alkali metal chromate (Rb2CrO4) with a reducing

agent, wrapped with a metal casing which has a trapezoidal cross-section with

a slit to allow evaporation of alkali metal vapor. By controlling the current

through the getter casing, the temperature of the reducing agent/chromate

mixture is changed, thus controlling the evaporation rate of Rb atoms from

within. In the experimental setup for this dissertation, 3 getters are spot-

welded together in series, and the ends are then spot welded to two stain-
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less steel clamps attached to ceramic posts. Two Kapton insulated wires are

spot-welded to the stainless steel clamps, feeding current to the getters from

a constant current power supply (HP 6282A) outside the vacuum chamber.

Normal operation current is 1.8-2.3A yielding a typical Rb atom density in

the MOT of 3× 109/cm3- 8× 109/cm3.

2.5 Magneto-Optical Trap (MOT)

To preserve coherence properties between atoms, in addition to keeping air

molecules from hitting them, the atoms themselves also need to be cooled and

trapped. Whereas Doppler free spectroscopy can be employed for experiments

exploring properties of individual atoms, for experiments exploring many-body

interactions between atoms, the configuration of the many body system should

not change much from the beginning of the experiment to the end. That is,

the atoms can move but not so fast that the relative atom separations at the

end of each measurement are markedly different than at the beginning. In the

experiments described in this dissertation, many body systems formed by 85Rb

atoms are observed for up to 15µs. At room temperature, 85Rb atoms move

at an average speed of ~300m/s, which means a typical room temperature
85Rb atom can cover a distance of up to 4.5mm during the experiment, vastly

exceeding the interatomic distance of ~5µm in the experiments. Accordingly,

the strength of the interactions between individual atoms changes dramatically

over time, better described in the context of collisions than controlled few or

many-body physics. Fortunately, ensembles of cold atoms (moving at speeds
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of ~0.1m/s) are relatively easy to produce since the introduction of MOT in

1987 [60]. We use a MOT to create cold 85Rb samples for all of the experiments

described in this dissertation.

2.5.1 Operation Principle

The quantitative details of MOT operation can get complicated very quickly, to

the point that renowned Nobel Laureate in Physics W. Ketterle commented to

his class, “I would actually say nobody fully understands the Magneto-Optical

Trap.” [61]. But qualitatively, the MOT is based on the simple concept of

spatially dependent scattering radiation force: When an atom is off center in

the trap, a scattered radiation restoring force is aimed towards the center.

The first ingredient of a MOT is a scattered radiation force [62, 63], which

in itself can cool down atoms, leading to atom cooling techniques like optical

molasses [64]. In laser beams, the travel direction of photons is well defined.

When the energy of the photons in the beam is near resonant with an atomic

transition, the atom can absorb the photon, and acquire its momentum. The

same atom can then spontaneously emit a photon with the same energy in

a random direction, transitioning back to the original state. After multiple

absorption and emission cycles, the atom receives no net impulse from the

random spontaneous emission events. However, during each absorption the

atom’s velocity changes by hν/Mc in the direction of the cooling laser, where

ν is the frequency of cooling laser, h is Planck’s constant, c is the speed of light

in vacuum, and M is the mass of the atom. If the laser is slightly red detuned

(i.e., below the resonant frequency) in the lab frame, an atom travelling in
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the opposite direction of the light in the cooling laser beam sees the laser

frequency as closer to resonance, due to the Doppler effect. Accordingly, it will

have a higher absorption rate than an atom travelling in the same direction as

the laser light. By employing red detuned cooling lasers from all directions,

atoms experience a significant damping force that opposes their motion in any

direction.

While the radiation force provides cooling, it does not provide trapping.

For trapping, a spatially dependent, rather than velocity dependent, scattering

radiation force is needed. This is achieved using a spatially varying magnetic

field. Through the Zeeman effect, the energy and resonant frequencies of atoms

in the trap are position dependent. Therefore, the photon absorption rate, and

average scattering force, is position dependent.

To understand the basic restoring force of the MOT, consider a 1D trap

with a linearly varying magnetic field B(z) = γz where γ is a constant. For

simplicity, we assume spinless atoms with a lower S state and a upper P state

(ml = 0,±1). The resonance frequency of the S to P transition depends on z

and the magnetic quantum number ml of the P state. The energy detuning

from the center of the trap at z = 0 can be written: ∆E = µmlγz, where

µ is the magnetic moment of P state. Again, utilizing a red-detuned laser,

the transition from S to P (ml = 1) is closer to resonance at z < 0 while S

to P (ml = −1) is closer to resonance at z > 0. Accordingly, if one adjusts

the polarization of the incoming red-detuned laser light so that σ+ polarized

light travels along the +z direction while σ− polarized light travels along the

−z direction, then through the same photon scattering arguments presented
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Figure 2.13: Energy diagram of one-dimensional MOT [5].

for atom cooling, any atoms with z < 0 will absorb more light from the σ+

beam while those located at z > 0 will absorb more light from the σ− beam.

Thus, all atoms are simultaneously cooled and pushed toward the center of

the trap at z = 0. For 85Rb atoms, the lifetime of the 5p state is only 30ns,

so atoms that are excited rapidly de-excite to 5s state and are again subject

to the trapping forces. To extend the concept to three-dimensions, a pair of

anti-Helmholtz coils is employed to provide a linear varying magnetic field in

all three dimensions near the center of the coils, and counter propagating pairs

of beams along three perpendicular axes with correctly tuned polarizations are

needed to work in conjunction with the 3D magnetic field. It should be further

noted that the MOT can actually cool atoms below the Doppler limit, thanks

to the hyperfine structure of the atoms, but the details are not important to

the experiments so they are not discussed here [65].
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2.5.2 Implementation

As discussed previously, the MOT requires a monotonically varying magnetic

field in three dimensions, an atom that acts as a two level system with σ+

and σ− Zeeman transitions, and narrow linewidth continuous wave lasers to

drive those transitions. In our case, a set of anti-Helmholtz coils provides

the requisite magnetic field gradient, with each coil consisting of 114 turns of

polyurethane-nylon coated copper wire wrapped around a water cooled alu-

minum frame. The frames are machined to snugly fit onto the vacuum cham-

ber, creating a pair of anti-Helmholtz coils with a diameter of 18cm and coil

separation of 10cm.

The magnetic field near the center of the anti-Helmholtz coils can be de-

scribed by [66]

Bz(z, ρ) =
∑
n=0

bnBzn ≈ b1z + b3(z
3 − 3zρ2/2), (2.2)

Bρ(z, ρ) =
∑
n=0

bnBρn ≈ −(b1ρ)/2 + b3(−3ρz2/2 + 3ρ2z/8), (2.3)

where b1 =
3µIAR2

(R2+A2)5/2
and b3 =

5(4A2−3R2)
6(R2+A2)2

b1. In our case A=10cm (the distance

between coils) and R=9cm (radius of coils) thus b3 ≪ b1. Therefore, the

magnetic field varies approximately linearly in all directions near the center

of coils at ρ = z = 0. Typical currents of 10A provide an on-axis magnetic

field gradient of ~15Gauss/cm, while the radial magnetic field gradient is half

of that at 7.5Gauss/cm.

To cancel the effect of Earth’s magnetic field and to properly locate the
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MOT in a good position (by redefining the zero magnetic field position) for ion

extraction through electric field plates, 3 pairs of shim coils (featuring windings

with the same helicity in pairs of coils wrapped around dedicated aluminum

frames) are employed to create constant magnetic fields on three orthogonal

axes. The three individual pairs of shim coils have dedicated current supplies

to achieve independent magnetic field compensation in all three dimensions.

The 5s1/2, F = 3 and 5p3/2, F = 4 states of 85Rb atoms are utilized to

realize the approximate 2-level MOT trapping system discussed earlier, as

5s1/2, F = 3 is the only state to which 5p3/2, F = 4 can spontaneously decay.

However, because 5p3/2, F = 4 is very close to the 5p3/2, F = 3 level (only

120MHz away, compared to ~30MHz natural linewidth of 5p3/2 states), the

5p3/2, F = 3 state can be populated as well during the continuous trap laser

pumping. This state, in turn, can spontaneously decay to the 5s1/2, F = 2,

which will not participate in the optical cycling associated with the trap, lead-

ing to atom loss from the trap. Thus, a second “repump” laser is required

to transfer any atoms in the 5s1/2, F = 2 level back to 5p3/2, F = 3, where

they are again trapped. Frequency locking for the trap and repump laser is

based on saturated absorption spectroscopy, and has been discussed previ-

ously. The necessary red-detuning for cooling and trapping is achieved by red

detuning a portion of the laser with AOM by 31MHz, then locking that por-

tion to crossover peak in the absorption spectrum ~60MHz red detuned from

5s1/2, F = 3 to 5p3/2, F = 4 resonance peak for a net red detuning of ~30MHz

from 5s1/2, F = 3 to 5p3/2, F = 4 resonance for the trap laser (compared to

~30MHz natural linewidth of 5p3/2 states). The value of the detuning is a
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compromise between too little trapping force (too much red detuned) and too

little trapping region (too little red detuned) and is a function of trap beam

diameter and intensity (high intensity light dresses the trap states, causing

additional blue (AC Stark) shifts of the transition frequency).

The frequency-locked trap laser beam is expanded by a telescope, consisting

of AR-coated −100mm and +500mm lenses separated by 400mm, producing a

~5×11mm FWHM oval beam. That beam is then split into three orthogonal

retroreflecting beams that cross at the center of the MOT vacuum chamber.

Considering that the output of trap laser is 39mW, the power density of the

trap laser is 30mW/cm2, well beyond the saturation intensity of 3.895mW/cm2

[67] for trap transition. Excess laser power means strong coupling between

the two trap states, modifying the eigenstate energy as a function of laser

power, pushing the system towards the regime of dipole trapping [68]. In a

retroreflecting beam setup, standing waves are created, and in the regime of

dipole trapping, atoms will be pushed towards local intensity maxima, creating

an unwanted pattern in MOT for the experiments in this dissertation. To

avoid this problem, the retroreflecting mirrors are mounted to a chassis which

is suspended from optical table by rubber mounts. Minifans are installed

next to the retroreflecting mirrors causing slight mirror vibrations, that (on

time average) eliminate the standing wave patterns in the trap. Ultimately,

this approach can reduce the stability of the MOT setup, and future work on

eliminating the need for rubber suspension is highly recommended.
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Figure 2.14: Energy diagram of the 5s1/2 and 5p3/2 states of 85Rb [5].

2.5.3 MOT Maintenance

As discussed earlier, the position of the MOT is defined by the laser beams

and the location of the zero in the magnetic field. Because the ion extraction

hole in the electric field plate between the MOT and the detector is small,

the requirement for accurate MOT positioning is high for our particular ex-

perimental setup. To achieve optimal MOT position, the following procedure

is employed. First, an aperture is used to shrink the size of trap laser, bet-

ter defining the propagating direction. Second, paper apertures are placed on

the vacuum chamber windows through which the trap lasers propagate. The

paper apertures are cut to the exact size of the vacuum chamber windows

with a tiny hole cut in the center of the apertures. Third, the trap lasers are

aligned to travel straight through the holes in the center of paper apertures.

In this way, the beam positions, both incoming beam and reflected beam can

be accurately defined to go straight through the center of vacuum chamber.
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Beyond that, tiny adjustments to individual mirrors are still needed, as well

as adjustments on shim coil current to position the magnetic field zero at the

center of the vacuum chamber.

2.5.4 MOT Characterization

A few parameters of the MOT are very important for characterizing and con-

trolling the interactions of the atoms it holds. As discussed in Chapter 1,

the dipole-dipole interaction depends critically on interatomic distance, and

setting the proper electric field is crucial for controlling resonant dipole-dipole

interactions. Thus, MOT density, size and temperature, electric field inhomo-

geneity within the MOT, and the MOT electric field’s relation to the applied

voltage across electric field plates, are all crucial parameters.

A calibrated CCD camera (Ganz FC-06A) is used to measure the size

and density of the MOT on a daily basis. Calibrating the size of MOT is

straightforward, because the distance between the field plates is well defined

at 1.00cm and both plates can be clearly imaged on the CCD. At the current

camera position, the distance between the plates is 188 pixels(Lines), thus the

size of the MOT can be determined by counting pixels(Lines) on CCD readout

using a calibration factor of 53µm/pixel(Line).

The density of the MOT can be inferred from the fluorescence power emit-

ted from the MOT. Given the high power density of the trapping laser, the

MOT transition is well saturated. Accordingly, an atom within the MOT

spends half of its time in the upper 5p state. Thus, on average, each atom

emits a photon every two natural lifetimes, radiating a fluorescence power
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per atom Patom = hc
2τλ

= 4.7pW. Averaged over all of the atoms and atom

orientations in the MOT, the emitted radiation is isotropic, and the power

captured by the CCD is determined by the solid angle it captures. In turn,

that solid angle is determined by the camera aperture size (2.0cm diame-

ter) and its distance from MOT (16cm), thus the optical power incident

on the CCD can be related to the number of atoms within MOT (N) by

PCCD = N · Patom
πR2

aperture

4πd2MOT−CCD
= N · 4.5× 10−15W.

So, the remaining factor needed to determine the number of atoms in the

MOT is the relationship between the brightness of the MOT image (and the

corresponding readout voltage) and the fluorescence power incident on the

CCD. Unfortunately, the fluorescence from MOT is too weak to be accurately

measured using our power meter. Thus, as an alternative, an attenuated

780nm laser beam is directed onto the CCD and the corresponding readout

voltage is recorded. A known attenuation is then removed and the power

of the brighter beam is measured directly by a calibrated power meter. With

this, the relation between incident 780nm optical power and CCD brightness is

determined. For the most recent calibration, the power in the less attenuated

laser beam is measured to be 10.5µW, while the additional attenuation used

for the CCD is found to reduce the transmission to only 0.6% of the incident

power. This results in an incident power to the CCD of 62nW. Integrating the

CCD readout voltage response associated with the laser beam over the beam

profile then provided a calibration factor of 28.74mV·mm2/nW. Combining

the power calibration with the relationship between atom number and power

received by CCD, the measured MOT image brightness on the CCD, and
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the size of the MOT image, the number of atoms within the MOT can be

measured. The MOT density can then be inferred by assuming a 3D Gaussian

atom distribution with the measured FWHM.

The temperature of the MOT has been determined by temporarily shutting

off the MOT trapping potential, switching off the trap and repump lasers using

a combination of Pockels cells and polarizers, and measuring the expansion of

the atoms as a function of time. A temperature measurement for our MOT,

performed under conditions very similar to those used for the experiments

described here, was performed by a former student, Kutteruf, as discussed in

more detail in her dissertation [5]. At that time, the temperature of MOT was

measured to be 70µK, and quite insensitive to the trapping and repump laser

power, alignment, detuning, and Rb getter current.

The relation between the electric field in the MOT and the voltages applied

to the electric field plates were calibrated by measuring Rydberg Stark shifts

for different applied voltages. The energy difference between the 32p3/2,mj =

3/2 and 32p3/2,mj = 1/2 as a function of electric field can be accurately

calculated using a program developed by Richards based on the method of

Zimmerman et al. [69]. Experimentally, the same energy difference can be

measured as a function of the voltage applied across the electric field gener-

ation plates. State-selective field ionization is used to measure the excitation

probability in the two different levels as the frequency of the blue Rydberg

excitation laser is scanned over the 5p3/2 to 32p3/2 resonance as a function

of applied static voltage, and the frequency difference between the excitation

maxima to the two states is determined. As mentioned previously, the blue
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laser is frequency locked to a tunable F-P cavity, the resonance frequency of

which is controlled by varying the voltage across a piezoelectric actuator which

changes the length of the cavity, with the cavity resonance frequency varying

at 361.7MHz/V.

The measured splitting vs. applied voltage to the MOT field plates is fit

to the calculated field dependent splitting, to calibrate the relation between

applied voltage and electric field in the MOT. The calibration is found to

be F = 0.92Vplate/cm−0.09V/cm with Vplate being the voltage across electric

field generation plates, and positive electric field defined as the direction from

the MOT towards the MCP. Note that this calibration includes the effects

of any stray fields, e.g., due to imperfect shielding of the HV connections to

the MCP detector. The field offset(0.00V/cm), which indicates negligible field

component parallel to the plane of the field plates, and residual (0.09V/cm)

field perpendicular to the plane of the plates, demonstrates that the field plates

provide a significant improvement on shielding compared to previous field rod

designs, which had a 2.8V/cm offset and 1.5V/cm residual field. It should also

be noted that the measured relation is perfectly consistent with finite element

simulated value of F = 0.92Vplate/cm.

The field inhomogeneity within the MOT can be determined by measur-

ing the voltage required to enable 32p3/2, |mj| = 3/2 + 32p3/2, |mj| = 3/2 to

32s1/2 + 33s1/2 resonant energy transfer (discussed in more detail in chapters

3 and 4) when the blue laser is positioned to excite the Rydberg atoms at

different positions within the MOT. Given that the Rydberg atom excitation

region defined by blue laser beam (FWHM ~34µm) is much smaller than the
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Figure 2.15: Frequency splitting between the 32p3/2,mj = 3/2 and
32p3/2,mj = 1/2 resonances as a function of applied electric field. The solid
line is the calculated value while the dots are measured values using the best
fit applied voltage to electric field calibration. Note that the excitation prob-
ability approaches zero with decreasing electric field, leading to increased un-
certainties in the measured splitting.
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diameter of the MOT (FWHM ~0.5mm), the local electric field at different

locations within the MOT can be measured using slight adjustments of the

position of the blue laser. After the resonance voltage at the center of the

MOT is measured, the blue laser beam is moved from the center of the MOT

(where the maximum number of Rydberg atoms are produced) towards the

front, back, top, and bottom of the MOT (in sequence) until the Rydberg

excitation drops to half of what was recorded at the center, suggesting the

beam has been relocated to (roughly) the HWHM (0.25mm) of the atom dis-

tribution. The energy transfer resonance voltage is then measured at those

four positions. The inhomogeneity of the electric field is then calibrated by

comparing the resonance voltages for those five points. The resonance voltage

is determined to be 12.466V/12.453V/12.480V/12.446V/12.480V at the cen-

ter/front/back/top/bottom positions, respectively, indicating a field inhomo-

geneity of 0.05V/cm/mm horizontally and 0.06V/cm/mm vertically in a nom-

inal resonant field of 11.40V/cm (0.44%/mm horizontally and 0.55%/mm ver-

tically, compared to the FEA values of 0.75%/mm horizontally and 0.55%/mm

vertically). While the electric field inhomogeneity along the direction of blue

laser beam could not be measured, due to the symmetry of the field plates,

variations in that dimension are expected to be small. Finite element analysis

predicts a field inhomogeneity of 0.37%/mm in that dimension.

During experiment, the blue laser beam is first expanded to ~40mm diam-

eter before being focused in the center of the MOT, using a 300mm lens to

achieve a focusing size as small as 42.3µm vertically and 26.6µm horizontally

FWHM (measured with Thorlabs BC106N-VIS beam profiler). Combining
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Figure 2.16: Probability of 32p3/2, |mj| = 3/2 + 32p3/2, |mj| = 3/2 to 32s1/2 +
33s1/2 resonant energy transfer as a function of applied voltage at different
Rydberg excitation positions within the MOT. The variation in resonance
position is used to determine the field inhomogeneity in the MOT.

this with the field inhomogeneity measurement, the field inhomogeneity within

the excited Rydberg atom volume is estimated to be 2.6mV/cm vertically and

1.3mV/cm horizontally. Compared to the relevant resonant dipole-dipole tun-

ing electric field of ~11.5V/cm, the field inhomogeneity within excited Rydberg

atom ensemble is ~0.03%. This is a significant improvement over past exper-

imental geometries, and its effect on the experimental results is negligible

compared to other measurement uncertainties and imperfections.

2.6 Data Collection

All of the experimental data were acquired using a LabView program originally

written by White and then heavily modified by Zhou and Richards, all former
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students. The program is capable of controlling the delay of a particular chan-

nel of the DG645 delay generator, sending event trigger pulses to the AWG510

Arbitrary Waveform Generator, reading the temperature and voltage on the

F-P cavity, collecting waveforms from two oscilloscopes (monitoring Rydberg

SSFI signal and MOT fluorescence), plus many more functions which are not

used for the experiments described in this dissertation. The waveforms from

the oscilloscopes can also be gated and integrated in the program for ease of

data analysis afterwards. Full Rydberg TOF traces are also saved to accom-

modate more customized data analysis after completion of the experiments.
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Chapter 3

Modeling a Dipole-dipole

Coupled Rydberg Atom Gas

A Rydberg atom gas subject to dipole-dipole interactions can be extremely

complex. An ensemble of N initial 32p3/2, |mj| = 3/2 (referred simply as p in

chapters 3-5 unless mj is specified) atoms pairs subject to resonant pp to 32s33s

(32s referred simply as s, 33s referred as s′ in chapters 3-5) dipole-dipole

interactions, can evolve into a coherent superposition of O(N !) quantum states

(hence the tremendous capabilities of quantum computer/simulator), requiring

an O(N !) × O(N !) Hamiltonian to describe. The experiments discussed in

this dissertation involve ~5000 Rydberg atoms, rendering complete simulations

- including all states and interactions within Rydberg atom gas ensemble -

impossible with current computing technologies.

Fortunately, approximations can be made to simulate a fully interacting
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Rydberg gas with reasonable accuracy. Since the dipole-dipole interaction

strength for a pair of Rydberg atoms scales as R−3 (where R is the interatomic

distance), the coupling between nearest neighboring Rydberg atoms can inhibit

interactions involving beyond nearest neighbors [70, 71]. Specifically, a strong

resonant dipole-dipole coupling between nearest neighbors shifts the eigenen-

ergies of the atom pair, by ±Vnearest, so the dipole-dipole coupling between

either atom in the pair and its more distant neighbors is non-resonant, with

an effective detuning of ±Vnearest. Accordingly, the coupling to the more dis-

tant atoms takes the form of a second order van der Waals interaction with an

associated energy shift on the order of
∣∣∣ V 2

R

Vnearest

∣∣∣, where VR is the dipole-dipole

interaction strength between an atom in the initial pair and another atom at

a distance R away, which scales as R−3. In a ensemble of uniform density, the

probability of finding an atom R away from the central atom scales as 4πR2,

thus the average energy shift of the Rydberg electron on either of the central

atoms, by the atoms in the ensemble at a larger distance R away, scales as

4πR2
∣∣∣ V 2

R

Vnearest

∣∣∣ ∝ R2
∣∣∣ R−6

Vnearest

∣∣∣ ∝ R−4. Therefore, the total energy shift on a cen-

tral Rydberg atom, due to distant atoms, scales as
∫∞
R

R−4dR ∝ R−3. Thus,

the effects of far away atoms on the central atoms can be reasonably neglected.

Hence, the behavior of the Rydberg atom gas can be approximated with rea-

sonable accuracy by only considering interactions between an atom and a few

of its closest neighbors. The simplest approximation only includes interac-

tions between nearest neighbors. To improve on this simplest model, this

chapter also describes an approach that breaks up the ensemble into groups

of four, rather than two, fully interacting atoms. Both simulation strategies
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Figure 3.1: Rydberg gas ensemble, broken into groups of two atoms or four
atoms.

will be discussed in this chapter and various results of the two models will

be compared. This dissertation does not include models that include larger

groups of atoms, due to limited computation capabilities. Previous studies of

dipole-dipole resonant energy transfer processes have shown that the results of

simulations based on ensembles of more than four atoms closely match those

calculations involving only four atoms [30]. However, as discussed in chapter

5, this is not the case for off resonant energy transfer processes.

3.1 Tuning the Resonance of Dipole-dipole

Interaction

To facilitate resonant energy transfer between a pair of atoms, the energy of pp

and ss′ or s′s (for simplicity we refer to both ss′ and s′s as ss′ in the following

chapters when referencing only their energy rather than quantum states) must

be closely matched. In experiments, the energy detuning between ss′ and

pp can be varied by exploiting the different Stark shifts of the p, s and s′

single atom states as a function of applied electric field. A plot of the Rb
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energy levels as a function of external electric field (i.e., a “Stark map”) can

be calculated numerically. We have used a code developed by Richards based

of the method of Zimmerman et al. [69]. Comparing the total energy of a pair

of isolated p atoms with the total energy of an s + s′ atom pair, one obtains

the Stark map for pp and ss′ (see Figures 3.2 and 3.3). It is important to note

that the dipole field due to one atom at the location of the other is generally

not parallel to the externally applied electric field, so the projection of total

electronic orbital angular momentum along the external electric field axis is

not conserved, and ss′ pairs, with total angular momentum projection on the

external field axis |mJ | = 0, 1, can evolve into states with |m′
J | = 0, 1, 2 such

as pp(mj = +3/2,mj = +1/2), pp(mj = −1/2,mj = −1/2) etc. The impact

of those additional configurations of those states on resonant energy transfer

will be discussed later. As shown in Figures 3.2 and 3.3, the bare pp and

ss′ energy curves intersect at 11.49V/cm, identifying a resonance electric field

of 11.49V/cm for the pp + ss′ interaction. Because the Stark shift of the pp

and ss′ states is linear very near resonance (over a field range of ±0.5V/cm

for the scope of this dissertation), the energy separation between ss′ and pp

(which gives the detuning from the resonance condition), can be approximated

as δ(F ) = 170 ∗ (F − Fres)MHz · V−1 · cm, where F is the externally applied

electric field strength, and Fres is the resonance electric field for the pp + ss′

interaction. Accordingly, the energy splitting between the pp and ss′ states

can be tuned, varying linearly with the external electric field.

In the experiments, voltages applied across the two electric field plates pro-

vide the appropriate time-dependent tuning electric fields. We find that when
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Figure 3.2: Stark map of 32p3/2, |mj| = 3/2 (denoted p - black solid),
32p3/2, |mj| = 1/2 (black dash), 32s(denoted s - blue) and 33s(denoted s′

- yellow) single atom states in 85Rb, relative to the ionization potential.

the back field plate (furthest from the MCP detector) is held at 12.93V, the

atoms are tuned to resonance when the front plate (nearest to the MCP detec-

tor) is grounded. According to the field calibration, the measured resonance

field is 11.83V/cm, slightly different from the predicted value of 11.49V/cm.

The front field plate is connected to the output of an arbitrary waveform

generator (AWG) enabling fast (2ns) changes in the applied electric field of

~±0.5V/cm about the resonance, to facilitate fast detuning changes.

3.2 Interacting Pair of Rydberg Atoms

Subject to Electric Field

Consider a pair of Rydberg atoms, each containing one nucleus (or ion core

for non-hydrogenic Rydberg atoms) and one electron. For atom separations
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Figure 3.3: Stark map of pp(|mj| = 3/2, |mj| = 3/2)(blue solid), pp(|mj| =
3/2, |mj| = 1/2)(blue dash), pp(|mj| = 1/2, |mj| = 1/2) (blue dot) and ss′

(yellow) non-interacting pair energies, relative to the pp(|mj| = 3/2, |mj| =
3/2) to ss′ energy transfer resonance which occurs in an electric field of ~11.5
V/cm.
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much greater than the spatial extent of the relevant electronic states of either

atom, the lowest order term in the neutral atom-atom multipole coupling is

dipole-dipole. The dipole-dipole interaction between two atoms is [27]

VDD =
−→r1 · −→r2
R3

− 3(−→r1 ·
−→
R)(−→r2 ·

−→
R)

R5
, (3.1)

where −→r1,−→r2 are the positions of electrons 1 and 2 relative to the ion core of

atoms 1 and 2, respectively, and −→
R is the position of ion core 2 relative to 1.

We define ẑ as the direction of the external field, and expand this equation

with −→r1 = (x1, y1, z1),
−→r2 = (x2, y2, z2) and −→

R = (x3, y3, z3). The interatomic

distance is
∣∣∣−→R∣∣∣ =

√
x2
3 + y23 + z23 while the direction of interatomic vector

can be defined using θ = arctan
√

x2
3+y23
z3

and ϕ = arctan y3
x3

. Here, θ is the

angle between the internuclear and ẑ axes. For two atoms, our results must

be independent of the azimuthal angle ϕ (representing rotations about the

internuclear axis), but this will not be the case for ensembles with more than

two atoms). We now have

VDD =
1

R3

[
(x1x2 + y1y2 + z1z2)− 3(x1sinθcosϕ+ y1sinθsinϕ+ z1cosθ)

· (x2sinθcosϕ+ y2sinθsinϕ+ z2cosθ)
]
.

(3.2)

Due to the substantial mass of the ions, and their relatively large sepa-

ration, −→R is treated as a classical parameter. However, the positions of the

electrons, x1, y1, z1, x2, y2, z2 are described by quantum mechanical operators

that need to be integrated over the distributions of the relevant atomic orbitals.
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Figure 3.4: Dipole-dipole interaction between a pair of Rydberg atoms subject
to an electric field, E⃗ = Eẑ.

To exploit the symmetry of the atomic orbitals, and thus ease the computa-

tion, the x̂, ŷ, ẑ operators can be written in terms of spherical tensor operators

[72, 73], where x̂ = r̂√
2

(
C

(1)
−1 − C

(1)
1

)
, ŷ = ir̂√

2

(
C

(1)
−1 + C

(1)
1

)
, ẑ = r̂C

(1)
0 , and r̂

is the radial operator. Therefore

VDD =
r̂r̂

R3

[
C

(1)
1 C

(1)
1

(
−3

2
sin2θ(cos2ϕ− isin2ϕ)

)
+

3

2
√
2

(
C

(1)
1 C

(1)
0 + C

(1)
0 C

(1)
1

)
sin2θ(cosϕ− isinϕ)

+ C
(1)
0 C

(1)
0 (1− 3cos2θ)

+
(
C

(1)
1 C

(1)
−1 + C

(1)
−1C

(1)
1

)(3

2
sin2θ − 1

)
+

3

2
√
2

(
C

(1)
−1C

(1)
0 + C

(1)
0 C

(1)
−1

)
sin2θ(−cosϕ− isinϕ)

+ C
(1)
−1C

(1)
−1

(
−3

2
sin2θ(cos2ϕ+ isin2ϕ)

)]
,

(3.3)

where, in each product of two operators, the first operator always acts on the
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first atom and the second operator always acts on the second atom. Notably,

the projection of total electronic angular momentum along the ẑ axis, mJ , is

not conserved in the presence of both the static field and VDD. VDD couples

states in which mJ changes by 0, ±1, or ±2.

Finally, we must include all the energetically accessible quantum states

that may be relevant to the dynamics over the ~1µs time scales of interest. In

a resonant or near resonant field, a pair of pp(|mj| = 3/2, |mj| = 3/2) atoms

can evolve into ss′(|mj| = 1/2, |mj| = 1/2). However, in principle, ss′ can

then evolve into pp(|mj| = 1/2, |mj| = 1/2), or pp(|mj| = 3/2, |mj| = 1/2),

etc. From there the pair can continue to evolve into other pp, ss′ states with

different mj values, resulting in a total of 24 interacting states.

Fortunately, for a given electric field, some states are only weakly cou-

pled to the others, due to their large energy detuning and, therefore can be

eliminated from consideration over ~1µs evolutionary timescales. The energy

difference between the p(|mj| = 3/2) and p(|mj| = 1/2) states, in an elec-

tric field near the pp to ss′ resonance, is ~140MHz (see Figure 3.2), while

the average dipole-dipole interaction strength under the experimental con-

ditions in this dissertation (Rydberg atom densities of ≤ 3 × 109/cm3) is

≤10MHz. Therefore, coupling to atom pairs pp(|mj| = 3/2, |mj| = 1/2) or

pp(|mj| = 1/2, |mj| = 1/2) can be neglected for pairs of atoms initially excited

to pp(|mj| = 3/2, |mj| = 3/2). Accordingly, for pairs of atoms starting from

pp(mj = +3/2,mj = +3/2), only three states, pp(mj = +3/2,mj = +3/2),

ss′(mj = +1/2,mj = +1/2) and s′s(mj = +1/2,mj = +1/2), need to

be considered to accurately simulate the system dynamics of a single atom

73



pair. The states that need to be considered for pairs of atoms starting from

pp(mj = −3/2,mj = −3/2) or pp(mj = ±3/2,mj = ∓3/2) are similarly lim-

ited. To simplify notation, mj=+3/2(in case of p) or +1/2(in case of s or s′)

will simply be written as +, while mj=−3/2 or −1/2 will be denoted as −.

Within the restricted basis approximation, the system separates in to four

independent three level problems, for the four possible mj combinations in

the initial state: pp(++) evolving into ss′(++) + s′s(++), pp(−−) evolving

into ss′(−−) + s′s(−−), and pp(+−)/(−+) evolving into ss′(+−)/(−+) +

s′s(+−)/(−+).

There are three corresponding interaction matrix elements:

⟨pp(++)|VDD|ss′(++)⟩ = ⟨p|r̂|s⟩ ⟨p|r̂|s′⟩
3R3

(
−3

2
sin2θ(cos2ϕ− isin2ϕ)

)
(3.4)

(denoted VRT1),

⟨pp(−−)|VDD|ss′(−−)⟩ = ⟨p|r̂|s⟩ ⟨p|r̂|s′⟩
3R3

(
−3

2
sin2θ(cos2ϕ+ isin2ϕ)

)
(3.5)

(denoted V ∗
RT1),

⟨pp(±∓)|VDD|ss′(±∓)⟩ = ⟨p|r̂|s⟩ ⟨p|r̂|s′⟩
3R3

(
−1 +

3

2
sin2θ

)
(3.6)

(denoted VRT0).

Using a radial matrix element calculator developed by Richards [74], we find

⟨p|r̂|s⟩=964 and ⟨p|r̂|s′⟩=941, respectively. With an energy detuning E be-

74



tween pp and ss′, the four relevant Hamiltonians are:

H2atom,1 =


0 VRT1 VRT1

V ∗
RT1 E 0

V ∗
RT1 0 E

 , (3.7)

where the basis states are pp(++), ss′(++) and s′s(++),

H2atom,-1 =


0 V ∗

RT1 V ∗
RT1

VRT1 E 0

VRT1 0 E

 , (3.8)

where the basis states are pp(−−), ss′(−−) and s′s(−−), and

H2atom,0 =


0 VRT0 VRT0

VRT0 E 0

VRT0 0 E

 , (3.9)

where the basis states are pp(±∓), ss′(±∓) and s′s(±∓). The subscripts

+1, −1, and 0 label the sign of the projection of total electronic angular

momentum on the ẑ axis. The angle-dependent on-resonance energies of the

four pair eigenstates, in the reduced basis, are shown in Figure 3.5. Results of

diagonalization of the full 24 state Hamiltonian are shown in Figure 3.5. The

good agreement between the full and reduced basis calculations shows that

the latter is a reasonable approximation to the full problem.

In simulations where only the total population in p, s, and s′ is of interest,
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Figure 3.5: On resonance eigenenergy of H2atom,1 (blue), H2atom,0 (yellow) and
Hamiltonian considering all possible mj values of pp, ss′ (black) as a function
of θ at average atom separation at 3×109/cm3 Rydberg atom density. Note the
eigenenergies of the simplified Hamiltonians H2atom,1 and H2atom,0 only differ
slightly from the full Hamiltonian, suggesting the simplification is reasonable,
especially for short evolution times.

76



the systems described by H2atom,1 and H2atom,-1 behave identically, as their only

difference is the direction of phase evolution. In addition, the +− and −+

configurations described by H2atom,0 evolve identically. Thus, in simulations,

the random mj signs of the initial p states is taken into account by allocating

50% probability each to H2atom,1 and H2atom,0 when simulating the evolution

of pairs of atoms in an ensemble. These simulations typically involve the evo-

lution of ~10,000 independent pairs of atoms at random interatomic distances

and orientations of the internuclear axis relative to ẑ (as discussed in more

detail later).

The total population in p states normalized to the total Rydberg population

can be retrieved at anytime during the simulation by computing the squared

norm of the amplitude in first basis state, with the rest of the population split

evenly between s and s′.

3.3 Ensemble of Four Rydberg Atoms

Subject to an Electric Field

Beyond resonant energy transfer process, dipole-dipole interactions can also

facilitate exchange or “excitation hopping” in a Rydberg atom gas, through

ps to sp and ps′ to s′p couplings. [5, 30, 31, 33, 70, 71, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87] To evaluate the effect of excitation hopping on

an ensemble initially excited to pp, one must consider more than two atoms

and beyond nearest neighbor interactions. Thus, we also consider ensembles

of four atoms to evaluate the effects of hopping.
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To simulate hopping, additional dipole-dipole interactions need to be con-

sidered:

⟨ps(±±)|VDD|sp(±±)⟩ = −⟨p|r̂|s⟩ ⟨s|r̂|p⟩
3R3

(
−1 +

3

2
sin2θ

)
(3.10)

(denoted Vsp0),

⟨ps′(±±)|VDD|s′p(±±)⟩ = −⟨p|r̂|s′⟩ ⟨s′|r̂|p⟩
3R3

(
−1 +

3

2
sin2θ

)
(3.11)

(denoted Vs′p0),

⟨ps(+−)|VDD|sp(+−)⟩ = ⟨p|r̂|s⟩ ⟨s|r̂|p⟩
3R3

(
3

2
sin2θ(cos2ϕ− isin2ϕ)

)
(3.12)

(denoted Vsp1),

⟨ps′(+−)|VDD|s′p(+−)⟩ = ⟨p|r̂|s′⟩ ⟨s′|r̂|p⟩
3R3

(
3

2
sin2θ(cos2ϕ− isin2ϕ)

)
(3.13)

(denoted Vs′p1),

⟨ps(−+)|VDD|sp(−+)⟩ = ⟨p|r̂|s⟩ ⟨s|r̂|p⟩
3R3

(
3

2
sin2θ(cos2ϕ+ isin2ϕ)

)
(3.14)

(denoted V ∗
sp1),

⟨ps′(−+)|VDD|s′p(−+)⟩ = ⟨p|r̂|s′⟩ ⟨s′|r̂|p⟩
3R3

(
3

2
sin2θ(cos2ϕ+ isin2ϕ)

)
(3.15)

(denoted V ∗
s′p1).
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Three Hamiltonians are needed to describe the scenarios corresponding to

different combinations of signs of mj for the respective atoms in the initial

state.

H4atom,2 =



0 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 0 0 0 0 0 0

V ∗
RT1 E 0 Vs′p0 0 Vs′p0 0 0 Vsp0 0 Vsp0 0 0 0 VRT1 VRT1 0 0 0

V ∗
RT1 0 E 0 Vsp0 0 Vsp0 Vs′p0 0 Vs′p0 0 0 0 0 0 0 VRT1 VRT1 0

V ∗
RT1 Vs′p0 0 E 0 Vs′p0 0 Vsp0 0 0 0 0 Vsp0 VRT1 0 VRT1 0 0 0

V ∗
RT1 0 Vsp0 0 E 0 Vsp0 0 Vs′p0 0 0 Vs′p0 0 0 0 0 VRT1 0 VRT1

V ∗
RT1 Vs′p0 0 Vs′p0 0 E 0 0 0 Vsp0 0 Vsp0 0 VRT1 VRT1 0 0 0 0

V ∗
RT1 0 Vsp0 0 Vsp0 0 E 0 0 0 Vs′p0 0 Vs′p0 0 0 0 0 VRT1 VRT1

V ∗
RT1 0 Vs′p0 Vsp0 0 0 0 E 0 Vs′p0 0 0 Vsp0 VRT1 0 0 0 VRT1 0

V ∗
RT1 Vsp0 0 0 Vs′p0 0 0 0 E 0 Vsp0 Vs′p0 0 0 VRT1 0 0 0 VRT1

V ∗
RT1 0 Vs′p0 0 0 Vsp0 0 Vs′p0 0 E 0 Vsp0 0 VRT1 0 0 VRT1 0 0

V ∗
RT1 Vsp0 0 0 0 0 Vs′p0 0 Vsp0 0 E 0 Vs′p0 0 0 VRT1 0 0 VRT1

V ∗
RT1 0 0 0 Vs′p0 Vsp0 0 0 Vs′p0 Vsp0 0 E 0 0 VRT1 0 VRT1 0 0

V ∗
RT1 0 0 Vsp0 0 0 Vs′p0 Vsp0 0 0 Vs′p0 0 E 0 0 VRT1 0 VRT1 0

0 0 0 V ∗
RT1 0 V ∗

RT1 0 V ∗
RT1 0 V ∗

RT1 0 0 0 2E 0 0 0 0 0

0 V ∗
RT1 0 0 0 V ∗

RT1 0 0 V ∗
RT1 0 0 V ∗

RT1 0 0 2E 0 0 0 0

0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 0 0 V ∗
RT1 0 V ∗

RT1 0 0 2E 0 0 0

0 0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 2E 0 0

0 0 V ∗
RT1 0 0 0 V ∗

RT1 V ∗
RT1 0 0 0 0 V ∗

RT1 0 0 0 0 2E 0

0 0 0 0 V ∗
RT1 0 V ∗

RT1 0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 0 0 0 2E


(3.16)

simulates the scenario where all p atoms start from the same mj state (pppp(++

++) or pppp(−−−−)). The Hamiltonian for pppp(++++) is shown here, and

the corresponding basis states (with states of mj always being + + ++) are

pppp, ss′pp, s′spp, sps′p, s′psp, spps′, s′pps, pss′p, ps′sp, psps′, ps′ps, ppss′,

pps′s, sss′s′, ss′ss′, ss′s′s, s′sss′, s′ss′s, s′s′ss. All the interaction strengths

V are functions of the internuclear vector between the two atoms involved,
−−→
Rab = (Rab, θab, ϕab).
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H4atom,1 =



0 VRT0 VRT0 VRT0 VRT0 VRT0 VRT0 VRT1 VRT1 VRT1 VRT1 VRT1 VRT1 0 0 0 0 0 0

VRT0 E 0 Vs′p0 0 Vs′p0 0 0 Vsp1 0 Vsp1 0 0 0 VRT1 VRT1 0 0 0

VRT0 0 E 0 Vsp0 0 Vsp0 Vs′p1 0 Vs′p1 0 0 0 0 0 0 VRT1 VRT1 0

VRT0 Vs′p0 0 E 0 Vs′p0 0 Vsp1 0 0 0 0 Vsp1 VRT1 0 VRT1 0 0 0

VRT0 0 Vsp0 0 E 0 Vsp0 0 Vs′p1 0 0 Vs′p1 0 0 0 0 VRT1 0 VRT1

VRT0 Vs′p0 0 Vs′p0 0 E 0 0 0 Vsp1 0 Vsp1 0 VRT1 VRT1 0 0 0 0

VRT0 0 Vsp0 0 Vsp0 0 E 0 0 0 Vs′p1 0 Vs′p1 0 0 0 0 VRT1 VRT1

V ∗
RT1 0 V ∗

s′p1 V ∗
sp1 0 0 0 E 0 Vs′p0 0 0 Vsp0 VRT0 0 0 0 VRT0 0

V ∗
RT1 V ∗

sp1 0 0 V ∗
s′p1 0 0 0 E 0 Vsp0 Vs′p0 0 0 VRT0 0 0 0 VRT0

V ∗
RT1 0 V ∗

s′p1 0 0 V ∗
sp1 0 Vs′p0 0 E 0 Vsp0 0 VRT0 0 0 VRT0 0 0

V ∗
RT1 V ∗

sp1 0 0 0 0 V ∗
s′p1 0 Vsp0 0 E 0 Vs′p0 0 0 VRT0 0 0 VRT0

V ∗
RT1 0 0 0 V ∗

s′p1 V ∗
sp1 0 0 Vs′p0 Vsp0 0 E 0 0 VRT0 0 VRT0 0 0

V ∗
RT1 0 0 V ∗

sp1 0 0 V ∗
s′p1 Vsp0 0 0 Vs′p0 0 E 0 0 VRT0 0 VRT0 0

0 0 0 V ∗
RT1 0 V ∗

RT1 0 VRT0 0 VRT0 0 0 0 2E 0 0 0 0 0

0 V ∗
RT1 0 0 0 V ∗

RT1 0 0 VRT0 0 0 VRT0 0 0 2E 0 0 0 0

0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 0 0 VRT0 0 VRT0 0 0 2E 0 0 0

0 0 V ∗
RT1 0 V ∗

RT1 0 0 0 0 VRT0 0 VRT0 0 0 0 0 2E 0 0

0 0 V ∗
RT1 0 0 0 V ∗

RT1 VRT0 0 0 0 0 VRT0 0 0 0 0 2E 0

0 0 0 0 V ∗
RT1 0 V ∗

RT1 0 VRT0 0 VRT0 0 0 0 0 0 0 0 2E


(3.17)

simulates the scenario where one p atom starts from a state with a different

sign of mj than the rest. The Hamiltonian for pppp(− + ++) is shown here,

and the basis states remain the same as for the previous Hamiltonian except

all the states of mj are now − + ++. Additionally, because each of the four

atoms can be randomly chosen as atom 1, only considering the case where

atom 1 is in a different mj state is sufficient for simulations.
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H4atom,0 =



0 V ∗
RT1 V ∗

RT1 VRT0 VRT0 VRT0 VRT0 VRT0 VRT0 VRT0 VRT0 VRT1 VRT1 0 0 0 0 0 0

VRT1 E 0 Vs′p1 0 Vs′p1 0 0 Vsp1 0 Vsp1 0 0 0 VRT1 VRT1 0 0 0

VRT1 0 E 0 Vsp1 0 Vsp1 Vs′p1 0 Vs′p1 0 0 0 0 0 0 VRT1 VRT1 0

VRT0 V ∗
s′p1 0 E 0 Vs′p0 0 Vsp0 0 0 0 0 Vsp1 VRT0 0 VRT0 0 0 0

VRT0 0 V ∗
sp1 0 E 0 Vsp0 0 Vs′p0 0 0 Vs′p1 0 0 0 0 VRT0 0 VRT0

VRT0 V ∗
s′p1 0 Vs′p0 0 E 0 0 0 Vsp0 0 Vsp1 0 VRT0 VRT0 0 0 0 0

VRT0 0 V ∗
sp1 0 Vsp0 0 E 0 0 0 Vs′p0 0 Vs′p1 0 0 0 0 VRT0 VRT0

VRT0 0 V ∗
s′p1 Vsp0 0 0 0 E 0 Vs′p0 0 0 Vsp1 VRT0 0 0 0 VRT0 0

VRT0 V ∗
sp1 0 0 Vs′p0 0 0 0 E 0 Vsp0 Vs′p1 0 0 VRT0 0 0 0 VRT0

VRT0 0 V ∗
s′p1 0 0 Vsp0 0 Vs′p0 0 E 0 Vsp1 0 VRT0 0 0 VRT0 0 0

VRT0 V ∗
sp1 0 0 0 0 Vs′p0 0 Vsp0 0 E 0 Vs′p1 0 0 VRT0 0 0 VRT0

V ∗
RT1 0 0 0 V ∗

s′p1 V ∗
sp1 0 0 V ∗

s′p1 V ∗
sp1 0 E 0 0 V ∗

RT1 0 V ∗
RT1 0 0

V ∗
RT1 0 0 V ∗

sp1 0 0 V ∗
s′p1 V ∗

sp1 0 0 V ∗
s′p1 0 E 0 0 V ∗

RT1 0 V ∗
RT1 0

0 0 0 VRT0 0 VRT0 0 VRT0 0 VRT0 0 0 0 2E 0 0 0 0 0

0 V ∗
RT1 0 0 0 VRT0 0 0 VRT0 0 0 VRT1 0 0 2E 0 0 0 0

0 V ∗
RT1 0 VRT0 0 0 0 0 0 0 VRT0 0 VRT1 0 0 2E 0 0 0

0 0 V ∗
RT1 0 VRT0 0 0 0 0 VRT0 0 VRT1 0 0 0 0 2E 0 0

0 0 V ∗
RT1 0 0 0 VRT0 VRT0 0 0 0 0 VRT1 0 0 0 0 2E 0

0 0 0 0 VRT0 0 VRT0 0 VRT0 0 VRT0 0 0 0 0 0 0 0 2E


(3.18)

simulates the scenario where two p atoms start from states with negative mj

and the other two have positive mj. The Hamiltonian for pppp(− − ++) is

shown here, and the basis state remains the same as the previous Hamiltonian

except all the states of mj are now −−++.

Because which atom is labeled atom 1, atom 2, etc. is random, and flip-

ping signs of all mj only results in a different direction of phase evolution

- with no effects on the population in each of the basis states, these three

Hamiltonians are sufficient to simulate all possible configurations of the four

atom ensemble. To take into account the random signs of mj for the p states

at the beginning of the evolution, we allocate 12.5%/50%/37.5% probability

to H4atom,2/H4atom,1/H4atom,0 when simulating four atom ensembles. Simula-
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tion of the Rydberg atom gas ensemble typically involves ~10,000 randomly

scattered four atom configurations (discussed in more detail later).

The probability of finding any one atom in a p state can be retrieved

anytime during a simulation using

P (p) =
1

2
(1 + P (pppp)− P (sss′s′)− P (ss′ss′)− P (ss′s′s)

− P (s′sss′)− P (s′ss′s)− P (s′s′ss)),

(3.19)

where P (x) represents the probability for finding the atoms in a particular

basis state, x. Alternatively, we can write P (s) = P (s′) = 1
2
(1− P (p)).

3.4 Simulating Rydberg Atom Gases Using

Two or Four Rydberg Atom Ensembles

With the law of larger numbers and the assumption that beyond nearest, or

beyond third-nearest, neighbor interactions are weak, then by repeated simula-

tion of the dynamics of two or four Rydberg atom ensembles, respectively, with

random spatial configurations weighted according to their probability within

a larger ensemble of a given density, we can simulate the dynamics within the

larger ensemble. In that case, the final population distributions obtained for

the individual two or four atom ensembles are incoherently summed to obtain

the result for the full ensemble. This is known as the Monte Carlo method.

In a typical simulation, 5000 to 10000 random ensembles are sampled. More

details on the sampling process are discussed below.
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All the Hamiltonians described previously require the identification of spe-

cific spatial coordinates of all atoms involved. For two atom ensembles, one

ion core is placed at the origin (R = 0, θ = 0, ϕ = 0), and the distance between

the two atoms is chosen to follow the nearest neighbor distribution function,

G(R) = 4πρR2e−
4
3
πρR3 , where ρ is the density of the Rydberg atom gas. The

orientation angles, θ and ϕ, for the second atom are selected based on a uni-

form distribution between (0, π) and (0, 2π) respectively. To simulate four

atom ensembles, 99 atoms, each described by Cartesian coordinates (xi, yi, zi)

are first randomly placed in a cube, the length of each edge measuring 3

√
100
ρ

,

assuming a uniform distribution along each of the three spatial coordinates.

We then place an atom at the center of the cube. This atom, along with

its three nearest neighbors define an ensemble of four. The relative position

vector between each pair −−→
Rab = (Rab, θab, ϕab) is derived from their respective

Cartesian coordinates and plugged into the different Hamiltonians.

To include the thermal motion of atoms, each atom is assigned a ve-

locity −→v = (vx, vy, vz), where the values of vx, vy, vz each follow Gaussian

distributions with mean values of 0 and standard deviation
√

kT
m

. Beyond

thermal motion, the spatial dependence of the dipole-dipole interaction ex-

erts forces on the atoms,
∣∣∣−−→FDD

∣∣∣ =
∣∣∣∂⟨pp|VDD|ss′⟩

∂R

∣∣∣ ≤
∣∣∣3⟨p|r̂|s⟩⟨p|r̂|s′⟩2R4

∣∣∣. The ac-

celeration of an atom due to dipole-dipole forces is
∣∣∣−−→FDD

∣∣∣
m

, where m is the

mass of a 85Rb atom. The acceleration of an atom that is at the average

interatomic distance, Ravg~3.8µm away from its nearest neighbor at a Ryd-

berg density of 3 × 109/cm3 is 0.03µm/µs2. Thus, over the typical timescale

(<1µs) of our experiments, the effects of dipole-dipole induced acceleration
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is much smaller than the ~0.19µm/µs average relative thermal velocity be-

tween a pair of atoms. Thus, the effects of dipole-dipole induced motion can

be neglected in simulations. With thermal motion of atoms being considered,

the coordinates of each atom are now a function of time (xi(t), yi(t), zi(t)) =

(xi(0)+vxi · t, yi(0)+vyi · t, zi(0)+vzi · t), and the relative position of the atoms
−−→
Rab = (Rab, θab, ϕab) must be re-analyzed at each time step during the simu-

lation. The resulting time-dependent Hamiltonian simulates the decoherence

due to thermal motion of atoms, and the coupling of electronic and nuclear

degrees of freedom.

Our MOT has a density distribution that is approximately Gaussian, rather

than uniform. This also needs to be taken into account to properly model the

experimental conditions. In the experiments described in this dissertation,

Rydberg atoms are excited within a narrow cylinder created by the intersection

of the tightly focused blue laser beam and the spherical Gaussian distribution

of the MOT, which has a relatively large diameter. Accordingly, the Rydberg

density approximately follows a 1D Gaussian distribution. To simulate this,

the density of the ensemble could be changed from a constant to a variable

that follows a Gaussian distribution. However, in practice, this approach did

not work well as the simulation did not run well at extremely low densities.

As an alternative, the behavior of the Rydberg ensemble was computed at

several fixed densities, and the results were summed with weights reflecting

the measured Gaussian distribution, i.e., integral of area within 1D Gaussian

distribution where y value falls within certain range. For example, for an

ensemble with a peak density of 3× 109/cm3, a parameter A of the ensemble
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can be approximated as A(ensemble) = 0.454 ·A(3×109/cm3)+0.178 ·A(2.5×

109/cm3) + 0.129 ·A(2× 109/cm3) + 0.101 ·A(1.5× 109/cm3) + 0.080 ·A(1×

109/cm3) + 0.058 · A(0.5 × 109/cm3), independent of the width of the spatial

distribution.

Beyond those explicitly discussed here, other parameters subject to inho-

mogeneity (for example electric field) can also be simulated by changing the

parameter from a constant to a variable following a model distribution. Based

on estimates, it is assumed that the variation of other experimental param-

eters does not play a critical role in the experimental results, and therefore,

they are not included in the simulations.

3.5 Numerical Tricks for Higher Accuracy

and Faster Calculation

Time-dependent simulations of the behavior of a quantum ensemble are straight-

forward, in principle, as only the time dependent Schrödinger equation iℏ ∂
∂t
|Ψ(t)⟩ =

Ĥ |Ψ(t)⟩ is needed, given the Hamiltonians presented above. In practice

though, applying the Hamiltonians directly can result in numerical difficul-

ties. For example, the amplitudes in coupled basis states can oscillate back

and forth at very high frequencies due to (on or off resonant) Rabi oscillations,

and to accurately compute the time-dependent amplitude in each basis state,

the sample rate of the evolution must be significantly higher than the highest

Rabi oscillation frequency within the ensemble [88]. This can be computation-

ally time-consuming. Moreover, with each time step, truncation errors always
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occur in numerical simulations. With a high sampling rate and long evolution

times, the accumulated truncation error can render the simulation inaccurate.

Thus, the key to fast and accurate simulations is to reduce the Rabi fre-

quency associated with the coupling between the various basis states. Using

the eigenstates of the Hamiltonian as a basis can solve the problem. Being

eigenstates, the population in those basis states remains constant as long as

the Hamiltonian remains the same. If the Hamiltonian is unchanged, only

phase evolution, which is linear in time, needs to be taken into consideration.

Therefore, to calculate the behavior of an ensemble at any given time, one can

first map the initial conditions onto the system eigenstates, then calculate the

phase evolution of each eigenstate from the initial time to the final time, before

mapping the amplitudes back to the bare, uncoupled levels, whose populations

are our experimental observables. Of course, to account for the change of the

Hamiltonian due to atom motion (or a change in detuning due to a pulsed-

electric field, as discussed in next chapter), the evolution of the system still

needs to be broken up into separate intervals, as the eigenstates of the Hamil-

tonian and the projections to/from the uncoupled eigenstate basis change. But

given that atom motion is slow, and there are relatively few detuning steps

within the experiments, the Hamiltonian does not change much as a function

of time and/or it changes only a few times during the evolution (due to the

application of control fields). Thus the required temporal sampling rate is not

high. Accordingly, by mapping the ensemble onto the system eigenstates, the

evolution can be calculated quickly and accurately, even if the Hamiltonian is

time-dependent.
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In the next chapter we describe experiments in which the system is co-

herently transported back and forth between detuning values of 0 and ±E,

relative to energy transfer resonance, using pulsed electric fields. To take bet-

ter advantage of the RAM capabilities of modern computers to accelerate the

calculation, a lot of repeatedly used values can be pre-calculated and stored. In

a typical simulation involving 400ns of system evolution, the quantum states

are evaluated every 4ns. For each 4ns period featuring a different Hamilto-

nian, e.g., due to atom motion, the results of (1) mapping the bare states

to eigenstates, (2) evolving the system for 4ns, and (3) mapping back to the

bare states, can all be multiplied together as one matrix and pre-calculated

for different scenarios of the ensemble in the presence of different control fields

at that particular time. In this way, for different control scenarios, all that is

required to evaluate the system at a given time is to evolve the system 4ns at

a time from the initial condition utilizing those pre-calculated evolution ma-

trices. Additionally, amplitudes in each basis state at a particular evolution

time can be stored, reducing computational time in cases where the system

evolves identically from the start of the simulation up to a particular time.
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3.6 Comparison Between Simulation Results

Based on Two or Four Rydberg Atom

Ensembles

To better understand the individual effects of the inhomogeneous atom distri-

bution, inhomogeneous orientation, and hopping effects on the evolution of the

Rydberg ensemble (see chapter 5 for more details on the effects of excitation

hopping), and to gauge whether the model used in the simulations captures the

essential aspects of the experiments, two routine measurements are performed

and their results are compared with simulation data: (1) measurement of the

time-dependent population in p, s, and s′ states as a function of time, after an

ensemble of initially excited p atoms is suddenly energy tuned to enable pp to

ss′ resonant energy transfer; and (2) measurement of the resonance lineshape,

i.e., the population transfer probability from pp to ss′ as a function of a static

electric field induced detuning.

3.6.1 Population in p, s and s′ states as a Function of

Time

When an isolated pair of stationary p atoms is suddenly brought into energy

transfer resonance with ss′ (i.e., the strong dipole-dipole coupling between

the atoms is suddenly switched on), one would expect Rabi oscillations in the

probability of finding the atom pair in pp or ss′ states as a function of time.
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The population in pp and ss′ as a function of time should be

P (pp(t)) =
1

2
(1 + cosΩt), (3.20)

P (ss′(t)) =
1

2
(1− cosΩt) (3.21)

respectively, with Ω = 2|⟨pp|VDD |ss′⟩|. As discussed previously, the dipole-

dipole interaction strength is a function of interatomic distance, as well as the

angle between the interatomic axis and the external electric field. Therefore,

within each local ensemble of two or four atoms, atom pairs oscillate between pp

and ss′ configurations at different Rabi frequencies, resulting in a rapid dephas-

ing of the Rabi oscillations when the results from individual local ensembles

are integrated over the whole. To directly see the effects of dephasing, a series

of five simulations were performed to determine the time dependent popula-

tions in pp and ss′, including system inhomogeneities at various levels. These

are: (1) a single pair of atoms with an interatomic distance equal to the av-

erage nearest neighbor separation at a density ρ
(
R = Ravg = 3

√
− 3

4πρ
ln 0.5

)
,

and average angular coupling strength (so that ⟨pp|VDD |ss′⟩ = − ⟨p|r̂|s⟩⟨p|r̂|s′⟩
6R3 );

(2) ensembles of atom pairs with interatomic distances varying according to

the nearest neighbor distribution function for a random ensemble at density

ρ, but with the same average angular coupling strength for all pairs; (3) en-

sembles of atom pairs at density ρ with varying interatomic distances as well

as orientation angles; (4) ensembles of four atom groups at density ρ with ran-

dom relative positions; and (5) ensembles of four atom groups with random

relative positions, and a Gaussian density distribution peaking at density ρ.
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Figure 3.6: Simulated p-state population (normalized to total population) as
a function of time when an ensemble of p atoms with peak Rydberg density
ρ~3 × 109/cm3 is suddenly tuned to energy transfer resonance with ss′, for:
(blue) a single pair of atoms separated by the average interatomic distance
at density ρ and average angular coupling strength; (yellow) ensembles of
atom pairs at density ρ with varying interatomic distances but average angular
coupling strength; (magenta) ensembles of atom pairs at density ρ with varying
interatomic distances as well as orientation angles; (cyan) ensembles of four
atom groups at density ρ with random relative positions; and (black) ensembles
of four atom groups with a Gaussian density distribution peaking at density
ρ and random relative positions.

In all cases, the probability that the initial population remains in the state

pp is computed as a function of time after an initial ensemble of p atoms is

suddenly brought into energy transfer resonance, pp to ss′ (see Figure 3.6).

It is clear that as the system become less ordered from (1) to (5), the

the decay of the Rabi oscillations happens faster, suggesting faster dephasing,

which is what we expect. It is remarkable that the results of the relatively

simple simulations corresponding to (3) (atom pairs with varying interatomic

distances and random orientations) are nearly identical to those of (4) which
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includes four atoms and non-nearest neighbor interactions. Apparently, the

time-dependent populations for on resonance cases are not strongly affected

by non-nearest neighbor interactions, as previous research on similar systems

has found [30, 70, 81, 82].

Figure 3.7 shows a comparison between simulation (5) (four atom groups

with a Gaussian density distribution and random relative positions) results

with experimental data collected at the same peak density. The agreement

between measurement and simulation is quite good, although not perfect. The

limitations of the 4-atom model will be discussed later, and the imperfections

of the experiments will be discussed in Chapter 4.

3.6.2 Lineshape of pp to ss′ Transition

When a single pair of p atoms is suddenly brought near pp to ss′ energy

transfer resonance, but with the bare states detuned by an energy δ from

perfect resonance, one would expect off resonance Rabi oscillations in the pp

or ss′ populations. The population (normalized to total population) in ss′ as

a function of time is

P (ss′(t)) =
Ω2

Ω̃2
sin2 Ω̃t

2
, (3.22)

with Ω = 2|⟨pp|VDD |ss′⟩|, Ω̃ =
√
Ω2 + δ2. Accordingly, if an ensemble of p

atoms is brought near resonance for an extended period of time (500ns), the

ensemble would dephase and one might expect the population in ss′ to simply

be

P (ss′) =
Ω2

2Ω̃2
=

1

2

Ω2

Ω2 + δ2
, (3.23)

91



Figure 3.7: Population in p state (normalized to total population) as a function
of time after an ensemble of 32p atoms with peak density ρ~3 × 109/cm3 is
brought onto energy transfer resonance, pp to ss′. Shown are experimental
(blue dots) and simulation (black line) results based on ensembles of four atom
groups with a Gaussian density distribution and random relative positions.
The experimental data is normalized to 1 at t = 0, and to 0.5 at the maximum
delay. The latter based on the assumption that the experimental evolution
time is sufficiently long that the system has reached a maximally mixed state
with 50% probability of finding the system in the pp or ss′ configuration.
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i.e., exhibiting a Lorentzian lineshape as a function of detuning. However, the

effect of inhomogeneity in Rydberg atom gas is beyond fast dephasing, and the

inhomogeneity in the dipole-dipole coupling between atoms changes the res-

onance lineshape as well. Considering the variations in interatomic distances

between atom pairs in a random ensemble (following the nearest neighbor dis-

tribution function), the predicted lineshape changes from a Lorentzian to a

cusp [36]

P (ss′) =
a

2

{
Ci(a)sin(a)

[π
2
− Si(a)

]
cos(a)

}
, (3.24)

where a = 2Ω
3δ

, Si(x) =
∫ x

0
sin(u)

u
du is the sine integral, Ci(x) = γ + ln (x) +∫ x

0
cos(u)−1

u
du is the cosine integral, and γ ≈ 0.577216 is Euler’s constant [89].

The Lorentzian lineshape describes the case for one or more pairs of atoms

with a fixed interatomic distance and average angular coupling strength. The

cusp lineshape describes the case for ensembles of pairs of atoms at a fixed den-

sity with varying interatomic distances, but average angular coupling strength.

However, the actual Rydberg atom ensembles used in the experiments are more

complicated. To understand the roles of additional inhomogeneities, we per-

form simulations for the following additional cases: (3) ensembles of pairs of

atoms at a fixed density with random interatomic distances and orientation

angles; (4) ensembles of four atom groups at a fixed density and random rela-

tive positions; and (5) ensembles of four atom groups with a Gaussian density

distribution and random relative positions. The lineshapes corresponding to

all five cases are compared in Figure 3.8.

As the system becomes less ordered from case (1) to (3), the lineshape

becomes narrower at small detunings, but with more pronounced wings at large
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Figure 3.8: Population in ss′ (normalized to total population) as a function
of detuning, 500ns after an ensemble of p atoms with peak Rydberg density
ρ = 2 × 109/cm3 is suddenly tuned near the pp to ss′ energy transfer reso-
nance. (blue) A pair of atoms with interatomic distance corresponding to the
average nearest neighbor separation at density ρ and average angular coupling
strength; (yellow) Ensembles of pairs of atoms at density ρ with varying inter-
atomic distances but average angular coupling strength; (magenta) Ensembles
of pairs of atoms at density ρ with varying interatomic distances and random
orientation angles; (cyan) Ensembles of four atom groups at density ρ with
random relative positions; (black) Ensembles of four atom groups with a Gaus-
sian density distribution peaking at density ρ and random relative positions.
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Figure 3.9: Population in ss′ state (normalized to total population) as a func-
tion of detuning, 500ns after an ensemble of p atoms with peak Rydberg density
ρ~2× 109/cm3 is tuned near pp to ss′ energy transfer resonance, according to:
experimental results (blue dots - vertically rescaled (y′ = ay + b) to best fit
the simulation results) and simulations (black line) based on ensembles of four
atom groups with a Gaussian density distribution peaking at density ρ and
random relative positions (black line).

detunings, while the FWHM remains the same. Cases (4) and (5) produce a

somewhat narrower lineshape. Comparing case (5) with experimental results

(Figure 3.9), the FWHM of the simulated lineshape is slightly narrower than

observed experimentally, but overall the simulated lineshape reproduces the

experimental results nicely.

Because the analytical cusp lineshape is very similar to the experimental

lineshape and the simulated lineshapes using two or four atom group ensem-

bles, the cusp lineshape expression can be used to fit the experimental data

and extract the FWHM of experimental lineshape. Lineshapes have been

measured at different Rydberg atom densities. The FWHM of the measured

lineshapes can be compared to simulations or analytical results as shown in
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Figure 3.10: FWHM of pp to ss′ resonance lineshapes as a function of Rydberg
atom density, according to experimental results (blue dots with blue dotted
linear fit), analytical calculations considering pairs of atoms at peak density
with varying interatomic distances but average angular coupling strength (yel-
low line), and simulations with ensembles of four atom groups with a Gaussian
density distribution and random relative positions (black dots with black dot-
ted linear fit). Note that the FWHM of the lineshapes from the four atom
groups simulations fall slightly above (below) the linear fit at lower (higher)
densities. This is because the number of lineshapes at different densities in-
cluded in the weighted sum representing the Gaussian distribution is smaller
at low densities, resulting in a less accurate approximation.

Figure 3.10.

The FWHM of the four atom simulation results is consistently smaller than

experimental values. This could be attributed to ignoring thermal motion of

atoms in this particular simulation, the inaccuracy of Rydberg density deter-

mination from MOT fluorescence, the inaccuracy of extracting the FWHM

from noisy experimental data, and/or several other possible reasons discussed
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in next section.

3.7 Rydberg Blockade

In the experiments, due to the narrow linewidth of the Rydberg excitation,

short range dipole-dipole interactions can shift the energies of closely spaced

atoms beyond the Rydberg excitation bandwidth. This so called Rydberg

blockade can prohibit the excitation of pairs of atoms with small interatomic

separations [16, 17, 18]. The approximate excitation bandwidth in our exper-

iments is the convolution of the natural linewidth of the 5p state (Lorentzian,

FWHM~6.1MHz) [67] from which the blue laser excites Rydberg states, with

the frequency spectrum of the pulsed blue laser (approximately a Sinc func-

tion with a ~3.3MHz FWHM), resulting in an effective excitation bandwidth

of ≈ 6.9MHz. In experiments, the laser excitation occurs in a field for which

pairs of atoms are detuned from the pp to ss′ energy transfer resonance by

δ=85MHz. Accordingly, the pp to ss′ interaction dominates the van der

Waals-like couplings responsible for the Rydberg blocakde. In the limit of

δ ≫ |⟨pp|VDD |ss′⟩|, the energy shift of the atom pair eigenstates due to the

off-resonant dipole-dipole interaction is approximately

∆E =
1

2

(√
4|⟨pp|VDD |ss′⟩|2 + δ2 − δ

)
≈ |⟨pp|VDD |ss′⟩|2

δ
. (3.25)

Using dipole-dipole interaction strengths derived above (equations 3.4, 3.5,

3.6), we can write

∆E =
1022

R6
· 9
4

sin4θ MHz · µm6 (3.26)
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(for pp(±±) initial states),

∆E =
1022

R6

(
−1 +

3

2
sin2θ

)2

MHz · µm6 (3.27)

(for pp(±∓) initial states).

Comparing ∆E with the 6.9MHz linewidth (suppose the excitation spectrum

is a box function with a width of 6.9MHz), we can define a Rydberg blockade

radius as the nearest separation of the two excited atoms in our experiments,

as

Rblockade = 2.3
3

√
3

2
sin 2

3 θ µm (3.28)

(for pp(±±) initial states),

Rblockade = 2.3

(
−1 +

3

2
sin2θ

) 1
3

µm (3.29)

(for pp(±∓) initial states).

This gives a maximum Rydberg blockade radius of ~2.6µm. To simulate

the potential impact of the Rydberg blockade, we can simply eliminate from

the Monte Carlo calculations any randomly selected 2 or 4 atom ensembles

that contain two or more Rydberg atoms separated by less than the (angle-

dependent) blockade radius.

An additional complication to the blockade effect is the role of saturation

of the Rydberg excitation. In experiments, a sufficiently large blue laser inten-

sity is used to ensure that the product of the on-resonance Rabi frequency and

the blue laser duration is significantly larger than π. As a result, even pairs
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of atoms with energies outside the excitation bandwidth can still be efficiently

excited. Accordingly, the effective Rydberg blockade radius would be less than

that calculated above. Thus, the results of simulations based on the assump-

tion that there is a minimum atom separation equal to the maximum Rydberg

blockade radius derived above, as well as others that completely ignore the

blockade effect, are both provided here for comparison with experiment (see

Figures 3.11 and 3.12). The conditions of actual experiments fall somewhere

between these two limiting cases. The impact of Rydberg blockade on the

measurement results will again be considered in Figures 4.2 and 4.4. Given

that the simulation results including blockade effects do not provide consis-

tently better agreement with experiments, in later chapters, only the simpler

model that does not consider Rydberg blocakde is used.

3.8 Limitations of Current Simulations

Although several additional considerations have been taken into account to

simulate the evolution of a Rydberg gas in this dissertation as compared to

previous efforts [5, 30, 37], there are still some effects that the current model

does not include. The first is the non-zero rise and fall times of the detuning

pulses. In simulations, the jump between different detunings is considered to

be instantaneous. In reality, the rise and fall times for the AWG are ~2ns,

with some ringing in the applied voltage pulse persisting for ~5ns after the

detuning jump. How this imperfect detuning transition affects the experimen-

tal results will be briefly discussed in the next chapter in the context of other
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Figure 3.11: Population in p state (normalized to total population) as a func-
tion of time after an ensemble of 32p atoms with peak density ρ~3× 109/cm3

is brought into energy transfer resonance, pp to ss′. Shown are experimental
(blue dots) and simulation results considering (grey line) or not considering
(black line) Rydberg blockade effects based on ensembles of four atom groups
with a Gaussian density distribution and random relative positions.
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Figure 3.12: Population in ss′ state (normalized to total population) as a
function of detuning, 500ns after an ensemble of p atoms with peak Rydberg
density ρ~2×109/cm3 is tuned near pp to ss′ energy transfer resonance. Shown
are comparisons between (a) simulation results considering (grey line) or not
considering (black line) Rydberg blockade and (b) experimental data (blue
dots - vertically rescaled (y′ = ay + b) to best fit the simulation results).
The agreement between simulation and experiment in (b) should be compared
to that in Figure 3.9. Inclusion of the blockade effect does not improve the
agreement between measurement and simulation. All simulations are based on
ensembles of four atom groups with a Gaussian density distribution peaking
at density ρ and random relative positions.
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measurements, but it has not been modeled in the simulations. Additionally,

the current simulations did not take into consideration the effects of blackbody

radiation or spontaneous decay of p, s and s′ states, with the s and s′ states

having lifetimes of ~20µs [90, 91]. Given that the experiments and simulations

considered in this dissertation are concerned with the system evolution over

times <1µs, spontaneous decay and blackbody redistribution should not have

a significant impact on the results. However, these effects cannot be reasonably

neglected in simulations extending to significantly longer times. Another ap-

proximation that could not be readily extended to longer evolution times is the

neglect of dipole-dipole induced acceleration of atoms, as previously discussed.

Last but not least, although simulations based on four atom ensembles include

excitation hopping effects at some level, hopping beyond four atoms may be

important under some conditions. While hopping apparently does not play an

important role in the on resonance energy transfer discussed in this chapter,

it is more important for the off-resonance cases [71, 78, 79, 80, 84, 85, 86], as

discussed in Chapter 5.

Armed with reasonably accurate simulation models and a good understand-

ing of the behavior of Rydberg atom gas subject to resonant dipole-dipole in-

teractions, it is now time to discuss the behavior of Rydberg atom gas subject

to near resonant dipole-dipole interactions, which is the focus of chapter 4.
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Chapter 4

Suppressing Dephasing in a

Rydberg Atom Gas

Towards the end of the last chapter, the effects of dephasing in a random

dipole-dipole coupled gas were shown through the results of simulations and

experiments. Specifically, the amplitude of Rabi oscillations between pp and

ss′ (continuing the abbreviation from last chapter) decays rapidly for the en-

semble as a whole, because the Rabi frequency varies substantially across lo-

cal micro-ensembles due to variations in the dipole-dipole interaction strength

throughout the Rydberg gas. In this chapter we describe an approach for

observing Rabi oscillations in a random Rydberg ensemble, despite those in-

homogeneities. Although the techniques discussed in this chapter may not

increase the dephasing time of a random Rydberg atom gas to be on par with

more ordered ensembles like a Rydberg atom lattice or Rydberg atom tweezer
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arrays, the quantum control techniques we demonstrate should also be appli-

cable for more ordered systems, as will be discussed in chapter 7. In addition,

the techniques explored in this chapter might also be employed to reduce local

decoherence as well.

Extracting quantum information from noisy inhomogeneous environments

has long been an active area of research, from quantum error correction codes

[92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104] to dynamical decoupling

[105, 106, 107, 108, 109, 110, 111, 112, 113, 114]. In this chapter, we describe

the use of detuning jump sequences to suppress dephasing in an inhomogeneous

ensemble. The sequence used in this chapter was originally developed by

Kutteruf and Jones for measuring coherence times in dipole-dipole coupled

gases [37]. The principle of the sequence is very similar to that of quasi-phase-

matching used in nonlinear optics [115, 116, 117], which was also engineered

to suppress dephasing. Thus, by employing the same sequence as Kutteruf

and Jones, over time scales shorter than the dephasing time in a Rydberg gas

ensemble, suppression of dephasing can be achieved.

4.1 Suppressing Dephasing with Detuning

Jumps

Using the models discussed in the previous chapter, consider a single pair of

p atoms detuned, at t = 0, from the pp to ss′ energy transfer resonance by an

energy δ. Then, assuming microscopic coherence is preserved within the atom

pair (e.g., the atoms are not moving relative to each other or subject to other
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time-dependent interactions), the population in ss′ as a function of time is

P (ss′(t)) =
Ω2

2Ω̃2

(
1− cosΩ̃t

)
, (4.1)

with Ω = 2|⟨pp|VDD |ss′⟩|, Ω̃ =
√
Ω2 + δ2. Suppose the detuning is equal to

δ for a time T/2 before shifting to −δ for an additional time T/2. Then the

population in ss′ at time T is

P (ss′(T )) =
Ω2

2Ω̃2

(
1− cosΩ̃T +

δ2

Ω̃2

(
3 + cosΩ̃T − 4cosΩ̃T

2

))
. (4.2)

In the limit of δ ≫ Ω,

P (ss′(T )) =
2Ω2

Ω̃2

(
1− cosΩ̃T

2

)
. (4.3)

If N jumps between positive and negative detunings are made during the total

interval T , with a time at a given detuning δ of T
2N , then in the limit of δ ≫ Ω

and net population transfer ≪ 1, we have

P (ss′(T )) =
2N 2Ω2

Ω̃2

(
1− cos Ω̃T

2N

)
. (4.4)

Now consider a random Rydberg ensemble consisting of many pairs of

Rydberg atoms featuring different Ω̃ following a distribution of f(Ω̃) (with∫
f(Ω̃) dΩ̃ = 1) subject to the same jump sequence. The population in ss′

in the ensemble can be written as P (ss′(T )) =
∫

2N 2Ω2

Ω̃2

(
1− cos Ω̃T

2N

)
f(Ω̃) dΩ̃.

This means the ensemble integrated population should still exhibit (damped)
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Rabi oscillations, but with a frequency given by the ensemble average of Ω̃
2N .

Interestingly, the damping rate, or the inverse of the effective dephasing time,

scales with the width of the Ω̃
2N distribution, decreasing as 1

2N for N jumps

as compared to an ensemble not subject to detuning jumps. In addition, the

amplitude of Rabi oscillations increases by a factor of 4N 2 as compared to

an ensemble not subject to detuning jumps (in the limit of δ ≫ Ω and net

population transfer ≪ 1).

Taking a closer look at the generalized Rabi frequency, Ω̃ =
√
Ω2 + δ2, in

the large detuning regime, Ω̃ ≈ δ+Ω2

2δ
. For our dipole-dipole mediated resonant

energy transfer, the resonance frequency is not affected by the inhomogeneous

atom distribution within the Rydberg atom gas ensemble, meaning the de-

tuning δ is well-defined (assuming any electric field inhomogeneity across the

ensemble is negligible). Thus, the spread in Ω̃ comes solely from the
∣∣∣Ω2

2δ

∣∣∣ term,

decreasing as the detuning increases. To summarize, large jump numbers N ,

paired with large detuning, results in a significant increase in dephasing time.

Another useful parameter to examine is the number of Rabi oscillations

that can be observed within the dephasing time. This, for example, might

determine the number of quantum logic operations that can be performed for

a physical architecture, since the Rabi oscillation frequency sets an effective

“clock speed” while the dephasing time determines the useful lifetime of stored

information (if no other dephasing suppression sequences like echo sequences

are performed). In this regard, an ensemble subject to the detuning jump

sequence exhibits no difference from an ensemble subject to large detuning

Rabi oscillations with no jumps, as both the Rabi oscillation frequency and
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the dephasing rate are decreased by a factor of 2N when an ensemble is sub-

ject to N jumps. However, thanks to the amplitude amplification term 2N 2Ω2

Ω̃2
,

the jump sequence can facilitate larger population transfer to ss′ states, as

compared to the no jump, large detuning case. The ability to achieve large

uniform population transfer is desirable for engineering quantum control se-

quences which might require the specific population transfer probabilities be-

tween two states. Additionally, for applications that do not necessarily require

large uniform population transfer, larger population transfer can still be help-

ful because it can yield a better signal to noise ratio for measurements based

on that transfer.

4.2 Experimental Demonstration of

Dephasing Suppression

To experimentally verify if the jump sequences can actually suppress dephas-

ing, as predicted, we first create a random Rydberg ensemble of 32p atoms

using a 300ns Rydberg excitation laser pulse (produced via AOM chopping of

the 480nm CW laser). The laser excites atoms from the upper MOT trap state

(5p3/2) to the 32p level (enabled by Stark mixing in the applied electric field)

in an external field of ~12 V/cm (i.e., detuned by +0.5V/cm or +85MHz

from resonance). The large initial detuning essentially turns off the reso-

nant dipole-dipole interaction during the laser excitation. The Rydberg atoms

are then exposed to detuning jump sequences featuring 0/1/2 jump cycles.

In each jump cycle, pairs of Rydberg atoms are tuned +0.06/+0.09/+0.15V
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/cm (+10/+15/+25MHz) from resonance for some amount of time, and then

tuned to −0.06/−0.09/−0.15V/cm (−10/−15/−25MHz) for the same amount

of time. For 0 jump cycles, the atoms are held at the same detuning relative

to resonance for the entire duration of the allowed interaction. The total time

for 0/1/2 jump sequences is scanned from 0-400ns. After the interaction time,

the system is rapidly tuned +0.5V/cm off resonance again, turning off the

resonant interaction, and the atoms are then ionized and, state populations

measured, with SSFI.

The performance of the jump sequences introduced above has been experi-

mentally verified through their ability to restore Rabi oscillations among atom

pairs in random Rydberg gas with many atoms. Previously, because of the

wide range of separations and different orientations of atoms within a Rydberg

gas, dipole-dipole interaction mediated Rabi flopping between different atom

pair states has not been experimentally observed in Rydberg gases consisting

of more than a few atoms. To our best knowledge, with the help of jump

sequences, we have made the first observation of Rabi flopping in random

dipole-dipole coupled systems with more than a few atoms. The effect of the

jump sequences on the coupled atom population dynamics has been explored

as a function of both Rydberg density (Figures 4.2, 4.3) and jump detuning

(Figures 4.4, 4.5).

For each detuning and density combination, the p state population (nor-

malized to the total Rydberg population) is measured as a function of time

after an ensemble of initially excited p atoms is tuned on resonance, held at

a constant detuning from resonance, or subject to 1 (magenta) or 2 (yellow)
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Figure 4.1: Voltage across the field plates as a function of time during a jump
experiment, determined by voltages applied to both the front plate (connected
to AWG, yellow) and back plate (connected to trigger transformer for SSFI,
magenta). The AOM chopped blue laser pulse (blue) creates a Rydberg gas
via Stark assisted excitation of 5p atoms to the 32p state while the pp to ss′

interaction is tuned far (~85MHz) from resonance. In the example illustrated,
voltage pulses from the AWG then tune the system about the resonance (shown
are 2 detuning jump cycles at ±0.09V/cm (corresponding to relative energy
shifts of ±15MHz) for a total interaction time of 200ns). The resonance line-
shape (or interaction strength) in the relevant fields is shown in cyan. After
the control pulse sequence, the atoms are ionized and populations in different
Rydberg states measured via SSFI.
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jump cycles. During each experimental scan of delay time, the apparatus takes

80 measurements of p population at t = 0, and 10 measurements at each delay,

from 4-400ns with 4ns time steps. Additionally, to reduce noise, the oscillo-

scope recording the data is set to output the average of the previous 16 data

traces, instead of the current trace. Therefore, the recorded signal at each

delay step is a weighted average of the current step (5/8ths) and the previous

step (3/8ths). Five scans are performed and averaged for each measurement

type.

While the TOF signal corresponding to pure p state population can be

recovered from the t = 0 data, the TOF signal corresponding to zero p state

population cannot be accurately determined experimentally, due to some over-

lap of the s′ and p signals in the TOF signal. Therefore, to compare the delay

dependent population transfer measurements to simulations, a single constant

is used to normalize the measured p state population for the on resonance case

to the simulation results. That same constant is then used to normalize the

no jump and jump sequence data as well.

As shown in Figures 4.2 and 4.4, the experimental and simulation results

are generally in good agreement, especially at low densities and high detunings,

given the experimental noise. Quantitatively, the dephasing time as a function

of density or detuning is not easily extracted from the measurements due to the

rapid decay of the Rabi oscillations, and experimental noise (more discussion

in chapter 5). Qualitatively, the frequency of the observed Rabi oscillations

reduces by roughly a factor of 2N as jump number increases, as the theoretical

model predicts. The amplitude of the population transfer increases as detuning
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Figure 4.2: Experimental data (dots) and simulation results based on 4-atom
group ensembles considering Gaussian distribution of density and considering
(lines)/not considering (dashed lines) Rydberg blockade for p state population
(normalized to the total Rydberg population) as a function of time after an
ensemble of initially excited p atoms with peak Rydberg density of (a)~3 ×
109/cm3, (b)~2× 109/cm3, and (c)~1× 109/cm3 is tuned on resonance (blue)
or +15MHz (black) on the positive field side of resonance for t > 0, or subject
to 1 (magenta) or 2 (yellow) jump cycles at detunings of ±15MHz.
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Figure 4.3: Simulation results based on 4-atom group ensembles (lines, con-
sidering Gaussian distribution of density) or 2-atom group ensembles (dashed
lines, considering Gaussian distribution of density), not including Rydberg
blockade effects, for p state population (normalized to the total Rydberg pop-
ulation) as a function of time after an ensemble of initially excited p atoms with
peak Rydberg density of (a)~3×109/cm3, (b)~2×109/cm3, and (c)~1×109/cm3

is tuned on resonance (blue) or +15MHz (black) on the positive field side of
resonance for t > 0, or subject to 1 (magenta) or 2 (yellow) jump cycles at
detunings of ±15MHz.
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Figure 4.4: Experimental data (dots) and simulation results based on 4-atom
group ensembles considering Gaussian distribution of density, considering
(lines)/not considering (dashed lines) Rydberg blockade, for p state popu-
lation (normalized to the total Rydberg population) as a function of time
after an ensemble of initially excited p atoms with peak Rydberg density of
~3 × 109/cm3 is tuned on resonance (blue), or to (a)+10MHz, (b)+15MHz,
and (c)+25MHz (black) on the positive field side of resonance for t > 0, or
subject to 1 (magenta) or 2 (yellow) jump cycles at detunings of (a)±10MHz,
(b)±15MHz, and (c)±25MHz.
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Figure 4.5: Simulation results based on 4-atom group ensembles (lines, con-
sidering Gaussian distribution of density) or 2-atom group ensembles (dashed-
lines, considering Gaussian distribution of density), not including Rydberg
blockade effects, for p state population (normalized to total population) as a
function of time after an ensemble of initially excited p atoms with peak Ryd-
berg density of ~3× 109/cm3 is tuned on resonance (blue), or to (a)+10MHz,
(b)+15MHz, and (c)+25MHz (black) on the positive field side of resonance
for t > 0, or subject to 1 (magenta) or 2 (yellow) jump cycles at detunings of
(a)±10MHz, (b)±15MHz, and (c)±25MHz.
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decreases or density increases, for all off resonance cases and jump cases, which

is to be expected. However, the observed amplitude increase is less than the

theoretically predicted value of 4N 2, because that expression assumes δ ≫ Ω,

and net population transfer ≪ 1. Neither of these assumptions is rigorously

met under the conditions accessible to measurements with satisfactory signal

to noise.

A comparison of simulation results using 4-atom or 2-atom group ensem-

bles (Figures 4.3 and 4.5) showcases the impact of beyond nearest neighbor

interactions, e.g., excitation hopping effects, on the Rydberg gas dynamics

[5, 30, 31, 33, 70, 71, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. While

good agreement between experiment and simulation results based on both

4-atom and 2-atom group ensembles for the population dynamics in the on

resonance case (see chapter 3), for the off resonance cases, the experimental

data and different simulation models show noticeable differences in the Rabi

oscillation amplitude and decay time. In particular, the faster decay of the

Rabi oscillations in the experiment and 4 atom simulations suggests that be-

yond nearest neighbor effects are more important for off resonance conditions.

Chapter 5 includes a more detailed exploration of excitation hopping, particu-

larly in the off-resonance case, and how hopping affects the population transfer

properties within the Rydberg ensemble.
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4.3 Experimental Imperfections and Their

Effects

While the experiments are designed to implement the theoretical detuning

jump sequences, there are a few notable imperfections. One is that the initial

laser excitation of the Rydberg atoms does not produce a pure p state ensemble.

With a detuning field of only +0.5V/cm (rather than infinity), the coupling

between pp and ss′ atom pairs is not zero. Therefore, the eigenstate which the

laser excites at detuning field of +0.5V/cm is actually a coherent mixture of pp

and ss′, rather than pure p. As a result, the maximum possible ss′ population

after projecting to the positive side of resonance is slightly larger than on

the negative side of resonance at the same detuning. Accordingly, there is an

asymmetry when the jump sequences are performed. To check how much this

affects the overall performance of the jump sequences in terms of revealing

Rabi oscillations in the population transfer, simulations have been performed

at a Rydberg atom density of 3× 109/cm3, computing the population transfer

to ss′ after 0,1,2 jumps and a detuning of ±25MHz. These conditions match

those of the measurements in which the effects of non-infinite initial detuning

are expected to be largest.

Figure 4.6 compares the results of simulations in which the system is ini-

tially prepared as an ensemble of pure p state (i.e., infinitely far from reso-

nance) to the experimental case in which the Stark eigenstates are initially

excited at a field +0.5V/cm off resonance. The simulation results show that

the finite initial detuning results in somewhat different long-term populations
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Figure 4.6: Simulation results based on 4-atom group ensembles of popula-
tion in p state (normalized to total population) as a function of time when a
Rydberg ensemble at density of 3 × 109/cm3 is tuned on-resonance (blue) or
subject to 1 (magenta) or 2 (yellow) jumps at detunings of ±25MHz, starting
from a pure p state population (solid lines) or starting from the nominal pp
eigenstate +0.5V/cm off resonance (dashed lines). The black curves show the
results when the system is tuned to one side of resonance (+/−25MHz) start-
ing from a pure p state (solid black) or from the pp eigenstate at +0.5V/cm
off resonance (black dash/black dash dot).

at positive and negative detunings for the no jump case (i.e., when the system

is left on one side of resonance for the entire evolution time), but has essen-

tially no effect on the population dynamics when various jump sequences are

applied.

Another experimental imperfection is that the detuning jumps are not in-

stantaneous, but rather, subject to a switching time of ~2ns. To check that

the experimental population transfer in the presence of the detuning jump se-

quences is dominated by the system evolution between field transitions, rather

than unwanted population transfer induced during the transitions themselves,
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Figure 4.7: Experimental data (dots) and simulation results based on 4-atom
group ensembles (lines, considering Gaussian distribution of density) showing
p state population (normalized to total population) as a function of time when
an ensemble of p atoms with peak Rydberg density of ~3 × 109/cm3 is tuned
to dipole-dipole resonance (blue) or to +/−10MHz (black/green) away from
resonance for t > 0, or subject to 1 (magenta) or 2 (yellow) time-symmetric
jump cycles at detunings of ±10MHz, or subject to single asymmetric jump
(red) with the system held at +10MHz detuning for t−2ns before transitioning
to −10MHz detuning for only 2ns.

measurements and simulations have also been performed using asymmetric

jump sequences in which the system evolves primarily on the positive side of

the resonance, spending only 2ns per jump cycle on the negative side.

Figure 4.7 shows the result for such an asymmetric sequence, featuring

a detuning of +0.06V/cm (+10MHz) (to maximize population transfer and

thus achieve better SNR ratio) for 0-400ns before a jump to −0.06V/cm for

2ns. As the results show, the effect of non-instantaneous jumping transitions

is negligible, completely overwhelmed by experimental noise.

Despite the experimental imperfections, suppression of dephasing to the
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point of achieving the first observation of Rabi flopping in random dipole-

dipole coupled systems with more than a few atoms is nonetheless quite useful.

With underdamped Rabi oscillations, detuning jump sequences now enable us

to analyze their decay, thus providing insights into how the dephasing of the

cold Rydberg atom gas ensemble behaves under different conditions, as will

be discussed in chapter 5.
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Chapter 5

Effects of Different Dephasing

Mechanisms in Rydberg Gas

Ensembles

In chapter 3, two main mechanisms of dephasing in a Rydberg gas were intro-

duced: (1) Differences in Rabi frequencies for near resonant energy transfer

within local atom groups due to the variation in atom separation and rel-

ative orientation among small groups (2 or 4 atoms) within the larger en-

semble and (2) excitation hopping (sp to ps or s′p to ps′) between different

atoms. Both mechanisms have been studied extensively in previous research

[5, 31, 33, 70, 71, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. The consen-

sus is that hopping does not play a major role in the dynamics if the system

is tuned to a Förster resonance, i.e., on dipole-dipole coupled energy trans-
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fer resonance [70, 81, 82]. This is because resonant dipole-dipole interactions

shift the eigenenergies of nearest neighbor atoms substantially. Accordingly,

the energies of few atom groups with excitations/de-excitations distributed

differently between different atom sites are not degenerate, suppressing what

have been called “always resonant” exchange interactions. In the time-domain,

the excitation hopping between nearest neighbors is suppressed by the rapid

Rabi cycling between nearest neighbors [70, 85]. This conclusion is also sup-

ported by the results of the simulations described in chapter 3. On the other

hand, in the far off resonance case, strong resonant nearest neighbor inter-

actions are essentially turned off. Thus, hopping is the dominant interaction

[71, 78, 79, 80, 84, 86], and the dominant mechanism for dephasing. Although

some previous studies have considered how the hopping interaction changes

the resonant energy transfer lineshape [31, 75, 81, 82], the dynamics of sys-

tems in the intermediate regime where atoms are neither on, nor very far off,

resonance (and, therefore, are exposed to both mechanisms), remain largely

unexplored beyond theoretical acknowledgement that both mechanisms play

a role in this regime [33, 75, 76, 77].

This chapter quantitatively explores how the relative importance of the two

dephasing mechanisms evolves as the detuning and/or density changes. This

is achieved by analyzing the dephasing properties of a system subject only to

mechanism (1) through simulations based on 2 atom group ensembles, subject

to mechanism (1) and limited effects of mechanism (2) through simulations

based on 4 atom group ensembles, and experiments subject to both (1) and (2),

(as well as other processes that are assumed to play only a minor role under
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our experimental conditions, e.g., spontaneous emission, atom motion etc.)

Beyond exploring the dephasing properties of near resonance Rabi oscillations

and “amplified” near resonance Rabi oscillation with detuning jumps, this

chapter will also examine the use of Ramsey interference experiments and

simulations to characterize dephasing in the far off resonance regime.

5.1 Extracting Dephasing Properties from

Rabi Oscillations

Dephasing in the vicinity of the energy transfer resonance can be characterized

through the decay of the Rabi oscillations observed in time-domain measure-

ments, or through the width of the Rabi frequency peak in the Fourier trans-

form of time domain data and simulations. With a discrete Fourier transform

(e.g., FFT) the resolution of the frequency spectrum is determined by the in-

verse of the maximum measurement or simulation time. For example, data

extending to 1µs will have a frequency resolution of 1MHz. Extending mea-

surements/simulations to longer times will provides better frequency resolu-

tion, but a frequency resolution much better than the width of the Rabi peak

does not convey significant additional information, and there are practical

limitations to the maximum observation time in experiments and simulations.

For experiments, spontaneous decay and atom motion need to be taken into

consideration at longer evolution times, which could otherwise both be ignored

in the context of short evolution times. For simulations, the temporal sam-

pling rate must be high enough to reconstruct the oscillations (in our case
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500MHz for off resonance case and 250MHz for 1 jump case) and extending

the simulation time while meeting the requirement of high temporal sampling

rate is limited by available computational time and resources.

For ease of comparison of FFT spectra, “zero padding” of the time domain

data to longer times can be used. As illustrated in Figure 5.1, this increases

the density of points in the frequency spectrum without increasing the ac-

tual resolution of the measurement/simulation, the latter determined by the

maximum system observation time (prior to zero padding).

To accurately extract the frequency spectrum, the simulations of p popula-

tion as a function of time in this chapter are performed at a 500MHz temporal

sampling rate and extend to a maximum observation time of 4µs for off res-

onance cases, or a 250MHz temporal sampling rate extending to 8µs for the

1 jump cases. The frequency spectra for the 2 jump cases are not considered

due to the kinks of population transfer at early evolution times, which al-

ters the frequency spectrum profile, prohibiting accurate analysis of dephasing

properties. Experimental data for the 0/1 jump cases was taken at a 250MHz

temporal sampling rate with a maximum observation time of 400ns. The data

are zero padded to 800ns prior to Fourier transforming.

5.2 Dephasing Properties of Near Resonance

Rabi Oscillations

In chapter 4, the effects of dephasing are qualitatively shown in comparisons

of the p population evolution observed in experiments and calculated in sim-
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Figure 5.1: Frequency spectra extracted from simulation data based on 2-atom
group ensembles for p state population as a function of time extending to 4µs
(blue) or 2µs then zero padded to 4µs (yellow) after an ensemble of initially
excited p atoms with Rydberg density of 0.5×109/cm3 is tuned +15MHz from
resonance. The temporal sampling rate is 500MHz in both cases. Note the
frequency peak is less sharp in the padded case, illustrating the fact that when
zero padding is used, the resolution is limited to the maximum observation
time, not the density of points in the spectrum.
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ulations based on 4/2-atom group ensembles (see Figures 4.2, 4.3, 4.4, 4.5).

Here, to better explore the problem, the frequency spectra describing the sys-

tem evolution, under the various scenarios discussed in chapter 4 (different

density, different detuning, experiment/simulation with different models) are

extracted and compared (see Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9).

All the frequency spectra indicate that as more excitation hopping is al-

lowed to take place (moving from simulated 2-atom group ensembles, to sim-

ulated 4-atom group ensembles, to actual experimental conditions), the width

of the Rabi peak noticeably grows, suggesting that the hopping effect is a non-

negligible contributor to dephasing in near resonance energy transfer processes.

It is also notable that the frequency spectra obtained for the 1 jump control

sequences very closely resembles a scaled version of the frequency spectrum

obtained when the system is tuned to one side of the resonance. With the 1

jump sequence, the peak spectral amplitude is increased by a factor of four

and the Rabi frequency is divided by a factor of two, precisely as equation 4.4

predicts.

Figures 5.2, 5.3, 5.4, 5.5 show that as the Rydberg density increases, the

Rabi peak broadens, indicating faster dephasing, as expected. The experimen-

tal spectra for the 0 jump case (Figure 5.2) do not have sufficient signal to noise

to make a meaningful comparison. The 1 jump measurements show a clear

increase in the width of the Rabi peak with increasing density, but the signal

to noise precludes a quantitative determination of the density dependence. A

more detailed analysis can be made for the simulations. With increasing den-

sity, the changes in the widths of the peaks for the 4-atom group ensembles are
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not significantly different from those for the 2-atom group ensembles. In the 0

jump cases, the FWHM of the Rabi peak is roughly 2.7MHz, 1.8MHz, 0.8MHz

(3.4 : 2.2 : 1) for densities of 3×109/cm3, 2×109/cm3, 1×109cm3 respectively

in the 2-atom groups based simulations, or 21.5MHz, 16.7MHz, 7.5MHz (2.9

: 2.2 : 1) for the same densities, respectively, in 4-atom groups based simula-

tions, indicating that: (1) the relative impact of hopping (which cannot occur

in the 2-atom groups based simulations) is independent of density, and (2) the

dephasing rate increases in proportion to the density.

Figures 5.6, 5.7, 5.8, 5.9 show experimental and simulated Rabi spectra at

constant density but different detunings. The signal to noise in the experimen-

tal spectra is, again, insufficient for a quantitative analysis. However, we can

extract additional physics from the simulations. The simulations based on 2-

atom group ensembles (Figures 5.8(b) and 5.9(b)), show a very small decrease

or no change in the width of the Rabi peak for the 0 jump or 1 jump scenarios

with increasing detuning, respectively. In contrast, simulations based on 4-

atom group ensembles (Figures 5.8(a) and 5.9(a)), show a slight increase in the

width of Rabi peak with increasing detuning. This indicates that dephasing

via excitation hopping becomes more important as detuning increases. This

is consistent with the conclusions of previous research in the extreme on and

off resonant cases, and provides new results connecting the two regimes. The

effects of hopping can be largely ignored for on resonance population transfer

[70, 81, 82, 85] but hopping gradually becomes the dominating factor in the

evolution of the system as resonant energy transfer turns off with increasing

detuning [71, 78, 79, 80, 84].
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Figure 5.2: Frequency spectra extracted from experimental data (black) or
simulations based on 4-atom group ensembles (blue, including Gaussian dis-
tribution of density) or 2-atom group ensembles (yellow, including Gaussian
distribution of density) for p state population (normalized to total population)
as a function of time after an ensemble of initially excited p atoms with peak
Rydberg density of (a)~3× 109/cm3, (b)~2× 109/cm3, and (c)~1× 109/cm3 is
tuned +15MHz on the positive field side of resonance.
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Figure 5.3: Frequency spectra extracted from experimental data (black) or
simulations based on 4-atom group ensembles (blue, including Gaussian dis-
tribution of density) or 2-atom group ensembles (yellow, including Gaussian
distribution of density) for p state population (normalized to total population)
as a function of time after an ensemble of initially excited p atoms with peak
Rydberg density of (a)~3× 109/cm3, (b)~2× 109/cm3, and (c)~1× 109/cm3 is
subject to 1 jump cycle at detunings of ±15MHz.
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Figure 5.4: Frequency spectra extracted from simulations based on (a) 4-atom
group ensembles (including Gaussian distribution of density) or (b) 2-atom
group ensembles (including Gaussian distribution of density) for p state pop-
ulation as a function of time after an ensemble of initially excited p atoms
with peak Rydberg density of ~3 × 109/cm3 (yellow), ~2 × 109/cm3 (blue),
and ~1× 109/cm3 (black) is tuned +15MHz on the positive field side of reso-
nance. The frequency amplitudes in the different scenarios are normalized to
the maximum frequency amplitude in each scenario, and the frequency scale
is relative to the detuning, 15MHz in this case.
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Figure 5.5: Frequency spectra extracted from simulations based on (a) 4-
atom group ensembles (including Gaussian distribution of density) or (b) 2-
atom group ensembles (including Gaussian distribution of density) for p state
population as a function of time after an ensemble of initially excited p atoms
with peak Rydberg density of ~3×109/cm3 (yellow), ~2×109/cm3 (blue), and
~1×109/cm3 (black) is subject to 1 jump cycle at detunings of ±15MHz. The
frequency amplitudes in the different scenarios are normalized to the maximum
frequency amplitude in each scenario, and the frequency scale is relative to the
detuning, 15MHz in this case.

130



Figure 5.6: Frequency spectra extracted from measurements (black) or simula-
tions based on 4-atom group ensembles (blue, including Gaussian distribution
of density) or 2-atom group ensembles (yellow, including Gaussian distribution
of density) for p state population (normalized to total population) as a func-
tion of time after an ensemble of initially excited p atoms with peak Rydberg
density of ~3 × 109/cm3 is tuned (a) +10MHz, (b) +15MHz or (c) +25MHz
from resonance.
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Figure 5.7: Frequency spectra extracted from measurements (black) or simula-
tions based on 4-atom group ensembles (blue, including Gaussian distribution
of density) or 2-atom group ensembles (yellow, including Gaussian distribu-
tion of density) for p state population (normalized to total population) as a
function of time after an ensemble of initially excited p atoms with peak Ry-
dberg density of ~3 × 109/cm3 is subject to 1 jump cycle at detunings of (a)
±10MHz, (b) ±15MHz or (c) ±25MHz.
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Figure 5.8: Frequency spectra extracted from simulations based on (a) 4-
atom group ensembles (including Gaussian distribution of density) or (b) 2-
atom group ensembles (including Gaussian distribution of density) for p state
population as a function of time after an ensemble of initially excited p atoms
with peak Rydberg density of ~3×109/cm3 is tuned +10MHz (black), +15MHz
(blue) or +25MHz (yellow) from resonance. The frequency amplitude of the
different curves are normalized to the maximum amplitude in each scenario,
and the frequency scale is relative to the detuning, 10MHz (black), 15MHz
(blue) and 25MHz (yellow), in each case.
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Figure 5.9: Frequency spectra extracted from simulations based on (a) 4-
atom group ensembles (including Gaussian distribution of density) or (b) 2-
atom group ensembles (including Gaussian distribution of density) for p state
population as a function of time after an ensemble of initially excited p atoms
with peak Rydberg density of ~3 × 109/cm3 is subject to 1 jump cycle at
detunings of ±10MHz (black), ±15MHz (blue) and ±25MHz (yellow). The
frequency amplitude of the different curves are normalized to the maximum
amplitude in each scenario, and the frequency scale is relative to the detuning,
10MHz (black), 15MHz (blue) and 25MHz (yellow), in each case.
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5.3 Examining Hopping Effects with Ramsey

Interference

Thus far, we have considered population transfer measurements for on reso-

nance (chapter 3) and near resonance scenarios. To explore dephasing in the

far off resonant regime, we have employed a variant of time-domain Ramsey

interference spectroscopy [33], as illustrated in Figure 5.10. A random Ryd-

berg ensemble of 32p atoms is first created using a 300ns Rydberg excitation

laser pulse (produced via AOM chopping of the 480nm CW laser). The laser

excites atoms from the upper MOT trap state (5p3/2) to the 32p level (enabled

by Stark mixing in the applied electric field) in an external field of ~12V/cm

(i.e., detuned by +0.5V/cm or +85MHz from resonance). The large initial

detuning essentially turns off the resonant dipole-dipole interaction during the

laser excitation. The Rydberg atoms are tuned on resonance for 25ns, enabling

a small amount of population transfer from pp to ss′, and then detuned by

+0.5V/cm for a variable delay time. Here the resonant pp-ss′ coupling is far

detuned and the superposition of pp and ss′ atoms evolves under the principal

influence of exchange interaction for a variable time delay. The atoms are

tuned on resonance again, enabling addition population transfer between pp

and ss′. The ss′ amplitudes created during the two 25ns interaction intervals

can interfere constructively or destructively, depending on the delay between

those two intervals. After the second interaction the state populations are

measured with SSFI.

Figure 5.11 shows the result of typical Ramsey interference measurements.
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Figure 5.10: Electric field in the Rydberg interaction region as a function of
time during a Ramsey interference experiment, determined by voltages applied
to both the front field plate (connected to the AWG, yellow) and back field
plate (connected to the high voltage trigger transformer for SSFI, magenta).
The AOM chopped blue laser pulse (blue) creates a Rydberg gas via Stark
assisted excitation of 5p3/2 atoms to the 32p state while the pp to ss′ interaction
is tuned far (~85MHz) from resonance. Voltage pulses from the AWG then
tune the system on resonance for 25ns, before tuning the system off resonance.
In our case, the off resonance detuning between the nominal pp and ss′ states
is ~85MHz. The off resonance time is scanned from 0-125ns (100ns shown on
graph) before the system is tuned on resonance for an additional 25ns and
then brought far off resonance again. The resonance lineshape (or interaction
strength) in the relevant fields is shown in cyan. After the Ramsey interference
sequence, the atoms are ionized and populations in different Rydberg states
measured via SSFI.
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The delay-dependent modulations in the p-state population reflect the ~85MHz

energy separation of the nominal pp and ss′ in the far detuned configuration.

In the absence of beyond nearest neighbor hopping interactions, and electric

field inhomogeneities, this energy splitting would be nearly identical for all

atom pairs in the ensemble. In this case, any decay in the observed Ramsey

interference modulations would reflect the small differences in energy split-

ting due to variations in the far off resonance pp-ss′ coupling between nearest

neighbor atoms. However, in the presence of hopping interactions, the energy

splitting varies between atom pairs even when the resonant coupling is com-

pletely negligible, resulting in a dephasing of the Ramsey interference in a time

that is inversely proportional to the spread in energies due to those exchange

couplings.

The relatively poor agreement between the Ramsey data and the 2-atom

based simulation results (which do not include hopping) in Figure 5.11, as

compared to the excellent and reasonable agreement for the on or near res-

onance population transfer measurements respectively (see chapter 3 and 4),

reflects the change in the impact of excitation hopping interactions, from neg-

ligible in the on resonance case, to primary in the Ramsey interference case.

The 4-atom simulations also fail to accurately capture the rate of decay of the

Ramsey interference modulations and the asymptotic baseline of the popula-

tion transfer at long delays. Apparently, more than 4 atoms are coupled and

larger groups of correlated atoms are required to accurately describe the few-

or many-body system dynamics in this regime. The asymptotic population

transfer baseline also reflects an effect of hopping that was discussed in the
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context of resonance lineshapes [75, 81, 82, 85] but not unambiguously ob-

served in population dynamics experiments: On average, more p population

can be transferred to ss′ pairs as the coupling strength, and hopping rate,

between non-nearest neighbors, is increased. This has been explained as the

result of hopping interactions that move s and s′ excitations that were rapidly

produced from pp atom pairs separated by less than the average atom spacing,

away from those nearby atom pairs, leaving pp pairs that can rapidly convert

to ss′ again for a net long time gain in the number of s and s′ atoms [75].

To quantitatively assess the ensemble dephasing in the far off resonance

regime, we can again compute the Fourier transform of the time-domain Ram-

sey interference data and simulations (Figure 5.12). To accurately determine

the frequency spectra, the simulations of p population as a function of delay

time between the two on resonance intervals are performed with a 2GHz tem-

poral sampling rate, and a maximum delay of 10µs. Accordingly, the spectral

resolution for the simulations is 0.1MHz. The experimental data were collected

at a 1GHz temporal sampling rate, and a maximum delay time of 125ns. Thus,

the measurement resolution is limited to 8MHz. However, the data are zero

padded to 250ns before applying the FFT to increase the number of spectral

points on the peak corresponding to the Ramsey interference frequency. Addi-

tionally, unlike the main feature in the near resonance Rabi spectra, the width

of the Ramsey peak is much less than its central frequency (85MHz) and the

peak is reasonably symmetric. Hence, its width is fairly well characterized by

it’s FWHM. Therefore, we use the FWHM as a measure of the dephasing rate

in the experiment and different simulation models (Table 5.1), and utilize the
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Figure 5.11: Experimental data (black) and simulation results based on 4-atom
group ensembles (blue, including Gaussian distribution of density) or 2-atom
group ensembles (yellow, including Gaussian distribution of density) for p state
population (normalized to total population) in an ensemble of initially excited
p atoms with peak Rydberg density of (a) ~2.7×109/cm3 or (b) ~1.4×109/cm3

as the delay between the two on resonance intervals in the Ramsey interference
control sequence is scanned from 0-125ns.
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comparison of the FWHM between different models to revisit the question of

how ensemble density affects the importance of dephasing due to the exchange

interactions responsible for hopping.

density(109/cm3) 2.7 1.4
Experiment ~20MHz ~12MHz
4-atom group ensembles 1.4MHz 0.9MHz
2-atom group ensembles 0.5MHz 0.3MHz

Table 5.1: FWHM of Ramsey interference frequency spectra for experimental
data and simulations based on 4/2-atom group ensembles at different densities.
The spectral resolution is limited to 8 MHz for the experimental data and 0.1
MHz for the simulations. The contribution to the experimental width due to
electric field inhomogeneity is estimated to be ~0.5MHz.

The vast differences between the frequency spectra associated with the

measurements and simulations based on 4/2-atom group ensembles reflect the

importance of excitation hopping in the evolution of Rydberg gases far from

energy transfer resonance. Unlike the measurements on and near resonance,

the 4 and 2 atom simulations clearly do not accurately capture the essential

aspects of the few- to many-body physics in the far off resonance case. As

Table 5.1 shows, the experimental dephasing rates reflected by the FWHM

of the primary spectral peak are much larger than those predicted by the

4-atom and 2-atom simulations, respectively, indicating that the spread in

the energies of coupled Rydberg atoms in the ensemble is ~40× larger than

predicted if hopping interactions are ignored, and ~14× larger than expected

if hopping is only allowed within 4-atom groups. Note that inhomogeneous

broadening effects due to electric field inhomogeneities are estimated to be

~0.5MHz, essentially negligible when compared to the measured widths.
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Figure 5.12: Frequency spectra extracted from experimental results (black)
and simulations based on 4-atom group ensembles (blue, including Gaussian
distribution of density) or 2-atom group ensembles (yellow, including Gaussian
distribution of density) for p state population (normalized to total population)
in an ensemble of initially excited p atoms with peak Rydberg density of (a)
~2.7× 109/cm3 or (b) ~1.4× 109/cm3 as the delay between two on resonance
pulses in Ramsey interference is scanned. The spectral resolution is 8MHz for
the experimental data and 0.1MHz for the simulations.
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Interestingly, the dephasing rates for the experiment and both simulations

increase by a factor of ~1.6 for a density increase of 1.9×. This is roughly

consistent with a linear density dependence, as would be expected if the en-

ergy variations responsible for the dephasing are due solely to dipole-dipole

couplings whose average strengths are proportional to the ensemble density.

Unfortunately, the range of densities over which Ramsey interference mea-

surements could be accurately performed was limited by signal to noise at low

density and the maximum density achievable in the current MOT configura-

tion. Therefore, it was not possible to measure the dephasing rates over a

wider range of densities to confirm the linear dependence. Importantly, the

fact that the experiment and simulations show the same density-dependence

provides strong evidence that the large experimental widths are not due to

experimental imperfections, such as temporal inhomogeneities in the applied

electric field, as those would not be density dependent.

Comparison of the 2-atom and 4-atom simulations suggests that enabling

exchange interactions with one additional pair of atoms increases the dephas-

ing rate (i.e., the spread of coupled atom energies) in the far off resonance

regime by approximately a factor of 3. The fact that the experimental widths

are an additional factor of 14 wider suggests that couplings and correlations be-

tween significantly larger groups of atoms are responsible for dephasing in far

off resonance regime. Taken together the Rabi flopping and Ramsey interfer-

ence measurements provide a view of the evolution of complexity in population

transfer in frozen Rydberg gases, with the principal on resonance couplings and

dynamics restricted to nearest neighbors [5, 70, 81, 82], near resonant inter-
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actions limited to nearest and next nearest neighbors, and far off resonance

evolution involving couplings between many atoms.
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Chapter 6

Directional Population Control

Beyond the Exceptional Point

in a Non-Hermitian System[1]

In the presence of exponential loss and/or gain, pseudo-two-level quantum sys-

tems exhibit complex eigenenergy surfaces whose real and imaginary parts are

chiral functions of the coupling strength γ and energy separation δ between

the bare states [118]. There has been substantial interest in exploring meth-

ods for robust quantum control in such non-Hermitian models. For example,

controlled population transfer can be realized by adiabatically steering the

system around a closed control loop in the (γ, δ) parameter space [119, 120].

Given the change in state in this context, the system evolution cannot be

truly adiabatic. Nevertheless, the term is commonly used to describe trans-
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formations that would be adiabatic for a similar system governed only by

the real part of the Hamiltonian. Previous work has suggested that popula-

tion transfer can only occur through such a transformation if the control loop

encloses an exceptional point (EP), i.e., a point of energy degeneracy that

exists at nonzero coupling in the eigenenergy landscape [121, 122]. Further

studies predicted that the helicity of the control path, as well as its starting

or ending point, can impact the population transfer probability and serve as

additional control knobs [119, 123, 124, 125]. Experiments exploring these

and related phenomena have been performed using microwave cavities [126],

optomechanical cavities [120, 127], molecules [128, 129, 130], and other sys-

tems [131, 132, 133, 134, 135]. Recently, the nonadiabatic transition prob-

ability in a two-level system steered directly through two exceptional points

was determined [136]. Here we present results of simulations based on numer-

ical integration of the time-dependent Schrödinger equation (TDSE), showing

that encircling an EP is not a necessary condition for control of directional

population transfer in a two-level non-Hermitian system.

In the following sections we examine the adiabatic control problem for

simple rectangular paths in the (γ, δ) parameter space for a generic two-level

system in the presence of exponential decay (and/or gain). Our numerical

simulations clearly show that directional population transfer can still occur

in adiabatic transformations that do not enclose the EP. We also present an

analytical model that identifies the mechanism responsible and predicts how

far beyond the control loop boundary the EP can lie while still affording full

directional population control.
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6.1 Two-level System with Decay

Consider a pair of uncoupled states with energies E1 and E2 that spontaneously

decay at rates of 2Γ1 and 2Γ2, respectively, to some unspecified levels. We

assume that a coupling γ between the two states can be externally applied,

and that γ and the energy splitting δ = E2−E1 between the bare states can be

continuously varied. As a concrete example, this situation might be realized

by driving two opposite-parity atomic states with a nearly resonant oscillating

field. In a dressed-atom picture, δ is determined by the detuning of the field

frequency from resonance and γ can be changed by varying the field strength.

The system can be described by an effective non-Hermitian Hamiltonian

H =

−E1 − iΓ1 γ∗

γ −E2 − iΓ2

 (6.1)

in atomic units.

Without loss of generality, we can further simplify the Hamiltonian. First,

we translate the complex energy origin, subtracting −E1 − iΓ1 from the diag-

onal matrix elements. Next, we define γ to be real and positive. Finally, we

rescale all terms in the Hamiltonian by dividing them by the difference in the

decay rates of the two bare states. The Hamiltonian is then a function of only

two variables γ and δ and takes the convenient form

H ′ =

0 γ

γ −δ − i

 , (6.2)
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where one of the uncoupled basis states does not decay and the other decays

with a characteristic lifetime τ = 1
2
.

Figures 6.1(a) and 6.1(b) show the real and imaginary parts of the eigen-

value surfaces E as a function of δ and γ. At each point, the surface col-

ors identify the eigenstates with the smallest (magenta) and largest (cyan)

rates of decay, i.e., the magenta eigenstate has the eigenvalue with the least-

negative imaginary part. The surfaces exhibit a point of degeneracy, the EP,

at
(
δ = 0, γ = 1

2

)
. For

(
δ = 0, γ > 1

2

)
, the real parts of the eigenvalues form

an avoided level crossing, whereas for
(
δ = 0, γ ≤ 1

2

)
they cross with zero gap.

Conversely, the imaginary parts of the eigenvalues exhibit a line of degeneracy,(
δ = 0, γ ≥ 1

2

)
.

When attempting to understand how an initial state of the non-Hermitian

system will be transformed during a closed control loop, it is tempting to

assume that the principal effect of the imaginary part of the Hamiltonian is

a steady leak of population from the two levels. Under that assumption, one

might neglect the difference in the decay rates of the two states (i.e., ignore the

imaginary part of the effective Hamiltonian) and consider only the evolution on

the real part of the eigenvalue surfaces. In that case, if the system is initially

in one of the two eigenstates, it will remain in an eigenstate throughout a

perfectly adiabatic transformation. The character of the initial state will vary

smoothly with time as γ and/or δ are changed, with the system evolution well

described by a path that does not leave the eigenenergy surface. Inspection of

Figure 6.1(a) would then predict that because of the line of degeneracy in the

surface, any closed adiabatic path (regardless of its shape or the direction of
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Figure 6.1: (a) Real and (b) imaginary parts of the eigenvalue surfaces E for
the coupled pseudo-two-level system with decay. Magenta and cyan correspond
to the states with the smallest and largest decay rates, respectively. The black
star marks the EP

(
δ = 0, γ = 1

2

)
. The dashed line beneath the real part of

the eigensurfaces illustrates the form of the closed path transformations we
consider in detail (see the text), with two legs (labeled 1 and 3) at constant γ
and two legs (labeled 2 and 4) at constant δ.
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travel) that encircles the EP (an odd integer number of times) will result in

complete population transfer from one eigenstate to the other. Any adiabatic

path that does not encircle the EP (or encircles it an even integer number of

times) results in no net population transfer.

However, not only does the presence of an imaginary part of the Hamil-

tonian lead to decay of the system as a whole, it can fundamentally change

the system evolution during the control loop and accordingly the final result

of the transformation. The primary issue is related to the asymmetric decay

of the two eigenstates and the fact that no dynamical process of finite dura-

tion can be truly adiabatic. While nonadiabatic (de)excitations resulting from

time-varying external controls can be reduced to negligible levels in Hermitian

systems, they can be dramatically amplified by the unequal decay rates from

the constituent eigenstates during a slow transformation. Increasing the loop

time can reduce any nonadiabatic effects associated with the time-dependent

controls, but simultaneously enhances the impact of the differential decay.

Indeed, it has been shown, contrary to the naive picture presented in the pre-

ceding paragraph, that the population transfer in the non-Hermitian system

is actually chiral. Depending on the helicity of the control loop, population

transfer is effective for only one of the two eigenstates, with the other es-

sentially unaffected by the process [120]. Also in contrast to the Hermitian

picture, the transfer probability for a given closed control loop also depends on

the starting point (δ0, γ0) of the transformation [125]. Here we demonstrate via

simulations based on numerical integration of the TDSE and explain through

an analytic model another important result stemming from the difference in
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decay rates of the bare states, namely, closed control loops need not enclose

the EP to induce selective population transfer.

For convenience, we focus on rectangular control loops that can be sepa-

rated into four distinct segments (or legs). As shown in Figure 6.1(a), δ varies

along legs 1 and 3 (with constant γ = γmax and γmin, respectively) and γ

varies along legs 2 and 4 (with constant δ = δmax and −δmax, respectively).

Moreover, for ease of illustration, we exclusively consider population transfer

from systems that are initially prepared in one of the two eigenstates. All

closed loop transformations start from (δ0 = 0, γ0 = γmax). Because our pri-

mary goal is to understand how the relative populations are affected by the

system transformations, when plotting the state populations (or population

transfer probability) at a particular time, we normalize to the total popula-

tion remaining in the system at that time. It is worth noting that the reduced

Hamiltonian has the same form if one or both of the bare states experience

exponential gain rather than decay (as, for example, with optical modes in a

cavity with gain), so our consideration of times long compared to τ does not

imply negligible system population.

Figure 6.2 illustrates the principal effect we explore in this paper. In Fig-

ure 6.2(a) the clockwise control loop encloses the EP and initial population

in the upper state is transferred to the lower state, while initial population in

the lower state remains in the lower state. Following the same path in a coun-

terclockwise direction (not shown) induces population transfer from the lower

to the upper state, but not from upper to lower. In Figure 6.2(c) the control

loop does not enclose the EP and there is no population transfer from either
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(a)

(b)

(c)

Figure 6.2: Energy expectation value of the two-level system, shown as a path
in the real part of the energy eigenvalue landscape, computed via numerical
integration of the TDSE for clockwise rectangular control loops. The three
plots show control loops with different values of γmin: (a) 0.3, (b) 0.6, and (c)
2. The surface coloring designates the eigenvalue with the slowest (magenta)
and fastest (cyan) decay, analogous to Figure 6.1, with a black star positioned
at the EP,

(
δ = 0, γ = 1

2

)
. The thin solid (thick dashed) black lines show the

energy expectation value vs (δ, γ) during the transformation, for initial system
preparation in the upper (lower) eigenstate. For all cases in the figure (i) the
start and stop point is (δ0 = 0, γ0 = 3), (ii) the detuning is varied over the
same range, −1 ≤ δ ≤ 1, and (iii) the duration of each leg of the control loop is
20τ , for a total transformation time of 80τ . In (a) the clockwise control loop
encloses the EP and the initial population in the upper state is transferred
to the lower state, while the initial population in the lower state remains in
the lower state. In (c) the control loop does not enclose the EP and there is
no population transfer from either initial state. Interestingly, complete and
directional population transfer is observed in (b), despite the fact that the EP
is not enclosed within the control loop.
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initial state. Figure 6.2(b) shows that efficient chiral population transfer can

still occur, even for closed control loops that do not enclose an EP, and under

conditions where the evolution would be purely adiabatic (with negligible net

population transfer from either initial state) in a Hermitian analog system.

Adiabaticity of identical transformations in a Hermitian analog system whose

eigenenergy surface closely matches the real part of the surface in our non-

Hermitian system1 has been directly confirmed via numerical integration of

the TDSE. This observation begs the following questions. If not enclosure of

the EP, what characteristics of a closed control loop determine whether pop-

ulation transfer occurs? For the rectangular loops that we consider, can we

predict the range of γmin values for which the transformation leaves the initial

state unchanged?

To gain additional insight toward answering these questions, we have cal-

culated the population transfer probability vs γmin for families of clockwise

and counterclockwise control loops (with the same value of γmax = 3, the

same starting point (δ = 0, γ = 3), and the same total loop time of 80τ) for

three different values of δmax. As shown in Figure 6.3, population initially in

the upper (lower) eigenstates is largely unaffected by counterclockwise (clock-

wise) control loops for any values of γmin and δmax. However, for γmin below

some threshold (greater than 0.5), clockwise (counterclockwise) transforma-

tions result in efficient transfer from the upper (lower) eigenstate. We define

the critical coupling γc as the smallest value of γmin for which the population
1The Hermitian analog Hamiltonian is obtained by replacing the diagonal elements of the

non-Hermitian Hamiltonian in Eq. 6.2 with their real parts and replacing the off-diagonal
elements with

√
γ′2, where γ′2 is the greater of γ2 − 1

4 and 0.
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Figure 6.3: Population transfer probability computed via numerical integra-
tion of the TDSE as a continuous function of γmin for closed rectangular control
loops analogous to those in Figure 6.2 but for several different values of δmax.
Black, magenta and cyan curves correspond to δmax = 0.25, 0.5, and 1, respec-
tively. Results are plotted for (a) clockwise and (b) counterclockwise paths.
The thick solid (dotted) lines give the transfer probabilities when the system
is initially prepared in the upper (lower) eigenstate at the start of the control
loop, (δ = 0, γ = 3). The thin gray vertical dashed line at γmin = 1

2
marks

the position of the EP. Loops with γmin < 1
2

enclose the exceptional point,
whereas those with γmin > 1

2
do not. The duration of each leg of each control

loop is 20τ , for a total transformation time of 80τ . The insets show examples
of three different control loops, each with the same value of δmax and γmax, but
different values of γmin.
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transfer probability equals 0.5. As Figure 6.3 clearly shows, γc depends on the

detuning range in the control loop. In particular, γc > 0.5 and increases mono-

tonically, but nonlinearly, as a function of δmax. For γmin > γc, the transfer

probability exhibits oscillations whose amplitude decays with increasing γmin.

The amplitude and rate of decay of those oscillations also depend on δmax.

We first consider the dependence of γc on δmax, i.e., on the width of the

control loop. We note that Figure 6.2 suggests that, in general, population

transfer is only significant during leg 3, as δ varies with γ = γmin. Therefore,

to understand the principal aspects of the population transfer dynamics, we

can focus on the evolution during leg 3. Along that path, for γmin > 0.5, the

system traverses an avoid crossing in the real part of the eigenvalue surface

(Figure 6.4). Accordingly, if the Hamiltonian were Hermitian, the population

transfer probability would be well described by the standard Landau-Zener

formula [137]. As such, one might expect that the key parameter in deter-

mining the population transfer probability would be the rate at which the

system passes through the avoided crossing. However, Figure 6.5 illustrates

that this expectation generally fails in the non-Hermitian case, even for adi-

abatic transformations where the detuning is scanned sufficiently slowly that

there is negligible population transfer in an analogous Hermitian system with

the same avoided crossing characteristics.

Figure 6.5 shows the population transfer probability as the detuning is adi-

abatically scanned along leg 3, for fixed values of the detuning end points, but

for different scan rates and different coupling strengths (i.e., different energy

gaps at the center of the avoided crossing). While the details of the population

154



Figure 6.4: Avoided level crossing along leg 3 of the control loop for a coupling
strength γ slightly greater than 1

2
. Far from the avoided crossing, the eigen-

states are nearly equivalent to the bare states. Magenta and cyan denote the
more slowly and rapidly decaying eigenstates, respectively. The letters label
three principal regions of population evolution during a detuning scan through
the avoided crossing.
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Figure 6.5: Population transfer probability between two eigenstates calculated
via numerical integration of the TDSE as the detuning δ is scanned from −3
to 3 at different couplings γ with constant detuning scan rates of dδ

dt
=0.25

(cyan), 0.5 (magenta) and 1 (black).

transfer along the path depend on the scan rate and coupling strength, the

value of the detuning (i.e., the position along the path) at which 50% transfer

occurs is nearly independent of the scan rate (within the adiabatic regime).

Apparently, it is the range of δ, and not the rate at which δ is scanned, that

determines γc for the adiabatic passage. As we show below, this is because

the differential decay rate of the bare states plays a dominant role in the

population transfer.
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6.2 Landau-Zener Transition in

Non-Hermitian Systems

As noted above, the well-known Landau-Zener formula gives the probability of

population transfer at an avoided crossing in a two-level Hermitian system as

the energy difference between two bare states is scanned through degeneracy at

a constant rate [137]. The extension of the problem to non-Hermitian systems

has also been studied in detail [138, 139]. We take an alternative approach,

using an approximate model that allows us to develop an analytic expression

for the critical value δmax = δc at which the population transfer probability is

0.5 for a given value of γ. We assume that the detuning range is sufficiently

large that the system evolution along leg 3 can be divided into three regions

(Figure 6.4). In regions A and C, δ ≫ γ, so the eigenstates are approximately

equivalent to the bare states, one of which does not decay and the other

decaying with a lifetime, τ = 1
2
. Note that energy ordering of the slow and

fast decaying states is opposite for regions A and C. In region B, δ < γ, the

two eigenstates are nearly equal admixtures of the two bare states, and they

decay at approximately the same rate. Therefore, there is negligible relative

decay. Accordingly, the population transfer between the two states in region

B is accurately described by a Hermitian Landau-Zener formula, assuming a

coupling
√

γ2 − 1
4

that exhibits approximately the same energy gap as the

non-Hermitian system at δ = 0.

Inspection of Figures 6.2 and 6.3 shows that for the control loops we have

considered, significant population transfer occurs only when the system enters
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leg 3 with essentially all population in the more slowly decaying eigenstate.

Therefore, to predict the value of δc for a given γ along leg 3, we only need to

examine two cases: all population initially in the lower (upper) state travers-

ing the avoided crossing from left to right (right to left) as shown in Figure

6.4. Since these two cases are equivalent, we focus on the left to right trans-

formation, progressing through regions from A to B to C.

Within the model, the eigenstates are approximately equivalent to the bare

states in region A. So if all population is initially in the nondecaying state,

it will remain there throughout region A and at the start of region B. The

Landau-Zener formula [137] then predicts the following populations in the

nondecaying (upper) state

PND = exp
[
−2π

(
γ2 − 1

4

)/
dδ

dt

]
(6.3)

and decaying (lower) state

PD = 1− exp
[
−2π

(
γ2 − 1

4

)/
dδ

dt

]
(6.4)

at the beginning of region C. Of course, in the adiabatic regime
(
γ2 − 1

4

) /
dδ
dt

≫

1, so PD ≈ 1. However, PND is non-zero provided dδ
dt

> 0.

In region C, the population in the nondecaying level does not change, but

the other decays exponentially with a time constant τ ,

PD(t) ≈ exp
(
− t

τ

)
, (6.5)

where we have defined t = 0 at the start of region C. For a constant scan rate,
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Figure 6.6: Critical detuning δc vs coupling γ as determined from TDSE simu-
lations of population transfer along leg 3 using the non-Hermitian Hamiltonian
(filled circles) and the analytic approximation δc = π

(
γ2 − 1

4

)
(solid line).

we can substitute t = δ/dδ
dt

and τ = 1
2

to obtain

PD(δ) ≈ exp

(
−2δ

/
dδ

dt

)
. (6.6)

At the end of region C, δ = δmax. By definition, if δmax = δc, then there

is 50% relative population transfer during the transformation and we have

PND = PD(δc). Accordingly, we find δc = π
(
γ2 − 1

4

)
, independent of the

scanning rate.

Figure 6.6 compares the approximate analytic prediction for δc with simu-

lation results based on population transfer along leg 3 using the non-Hermitian

Hamiltonian. The agreement is excellent.
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6.3 Extension to Closed Control Loops

We can readily extend the model of population transfer during just leg 3 to

the full control loop, starting and ending at (δ = 0, γmax). To predict γc for

the closed loop, we again only need focus on situations where non-negligible

population transfer occurs during leg 3, i.e., clockwise paths starting from the

upper eigenstate and counterclockwise paths starting from the lower eigenstate

(Figure 6.2). During the first 3
8

of the loop, the system population remains

in the initial, slow decaying state. Any small level of population transfered

to the other eigenstate (due to imperfect adiabaticity) rapidly decays. Thus,

all population is in the slow decaying state when the system enters leg 3.

Population transfer can then occur during leg 3 as described in the preceding

section, with γc =
√

δmax
π

+ 1
4
. The plot in Figure 6.7(b) shows this analytic

prediction for γc, along with simulation results based on population transfer

during the first 5
8

of the control loop with the full non-Hermitian Hamiltonian.

The agreement is again excellent.

Continuing on the remaining 3
8

of the control loop after leg 3, small levels

of probability amplitude transfer between the two eigenstates (again due to

imperfect adiabaticity) can interfere with the non-negligible population in the

two eigenstates for a substantial effect. The oscillations in the population

transfer for the full loop, visible in Figure 6.3 for γ > γc, are the result of that

interference. Those interferences also cause a substantial steplike increase in

the value of γc with increasing δmax, as shown in Figure 6.7(a).

It is worth noting that using our operational definition based on the evolu-
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tion of a Hermitian analog system, the adiabaticity of the closed-loop transfor-

mation improves with increasing distance of the (excluded) EP from the path.

This is because the energy gap at the avoided crossing along the minimum

coupling leg increases the further the EP is from the path. Thus, adiabatic

behavior can be achieved with reduced transformation times. In addition, as

shown by the magenta and especially the black curves in Figure 6.3, we find

that in some cases the effectiveness of the population swap actually improves

for loops that do not enclose the EP, with the population transfer probability

increasing as γmin is tuned from the EP toward γc.
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Figure 6.7: Critical coupling γc (filled circles) for which 50% relative popu-
lation transfer occurs vs maximum detuning, according to TDSE simulations
with the non-Hermitian Hamiltonian over (a) the full control loop and (b) the
first 5

8
of the control loop. The solid curve is the expression γc =

√
δmax
π

+ 1
4

derived in the text.
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Chapter 7

Summary and Outlook

The identification of dephasing mechanisms, and the development of tech-

niques to suppress it, continue to be important for ongoing research in many-

body quantum physics, especially so for engineering quantum computers/simulators.

In this dissertation, dephasing of Rydberg atom gas ensembles is thoroughly

modeled and measured. Beyond that, suppression of dephasing is achieved

with detuning jump sequences, enabling us to achieve the first observation of

Rabi flopping in random dipole-dipole coupled systems with more than a few

atoms.

More specifically, dephasing in Rydberg atom gas ensembles is visual-

ized via experiments and simulations based on random collections of 2 or

4 atom group ensembles, and demonstrated by: (1) the fast decay of the

Rabi oscillation amplitude for ensembles of 32p3/2(|mj = 3/2|) atoms subject

to 32p3/2(|mj = 3/2|) 32p3/2(|mj = 3/2|) to 32s33s resonant energy transfer

through dipole-dipole interactions (for both on and off resonance cases); (2)
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cusp rather than Lorentzian lineshapes for the energy transfer probability

as the splitting between the bare 32p3/2(|mj = 3/2|) 32p3/2(|mj = 3/2|) and

32s33s pair state energy is Stark tuned; and (3) fast decay of Ramsey interfer-

ence fringes based on the same energy transfer resonance. Comparison between

experimental results and simulations based on 2 atom (for which excitation

hopping cannot occur) or 4 atom group ensembles (for which limited excita-

tion hopping can occur), guides the discussion of effects of different dephasing

mechanisms.

To suppress dephasing, in chapter 4, detuning jump sequences are intro-

duced. These involve driving a resonant energy transfer at positive and nega-

tive detunings of equal magnitude in consecutive time periods, and repetitions

of that fundamental jump sequence. The mechanism of dephasing suppression

within the sequence is discussed via an analytical model, and its performance

is demonstrated experimentally and characterized through numerical simula-

tions. Large detunings paired with more jumps allows for greater suppression

of dephasing.

Chapters 3 and 5 consider two major mechanisms contributing to the fast

dephasing of a dipole-dipole coupled Rydberg atom gas. One is the inhomo-

geneous dipole-dipole interaction strength across the ensemble, resulting in

different local Rabi oscillation frequencies among local groups of atoms. The

other is excitation hopping of Rydberg excitations, which continuously changes

the interatomic distance of interacting Rydberg atom pairs, thus changing the

relevant Rabi frequency. By extracting frequency spectra from time domain

population transfer measurements and simulations for Rydberg gases allowed
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to interact at a constant detuning from resonance, or subject to detuning jump

sequences or time-domain Ramsey interference sequences, it was found that

the dephasing rate has a linear dependence on density and a positive rela-

tion with detuning (when considering excitation hopping). By comparing the

experimental frequency spectra with different simulation models at different

densities and detunings, in chapter 5, we concluded that excitation hopping

induced dephasing becomes more pronounced at higher detunings, and de-

phasing caused by either mechanism increases linearly as density inreases.

Beyond the discussion of dephasing and decoherence in Rydberg atom en-

sembles, chapter 6 focuses on directional population control in a non-Hermitian

system. We have shown that encircling an EP is not a necessary condition for

achieving directional population control via closed-loop adiabatic transforma-

tions in a non-Hermitian system. We present an analytic model that explains

the conditions needed to achieve control outside the EP in a two-level system,

predicting the minimum distance between the control path and the EP for

a class of rectangular control loops in the two-parameter (bare level detun-

ing and coupling strength) energy landscape. Experimental verification of the

predictions may require a system in which one or both of the uncoupled states

experiences exponential gain, rather than loss, to maintain non-negligible pop-

ulation in the system during the long adiabatic transformation times.

To further our understanding of dipole-dipole coupled gases through fu-

ture research, a few updates to the current simulation and experimental tools

could be beneficial. Simulations based on ensembles of more than four atoms

would increase their accuracy, especially for high detuning cases where excita-

165



tion hopping effects are more pronounced. Moreover, simulations that include

experimental imperfections like non-instant detuning jumps would be helpful

not only for improving the accuracy of the simulations, but also for deciding

if those effects noticeably change the behavior of the system. Furthermore,

for simulations beyond ~1µs time scales, which are necessary for studying

microscopic decoherence rather than macroscopic dephasing in the current ex-

perimental setup, the effects of spontaneous decay and blackbody radiation

would need to be added to the model to more accurately represent what is

happening in the system over longer timescales.

In terms of experiments, the current apparatus could be modified to allow

for increased accuracy and stability. Possible improvements include higher

fidelity electric field generation (shortening ramp up/down time for detuning

jumps and eliminating voltage ringing after jumps), lower noise electrical signal

amplification and transmission, better laser systems with improved frequency

and power stability (readily available in the lab), and most importantly, a more

stable MOT setup that reduces or eliminates the need of rubber suspension

components. For example, instead of suspending and vibrating the retro-

reflecting mirrors to average out standing wave patterns, one could vibrate

and suspend a piece of glass to modulate the phasefronts of MOT beams to

achieve the same effect. In this case, the retro-reflecting mirrors can be rigidly

attached to the optical table, increasing stability.

As for future research directions, detuning jump sequences open the door

for suppressing dephasing and decoherence in different physical systems, and

together with Ramsey interference experiments, enable detailed studies of de-
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phasing mechanisms. Specifically, a few twists on the current experimental

apparatus can enable the study of the following topics.

7.1 Experimental Verification of the

Contribution of Excitation Hopping to

Dephasing

The Ramsey interference experiments prove to be a valuable tool for extracting

frequency spectra and, thus, dephasing times. To better understand the de-

phasing mechanism with experiments, Ramsey interference experiments could

be performed at different detunings and densities. To experimentally verify the

effects of excitation hopping, ensembles that could turn on/off hopping effects

would be very helpful. This means creating ensembles of two, four, eight etc.

interacting atoms and exposing them to experimental sequences like detun-

ing jumps and Ramsey interferences. In principle, this could be achieved via

tweezer arrays. Comparison between experimental data based on ensembles of

two, four, eight etc. interacting atoms could confirm the conclusions regarding

the effects of excitation hopping or other dephasing mechanisms drawn from

simulations.
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7.2 Performance of Detuning Jump

Sequences in More Ordered Systems

We have shown that detuning jump sequences can extend dephasing times in

a highly inhomogeneous Rydberg atom gas. While highly ordered Rydberg

atom ensembles can now be realized experimentally [21, 140], suppressing de-

phasing remains a major goal for enabling experiments and applications. To

determine if detuning jump sequences might enhance the performance of those

systems as well, simulations of the evolution of pairs of atoms with an average

interatomic separation of 3µm and standard deviation of 50nm (Gaussian dis-

tribution), and internuclear axes aligned to an external electric field axis have

been performed. This particular setup might be readily realized experimen-

tally using optical tweezer arrays.

Detuning jump sequences for applications in those systems might be espe-

cially useful if well-defined population transfer between pp and ss′ could be

achieved on demand. As an example, to achieve 100% transfer, according to

the theoretical model discussed previously where P (ss′(T )) = 2N 2Ω2

Ω̃2

(
1− cos Ω̃T

2N

)
,

in the limit of δ ≫ Ω, the number of jumps and detuning should be matched

so that 2N 2Ω2

Ω̃2
= 1

2
, i.e., δ =

√
4N 2 − 1Ω. Simulations (Figure 7.1) show that

an ordered ensemble subject to the detuning jump sequence described above

(matching number of jumps and detuning), rather than being driven on reso-

nance, substantially reduces dephasing, for the same Rabi frequency. However,

as discussed previously, the amplitude enhancement offered by the jump se-

quences does not match the prediction from the analytic model, unless the net
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Figure 7.1: Simulation results of p state population (normalized to the to-
tal Rydberg population) as a function of time when an ensemble of p atom
pairs, oriented along an external electric field axis with an average interatomic
distance of 3µm and standard deviation of 50nm (Gaussian distribution), is
tuned to energy transfer resonance (black) or subject to 2 jumps at detuning
of δ =

√
4N 2 − 1Ωavg (blue) or δ = 0.7

√
4N 2 − 1Ωavg (yellow).

population transfer is ≪ 1. Accordingly, the maximum population transfer to

ss′ in the case of N jumps with detuning of δ =
√
4N 2 − 1Ω is ~70% rather

than 100%. This can be rectified by reducing the detuning slightly (at the price

of lower Rabi frequency and a somewhat distorted Rabi oscillation profile (i.e.,

not a perfect cosine waveform)). For example, with δ = 0.7
√
4N 2 − 1Ω, a peak

population transfer of 97.2% can be achieved. Even higher peak population

transfer rates can be achieved when the detuning is further reduced.
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7.3 Suppressing Decoherence with Detuning

Jump Sequences

So far, our discussion of jump sequences has centered on their use for sup-

pressing dephasing. However, the sequences might also serve to suppress mi-

croscopic decoherence, i.e., to suppress time-dependent phase variations within

local ensembles. It should be noted that the mechanisms responsible for deco-

herence in Rydberg gases can be quite complicated, including thermal motion,

spontaneous decay, interactions with blackbody radiation, etc. Here the dis-

cussion focuses on how jump sequences could suppress decoherence caused by

thermal motion of atoms.

Consider two atoms that are gradually drifting apart from each other. For

simplicity suppose this results in a linear decrease in the interaction strength

between them, and a linear decrease in their on resonance Rabi frequency,

at a rate dΩ
dt

. This means the phase difference between the two on resonance

eigenstates in the moving atom system would lag behind the same phase dif-

ference in an otherwise identical stationary system (where atoms remain in

their starting positions), by 1
2
dΩ
dt
T 2 after an interaction time T .

For a system subject to detuning jump sequences, the sign of the energy

difference between the two eigenstates is reversed whenever a detuning jump

occurs, resulting in a net phase lag over the jump cycle that is the difference

between the phase lags in the two halves of the jump cycle. In addition,

as discussed previously, in the large detuning regime, the generalized Rabi

frequency is Ω̃ ≈ δ + Ω2

2δ
. Thus, in regimes where changes in the coupling
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strength over a single jump cycle are small (dΩ
dt
T ≪ Ω), we have dΩ̃

dt
= Ω

δ
· dΩ

dt
,

so that the magnitude of the change in the eigenstate energy splitting due to

atom motion is significantly smaller than in the on resonance case. Considering

both factors, after N jumps at a detuning δ, the phase difference between the

two eigenstates in a pair of moving atoms only lags behind the phase difference

in a pair of stationary atoms by − Ω
4N δ

dΩ
dt
T 2, where T is the total evolution

time. This is a significantly smaller phase difference as compared to the on

resonance case (in terms of absolute value), and will result in substantially

reduced decoherence within the ensemble. Note that the magnitude of the

ratio of the phase differences for the jump to on resonance scenarios is Ω
2N δ

,

which by construction (N > 1, δ ≫ Ω) is ≪ 1.

Experimentally, the microscopic coherence of the ensemble can be charac-

terized through the population transfer enhancement achieved with detuning

jump sequence [37]. To clearly see the effects of decoherence under current

conditions in our MOT, where the average motion of atoms is slow, the ex-

perimental delay times needed to observe decoherence is ~10µs and beyond.

However, for the s, p and s′ states considered in this dissertation, spontaneous

decay and state redistribution due to blackbody radiation also occur on the

~10µs timescale, which could potentially cloud the interpretation of such a

decoherence experiment. Although previous experimental results [5, 37] sug-

gests that the coherence within a Rydberg atom gas is better preserved when

more jumps are performed (within a given time period) - despite the presence

of spontaneous decay and blackbody radiation -, to more quantitatively study

how detuning jump sequences can suppress decoherence, more slowly decaying
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Rydberg states should be used.

Overall, with the first observation and analysis of Rabi flopping in random

dipole-dipole coupled systems with more than a few atoms, this dissertation

has set a foundation for future experimental study of dephasing and decoher-

ence suppression sequences based on detuning jumps, and pointed out a way

to quantitatively study dephasing mechanisms in many-body systems like cold

Rydberg gas subject to dipole-dipole interactions.
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Figure 7.2: Illustration of phase difference (
∫
Ωdt or

∫
Ω̃dt, note Ω̃ is smaller

in value) between two eigenstates of a pair of atoms at time t0 for (a) on reso-
nance eigenstates and (b) detuned eigenstates subject to two jumps, when the
atoms are stationary (constant Rabi frequency/generalized Rabi frequency) or
gradually coming apart (Rabi frequency/generalized Rabi frequency subject
to linear shift). The signs and colors indicate if the energy of one state is
higher than the other (blue), or the other way around (yellow). The cases
where atoms gradually come apart show integrated phase differences, relative
to the cases where atoms are stationary, proportional to the areas of the blue
rectangle in the “phase lag” portion of the graphs.
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Appendix A

Absence of Collective Decay in

Lower Rydberg States

Many body quantum ensembles can exhibit collective behavior that is quite

distinct from that of a group of uncorrelated individuals. In 1954 [141], Dicke

provided the first physical model for N identical radiators in a small (com-

pared to radiation wavelength) or properly phased extended ensemble in which

correlated radiators coherently interfere with each other to achieve radiation

rates much greater than (“superradiance”) or much smaller than (“subradi-

ance”) those of individuals in the sample. Superradiance and subradiance

have since been observed in many different contexts, and because superradiat-

ing systems exhibit a high level of cooperativity, they are good candidates for

observing and utilizing many-body effects and remain topics of active research

[51, 91, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
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156, 157, 158, 6, 159, 160, 161, 162, 163, 164, 165, 166]. However, to our best

knowledge, despite the fact that superradiant emission between Rydberg states

has been observed in extended hot atom ensembles long ago [159, 153, 154], it

has never been experimentally observed in small atomic ensembles with sizes

much smaller than the radiation wavelength (λ), and for very good reasons.

There have been claims of observing superradiant transitions in cold Rydberg

ensembles [142, 143], but the radiation itself was not observed directly, and

other mechanisms that could be responsible for the rapid redistribution of pop-

ulation that was observed [167, 168, 169, 170, 171] were not ruled out. Chapter

3 provides an extensive discussion of dipole-dipole interactions which lead to

inhomogeneous shifts of the eigenenergies of Rydberg atoms in a random en-

semble. Thus, the requirement of “identical radiators” in Dicke’s proposal

cannot be strictly met in a very small and dense ensemble where the radiation

path length L < λ, and/or the ensemble volume V < λ3. The unavoid-

able variation in the frequency of the radiators across the ensemble suppresses

superradiance effects. In fact, previous students in our group found no evi-

dence for superradiance in cold Rydberg ensembles with a diameter of 0.4mm

and densities ρ~1.5 × 109/cm3 and ρ~3 × 109/cm3 involving transitions with

λ > 1mm [91].

In a cold Rydberg gas, two mechanisms, cooperativity and dephasing com-

pete, encouraging and discouraging superradiance. Specifically, the dephasing

rate from dipole-dipole interactions involving pairs of atoms can be written as

γDD =
πµ2ρ

4ϵ0ℏ
[154], (A.1)
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here µ2 is the sum of the transition dipole moments Σ ⟨n1l1| r̂ |nl⟩ ⟨n2l2| r̂ |nl⟩

associated with all the possible (near) resonant dipole-dipole interaction chan-

nels involving the initial quantum state |nlnl⟩ to |n1l1n2l2⟩, ρ is the number

density of Rydberg atoms. Note that in reality the dipole-dipole dephasing

rate is even higher, due to the possibility of interactions involving more than

two atoms. Conversely, the superradiant decay rate is

γSR =
πµ2ρ

3ϵ0ℏ
L

λ
[154], (A.2)

where λ is the wavelength of the radiation, and L is the path length of radiation

through the sample. A comparison between the two rates suggests that super-

radiance should occur before dephasing can suppress it if, and only if, L
λ
≫ 1.

In fact, to our knowledge, all observations of superradiance to date have in-

volved extended ensembles where L
λ
≫ 1 is met, and often with the assistance

of resonant cavities which boosts cooperativity [144, 145, 146, 148, 149, 150,

151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166]. As

noted above, previous students were unable to observe any evidence for su-

perradiance from Rydberg atoms excited in a Rb MOT with a diameter of

0.4mm for the 26s to 25p transitions with λ~1mm, or for similar transitions

between higher n states involving longer wavelengths [91]. More recently, we

performed additional experiments to explore whether any evidence for accel-

erated radiative decay of Rydberg atoms, in a comparable volume, could be

observed for shorter wavelength transitions involving lower Rydberg states for

which L
λ
≥ 1.
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Thanks to the addition of electric field plates, rather than field rods (the

plates used in this experiment are two parallel sheets of high transparency

stainless steel mesh, supported by rigid stainless steel frames), a higher ioniza-

tion field strength (~5000V/cm) could be applied to atoms in the MOT (when

simultaneously applying a positive voltage pulse to back plate and a negative

voltage pulse to front plate) compared to previous experiments [91], where the

maximum ionization field was limited to <2000V/cm. This strong field allowed

19s and 19p Rydberg states to be field ionized and thus detected with SSFI.

The wavelength of the 19s to 18p transition is 0.33mm, substantially shorter

than the 1mm transition wavelength of 26s to 25p transition, and less than

the 0.5mm FWHM of the MOT (at densities of 0.5-4.3×108/cm3). If L
λ
> 1

encourages superradiance, then the 19s to 18p transition in a 0.5mm MOT

should be more likely to exhibit superradiance than the 26s to 25p transition

in a similarly sized MOT (0.4mm FWHM in the previous students’ case).

To determine if collective effects influenced the decay of initially populated

19s atoms in our MOT, atoms within MOT were first excited from the upper

trap state (5p3/2) to the 19s state with pulsed dye laser. The laser utilized an

infrared laser oscillator (using LDS 925 dye), whose output was frequency dou-

bled and then amplified (using Couramin 460 dye) in an attempt to suppress

large Rydberg density fluctuations due to spectral noise in the direct output

from the Nd:YAG pumped multi-mode dye laser. The detailed operation prin-

ciples of pulsed dye lasers can be found in the dissertations of previous students

[51, 5, 74]. After a variable delay time (0-80µs, as controlled by a digital delay

generator), ramped voltages of opposite signs were applied to the front and
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back field plates, ionizing the Rydberg atoms and enabling the measurement of

the population in the 19s and 19p energy levels at given delay time. It should

be noted that although the beginning (trigger) time for the ionization pulses

can be well defined, the actual ionization time for different states of atoms can

only be determined to be somewhere during the ~5µs ionization pulse. Thus,

to accurately determine the ionization time, the time dependence of the 19p

population profile is used as a calibration. The 19p atoms are excited from

the 19s state via blackbody radiation and decay via spontaneous emission to

lower lying ns and nd states. As a result, the population in 19p state as a

function of time exhibits a well-defined peak. Lining up the temporal peak in

the measured 19p population with simulation results including the effects of

spontaneous emission and blackbody radiation allows us to accurately define

the ionization (i.e. measurement) time for the 19s states, which is 2.3µs after

ionization pulse trigger in this case.

The population in the 19s and 19p states is recorded as a function of delay

and compared to a theoretical model considering population transfer due to

spontaneous emission as well as blackbody radiation between 18s, 19s, 20s,

17p, 18p, 19p, 17d, 18d states, but not superradiance effects. Any statisti-

cally significant difference in the measured population change (enhancement

or suppression) from the theoretical model could provide evidence for collective

decay.

As with experiments performed by previous students on more highly ex-

cited atoms, the measurements suggest that the time-dependent population

in the 19s and 19p states can be described very accurately without including
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Figure A.1: Population in the 19s and 19p states as a function of delay for
Rydberg atoms excited from atoms in a MOT (0.5mm FWHM, at 6×107/cm3

Rydberg density). The black line is a theoretical model that includes sponta-
neous emission and transitions driven by blackbody radiation, but not coop-
erative effects. The red line shows the experimental results. The population
in 19s is normalized to the population during the start of the delay time scan
(2.3µs after 19s is excited), while the population in 19p is normalized to the
largest population transfer to 19p (slightly higher in experimental data to
account for noise).
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collective effects. Apparently, collective decay does not play a significant role

for L
λ
≳ 1.

More involved (but still incomplete) simulations [6] suggest that the key

parameter for observing collective decay may not be L
λ
, but rather γ = 1

λρ1/3
.

Such expression can be rewritten as γ = L
λN1/3 , where N is the number of

atoms within the ensemble, suggesting that in addition to the geometry of the

ensemble, the number of atoms N is also an important factor. If γ is too small,

dipole-dipole interactions dephase the system too rapidly for superradiance to

occur. If γ is too big, the probability of one photon interacting with multiple

atoms within a solid angle is too small, discouraging superradiance. For the

experimental data shown above, γ = 0.077, which is close to the predicted

optimal superradiance condition according to this model (see Figure A.2).

The fact that no evidence of collective decay was observed suggests that the

conditions necessary to observe Rydberg superradiance outside of the regime
L
λ
≫ 1 are still not fully understood.
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Figure A.2: Calculated maximum enhancement of photon emission rate (γ′
max)

versus γ = 1
λρ1/3

for Rydberg atom gas [6]. Different colors suggest different
total number of atoms in the ensemble. The black dots represent simulation
results for ensembles of fully-interacting 10 atom clouds. Figure taken from
[6].
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