


Abstract

The experiments described here represent the first time-dependent study of highly

excited double Rydberg wavepackets. There are two main experiments that are

described in this dissertation. The first experiment is a study of the decay of an

autoionizing rydberg wavepacket in calcium. This experiment shows the decay of au-

toionizing wavepackets to occur in the form of stair-steps and be critically dependent

on the phase of the constituent states. We have been able to control the phase of the

components of the wavepackets to vary the decay rates by more than a factor of five.

The second experiment is the creation of a controlled double rydberg wavepacket in

barium where the two outermost electrons are excited into independently controlled

wavepackets at adjustable relative delays. This study provides an experimental real-

ization of a controlled three-body Coulomb problem. We monitor the decay products

of autoionization of the double rydberg wavepacket for different initial energies of the

wavepackets and as a function of the delay between exciting the wavepackets. We

have been able to use an intuitive semi-classical picture to explain the features that

are observed in the experiments. The two experiments that have been described here

help in a better understanding of electron dynamics in two-electron atoms.
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Chapter 1

Introduction and Motivation

1.1 The Structure of the Atom

One of the fundamental foundations of science as we know it today has been the drive

to study and understand the universe from the macroscopic structure of the universe

as studied in astronomy and astrophysics to the smallest constituents of matter as

studied under high energy physics.

Some of the earliest recorded references to the study of the structure of matter

is found in the work of Greek philosophers around 420 BC. The Greeks taught that

every body is divisible without limit, that gold is composed of “little seeds of gold”

or wood is made of “little seeds of wood” and so on. This and similar views had been

the prevalent view of the nature of matter in most of the world until the Renaissance

period in Europe in the 16th and 17th centuries.

In 1704, Newton published “Optics” in which he presented his corpuscular the-

1
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ory of matter. In the corpuscular theory, all elements were composed of different

arrangements of atoms which in turn consisted of small, hard, billiard-like particles.

He explained chemistry in terms of chemical affinities of the participating substances.

This was one of the earliest attempts to describe atoms as being the fundamental

particles that dictate the properties of different materials.

In 1803, John Dalton proposed his Atomic Theory and presented it in the New

System of Chemical Philosophy (1808-1827). The theory stated that (1) all matter

was composed of small indivisible particles termed atoms, (2) atoms of a given element

possess unique characteristics and weight, and (3) three types of atoms exist: simple

(elements), compound (simple molecules), and complex (complex molecules). He

was the first to identify different elements as composed of different kinds of atoms

and the concept of atoms of different elements combining in integral ratios to form

molecules. It would take almost a century before another discovery would increase

our understanding of the structure of atoms or explain the difference between atoms

of different elements.

Scientific progress over the 19th century led to the discovery of new properties

of matter and the model of the atom underwent several changes. Different elements

were found to emit light in distinct series of unique wavelengths. This led to the

ability to uniquely identify the components of complex molecules and to the discovery

of new elements. The discovery of the electron by J.J.Thomson [1] in 1897 was a

major turning point for the study of atomic structure. Until the discovery of the

electron, the atom was considered the smallest indivisible constituent of matter. The
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discovery of the electron and the alpha particle in the last decade of the nineteenth

century sparked a revolution in the study of atomic structure. Thomson’s “plum-

pudding” model of the atom [2] was able to explain some of the properties of gases

and emission of radiation by atoms but it could not give a quantitative explanation

for experimentally observed optical spectra like that of the Balmer series [3].

The alpha-scattering experiments of Geiger and Marsden [4] led to the Rutherford

model of the atom [5]. This model predicted a heavy positively charged nucleus which

consisted of most of the mass of the atom surrounded by a lot of empty space in which

the electrons could exist. However, this did not explain the distribution of electrons

around the nucleus. A possible explanation for the distribution of electrons in the

atom came with the Bohr theory of the hydrogen atom [6]. The basic postulates of

his theory are: (1) An electron in an atom can only move in certain circular orbits

around the nucleus without radiating. These are called discrete stationary states of

the atom.(2) Only those stationary states are allowed for which the orbital angular

momentum of the electron is an integral multiple of h/2π where h is the Planck’s

constant. (3) An electron can jump from a high-energy state to a low-energy state by

the release of a photon with an energy corresponding to the energy difference between

the two states.

Bohr’s theory was able to account for the optical spectra of hydrogen with one

electron orbiting a positively charged nucleus. The energy levels in hydrogen-like

atoms as predicted by Bohr’s theory are expressed as

En = − 1

2n2

meZ
2e4

~2

1

(4πε0)2
(1.1)
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where n is called the principal quantum number, me is the mass of the electron, Z is

the charge on the nucleus, e is the charge of the electron, ε0 is the dielectric constant

of vacuum and, ~ = h/2π. In the rest of this dissertation, the atomic system of units

will be used (e = 1, ~ = 1,me = 1 and 1
4πε0

= 1) so that this expression reduces to

En = − Z
2

2n2
(1.2)

Our understanding of atomic structure was increased over the years by the im-

provements made to Bohr’s model of the atom. Sommerfeld extended the model to

include elliptic orbits and also relativistic corrections which led to explanations for

the fine splitting of the energy levels and quantization of angular momentum at each

energy. The Wilson-Sommerfeld quantization rules [7] also led to space quantization

to distinguish between different orientations of the electronic orbits in space with

respect to some fixed axis. The magnetic quantum number was introduced which

explained the spectra of hydrogen in the presence of a magnetic field.

In spite of the successes of the Bohr-Sommerfeld model of the atom in explaining

the spectra of hydrogen, they were based on several assumptions of quantization which

were not fully explained. Moreover, the model did not explain the spectra of more

complex atoms than hydrogen. The giant leap forward in understanding atoms came

with de Broglie’s quantum hypothesis [8] in 1924 and the subsequent development

of quantum mechanics by Schrödinger [9] and matrix mechanics by Heisenberg [10].

The solution to Schrödinger’s wave equation automatically leads to the quantization

conditions proposed by the Bohr-Sommerfeld model and could be further extended

to more complex systems. The solution to the Schrödinger equation for hydrogen is
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presented in Appendix B.

The discovery of the neutron by Chadwick [11] in 1932 led to the currently ac-

cepted neutron-proton model of the nucleus. Modern atomic physics since the 1930s

has led to refinements in the model of the atom to explain discoveries of new features

in the energy level spectra of complex atoms but the essential model of the atom as

a positively charged nucleus surrounded by negatively charged electron clouds has

remained the same over the latter part of the past century.

1.2 Spectroscopy

The study of atoms has progressed alongside the study of light and optics. Once again,

Newton played an important role in the early development of the theories of light.

The term “spectrum” was coined by Newton to describe the distribution of light of

different colors when sunlight was passed through a glass prism [12,13]. “Spectrum”

has now come to refer to any distribution but in the context of atomic physics, it

refers to the distribution of energy states of an atom or molecule. The study of the

energy levels in an an atomic (or molecular) system is termed “spectroscopy”.

Regular and reproducible bright and dark bands in the light seen through a

prism when looking at different sources like the sun or stars or flames from dif-

ferent compounds were the early indicators of the presence of different kinds of atoms

in molecules. The development of the diffraction grating by Fraunhofer was crucial

to the extension of spectroscopy to explain the different colors on the basis of their
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wavelengths rather than just prism angles as was the case preceding it. Spectroscopy

was the most important method for identifying different elements present in com-

pounds and the distribution of colors in the spectra formed the basis for explaining

the structure of the atom by various theories.

Early methods of spectroscopy involved burning elements or compounds in flames

and looking at the light from the flame though a prism or a diffraction grating to study

the distribution of colors in the spectrum. The observation of absorption spectra

and the realization that the absorption and emission spectra are identical led to

the theories of black-body radiation and eventually the quantum hypothesis by Max

Planck. Spectroscopy has been and still remains the method of studying atoms and

molecules but the techniques of spectroscopy have undergone several improvements

over the years.

The flames used in early experiments were later replaced by electric discharge

tubes. White-light generators were developed to study absorption spectra. The qual-

ity and design of diffraction gratings have improved over the years and led to increased

spectral resolution allowing the identification of several previously unobserved lines

in the spectra. Even today, the study of any new state of an element or compound

is performed by the use of spectroscopy to identify the energy levels of the system.

The biggest change in the methods of spectroscopy came with the development of the

laser and the maser.
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1.3 Lasers

Most of the early experimental work in atomic physics concentrated on optical spec-

troscopic studies of various elements under different conditions. Many elements were

studied by looking at their emission and absorption spectra in gas-discharge tubes.

These studies using incoherent light sources with broad bandwidths limited the num-

ber of states that can be directly accessed through photo-excitation. The invention

of the maser and eventually the laser in the 1950s and 1960s made it possible to

excite individual states in atoms with increased precision and this led to a signifi-

cant improvement in the ability to study atomic systems spectroscopically. Modern

atomic physics is then the study of the interaction of atoms with laser radiation (or

any coherent EM radiation) under different environmental conditions (i.e. presence

of electric or magnetic fields which can affect the properties of the atom).

Lasers owe their origins to the work of Einstein and Bose who developed the theory

of photon statistics (Bose-Einstein statistics). The work of Einstein on black-body

radiation combined with the photon statistics developed by S.N.Bose suggested the

concept of stimulated emission of radiation from excited atoms being coherent and

unidirectional [14]. While Bose-Einstein condensation (BEC) in atoms has only been

observed recently [15], the original observation of the BEC effect was in photons with

the development of the maser in 1954 [16]. The concept of the laser is similar to that

of the maser but extended to visible electromagnetic radiation.

The early lasers were only able to operate at specific wavelengths without any

tunability. The development of the earliest lasers was a matter of choosing the right
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lasing medium and design and after the development of the first ruby laser by Maiman

[17], several different lasers operating with different lasing media were developed in

rapid succession [18]. Some of the important developments of lasers for spectroscopic

studies include the invention of the dye lasers [19,20] which enabled lasers to be tuned

over a range of wavelengths and the development of high-power Nd-based lasers [21].

Pulsed lasers have been in use since the early 1960s to create short pulses of coherent

radiation with high peak powers [22]. The development of the Ti:sapphire laser in the

late 1980s was the single biggest contributor to the creation of ultrashort laser pulses

with pulse widths of less than a picosecond allowing peak powers of over 1014W [22].

The Kerr-lens effect in Ti:sapphire crystals allows us to use these crystals to create

laser pulses with durations of less than 0.1ps [22, 23]. Different methods were used

to generate sub-picosecond duration pulses with dye lasers before the advent of the

Ti:sapphire laser. However, they were generally less stable in terms of their ability to

maintain the power output levels in comparison to the solid-state Ti:sapphire laser.

Lasers can emit light over a small and finite wavelength in a coherent manner

which is determined by the lasing medium as well as the quality and geometry of the

optical elements in the laser. The tunability of a laser is determined by the emission

levels/bands in the laser medium while the pump for the laser is determined by its

absorption levels/bands. The choice of a laser for an experiment in atomic physics

is determined by the the requirements of the experiment: range of energy levels to

be excited determines the required tunability range of the laser; the line-widths of

the states to be excited would determine the bandwidth of the laser to be used; the
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excitation probability of the states would determine the power output required from

the laser. In the case of experiments to study temporal dynamics in an atom, the

pulse width of the laser also becomes a determining factor in the choice of the laser.

The aim of atomic physics has always been to understand the structure and dy-

namics of an atom. However, experiments in atomic physics are always limited by

the technical capabilities of the era. Until the development of lasers, for example, it

would have been impractical to be able to excite individual states in an atom that

could only be accessed by multiphoton excitation. With the development of tunable

lasers, it became possible to access excited states of atoms that were inaccessible

with any other form of excitation and gave rise to coherent spectroscopy. Emission

and absorption spectroscopy of atoms before the development of tunable lasers was

a passive experimental method - the atoms emitted or absorbed different frequencies

in the spectrum but there was no control over specific excitation schemes. The use

of tunable dye lasers to study the spectra of atoms can also be considered a passive

method in the sense that even though one can access several states in the atom and

get a detailed information about the energy level structure, the states that are ex-

cited are stationary states which do not provide any direct information about the

atom dynamics.

An electron in the ground state of hydrogen moves at high velocities (c/137 = 1

a.u. = 2.19 × 106m/s). It completes a revolution around the nuclear core in 0.15

femtoseconds (1 femtosecond=10−15 s). This is much shorter than the shortest laser

pulses that have so far been produced regularly in labs around the world although
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we are fast approaching this limit in creating shorter pulses [24]. However, when we

put the atom in an excited state, the classical period of revolution of the electron

around the nucleus (Kepler period), increases with the principal quantum number of

the excited state as 2πn3. So, for an excited state with n = 30, the Kepler period

becomes 4.1 picoseconds. We can create laser pulses of much shorter duration than a

picosecond with tunable Ti:sapphire lasers and optical parametric amplifiers (OPAs).

This makes it possible to study such highly excited states with short laser pulses that

can be used to probe their dynamics.

The concept of producing ultrashort pulses in lasers is based on the ability to

excite multiple wavelengths of laser radiation in a coherent manner. According to

Fourier theory, time and frequency are conjugates of each other. A short pulse in

time therefore corresponds to a pulse with a broad frequency spectrum. However, a

broad frequency spectrum does not always lead to a short pulse unless the phases of

all the frequency components are matched precisely.

The laser pulses that we typically generate in our lab have pulse widths of 120

-150 fs. This is comparable to the Kepler period of an n = 10 state in a hydrogenic

atom. So these laser pulses can be used to probe dynamics of states that are excited

with higher energies than n = 10. For reasonable resolution of the dynamics in the

atoms, we typically excite atoms to states higher than n = 30. The detailed working

of the Ti:sapphire laser is explained in chapter 2 along with the laser setup.
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1.4 Rydberg Wavepackets

1.4.1 Wavepackets

If we have an isolated system that is completely described by a set of basis states,

φi(~r) (i = 1, ..., n), with energies, Ei, a general state of the system can be expressed

as

Ψ(~r, t) =
n∑
i=1

Ciφi(~r)e
iEit+ρi (1.3)

where Ci are the real amplitudes of each eigenstate in the wavefunction and ρi are

constant phases associated with each eigenstate.

The spatial probability distribution of the wavefunction can then be expressed as

P (~r, t) = |Ψ(~r, t)|2

= Ψ∗(~r, t).Ψ(~r, t)

=
n∑
i=1

n∑
j=1

C∗i Cjφ
∗
i (~r)φj(~r)e

i(ρj−ρi)ei(Ej−Ei)t (1.4)

The spatial probability distribution has a well-defined and constant spatial struc-

ture at all times if all the states with a non-negligible contribution to the wavefunction

have the same energy so that the time-dependent term vanishes. Such a superposition

of degenerate states with a constant spatial probability distribution is termed as a

stationary state.

If the states that make up the wavefunction have different energies, the relative

phase between any two components of the wavefunction varies with a period that is

inversely proportional to the energy difference between the components (τij ∝ 1
∆Eij
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where ∆Eij = |Ei − Ej|). Such a coherent superposition of non-degenerate eigen-

states of a system with a time-dependent spatial probability distribution is termed a

‘wavepacket.’ In an atomic system, coherent excitation of two or more non-degenerate

states produces an electronic wavepacket.

1.4.2 Rydberg States

A “rydberg atom” is the term used to refer to atoms in excited states where at least

one electron is in a state with high principal quantum number (n > 10) [25]. It is also

common usage to term the excited state as a “rydberg state”. A coherent excitation of

more than one rydberg state is called a rydberg wavepacket. There are some uniquely

appealing characteristics of these states which endear them to researchers in atomic

physics-

1) Rydberg states are accessible for excitation using lasers in the visible spectrum

within one or two photon energy levels for most atoms. Visible laser systems have the

advantages of being easier to operate as well as to align accurately in an experimental

setup.

2) Rydberg states have large orbital radii. Excited states of atoms other than

hydrogen are affected by the screening effect of other electrons and the structure

of the nucleus. At distances far from the atomic core, effects of screening by other

electrons can be treated as a perturbation to the core potential. This allows us to

treat rydberg atoms similar to a Coulomb problem for most calculations.

3) Rydberg states have a relatively high density of states enabling coherent exci-
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tation of multiple states using pulsed lasers with relatively low bandwidths. The high

density of states also increases the time-periods of the dynamic processes in atoms

excited to rydberg states making them more accessible to time-dependent probing

with short pulsed lasers. The development of sub-picosecond lasers over the past two

decades have enabled us to study time-dependent dynamics in atoms excited into

rydberg states.

A coherent excitation of multiple rydberg states with different principal quantum

numbers but the same orbital angular momentum quantum number produces what

is known as a radial wavepacket. The dynamic evolution of such a wavepacket can

be modelled classically as an electron moving in the field of the positively charged

core. A radial rydberg wavepacket can be visualized as a shell of negative charge that

oscillates radially about the positively charged atomic core [26]. The principal period

of oscillation of the negatively charged shell is equivalent to the Kepler period of an

electron orbiting a positively charged core with the energy equivalent to the central

energy of the wavepacket. In the rest of this dissertation, the term “Kepler period”

would be used to refer to the period of oscillation of the radial wavepackets as well as

the orbital period of an electron orbiting the atomic core in a classical model of the

atom.
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1.5 One-electron atoms: Hydrogen and the Alkali

atoms

When we study atomic physics, we like to start from the simplest atomic system and

then proceed to more and more complicated systems. The simplest atom that can

be studied is hydrogen with one electron orbiting a proton. The energy levels of the

hydrogen atom (if we neglect effects of spin and relativistic corrections) are found by

directly solving the Schrödinger equation as (see appendix B)

En = − 1

2n2
(1.5)

In the case of alkali elements with one valence electron outside a core formed

by the nucleus and one or more closed shells of electrons, the outermost electron

experiences a net charge of +1 at distances far from the nucleus due to the screening

effect of the closed shells of electrons. The electron can then be treated as being in a

Coulomb potential far from the core but experiences a modification of the potential

close to the core due to the presence of the inner electrons. The effect of the core on

the energy levels can be treated as a perturbation to the Coulomb potential. This

modification presents itself in the form of shifts in the energy levels in comparison to

the energy levels of hydrogen in the form

En = − 1

2(n− δ)2
(1.6)

where δ is called the quantum defect for the series. The value πδ is also interpreted

as the phase shift of the wavefunctions for the alkali atoms from the case of hydrogen
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at radial distances outside the core. δ is dependent on the interaction between the

core and the rydberg states. In a classical picture, the point of closest approach of

the rydberg electron to the core is decided by the angular momentum of the rydberg

electron. The quantum defect is found to be a function of the orbital angular mo-

mentum of the rydberg series and a slowly-varying function of the principal quantum

number [27]. δ removes the degeneracy of angular momentum states unlike the case

of hydrogen [25].

A radial rydberg wavepacket in hydrogen or in alkali atoms can be modelled

classically as an electron in a Coulomb potential with an energy corresponding to

the central energy of the wavepacket, En. This model works well for short times

up to a few Kepler periods before wavepacket dispersion and quantum interference

phenomena make it hard to localize the wavepacket [26].

1.6 Two-electron Atoms: Helium and the Alkaline-

Earth atoms

The simplest case of a two electron atom is helium. With two protons and two

neutrons forming the nuclear core, one electron orbiting the nucleus represents a

hydrogenic helium ion. The addition of another electron to form the helium atom

significantly increases the complexity of the problem of finding the energy levels of

the system. The Schrödinger equation can no longer be solved to get an analytical

expression for the energy levels for a two-electron atom. Converging to each energy
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level of the helium ion, the two electrons in the helium atom can occupy an infinite

series of energy levels. Each of these series of states with energies converging to an

energy level of the ion is termed as a ‘channel’ or a ‘configuration’ and there are

an infinite number of possible configurations. We can also consider alkaline earth

elements in a manner similar to helium with the modification of the core to include

the inner filled shells of electrons along with the nucleus.

The two-electron system can exist in a superposition of several possible configura-

tions in which both the electrons can be bound or one of the electrons gains sufficient

energy to escape the atom leaving behind the other electron tightly bound to the ion.

A configuration in which both electrons are bound is termed as a bound or closed

channel while a configuration with one of the electrons free is termed as a continuum

or open channel. As long as one of the electrons in the doubly excited atom remains

bound close to the core and the other electron is in an excited rydberg state with a

greater radial extent than the core, the system can be analyzed using multi-channel

quantum defect theory(MQDT) [27, 28] (see Appendix C). Autoionization processes

in two-electron atoms have been extensively analyzed using these methods [29,30,31].

At energies where both electrons are excited into states of comparable radial extent

such that one electron can no longer be considered as being farther from the core

than the other for most of the time, the MQDT analysis is no longer valid. When the

number of channels to be considered in an interaction between two electrons becomes

large, MQDT analysis starts to get very difficult. In such cases, we have to rely

on developing semi-classical models to understand spectral structure and electron



CHAPTER 1. INTRODUCTION AND MOTIVATION 17

dynamics [32].

1.7 Isolated Core Excitation (ICE)

One of the most important developments for the experimental study of doubly excited

states in two-electron atoms has been the use of isolated core excitation(ICE). The

basic idea of ICE in a two-electron atom is that one electron is initially excited into

a rydberg state while the other electron remains close to the core in the ground or a

low energy excited state of the positive ion. A second laser tuned over the resonance

levels of the positive ion can then excite the inner electron from the ground state (or

low-energy excited state) of the ion into an excited state while the first electron is

far from the core. This excitation of the inner electron while the outer electron is far

from the core and remains a spectator without itself absorbing any energy is termed

as isolated core excitation [25,29,33,34,35,36].

Direct excitation of a two-electron atom from the ground state to an energy level

corresponding to double rydberg states does not allow independent control of the

energies of the two electrons. The use of ICE makes it possible to excite the two

electrons in a dielectronic atom in an independent and sequential manner which is a

necessary requirement to create controlled double rydberg wavepackets as described

in the following sections [37].
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1.8 Double Rydberg wavepackets (DRW)

1.8.1 Classical Three-body Coulomb Problem

A set of three charged particles moving in their combined fields forms a classical

three body Coulomb problem. Such a system has no unique analytical solution for

the motion of the particles. One way to study such a system theoretically is by using

numerical methods of calculating the instantaneous motion of the particles. Exper-

imental verification of such calculations is limited by the fact that it is practically

impossible to create a completely isolated system of three charges to study their

dynamic evolution.

1.8.2 Controlled double rydberg wavepackets

A two-electron radial wavepacket in which the energies and relative radial positions of

the wavepackets can be chosen by adjusting laser wavelengths can therefore serve as a

controlled three-body Coulomb system. The two electrons can be excited individually

by making use of isolated core excitation (ICE) techniques [37, 38, 39]. The initial

positions of the three particles in this system would be controlled by adjusting the

time delay between exciting the two wavepackets. In a doubly excited two electron

system, one of the electrons gains enough energy to become free while the other

electron becomes more tightly bound in an excited state of the ion through a process

of autoionization. We can detect either the emitted electron or probe the resultant

excited ion to study the interaction process.
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1.9 Dielectron dynamics

People have studied two electron atoms spectroscopically for over a century. The

development of the Bohr-Sommerfeld model of the atom which was able to explain

several of the spectral lines observed in hydrogen was unable to account for the

spectra in two-electron atoms like helium. The inability of the early atomic models

to explain spectra of helium is sometimes credited as being one of the driving forces

behind the development of quantum mechanics [40]. A nice review of theoretical

and experimental work on two-electron atoms has been given by Tanner et.al in the

Reviews of Modern Physics [40].

The early theoretical study of two-electron atoms, mainly helium, was driven in

two main directions - one path was to devise methods for expressing the hamilto-

nian of the doubly excited states of helium in suitable coordinates to try and quan-

tize the energy levels of the atom to match them with experimental spectra. The

works of Unsöld [41] using first order perturbation theory, Slater [42] using molec-

ular models, Kellner [43] and Hylleraas [44] using variational methods, Ho using

complex coordinate rotation [45] and Pekeris [46] and Bürgers [47] using perimetric

coordinates to calculate the ground state in helium are just some of the examples

of work along this path. Another path that was followed was to use semi-classical

methods to look for stable orbits in the combined motion of the two electrons and

comparing the energies of these stable orbital configurations to experimental helium

spectra [6,48,49,50,51,52,53,54]. Classical mechanics has also been applied to study

the motion of two-electron atoms to determine stable orbital configurations [55, 56].
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Mathematical methods for finding solutions to the three-body Coulomb problem in

two dimensions have also been explored to provide insights into finding possible so-

lutions to the problem in three dimensions [57].

Several experiments in helium have followed the early experiments by Madden and

Codling [58] to look at electron correlations between the two electrons [59, 60]. Such

experiments on doubly excited states in helium require very high energies that are

available in synchrotron sources which also limits the resolution of the energy levels

that can be observed. The use of lasers and resonant multi-step laser excitation to

access double rydberg states in alkaline-earth elements opened up new possibilities

of generating doubly excited states with different angular momenta in a controlled

manner [40, 61]. Two-electron alkaline-earth atoms have been studied extensively to

understand the dependence of electron-electron correlation on the principal quantum

number of the excited states [62, 63], angular momentum and energy of the excited

states [64,65,66], relative electron positions [67], and core polarization effects of inner

electrons [69]. In all of these studies, lasers are used to measure the excitation spec-

trum into the double rydberg states and the results are interpreted based on different,

yet complementary models of the two-electron atom. The results of spectroscopy of

doubly excited states are used to get an idea about the dynamics in two electron

atoms that give rise to these spectral lines [70, 71, 72, 73] and are also interpreted in

the MQDT model [74,75]. In these experiments in the frequency domain, the energy

levels that are excited are limited to cases where the radial extent of one rydberg

state (r1) is about four times the radial extent of the inner electron (r2) in the excited
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state. As r2 approaches r1 at higher excitation energies, the excitation spectrum ap-

pears continuous thereby making it difficult to use the excitation spectrum at higher

energies to determine electron dynamics [65].

As an example of the method of using excitation spectra to infer the dynamics

of electrons in an atom, Appendix D presents an experiment that uses the excitation

spectrum of sodium in the presence of an electric field to determine symmetries in the

fourier space by appropriate scaling of the coordinates and interpret the symmetries

as corresponding to different kinds of orbits of the electron in the atom in the presence

of an electric field. However, although these kinds of studies of the excitation spec-

trum can be used to predict the motion of electrons in a particular field under very

specific circumstances, it does not give us any direct information on the dynamics

that actually occur in the atom in the presence of the field.

Some recent experiments have been able to directly study time-dependent features

in doubly excited states [76, 77, 78, 79] but these have been limited to states with

one electron in a low-lying excited state. The advantage of studying a system in

a time-dependent manner is that in addition to providing information about the

dynamics of the system, it allows us real-time control over a dynamic property of the

system. Instead of studying the energy levels of a system to understand the dynamical

properties of a system, a direct study of the dynamics with short pulse lasers can give

us a more intuitive feel for the processes that occur in the two-electron system. This

method is useful when the dynamics are slow in comparison to the duration of the

laser pulses.
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Our aim in the experiments described in this dissertation is to excite both the

electrons in the valence shell in barium into excited states and to see if we can learn

anything about the dynamic processes that take place in the doubly excited atom by

studying the variation in its dissociation pathways.

While the theoretical studies of dynamics in two-electron atoms consider only the

case of helium as a three-body Coulomb problem, the presence of the core in alkaline

earth atoms makes the potential experienced by the electrons in orbits that penetrate

the core in these atoms to be non-Coulombic. To overcome this problem, we excite

both the electrons in our barium atoms into highly excited rydberg states with radial

extents far from the core so that for all theoretical considerations, the two electrons

can be assumed to be in the Coulombic potential of the core.

Since the doubly excited atom can be classically equated to a three-body Coulomb

problem whose solution depends on its initial conditions, we would like to have good

control over initial positions and velocities of the two electrons. In a manner akin

to the methodology used by theorists, we would like to choose the initial position

and velocities of the excited wavepackets [40]. We make use of our knowledge of

rydberg wavepacket dynamics to place one of the electrons at a position in space

with a velocity of our choice at some instant in time. We can then excite the second

electron at that instant by the use of ICE to place this second electron close to the

core and moving radially outwards with a velocity that is chosen by the energy of

the ICE. We monitor the products of the interaction in the form of rydberg states

of the ion that remain after autoionization. We have measured the variations in the
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distribution of the ionic rydberg states as a function of the initial conditions and

can explain many of the observed features with a classical model of the two-electron

atom as a three-body Coulomb problem. We find that for doubly excited atoms with

a given energy, there is a critical radius from the core within which the interaction

between the electrons needs to occur in order to produce autoionization. When the

electrons interact outside this critical radius, the energy exchange occurs without

autoionization and leads to relatively long-lived states that decay at a slower rate.

The importance of studying two-electron atoms arises from their similarity to

more complicated atomic systems and molecules. The two-electron atom is the sim-

plest many-body problem in physics and a study of electron dynamics this system

is relevant for the understanding of the dynamics of electrons and atoms in more

complicated atoms or molecules.



Chapter 2

Experimental Setup

The experimental setup consists of a Ti:sapphire laser system which is used to create

the sub-picosecond laser pulses needed for all the experiments described here. Two

Optical Parametric Amplifiers (OPAs) are used to produce tunable short pulses at

desired wavelengths using the fundamental output of the Ti:sapphire laser as the

inputs. The interaction region for the experiments is located in a sealed vacuum

chamber kept at pressures of less than 10−6 torr. Microchannel plates are used to

detect ions and electrons extracted from the interaction region. The various parts of

the experimental setup are described in the following sections in this chapter. The

entire setup is mounted on optical tables with tuned damping provided by compressed

air in the legs supporting the tables. The temperature on the tables is kept constant

by the use of a temperature controller fitted with an air exchanger over the table.

The region over the optical tables is enclosed in slit plastic sheets to prevent dust

particles from the rest of the room from settling on the optics.

24
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2.1 The Ti:sapphire laser

Figure 2.1: Schematic of the Ti:Sapphire Laser system

Fig 2.1 shows a schematic of the Ti:sapphire laser system used in the laboratory.

The seed light for the Ti:sapphire laser used in the laboratory is produced by a tunable

self-mode-locked Ti:sapphire oscillator (see Fig 2.2) pumped by the 5W cw output

of a Spectra Physics Millennia Vs laser at 532 nm. The output of the mode-locked

Ti:sapphire laser is a series of 100 fs pulses with a tunable central wavelength of

∼ 780 nm at a repetition rate of 83 MHz. The pulse train has an average power



CHAPTER 2. EXPERIMENTAL SETUP 26

output of 100 mW corresponding to about 1.2 nJ of energy per pulse. The central

wavelength of the pulses can be tuned using a single birefringent crystal plate in the

oscillator. The pulse train is sent into a pulse expander where the different frequency

components of each pulse are delayed with respect to each other as a linear function of

the frequency to increase the temporal pulsewidth before sending it into the amplifier

stages [23]. This is done to prevent non-linear intensity-dependent distortions in the

pulse during amplification as well as to avoid damaging the optical elements in the

amplifier stages.

Individual pulses are chosen from the pulse train (after pulse expansion) as the

seed light for a Ti:sapphire regenerative amplifier pumped by 40 mJ of the 532 nm

pulsed laser output of a Nd:YAG laser at 15 Hz. The output of the regenerative

amplifier is a pulse with 5 mJ. This pulse is further amplified through a Ti:sapphire

multi-pass amplifier pumped by 100 mJ of the 532 nm pulse from the Nd:YAG laser.

The output of the multi-pass amplifier is a pulse with about 30 mJ of energy. This

pulse is compressed in a pulse compressor which consists of a grating arranged in a

manner such as to exactly reverse the expansion process undergone by the pulse in

the pulse expander before amplification. The final output of the Ti:sapphire laser

system after the pulse compression is a 120 fs pulse with 20 mJ of energy at a central

wavelength of ∼ 780 nm. These pulses are generated at a repetition rate of 15 Hz

corresponding to the repetition rate of the Nd:YAG laser. In the experiments with

barium that are described in this dissertation, the bandwidth of the pulse is reduced

in the compressor to obtain longer pulses with durations of about 250 fs at a central
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wavelength of ∼ 770 nm.

2.1.1 The Ti:sapphire self mode-locked oscillator

Figure 2.2: The Ti:Sapphire modelocker
The schematic of the Kerr-lens modelocked Ti:sapphire laser oscillator

Fig 2.2 shows the setup of the Ti:sapphire self-modelocked oscillator. The oscilla-

tor is pumped by a 532 nm Spectra Physics Millennia Vs diode-pumped Nd : Y V O4

solid state laser operating at 5W. It has been noted that the oscillator has a more

stable operation at higher power and so the pump laser has been made to run at
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5.15W for some of the later experiments. The pump laser as well as the Ti:sapphire

crystal in the oscillator are maintained at a temperature of 65 F by water cooling

with a Lytron Kodiak RC006 chiller unit.

A Spectra Physics 3900S Ti:sapphire laser designed originally to run in the cw

mode was modified by Prof. Jones to run in self-mode-locked oscillation by changing

the length of the cavity and introducing a prism pair to compensate for linear group

velocity dispersion(GVD) introduced by the optical elements in the cavity.

With a broad gain bandwidth of about 1014 Hz [22], the Ti:sapphire laser cav-

ity can sustain standing waves over a wide range of wavelengths. It is possible to

simultaneously excite several longitudinal modes (say N) of the cavity separated in

frequency by c/2L where c is the speed of light in the cavity and L is the length

of the cavity. When all the longitudinal modes are excited in phase, i.e., all the

modes have the same phase in space and time at some instant, the modes add up

coherently to produce a series of pulses of width 2L/cN separated in time by 2L/c

with peak intensity proportional to N2. Ti:sapphire crystals exhibit the Kerr-lens

effect [23] which is a non-linear intensity-dependent variation in the refractive index

of the medium. The Kerr-lens effect is a self focussing effect because in the case of

a pulse with a Gaussian beam profile, the center of the beam with a higher intensity

experiences a higher refractive index than the edge of the beam in the same manner

as a lens. This effectively changes the beam propagation characteristics of the pulse

in the laser cavity depending on its intensity profile. An aperture placed next to

the output coupler is used to preferentially introduce higher losses in the cw modes
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Figure 2.3: Addition of longitudinal modes of a cavity
The upper graph shows the square of the sum of 10 cosine waves while the lower
graph shows the square of the sum of 100 cosine waves. The cosine waves have a
constant difference in frequency, ∆ν. The thicker curves in both graphs show the

case where the cosine waves have the same phase at 0 while the thinner curves have
a random phase in all the waves. In the lower graph, all the thin curves are very
small and show up as tiny blips at the bottom of the graph. It is clear that in the

case with all the waves in phase, the intensity which is proportional to the square of
the sum of the amplitudes in the waves has a significantly greater peak value than
in the case with random phases of the waves. The effect increases as N2 with the

number of waves being added together. The time between the peaks ∆t is
determined by the frequency difference between successive waves as ∆t = 1/∆ν.

The width of the pulse produced by phase-matching of the waves is proportional to
∆t/N .
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in comparison to the mode-locked pulses. By choosing the focussing characteristics

of the pump pulse inside the Ti:sapphire crystal, the efficiency of pumping the cw

modes is reduced significantly compared to a mode-locked pulse which experiences

self-focussing and is preferentially amplified over the cw mode. In principle, the large

number of longitudinal modes allowed by the broad gain bandwidth allows for the

creation of pulses that are a few femtoseconds in duration. The self-phase modulation

which also occurs along with the self-focussing, enhances the effect by increasing the

effective bandwidth of the pulse, thereby allowing shorter pulses [22]. The prism pair

is necessary to compensate for the linear GVD by the active lasing medium as well

as by the curved optics [23].

The Ti:sapphire oscillator used in the lab has a length of ∼ 1.8m. This supports

longitudinal modes in the cavity separated in frequency by 83 MHz. Over the range

of its gain bandwidth, the cavity can sustain over 106 longitudinal modes which

corresponds to a transform-limited pulse duration of < 7 fs. A birefringent crystal

placed in the cavity is used to preferentially sustain longitudinal modes over a smaller

range of wavelengths and is used to tune the central wavelength of the output pulses.

This automatically limits the shortest duration of the pulse that can be generated

in the cavity. In the Ti:sapphire laser oscillator we use in the lab, we can obtain

laser pulses of about 100 fs duration polarized horizontally. The output power of the

mode-locked Ti:sapphire oscillator is about 100mW which corresponds to an energy

per pulse of 1.2 nJ. A 100 fs pulse has a length in space of 0.03 mm. It is therefore

useful to think of a femtosecond pulse as passing from optic to optic and arriving at
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different optics at different times.

In the absence of any mode-locked pulses in the cavity, several cw modes of the

laser can be simultaneously sustained in the cavity but the high losses(due to the

design of the cavity) which exceed the gain per pass for each cw mode prevent the

lasing of the cavity in any one cw mode. The oscillator requires a pulse to begin

with to start the mode-locked operation since the cavity is designed to operate with a

pulse and not a cw mode. In practice, this is done by tapping on the output coupler

which is placed on a translation stage to introduce a spike in the background noise

of the modes operating in the cavity. The noise spike is better matched to the cavity

than the cw modes and gets amplified in each pass through the cavity leading to

mode-locked operation of the cavity [80]. A glass slide placed at the output of the

modelocked oscillator sends a part of the light into a fast photodiode which is used

to trigger a Spectra Physics SM-1 sync module. The sync module is used to provide

the trigger for the pulsed Nd:YAG laser used in the amplifier stages with a trigger so

that all the components of the laser system are synchronized with the pulsed output

of the mode-locker to within a nanosecond.

2.1.2 Pulse Expander

The energy per pulse (1.2 nJ)in the output of the mode-locked oscillator is very small

for the purposes of our experiments. We use multiple amplifier stages to increase

the pulse energy. However, amplification of the short pulses directly would increase

the peak power in the pulses beyond the damage threshold of the optics used in the
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Figure 2.4: Pulse Expander and Pulse Compressor for Chirped Pulse Amplification
The schematic of the pulse expander and pulse compressor. The expander and
compressor are aligned such that the compressor exactly compensates for the

expansion in the pulse introduced by the expander. The delay in the arm of the
compressor is adjusted to maximize the compression of the pulse. The mirrors RM
in the expander and compressor are retroreflecting in the horizontal direction but
introduce a small deviation in the vertical direction to enable the incoming and
outgoing pulses to be separated. The angle of incidence θ is ∼ 54o in both the

compressor and the expander. The gratings introduce a linear frequency-dependent
delay between the components of the pulse. The geometry of the expander and

compressor are chosen to introduce and remove exactly the same amount of chirp
from the pulse respectively. [23]
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amplifier. Since the amplification is performed using Ti:sapphire crystals, increased

intensities can also introduce non-linear effects like self-focussing and self-phase mod-

ulation which can alter the beam profile as well as the temporal intensity profile of the

pulse. To avoid damage to the optics and to retain pulse shape characteristics during

amplification, we use the method of chirped pulse amplification [23] to introduce a

wavelength-dependent phase delay in the pulse thereby reducing the peak intensity

in the pulses before sending it to the amplifiers.

A schematic of the pulse expander is shown in Fig 2.4. The 100 fs output of the

mode-locked oscillator is incident at an angle of ∼ 54o with respect to the normal

of the grating. The components of the pulse at different wavelengths are diffracted

at different angles by the grating. The spread in angles of the divergent beams

is mapped onto a line on a retroreflecting mirror (RM1) by the use of a spherical

achromatic convex lens placed a focal length away from the mirror. The retroreflecting

components of the beam retrace their path with a small vertical offset and are incident

normally on another retroreflecting mirror, RM , and the process continues once again.

Overall, the pulse is incident on the grating four times and on each pass, the grating

introduces a linear relative delay between the frequency components (also known

as linear frequency chirp). The vertically displaced output of the pulse expander is

about 2000 times longer than the incident 100 fs pulse, i.e. about 200ps long [81]. The

amount of frequency chirp is determined by the geometry of the expander. The use

of the lens together with a grating increases the effective frequency chirp significantly

in comparison to a design without a lens [23].
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2.1.3 The Regenerative Amplifier

Figure 2.5: The Regenerative Amplifier
A schematic of the Ti:sapphire regenerative amplifier cavity. The laser cavity is

formed between mirrors M1 and M2. Thin-film polarizers TP1 and TP2 are used to
introduce the seed light into the cavity and to extract the amplified light from the

cavity respectively. Pockels cells PC1 and PC2 are used to adjust the time spent by
the pulses in the cavity. The 532 nm pump pulse is from a Nd:YAG laser. The

cavity has a length of ∼ 1.6 m.

Fig 2.5 shows the schematic of the regenerative amplifier cavity which we will also

refer to as the “regen”. We use Pockels cells to pick a pulse coming from the pulse

expander to be used as the seed pulse in the regen. Pockels cells work by rotating the

polarization of light passing through the cell by an angle proportional to the voltage

applied along the Pockels cell. We apply a voltage along the Pockels cells sufficient

to rotate the polarization of the light by 45o. The voltages applied on the Pockels

cells at specific times are used to control the number of round-trips of the pulse in the
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cavity. The thin film polarizers TP1 and TP2 are placed at their polarization angles

to the incident pulses in the cavity and reflect only the S-polarized light while allowing

P-polarized pulses to pass through. In the regen cavity, S-polarized corresponds to

vertically polarized light while P-polarized light has horizontal polarization. The

input seed light is vertically polarized. A 200 ps pulse with a spatial extent (length)

of about 6 cm can still be viewed as going from optic to optic at fixed times.

When PC1 is ‘ON’, i.e., there is a voltage applied on it, a vertically polarized seed

pulse reflected off TP1 and sent through PC1 gets its polarization rotated by 45o on

its way from TP1 to M1 and again on its way from M1 to TP1 so that it is hori-

zontally polarized when it arrives at TP1 after reflection from M1. The horizontally

polarized pulse passes through TP1 to the Ti:sapphire crystal and continues on to

TP2. The pulse passes through TP2 also and arrives at PC2 horizontally polarized. If

PC2 is ‘ON’, the pulse having passed through PC2 and returning through PC2 after

reflection from M2 will be vertically polarized and will be reflected by TP2 out of the

cavity. However, if PC2 is ‘OFF’, the horizontally polarized amplified pulse retains

its polarization and passes through TP2 to retrace its path through the cavity until

it gets to PC1. If PC1 is still ‘ON’, the pulse is vertically polarized when it passes

through PC1 to M1 and returns through PC1 to TP1. The vertically polarized pulse

is then switched out of the cavity. If PC1 is ‘OFF’, the vertically polarized seed pulses

pass through without change of polarization and get switched out following a path

in-TP1-PC1-M1-PC1-TP1-out. Thus, keeping PC1 ‘ON’ or ‘OFF’ at all times would

mean all the pulses entering the regen get sent back out along the input path of the
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seed light. Keeping PC2 ‘ON’ is equivalent to switching the pulse out of the cavity.

A Pockels cell placed in series with polarization filters on either side that are

aligned to reject vertically polarized light acts as a gatekeeper to prevent amplified

pulses from the regen from going back towards the mode-locked oscillator. The hori-

zontally polarized pulses returning from the regen pass through this Pockels cell (say

PC) before passing through to the filter. The voltage on PC is adjusted to produce

a polarization rotation by 90o. When PC is ‘ON’, the horizontally polarized pulses

entering PC are rotated to vertical polarization and blocked by the polarized filter.

When PC is ‘OFF’, the horizontally polarized pulses pass through the filter. Mean-

while, the horizontally polarized pulses from the oscillator that pass through PC and

the polarizers are rotated to vertical polarization by mirrors before going to the regen

cavity.

For most of the time, PC and PC2 are kept ‘OFF’ while PC1 is kept ‘ON’. In

this case, all the pulses that enter the regen get switched back out after one pass

through the cavity. The Nd:YAG pump laser consists of horizontally polarized pulses

of duration < 10ns at a rate of 15 Hz with a pulse energy of 40 mJ. When the pump

pulse is present in the cavity, the seed pulses can get amplified on each pass through

the crystal. Although the pump pulse is only 10 ns in duration, the population

inversion in the Ti:sapphire crystal has a lifetime of 3.8µs [22] so that amplification

can occur over a longer duration even after the pump pulse is no longer present. This

is because population inversion in the crystal provides a gain for the pulse in the

cavity as long as it can overcome any other losses from the cavity. The pulse to be
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amplified is chosen as a seed pulse arriving at the regen just after the arrival of the

pump pulse. At this time, PC is switched ‘ON’ to prevent any stray amplified light

from the regen to be sent back to the modelocker which can make it unstable and

to block any other pulses from arriving at the regen. PC1 is switched ‘OFF’ when

the pulse enters the regen and before it has the chance to get back to PC1 for the

second time and get switched out of the cavity. The pulse is allowed to stay in the

cavity for about 220 ns which allows the pulse to make about 20 round-trips within

the cavity and get amplified at each pass through the crystal. This delay is chosen to

maximize the gain produced by the cavity. At the end of this delay, PC2 is switched

‘ON’ to send the amplified pulse out of the regen. The amplification of the pulse

is monitored on a photodiode looking at the light leaking from the cavity through

M1. The delays for triggering the Pockels cells are provided by a model DG535 SRS

(Stanford Research Systems) digital delay generator.

The output of the regen is a 200 ps pulse with an energy of ∼ 5 mJ. This corre-

sponds to an amplification by a factor of ∼ 4×106 in the regen. Further amplification

by a factor of up to 10 is produced using a multipass amplifier.

2.1.4 The Multipass Amplifier

The multipass amplifier as the name suggests is basically a Ti:sapphire crystal in

which the amplified output of the regen gets amplified by multiple passes through

the crystal. The 200 ps pulse is passed through the Ti:sapphire crystal three times

along with a variable-power 532 nm pump pulse from the Nd:YAG laser. An energy
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in the pump pulse of about 100 mJ produces an amplification by a factor of 10. The

amplification factor can be varied by adjusting the power of the pump pulse with a

half-wave plate in series with a thin-film polarizer. The multipass amplifier provides

the required “tunability” to the amplification to adjust the output power depending

on the requirements of the experiment [80].

2.1.5 Pulse Compressor

The 200ps pulses with energies of ∼ 30 mJ per pulse have a frequency chirp that

was introduced by the pulse expander before amplification. We can use a grating

to reverse the frequency chirp in a manner similar to pulse expansion but using the

grating in the opposite manner to how it is used in the expander. A schematic of the

pulse compressor is shown in Fig 2.4.

A short pulse with high intensities experiences high-order non-linearities in the

refractive index of any medium through which it has to travel and this includes trans-

mission through air. This results in distortion of the temporal and spatial intensity

profile of the pulses as it travels in the air. To minimize these effects which distort

the pulse profile, we increase the area of the pulse so that it reduces the peak in-

tensity per unit area. The 200 ps pulses which are 2-3 mm in diameter during the

amplification stages are expanded and collimated in a telescope to a diameter of just

over 1 cm before being sent into the compressor. We also keep the compressor as

close as possible to the final destination of the pulses in the interaction region of the

experiments to minimize the distance needed to be travelled by the pulses in air.
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The grating in the compressor is aligned at an angle exactly equal to the angle in

the expander. The pulse is diffracted off the grating four times in a geometry designed

to cancel the frequency chirp introduced by the expander. The delay stage in one arm

of the compressor is used to adjust the path length of the pulse in the compressor to

maximize the compression. This adjustment is performed while monitoring the pulse

width of the output of the pulse compressor as measured using an autocorrelator.

2.1.6 Autocorrelator

Figure 2.6: Autocorrelator for pulse width measurement
The pulse to be measured is split into two halves and each half is incident on a BBO
crystal at equal but opposite angles to the normal to the crystal such that the plane

of intersection of the pulses contains the normal to the crystal. The angle of the
BBO crystal is adjusted to produce phase-matched Type I SHG from the overlap of
the two pulses at a small angle [23].The second harmonic is generated with greater

intensity over the area of the crystal in which the two pulses overlap with the
maximum amplitude. The phase-matching optimizes SHG when one component
each from both beams overlap in the crystal with equal and opposite angles of
incidence. This maps the temporal intensity profile of the pulse into the spatial
plane in the intensity of SHG. The spatial intensity distribution of the SHG is

monitored with a CCD camera on an oscilloscope.

When we say that a laser pulse has a certain duration, we need to have a way of
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measuring this duration. To make a measurement of any interval of time, there has to

be a smaller unit of time that can be measured or has been measured. In measuring

laser pulses that are longer than a few nanoseconds, photodetectors with a fast re-

sponse can be used along with fast oscilloscopes to measure their duration. Electronic

detectors cannot, however, be used to measure sub-picosecond pulses at the present

level of technology. In a typical lab where femtosecond pulses are generated, these

pulses are most likely to be the shortest events in the lab. So the methods used to

measure the duration of these short pulses involves using the pulses to probe them-

selves(autocorrelation) or other short pulses(cross-correlation). Since the conditions

in the lab are not always identical, we would like to have a continuous monitoring

of the width of the pulses available for the experiments. This is achieved by the use

of a single-shot autocorrelator which uses the pulse itself as a probe of its temporal

intensity profile [23].

If we can define the temporal profile of a pulse as S(t), then the autocorrelation

of the pulse with itself is defined as

A(t) =

∫ ∞

−∞
S(t+ t′)S(t′)dt′ (2.1)

The autocorrelator is used for measuring the pulse width of the pulses generated in

the Ti:sapphire laser after amplification and pulse compression. A glass slide placed

in the output of the compressor is used to send a small part of the compressed pulse

into the autocorrelator. This pulse is split into two approximately identical pulses

with a pair of half mirrors and the two pulses are overlapped inside a BBO crystal

aligned such as to produce SHG from the overlap of the two pulses as shown in Fig 2.6.
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SHG is an intensity dependent effect and the intensity from the overlap of the two

pulses depends on the temporal overlap between the two pulses together with their

instantaneous amplitudes. At different positions on the BBO crystal in the plane

formed by the paths of the two intersecting pulses, the maximum overlap between

the pulses in time occurs at different relative delays between the pulses. The intensity

of SHG then corresponds to an autocorrelation of the temporal profile of the pulse

mapped into the spatial plane as long as the beam waist of the two beams at the

BBO crystal is much larger than the pulse length [23]. We use beams with a waist

of close to 1 cm while the pulse length of the pulses (120 fs) is about 0.04 mm. The

autocorrelation information, mapped into the spatial plane in the intensity of the

SHG, is monitored by a CCD camera and viewed on an oscilloscope.

To calibrate the autocorrelator, a thin glass slide of known thickness is introduced

into the two equal pulses to introduce known path length differences between the

pulses. This manifests as a shift in position of the peak of the intensity distribution

that is monitored on the oscilloscope. Knowing the displacement of the peak corre-

sponding to known path delays, we can calculate the FWHM of the autocorrelation

signal as ∆τa. Assuming a Sech2(t) form of the pulse, the FWHM of the pulse is

calculated as ∆τa/1.55. The FWHM of the pulses are measured to be ∼ 120 fs at the

output of the pulse compressor.
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Figure 2.7: Optical Parametric Amplifier Schematic
The schematic of one of the OPAs used in the experiment. The input is a 780 nm,
120 fs pulse and the output of the OPA is tunable from ∼ 450 nm to 700 nm. A

1 mm BBO (Beta Barium Borate) crystals or a 1 cm thick KDP(Potassium
Dihydrogen Phosphate) crystals are used for SHG depending on the bandwidth of

the output required. Thicker crystals correspond to lower bandwidth due to stricter
phase-matching conditions. The OPA crystal is either a 2 mm BBO crystal or a
3 cm KDP crystal. The longer KDP crystals are used to get an output with a

smaller bandwidth (longer pulse).
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2.2 Optical Parametric Amplifier

An OPA (Optical Parametric Amplifier) is based on the effect of intense electric fields

in a laser beam producing intensity dependent variations in the dielectric constant of

non-isotropic materials [23]. This effect leads to the possibility of converting a photon

of one energy (ω1) into a set of two photons with different lower energies(ω2, ω3) which

add up in total energy to that of the incident photon (ω1 = ω2+ω3). Under the proper

phase-matching conditions, it is possible to tune the OPA to produce photons with

our choice of ω2 and ω3 starting from ω1.

We use two OPAs in the experiment with barium. The two OPAs are identical

in function but are used to create pulses at two different wavelengths. Each OPA is

pumped by the second harmonic of the 120 fs, 780 nm Ti:sapphire pulse. A 3 cm

KDP crystal is used as a gain medium in one of the OPAs while a 2 mm BBO crystal

is used in the second OPA. A schematic of one of the OPAs used in the experiments

is shown in Fig 2.7.

The 780 nm pulse at the input of the OPA is split in a ratio of 3:7 by beamsplitter

BS. The smaller component along BS-BS1 is used to create OPA with white light

while the other component along BS-A1 is used after SHG in the BBO2 crystal to

further amplify this pulse generated by OPA. The pulse along BS-BS1 is split at

BS1 into a 70% component along BS1-M1 and a 30% component along BS1-TS1.

The pulse along TS1-W1 is focussed into a quartz crystal to produce white light

by self-focussing and self-phase-modulation. The white light is sent via aluminum

mirrors W1 and M4 to the OPA crystal. Meanwhile, the pulse sent via BS1-M1 is



CHAPTER 2. EXPERIMENTAL SETUP 44

sent through BBO1 for SHG and the dichroic 390 nm, 45o mirror at M1 separates the

390 nm pulse from the 780 nm pulse. The 390 nm pulse from M1 is sent through a

telescope which is adjusted to nearly focus the 390 nm light sent via M2, M3, and M4

into the OPA crystal to be overlapped with the white light( which acts as the seed

light for amplification) and generate optical parametric amplification over a range

of wavelengths centered at λOPA present in the white light and depending on the

phase-matching condition. The translation stage at TS1 is adjusted to maximize the

temporal overlap between the 390 nm pulse and the white light pulse by maximizing

the amplification at λOPA in the crystal. The 780 nm pulse sent along BS-A1 is

sent through a BBO crystal (BBO2) to produce SHG which is separated by 390 nm

dichroic mirrors at TS2. The 390 nm pulse sent from the BBO crystal via TS2, A2,

and A3 is nearly focussed using a telescope into the OPA crystal to produce further

amplification of the pulse at λOPA retroreflected from M5. The delay stage at TS2 is

adjusted to make the 390 nm amplifier pulse from A3 reach the OPA crystal at the

same time as the OPA pulse returns to the crystal after reflection at M5. The color

of the OPA is determined by the angle of the OPA crystal to the incident pulses. All

the laser beams are aligned to be parallel to the surface of the optical table.

2.3 Atom Source and the Interaction region

The lasers that we use in the laboratory have a broad range of wavelengths which can

overlap with energy levels of several compounds found in the environment in the air
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in the laboratory. We use a vacuum chamber to isolate the atoms being studied in

the experiment as well as to remove most of the elements in the air that can interfere

with the experiments.

To study the effect of the interaction between the atoms and the lasers, we need

to identify the location of the interaction and the products that remain after the

interaction. We do this by making the lasers interact with the atoms in a well-

localized region of space inside the vacuum chamber. We also design the interaction

region to be located such that the products of the interaction can be extracted in a

consistent manner and measured using detectors.

2.3.1 Vacuum System

The vacuum chamber used in the experiments consists of a 45 cm diameter, 30 cm

high cylindrical chamber made of aluminum with eight cylindrical flanges for any

attachments or extensions. A Varian VHS-6 water cooled diffusion pump and a

Welch model 1376 mechanical pump in series are used to pump the chamber down to

pressures of ∼ 2×10−7 torr. A schematic of the vacuum chamber is shown in Fig 2.8.

The pressure inside the vacuum chamber is monitored with a model 571 Bayard-

Alpert Type Standard Range Ionization Gauge Tube and a model 843 ionization

gauge controller from Varian. Pressures higher than 10−3 torr are measured with

model 531 thermocouple gauge tubes from Varian.
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Figure 2.8: Schematic of vacuum chamber: Top view
The vacuum chamber is pumped down to pressures of less than 10−6 torr with a

diffusion pump and a mechanical pump in series.
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2.3.2 The Interaction Region

The interaction region between the lasers and the atoms is essentially a set of parallel

metal plates with a small 0.5 cm diameter hole in the upper plate. The lasers are

aligned so that they interact with the atoms between the plates under the hole in the

top plate. The plates are connected with insulated wires to electrical feedthroughs

attached to flanges on the vacuum chamber. Voltages can then be applied to these

plates from outside the vacuum chamber.

The products of the interaction can be extracted through the hole in the top plate

and sent to detectors that are placed here. In our experiments, the detectors are

microchannel plates placed about 10 cm above the hole in the upper plate.

2.3.3 Atom oven

The alkaline earth elements, calcium and barium that we use in the experiments de-

scribed here are available commercially. At room temperature, both of these elements

are available as solids. The calcium that we use in our lab is in the form of small

pellets while the barium is available in the form of rods immersed in mineral oil to

prevent oxidation in air. To generate a vapor of calcium or barium atoms in the

interaction region where they are excited using lasers, we heat the calcium or barium

in steel tubes(referred to as ‘ovens’) with small holes drilled in them to direct the

emerging atoms in the direction of the interaction region.

The stainless steel ovens used in the experiments described here are either 1
4

′′
or

3
8

′′
diameter tubes made of 316 steel and have a wall thickness of 0.006′′. A 0.4 mm
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diameter hole is drilled into the wall of the tube close to its center. To load the oven,

one end of the tube is crimped in a vice and calcium or barium is filled into the tube

to a level just below the level of the hole. Then the other end of the tube is crimped

and the entire tube is fixed in an oven holder such that the part of the oven with the

calcium( or barium) is towards the bottom and the hole in the oven is level with and

directed towards the interaction region.

The ends of the oven tube are connected with thick copper wires to an AC high

power current source. This current source consists of a series of transformers which

converts the 120V AC to about 6V AC and has a variable output through the use of

a variac. The oven tubes have a resistance of less than 0.1Ω. To make most of the

voltage drop in the circuit occur across the oven, the thick copper cables offer a very

low resistance connection to the current source. We apply a current ranging up to

115Amps to heat the oven.

The atoms of calcium (or barium) are ejected as an effusive beam of neutral atoms

in the direction of the interaction region. To prevent the effusive atom beams from

coating the surface of all the detectors around the interaction region, we use a water-

cooled plate of copper with a 4 mm high and just under 1 cm wide hole to block the

atoms that are not aimed directly toward the interaction region. The water cooling of

the copper plate is done to improve the efficiency of collecting the thermally excited

calcium atoms striking the surface of the copper plate.

The high currents in the oven can create magnetic fields (∼ 1.5 × 10−4T at the

interaction region) that can affect the characteristics of the atom. To avoid the effects
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of magnetic fields, the lasers in the lab are all synchronized to fire near the zero of

the electric field in the AC current line [61].

2.4 Detection Apparatus

The detection apparatus consists of the detectors placed inside the vacuum cham-

ber which include the metal plates above and below the interaction region and the

microchannel plate detectors as well as the oscilloscopes and data storage devices

(computers) used to collect and analyze the signals from these detectors. The inter-

connect between the detectors inside the vacuum chamber and the voltage sources

or signal lines outside the vacuum chamber are provided by electrical feedthroughs

connected on flanges on the sides of the chamber. BNC and MHV connectors and

cables are used for transmission of all the signals and voltages outside the chamber.

2.4.1 Microchannel Plate Assembly

One of the methods used for detecting electrons or ions is to monitor any change in

potential of a charged capacitive conductor when an electron or ion strikes the surface

of the conductor. If we consider a conductor with capacitance C, with a voltage V

applied to it, the total charge on the surface of the conductor is Q = CV . When an

electron (or ion) strikes the conductor, the total charge instantaneously changes by

∓e, the charge on the electron(or ion). This leads to an instantaneous change in the

potential on the conductor by e/C. In an experiment, we would like to be able to
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distinguish the signal from the electrons or ions from the background noise. We would

therefore like to maximize the change in potential on the surface of the conductor from

the impact of an electron (or ion). This can be done either by significantly reducing

the capacitance C or by increasing the flux of electrons/ions striking the surface.

Figure 2.9: Microchannel plate Assembly
The upper figure (a) shows the setup of the microchannel plate pair to detect

charged particles. The lower figure (b) shows a cutout of one of the channels in the
microchannel plates. The primary radiation in these figures refers to electrons or

ions hitting the microchannel plates [82].

In our experiments, we choose to enhance the signal by increasing the number

of electrons striking the surface of the conductor where we monitor the changes in
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potential. This is achieved by the use of microchannel plates which emit thousands

of electrons for each electron striking their surface. The microchannel plates work

by creating an avalanche of electrons whenever an ion or an electron hits the surface

of the plates. The surge of electrons can be detected as a change in voltage on a

metal plate where the electrons are impacted after emission from the microchannel

plates. The signal corresponding to the electron surge is proportional to the number of

electrons or ions hitting the microchannel plates under normal operating conditions.

We use a pair of matched microchannel plates in series to enhance the magnification

of the signal. The microchannel plates are kept at a potential difference of 2 kV for

electron or ion detection. Fig 2.9 shows the operation and setup of a microchannel

plate assembly.

The microchannel plate pair can produce amplification of signals by a factor of ∼

106 and combined with a time resolution better than 2ns, they are ideal for detection

of electrons of varying energy by time of flight separation.

2.4.2 Data collection software

The change in potential on the microchannel plates as well as the laser pulses detected

with photodiodes are observed on oscilloscopes. The oscilloscopes used in the exper-

iments described here include a 500 MHz LeCroy 9350A, a 500 MHz Tektronix 2440,

a 200 MHz Tektronix 2430, a 350 MHz Tektronix 2467 and, a 500 MHz Tektronix

TDS 3052. The 500 MHz oscilloscopes with a resolution of 2 ns are used to detect

the signal from the microchannel plates while the other oscilloscopes are used to look
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at signals which do not need to be measured with such accuracy. Some of these os-

cilloscopes also have GPIB cards to allow for remote control of the oscilloscope with

a computer.

A PC running DOS on an Intel 486-DX processor is used as the controller for the

oscilloscopes for collecting the data. The control programs for the oscilloscopes were

written by Thomas Bensky. These programs are used to set time windows over the

signals seen on the oscilloscope to collect signals corresponding to specific time delays

from the trigger which is synchronized with the laser repetition rate. The signals can

be averaged over several shots of the laser to improve the signal to noise ratio. The

programs can also control stepper motors through the parallel port(LPT1). We use

stepper motors connected to translation stages to simultaneously control any delays

between lasers that need to be introduced by the translation stages and the collection

of data from the oscilloscopes. In some cases, two PCs have been used simultaneously

to collect data from different oscilloscopes.

2.5 State Selective Field Ionization

State selective field ionization is a method for detecting and identifying rydberg states

and wavepackets. The basic principle behind this method is that the potential ex-

perienced by an electron in an atom changes in the presence of an external applied

electric field. This change in potential can be sufficient to allow an electron in a bound

rydberg state to escape and thereby ionize the atom. This effect of the atom being
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ionized in a field is termed as field ionization. When we use a ramped electric field

to ionize the atoms, the atoms in different rydberg states ionizing at different times

produce signals at the microchannel plates that can be resolved in time to identify

the individual rydberg states present in the system [25].



Chapter 3

Autoionizing Wavepackets in

Calcium

3.1 Introduction

The aim of our experiments as stated in the first chapter is to create a controlled

system of two excited electrons such that we know their behavior at least at the

instant of creation. We would then like to study the behavior of the atom as it

evolves in time.

There is a significant amount of work on experimental [25,83,84,85,86,87,88,89]

and theoretical [90, 26, 91, 92] studies of rydberg wavepackets in atoms that enables

us to generate radial rydberg wavepackets with the desired characteristics of electron

motion. There has also been a lot of work in isolated-core excitation (ICE) techniques

[33, 25, 93, 35, 36] that allows us to use short laser pulses to excite the electrons in a

54
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two-electron atom independently using multistep laser excitation. The autoionizing

states and their linewidths have been measured in several experiments in alkaline-

earth atoms [94, 95, 96, 97, 98, 99, 34, 100, 101]. A number of theoretical [102, 103, 104]

and experimental [105, 77] studies have also been performed to look at the dynamic

behavior of wavepackets in autoionizing atoms. In a multistep excitation of a DRW,

we need to understand the behavior of the electrons at each step of the excitation. We

are familiar with the behavior of rydberg wavepacket from past experiments so that

we can create 4sNd rydberg wavepackets with a good knowledge of their dynamic

behavior. We use ICE to excite the inner 4s electron to 4p3/2 at different times during

the evolution of the rydberg wavepacket and study the influence of the delay between

exciting the wavepacket and the ICE on the decay characteristics of the autoionizing

4p3/2Nd wavepacket. This is similar to an experiment performed by J.E.Thoma with

autoionizing states instead of autoionizing wavepackets [106].

3.2 Experimental Procedure

Fig 3.1 shows the detector setup used in the experiment. Calcium atoms in the ground

state are introduced into the interaction region by heating a 1
4

”
diameter steel tube

filled with crushed pieces of calcium. The heated calcium atoms exit the tube through

a 0.4 mm diameter hole drilled on the side of the tube toward the interaction region.

The interaction region is located between two parallel plates made of aluminum with

a small 5 mm diameter hole in the upper plate to extract the ions or electrons to be
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Figure 3.1: Detector Schematic
A schematic of the detector used in the experiment along with the timing diagram
for the various laser pulses and the electric field pulse used to ionize the rydberg

wavepacket states.
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detected. The lasers, which are all polarized in the vertical direction, interact with

the calcium atoms at right angles to the direction of motion of the atoms so that we

can make sure that the delay between exciting the atoms with the different lasers is

the same for all the atoms in the interaction region. The excitation scheme is shown

in Fig 3.2.

Figure 3.2: Excitation scheme in Calcium
A schematic of the excitation scheme used in the experiment to study the decay of

4p3/2N` autoionizing radial wavepackets in calcium.

The excitation scheme can be viewed as consisting of three main steps. In the first

main step, a radial rydberg wavepacket is excited in a two-step process. Atoms in
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the 4s2 1S0 ground state are excited into a 4s4p 1P1 intermediate state by a 423 nm,

5ns pulse (L1). A second 500 fs pulse (L2) at 392 nm further excites the atoms into

a coherent superposition of 4snd 1D2 states centered around an average principal

quantum number N with its corresponding Kepler period τK = 2πN3 which forms

a radial wavepacket. For convenience, we will refer to this wavepacket as a 4sNd

wavepacket. The 423 nm laser pulse is generated by a dye laser with Stilbene 420 dye

pumped by the third harmonic of a Nd:YAG laser. The 392 nm ultrashort laser pulse

is generated by doubling a bandwidth-limited (see next section for details) 780 nm

Ti:sapphire pulse in a 1 cm KDP crystal.

The second step in the excitation scheme is to excite the inner 4s electron into

the 4p3/2 state of the ion by ICE [33]. This is achieved by using a 200 fs laser pulse

at 393 nm. This 393 nm ICE pulse (L3) is generated by SHG in a 2 mm BBO crys-

tal from the transform-limited 780 nm fundamental output of the Ti:sapphire laser.

This excitation puts the atom which was initially in the 4sNd wavepacket into a

coherent superposition of 4p3/2N` states. These 4p3/2N` states have energies above

the 4s+ and 3d+ ionization limits in calcium and can therefore decay by autoioniza-

tion. We will refer to this coherent superposition of 4p3/2N` states as an autoionizing

wavepacket. The relative phases of the different eigenstates in this wavepacket is cho-

sen by adjusting the delay, τ1, between exciting the radial wavepacket and the ICE.

The doubly excited atoms in the 4p3/2N` states decay by autoionization into the 3dε`

or 4sε` continua, releasing electrons of energies 1.5 eV or 3.1 eV respectively. These

electrons are detected at the microchannel plates if they are emitted in the direction
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of the hole in the upper plate of the interaction region. The work of van Leeuwen

et. al suggests that we should not expect to see any wavepacket-phase-dependence

in the total autoionization signal at any particular angle even though the portion of

the signal contributed by the 1.5 eV or 3.1 eV electrons can change as a function of

the phase [77]. Additionally, we monitor the decay of an autoionizing wavepacket by

keeping the phase of the initial wavepacket constant so that any possible variation in

the total autoionization signal as a function of initial wavepacket phase [79,107] is cor-

rected by normalization of the maximum autoionization signal level to the same value

at all delays, τ1. We will also make the assumption that all the atoms in the 4p3/2N`

states autoionize within 1 ns which is much shorter than the time scale on which

the electrons are detected at the microchannel plates (> 150 ns). This assumption is

justified by the broad resonance structures and hence short lifetimes corresponding to

the 4pN` autoionizing resonances in calcium as measured by Jones [93]. The electrons

travelling straight through the drift region (length of ∼ 10 cm) toward the detector

arrive at the detector at least 95 ns after the autoionization occurs (95 ns for 3.1 eV

electrons, 137 ns for 1.5 eV electrons). Typically there is a spread in the times at

which the electron is detected at the microchannel plate detector due to stray charges

in the detector or due to the spread in directions of the electrons hitting the detector

as well as due to the finite extent of the interaction region.

The third step is to probe the time-dependent decay of the autoionizing wavepacket.

This is done by using a short pulse at 318 nm (L4) to excite the “inner” 4p3/2 electron

to a 4d5/2 state by ICE [106]. L4 is delayed by a time, τ2 with respect to the first ICE



CHAPTER 3. AUTOIONIZING WAVEPACKETS IN CALCIUM 60

by L3. The 4d5/2N` states decay by autoionization to the 4pε`, 3dε` and 4sε` continua

by ejecting electrons with energies of 3.9 eV, 5.4 eV and 7.0 eV respectively. These

electrons can also be detected at the microchannel plates through the hole in the top

plate. The number of these high energy electrons detected is also assumed to be di-

rectly proportional to the population of 4d5/2N` states. However, this assumption is

strictly valid only if there is no variation in the angular distribution of electrons from

the decay of the 4d5/2N` states as a function of time [77]. Since the original 4sNd

radial rydberg wavepacket is not an angular wavepacket, we are justified in making

this assumption for the superposition of 4d5/2N` states. These electrons travelling

through the drift region can arrive at the microchannel plates within about 65 ns after

autoionization (64 ns for 7.0 eV, 72 ns for 5.4 eV and 85 ns for 3.9 eV). In the rest of

this chapter, we will refer to these high energy electrons as fast electrons which arrive

at the detector at earlier times to distinguish them from the slow electrons emitted by

autoionization of the 4p3/2N` states which arrive later. The significant delay between

the fast and slow electrons arriving at the detector can be used to distinguish the fast

electrons alone and thereby get a relative measure of the number of atoms that are

excited to the 4d5/2N` states.

The number of atoms that are excited into the 4d5/2N` states by L4 is assumed

to be directly proportional to the population of 4p3/2N` states at the instant of

interaction with L4 if we neglect any effect of the position of the rydberg electron on

the excitation probability of the 4d5/2 states from the 4p3/2 state by ICE. This has

also been verified by monitoring the ‘fast electron’ signal while keeping the relative
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delay between L3 and L4 fixed and changing the delay between L2 and L3. We do

not see any time-dependent variation of the signal as a function of delay between L2

and L3.

At each value of delay, τ1, we monitor the ‘fast electron’ signal level at the mi-

crochannel plates due to the decay of the 4d5/2N` states as a function of the delay

τ2. This signal is interpreted as the relative survival probability of the autoionizing

4p3/2N` wavepacket for a time τ2. This is repeated for various initial phases of the

4p3/2N` wavepacket by varying τ1.

The rydberg states excited in the wavepacket are identified by state-selective field

ionization(SSFI) by applying a high voltage negative pulse to the lower plate of the

interaction region and monitoring the times at which the electrons released from the

various rydberg states are incident at the detector. This calibration of the ionization

times of the rydberg states is done by using a dye laser in place of L2 to excite

individual 4snd rydberg states and detecting them with the same ionization field

pulses as those used to detect the wavepacket. Fig 3.3 shows the SSFI spectrum

corresponding to the ionization of 4sNd wavepackets centered at N = 35 and N = 40.

Lasers L3 and L4 are blocked while measuring the SSFI spectra to avoid the effect of

rydberg state redistribution by ICE.
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Figure 3.3: State-selective field ionization (SSFI) spectra
The graphs correspond to the SSFI electron spectra for 4sNd wavepackets centered

at (a)N = 35 and (b)N = 40.
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3.3 Controlling bandwidths of lasers

In the semi-classical model, one can assign specific times for the electron to be near

the core or away from the core. In the case of an electronic wavepacket excited in

an atom using lasers, the ability to localize the electron probability at some position

around the atomic core depends on the number of states that are excited coherently

as well as the phase and energy distribution of the excited states.

If we excite too many states with a short pulse (i.e. greater bandwidth), then

the dispersion of the wavepacket reduces the localization of the wavepacket in a

very short time. On the other hand, we do not want to increase the pulse width

(reduce the bandwidth) to excite too few states (one or two) because then the electron

probability distribution would resemble a stationary state (exciting one state) or an

oscillating set of states (exciting two states). Fig 3.4 shows the calculated change in

radial probability density distribution as a function of time for various choices of laser

bandwidth used to excite a wavepacket.

The 4sNd wavepacket is excited using the second harmonic of the fundamental

120 fs, 780 nm Ti:sapphire pulse. The SHG is created using a 3 cm KDP crystal

whose angle with respect to the Ti:sapphire laser beam can be adjusted to tune the

phase matching conditions and hence the central wavelength of the second harmonic.

The bandwidth of a laser with a 120 fs pulse is at least 125 cm−1. We see from

Fig 3.4 that we need the laser bandwidth to be less than 10 cm−1 to be able to use

a semi-classical picture to describe the wavepacket motion for more than one Kepler

period. It is therefore necessary to reduce the bandwidth of the Ti:sapphire laser
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Figure 3.4: Time-dependent radial probability distribution of a 4sNd wavepacket in
calcium

The above graphs show the calculated radial probability distribution of a 4sNd
(N ≈ 40) wavepacket in calcium for cases where the excitation laser bandwidth is

(a) 1 cm−1 (b) 2 cm−1 (c) 3 cm−1 (d) 4 cm−1 (e) 5 cm−1 (f) 9 cm−1 (g) 10 cm−1 (h)
15 cm−1
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Figure 3.5: Setup for reducing the bandwidth of the Ti:sapphire laser.

used to create the second harmonic for exciting the 4sNd wavepacket.

In order to reduce the bandwidth of the Ti:sapphire laser pulse, we use a grat-

ing to separate the various frequency components of the pulse [23]. We then use a

cylindrical lens to map the frequency spectrum into the spatial plane at its focus. A

retroreflecting mirror at the focus of the cylindrical lens sends the beam back with a

slight vertical displacement and is picked off after all the frequency components are

recombined at the grating. An adjustable slit in front of the retroreflecting mirror

is used to block parts of the frequency spectrum and thereby reduce the bandwidth

of the Ti:sapphire pulse used to create the second harmonic with the KDP crystal.
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This is a simpler version of more complicated pulse-shaping techniques using spectral

filtering [23,108]. Phase matching conditions in the crystal further limit the effective

bandwidth of the second harmonic. The effective laser bandwidth used in the exper-

iment is about 9 cm−1. The setup used to reduce the bandwidth of the laser in the

experiment is shown in Fig 3.5.

3.4 Experimental results

The decay of the 4p3/2Nd autoionizing wavepackets are measured for the two cases

with N ∼ 35 and N ∼ 40. For the 4snd states at n = 35 and n = 40, the quantum

defect is ∼ 1.2 so that the Kepler periods of the orbits of the two wavepackets (τK =

2π(n − δ)3 a.u.) are 5.9 ps and 8.9 ps respectively. The survival probability of the

4p3/2N` wavepackets with N ∼ 40 as a function of time for different initial phases of

the constituent states is shown in Fig 3.6. The different curves correspond to different

initial phases chosen in the autoionizing 4p3/2N` wavepacket by varying the delay τ1

in approximately equal steps of 1.33 ps.

There are a few remarkable features that stand out in the data. The main feature

that we notice is a stair-step form in the decay of the wavepacket. The discrete steps

in the survival probability indicate significantly higher decay rate at certain times

as opposed to other times when the decay rate is negligible and hardly produces a

change in the population in the autoionizing wavepacket. In a magnified view of

some of these curves as shown in Fig 3.12, we can also see that there are two distinct
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Figure 3.6: Survival probability of 4p3/2N`, N ∼ 40 wavepackets
The set of traces here show the survival probability of the 4p3/2N`, N ∼ 40

autoionizing wavepackets with different phases as a function of the delay τ2 between
the creation of the autoionizing wavepacket (L3) and the ICE probe (L4). The
vertical displacement of the various traces correspond to the delay τ1 between

creating the radial 4sNd wavepacket (L2) and the excitation of the autoionizing
wavepacket (L3). The upper scale shows the delay τ2 in terms of the Kepler period

of the radial wavepacket. From top to bottom on the right hand side, the two
arrows correspond to delays of τ1 = 2τK and τ1 = τK , respectively. The bar graphs
on the right of the traces show the calculated real and imaginary amplitudes of the

constituent 4snd states in the wavepacket corresponding to each trace.
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steps in the decay of the wavepackets. The first step drops the population in the

autoionizing wavepacket to ∼ 15% of the initial population. The position of the first

step following the initial flat region occurs at different times depending on the delay

τ1. After the first step, there is another almost flat region where the population of

the 4pNd wavepacket stays nearly constant and this is followed by another step after

which the wavepacket is almost fully autoionized. The second step is more apparent

in the plots of the same traces in Fig 3.12. The time interval between the two step-

downs in population is spaced apart by ∼ 9 ps in all the N ∼ 40 decay curves. This

interval also corresponds to the Kepler period of the 4sNd, N ∼ 40 wavepacket that

is used to create the autoionizing wavepacket.

As we vary the delay τ1 between exciting the radial wavepacket with L2 and the

ICE by L3 used to create the autoionizing wavepacket, we notice some interesting

patterns in the delays corresponding to the first step in the decay curves. As we

increase τ1 from 0 to τK , the delay corresponding to the first step varies from almost

τK at τ1 = 0 to less than 1 ps when τ1 ∼ τK . When τ1 increases to more than τK , we

notice a sudden jump in the location of the first step from near 1 ps to almost τK .

Further increase in τ1 causes the timing of the first step to occur progressively earlier

till it becomes small again near τ1 = 2τK .

Fig 3.7 shows the measured autoionizing radial wavepacket survival probability

for the case where N ∼ 35. All the features seen in the case of the N ∼ 40 wavepacket

are also seen in these traces with the difference corresponding to the kepler period of

the N ∼ 35 wavepacket. For the rest of this chapter, we will only consider the case of
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Figure 3.7: Survival probability of 4p3/2N` ,N ∼ 35 wavepackets
The set of traces here show the survival probability of the 4p3/2N`, N ∼ 35

autoionizing wavepackets with different phases as a function of the delay τ2 between
the creation of the autoionizing wavepacket (L3) and the ICE probe (L4). The
vertical displacement of the various traces correspond to the delay τ1 between

creating the radial 4sNd wavepacket (L2) and the excitation of the autoionizing
wavepacket (L3). The upper scale shows the delay τ2 in terms of the Kepler period

of the radial wavepacket. From top to bottom on the right hand side, the two
arrows correspond to delays of τ1 = 2τK and τ1 = τK , respectively.
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the N ∼ 40 wavepacket but the results are equally valid for the N ∼ 35 wavepacket.

3.5 Phase-controlled wavepackets

Consider a 4sNd wavepacket excited at time t = 0. We can write the wavefunction

of the wavepacket as the sum of the wavefunctions of the individual eigenstates that

make up the wavepacket.

|4sNd〉 =
∑
n

Cn |4snd〉 (3.1)

where C2
n corresponds to the real, time-independent probabilities of the electron being

in a |4snd〉 state as measured by SSFI. As a function of time the phases of the

individual eigenstates evolve at different rates.

|4snd〉t = |4snd〉0 e
−iEnt (3.2)

where En = − 1
2n∗2 , n∗ = (n− δn) and δn is the quantum defect of the 4snd state. We

can then write the initial wavefunction for the autoionizing wavepacket at its instant

of creation as

|4pNd〉τ1 =
∑
n

Cn |4pnd〉 e−iEnτ1 (3.3)

In Fig 3.6, the bar graphs on the right represent the real and imaginary am-

plitudes of the constituent eigenstates forming the N ∼ 40 wavepacket. The con-

stituent eigenstates in the autoionizing wavepacket have the same relative amplitudes

at all delays τ1 when the wavepacket is initially excited. The difference lies in the

phases(φn = −Enτ1) of the different constituents of the wavepacket depending on τ1.
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In addition to the delays considered in this experiment, we have the ability to choose

the relative phases of the constituent eigenstates arbitrarily by choosing a time delay

τ1 at which to excite the autoionizing wavepacket. As we see in this experiment, it is

possible to change the autoionization rate of a wavepacket by a factor of five or more

just by changing the phase of the states making up the wavepacket.

It is also possible to create wavepackets with specific choices of phase and ampli-

tude components of different states by adjusting the spectrum and the phase profile

of the laser pulse used to create the wavepacket [88,89]. However, this involves signif-

icantly greater experimental effort and costs compared to our method of allowing the

natural evolution of the wavepacket to create the required phase relationship in the

wavepacket. We can, therefore, use the method of creating autoionizing wavepackets

described here a phase-control mechanism for creating “designer” wavepackets with

the required properties. The range of states to be included in the wavepacket can be

adjusted by choosing the central wavelength and the bandwidth of the laser exciting

the radial wavepackets.

3.6 Data Analysis

We have seen that there can be significant changes in autoionizing wavepacket decay

rates by small variations of phase of the wavepacket. However, a look at the phases

of the constituent states of the wavepacket does not reveal any intuitive explanation

for the behavior that we observe in the wavepackets. However, since we excite radial
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rydberg wavepackets in the atom, it might be more useful to consider the dynamics

of the atom by using a semi-classical picture for wavepacket evolution.

3.6.1 Semi-classical Picture

Consider the calcium atom as a closed shell core with a charge of +2 surrounded

by the two outermost valence electrons. Let us assume that one of the electrons is

excited into a rydberg wavepacket at time t = 0. This corresponds to the 4sNd radial

rydberg wavepacket. When this electron is far from the core, it sees an effective charge

of +1 due to the screening by the second electron. At a time τ1, the inner electron is

excited into a 4p3/2 state of the ion. Using a short ICE pulse, the bandwidth of the

pulse is enough to account for any change in the resonance due to the presence of the

outer electron far from the core [67,79,93]. For purposes of analysis, we will consider

the excitation as an instantaneous event.

The doubly excited system can decay by autoionization when the two electrons

exchange energy and angular momentum by collision through the repulsive Coulomb

force between them. When the rydberg electron is far from the core, the presence

of the doubly charged core next to the inner electron screens the Coulomb repulsion

between the excited electrons and there is no energy exchange at this time. We can

also write this as the potential experienced by the rydberg (outer) electron as

Vouter = − 2

|~ro|
+

1

|~ro − ~ri|
(3.4)

where ~ro and ~ri are the position vectors of the outer and inner electrons in relation
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to the core. For |~ro| ≥ |~ri|,

1

|~ro − ~ri|
=

∞∑
k=0

rki
rk+1
o

←→
C

(k)
i ·
←→
C (k)

o (3.5)

where Ck
q are spherical tensor operators (see Appendix B). Expanding the sum to the

first two terms, we have

1

|~ro − ~ri|
=

1

ro
+
ri
r2
o

←→
C

(1)
i ·
←→
C (1)

o + . . . (3.6)

If we only include the first term in the expansion, we have Vouter ' − 1
ro

for ro � ri,

i.e. the screening by the inner electron makes the outer electron ‘see’ a charge of +1

at the core. However, this case does not include any interaction between the two

electrons.

If we include the first two terms in the expansion in Eqn 3.6, the interaction

between the electrons that is represented by the second term becomes relevant to the

potential experienced by the outer electron only when ri and ro become comparable.

Since the inner electron is limited to a region close to the atomic core, this means

that the outer electron also has to be near the core to exchange energy with the inner

electron and produce autoionization.

We have already seen the effect of the bandwidth of the laser on the evolution of

the radial wavepacket in Fig 3.4. Fig 3.8 shows the radial probability distribution of

the radial 4sNd (N ∼ 40) wavepacket in calcium that is excited in the experiment.

The radial wavefunctions are calculated using the Numerov algorithm and added in

the ratio of the amplitudes which are calculated as the square root of the measured

(using SSFI) probability of exciting each state in the wavepacket. We notice that the



CHAPTER 3. AUTOIONIZING WAVEPACKETS IN CALCIUM 74

Figure 3.8: Radial probability distribution of the 4sNd, N ∼ 40 wavepacket in cal-
cium
Radial probability distribution of the 4sNd (N ≈ 40) wavepacket in calcium. The

scale on the vertical scale on the right shows the time in steps of the classical Kepler
period of the wavepacket centered at n = 40.
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radial probability distribution evolves as a particle moving away from the core at t = 0

and returns to the core at t = τK and then again moves away from the core to return

at t ∼ 2τK . This justifies the use of a classical picture to understand the dynamics

of the rydberg electron in the system under consideration. We can use this picture of

the electron motion to understand the features observed in the experimental data.

Consider the case where the second electron is excited by ICE just after the

excitation of the radial rydberg wavepacket. At the time of excitation, τ1, the first

electron is moving away from the core and does not get autoionized. So there is no

decay of the autoionizing wavepacket at this time. The data shows this effect as a flat

region without wavepacket decay for almost a Kepler period. The first occasion for

autoionization decay to occur is when the first electron returns to the core after one

Kepler period. At this time, the two electrons are near the core and can exchange

energy by collision to cause autoionization. This is seen in the data as a rapid fall

in survival probability of the 4p3/2N` wavepacket. If the ICE occurs at some time

after the excitation of the radial wavepacket, the first electron takes less than a kepler

period to return to the core. This is seen in the data where the initial flat region

in the decay curve lasts for shorter times as we increase the delay, τ1, until the first

kepler period, τK . Beyond the first kepler period, the first electron would continue

outward in its next orbit and ICE at this time would be similar to ICE just after

excitation except for the dispersion of the wavepacket. We see this effect in the data

as the initial flat section of the curves increases in width to almost a kepler period

and further changes in this period are similar to the case of τ1 less than τK .
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Figure 3.9: Classical Picture of Autoionization
A cartoon of the classical view of autoionization.
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The part of the wavepacket that does not interact with the inner electron after its

first return to the core continues in its orbit about the core and moves away from the

core after t ∼ τK and does not return to the core until after another Kepler period at

t ∼ 2τK . This corresponds to the second step seen in the traces where the population

in the autoionizing wavepacket remains nearly constant for τK and then undergoes

rapid decay again when the rydberg electron returns to the core for the second time.

The time between the first and second returns to the core for the rydberg electron

is the same in all cases and so we see the same width for the second step for all the

different delays, τ1, in the experiment.

We see from Fig 3.8 that the return of the radial wavepacket to the core is not

an instantaneous effect but is spread over a few ps. The finite duration of the pulse

(10 cm−1 →1.5 ps FWHM) also causes a spread in the time over which the autoioniz-

ing interaction occurs. These two effects contribute to the duration of the steep part

of the decay curves. The wavepacket disperses rapidly after the first Kepler period

and the return of the wavepacket at t = 2τK is spread over an even greater time than

at τK . This accounts for the greater time for decay at the end of the second step for

τ1 < τK and at the end of the first step for τK < τ1 < 2τK . The fractional reduction in

the survival probability of the autoionizing wavepacket at each step is proportional to

the scaled autoionization rate (γ = Γn3) of the constituent states in the wavepacket.

γ can also be viewed as the probability for autoionization at each pass of the rydberg

electron at the core and Γ is the total autoionization rate of the wavepacket. Due to

the high autoionization rate and the dispersion in the wavepacket, we can only detect
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two steps in the decay of the wavepacket.

The classical picture of the doubly excited atom is convenient for having a qual-

itative understanding of the dynamic processes leading to autoionization. However,

it does not provide a quantitative prediction for the observations in the experiment.

We need to use quantum mechanical methods, such as the quantum defect theory

(QDT) to make any quantitative calculations of autoionization rates. Luckily for us,

autoionization in two-electron systems has been studied extensively in theory and

the methods developed by Cooke et.al [109, 103] have been used to reproduce quan-

titatively the autoionization decay rates of 4p3/2nd states by Thoma et.al [106]. This

method is applied to study the decay of autoionizing 4p3/2Nd wavepackets in the next

section.

3.6.2 Two-channel QDT calculations

The basis of the two-channel QDT model of the atom used by Thoma and Cooke et.

al. [106, 109, 103] is the approximation that there are only two effective channels in

the autoionization process - a bound channel and a continuum channel. From the

work of Thoma, we have the energy-dependent transition moment, T , from the 4snd

to the 4pnd states given by

T (Wν) ∝ A(ν)Θ(ν, n) (3.7)

where A(ν) = 1/ sin π(ν + δf + iγ/2) is the spectral density in the 4p3/2 channel,

and Θ(ν, n) = [sinπ(ν − n∗)]/[π(Wν −Wn)(νn
∗)3/2] is the normalized overlap inte-

gral for the ICE transition [29]. Wν = −1/2ν2 is the energy of the autoionizing
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wavepacket w.r.t. the 4p+
3/2 ionization limit; Wn = −1/2n∗2 is the energy of the

rydberg eigenstates w.r.t. the 4s+ ionization limit with effective principal quantum

number n∗ = n− δi; δi and δf are the quantum defects of the 4snd and 4p3/2nd state

configurations respectively. γ = Γnn
∗3 is an energy-independent scaled autoionization

rate with Γn as the autoionization rate of the 4p3/2nd state. Fig 3.10 shows |A(ν)|2,

Θ(ν, n), and |A(ν) ·Θ(ν, n)| with n = 40, δ = −0.19 and γ = 0.29.

In the case of exciting an autoionizing wavepacket, the transition moment from

the 4sNd wavepacket to the 4p3/2Nd wavepacket as a function of the delay τ1 is given

by

T (Wν , τ1) ∝
∑
n

Cne
−iWnτ1A(ν)Θ(ν, n) (3.8)

where Cn is the amplitude of the eigenstate with principal quantum number n in

the wavepacket. The absolute value of this transition amplitude as calculated for the

wavepacket that we excite is shown in Fig 3.11.

The product of this energy-dependent transition amplitude with the spectral am-

plitude, F (W ) of the laser pulse used for the excitation of the autoionizing wavepacket

by ICE (L3) is the excitation amplitude of the autoionizing wavepacket. We can write

this excitation amplitude as

S(W ) = T (W ) ·F (W ) (3.9)

⇒ S(Wν , τ1) = T (Wn, τ1) ·F (W3/2 +Wν −Wn) (3.10)

where W3/2 is the energy of the 4p+
3/2 state w.r.t. the 4s+ ground state of the calcium
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Figure 3.10: Terms in two-channel QDT calculation for autoionizing state
|A(ν)|2, Θ(ν, n), and |A(ν) ·Θ(ν, n)| with n = 40, δ = −0.19 and γ = 0.29.
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Figure 3.11: Term in two-channel QDT calculation for autoionizing wavepacket
T (Wν , τ1) with 4sNd wavepacket around N ∼ 40, δ = −0.19 and γ = 0.29.
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ion.

The time-dependent decay rate, R, of the autoionizing wavepacket is given by the

Fourier transform of its excitation spectrum as

R(t, τ1) =

∣∣∣∣∫ dWνe
−iWνtS(Wν , τ1)

∣∣∣∣2 (3.11)

The time-dependent probability of autoionization, Pa, is then given by

Pa(t, τ1) =

∫ t
R(t′, τ1)dt

′∫∞
R(t′, τ1)dt′

(3.12)

If we assume that all the atoms excited to the autoionizing wavepacket eventually

autoionize, then by conservation of probability, the probability of atoms remaining in

the 4pNd autoionizing wavepacket as a function of time is written as

P(t, τ1) = 1−Pa(t, τ1) = 1−
∫ t

R(t′, τ1)dt
′∫∞

R(t′, τ1)dt′
(3.13)

The above calculation is performed for the specific choice of wavepackets that we

excite in the experiment. The state distribution as measured by SSFI is used in the

calculations along with the known quantum defects of the states in 4sNd and 4pNd

wavepackets [29,110]. The only adjustable parameter in these calculations is the value

of γ, the scaled autoionization rate. γ is varied to find the best fit to the experimental

data. We find a value of γ = 0.29 to provide the best fit to the experiment. The

comparison of the calculation with the data is shown in Fig 3.12.

The calculations made using the two-channel QDT theory are in good agreement

with the experimental data for different time delays τ1 and for the different wavepack-

ets centered at N ∼ 35 and N ∼ 40.
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Figure 3.12: Data and two-channel calculations for 4p3/2N` wavepacket decay
Data and two-channel calculations with γ=0.29 for survival probability of a

4p3/2Nd, N ∼ 40 autoionizing wavepacket for the two cases where (a)τ1 =1.4 ps and
(b)τ1 = 5.4 ps.
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3.6.3 Autoionizing state decay in calcium

As mentioned previously, the experiment to study the time-dependent decay of au-

toionizing wavepackets is based on a similar experiment by Thoma [106] where the

time-dependent decay of a 4p3/2nd autoionizing eigenstate is measured. The only dif-

ference between the experiment by Thoma and this experiment with the autoionizing

wavepacket is the replacement of a 5ns pulsed dye laser used as L2 in the former case

with a short 0.5 ps pulse used as L2 in the latter. The ICE in this experiment occurs

while the outer electron is in a localized wavepacket compared to a stationary sate

in Thoma’s experiment. In terms of analyzing the data and calculating the decay

rates, the same method described above is used for both experiments. However, it

was found in the experiment by Thoma as well as in repetitions of that experiment

by the author that the best-fit value of γ is γ = 0.21 in the case of the decay of the

autoionizing state as opposed to a value of γ = 0.29 which provides the best fit to

experimental data in the case of the autoionizing wavepacket.

Since γ represents an energy-independent scaled autoionization rate, this dis-

crepancy appears to suggest that the scaled autoionization rate changes when more

than one autoionizing state is simultaneously excited. All the states forming the

wavepacket decay with a best-fit value of γ = 0.21 when the states are excited indi-

vidually [106] but when all these states are excited coherently, the combined decay is

best reproduced by a value of γ = 0.29. There is no known physical explanation to

explain the phenomenon at present. We have therefore performed the calculations in

a more rigorous fashion using ab initio K-matrices to rule out any errors introduced
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by our initial approximation of the system as consisting of only two channels.

3.6.4 K-matrix MQDT calculations

Some previous experiments studying the dynamics of autoionizing wavepackets in

calcium [77] have been well-reproduced theoretically by using K-matrices to perform

MQDT calculations. We have used the same 28-channel K-matrices calculated for

J=1 and J=3 by van der Hart and Chris Greene to calculate the channel-dependent

transition spectra instead of the two-channel approximation that we used previously.

The autoionizing 4p3/2nd states making up the wavepacket are degenerate with

other bound and continuum channels in calcium. In the two-channel approximation,

we neglect the presence of the other channels because all the other degenerate bound

channels are energetically separated from the 4p3/2nd states while the choice of the

high rydberg states places the wavepacket well above the ionization limit of the 4p1/2n`

channels. In the case of the K-matrix, the effect of all the states that can have

a significant influence on the 4pndJ = 1, 3 states are included. This allows us to

calculate the autoionization rates directly without the need for a fitting parameter.

The calculations are based on the J=1,3 K-matrices calculated by van der Hart

and Chris Greene shown in Table 3.1.

There are 13 J = 1 channels and 15 J = 3 channels included in the K-matrices. We

neglect the slight energy dependence of the K-matrices for our calculations because

it has been able to reproduce other experimental results accurately [77]. Before

performing the calculations, we rotate the LS K-matrices into the jj-coupled basis.
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Table 3.1: LS K-matrices at energy = -0.321646 a.u. [111]

1P0 4snp 3dnp 3dnf 4pns 4pnd

4snp −0.11385 0.12953 0.17339 −0.97642 −0.25674

3dnp 0.12953 −0.78481 0.33251 −1.6152 −0.098125

3dnf 0.17339 0.33251 −0.39437 −0.26045 0.72937

4pns −0.97642 −1.6152 −0.26045 −0.97277 1.1504

4pnd −0.25674 −0.098125 0.72937 1.1504 −0.53812
3P0 4snp 3dnp 3dnf 4pns 4pnd

4snp −0.33937 0.34323 −0.09064 −0.56855 0.29591

3dnp 0.34323 −0.45516 0.002109 −1.5611 −0.59313

3dnf −0.090640 0.002109 −0.22377 −0.22375 0.62998

4pns −0.56855 −1.5611 −0.22375 3.6092 0.44188

4pnd 0.29591 −0.59313 0.62998 0.44188 −0.63770
3D0 3dnp 3dnf 4pnd

3dnp −0.82238 0.031903 0.46628

3dnf 0.031903 −0.039409 0.40638

4pnd 0.46628 0.40638 −0.32777
1F0 4snf 3dnp 3dnf 4pnd 4png

4snf 0.22830 0.32957 −0.14201 0.37450 −0.062271

3dnp 0.32957 −1.5613 −0.064441 1.1987 −0.095575

3dnf −0.14201 −0.064441 −0.022135 0.53045 −0.059457

4pnd 0.37450 1.1987 0.53045 −1.6966 0.14259

4png −0.062271 −0.095575 −0.059457 0.14259 −0.12945
3F0 4snf 3dnp 3dnf 4pnd 4png

4snf 0.34515 −0.18247 −0.063689 0.24536 −0.041226

3dnp −0.18247 −0.61997 −0.075997 −0.044269 −0.0085487

3dnf −0.063689 −0.075997 0.12687 0.26260 −0.019838

4pnd 0.24536 −0.044269 0.26260 −0.21046 −0.040918

4png −0.041226 −0.0085487 −0.019838 −0.040918 −0.10687
3G0 3dnf 4png

3dnf 0.090996 −0.0030878

4png −0.0030878 0.14447
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These K-matrices are then used to calculate the energy dependent transition moment

into each of the jj-coupled continuum channels using the methods of Cooke and

Cromer [109].

We define the jj K-matrices for J = 1, 3, as

Kjj = Vj
TKLSVj (3.14)

with the Vj transformation matrices for j = 1 and j = 3 given in tables 3.2 and 3.3

respectively.

Table 3.2: LS to jj transformation matrix for J = 1

We have used the Cooke and Cromer formalism [109, 100] to calculate the au-

toionization spectrum using the K-matrices. The Kjj matrices can be equated to the
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Table 3.3: LS to jj transformation matrix for J = 3
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R matrices in the standard Cooke and Cromer formalism [109, 100]. The equation

relating the K matrix to the spectral densities of the different channels is written

as [100]

(K + tan(πν))a = 0 (3.15)

where ai = cos(πνi)Ai. The Ai are the spectral amplitudes for the different channels.

For the purposes of calculating the spectra required for the autoionizing state, it is

convenient to split the K-matrix into blocks corresponding to bound and continuum

channels [109,100]. We could then rewrite Eq. 3.15 as [K + tan(πν)]bb Kbc

Kcb [K + tan(πν)]cc


 ab

ac

 = 0 (3.16)

where ab and ac are column vectors with nb and nc components respectively. nb and

nc are the number of bound and continuum channels, respectively, contributing to the

spectrum at a given energy. In an autoionizing system with the electron allowed to

decay into nc possible continuum channels, this equation has nc independent solutions.

The problem is then reduced to one of solving nc simultaneous equations. Eqn. 3.15

is then rewritten as [100]

{Kcb[K + tan(πν)]−1
bb Kbc −Kcc}ac = εjac, (3.17)

ab = −[K + tan(πν)]−1
bb Kbcac (3.18)

The continuum eigenvectors ac are normalized to 1 by

[(εj)
2 + 1]

nc∑
i=1

ac
2
i = 1 (3.19)
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since the electron eventually ionizes into any or all of the possible j = 1, .., nc contin-

uum channels.

The spectral amplitudes in the bound channels are calculated as Ab = ab sec(πν)

for each of the nc solutions. Ab correspond to the spectral amplitude of each bound

channel in the coupled dissociation eigenvector basis (the basis corresponding to the

nc continua). To convert this to the independent particle jj-coupled basis, which is

more physically intuitive, we transform Ab to A′
b as

A′
b = Aba

T
c (3.20)

where A′
b and Ab are the nb × nc matrices composed of the nc column vectors A′

b

and Ab, respectively. ac is an nc × nc matrix with the columns corresponding to the

nc eigenvectors ac. Physically, ac is the matrix that rotates the nc jj-coupled continua

into the nc ‘eigencontinua’ at each energy ν.

Each of the nc column vectors A′
b represents the amplitude of the transition

moment from the nb bound channels into the respective nc continuum channels. We

then calculate the autoionization amplitude into each jj-coupled continuum channel

from the initial Rydberg state 4snd as a function of energy for i = 1, ..., nc as

χi(ν) = κbA
′
bi(ν) (3.21)

where κb are the nb-element row vectors whose components are the transition mo-

ments from the initial 4snd states into the nb bound channels. The bound states in

the energy range under consideration are limited to the 4p1/2n` and 4p3/2n` channels.
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We will assume that there is no difference in the radial transition moments from 4snd

to the 4p1/2n` and the 4p3/2n` states. This reduces the calculation of the elements of

κb to the calculation of the angular part of the transition moment into each bound

channel.

The result of the calculations of κb for J = 1 and J = 3 are

κb(J=1)=

(
0 0 −

√
2
45

−
√

2
15

−
√

2
5

)
⇐⇒

(
4p 1

2
ns 1

2
4p 3

2
ns 1

2
4p 1

2
nd 3

2
4p 3

2
nd 3

2
4p 3

2
nd 5

2

)
κb(J=3)=

( √
2

5
−1√
15

2
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√

3
0 0 0
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)

We use the χi(ν) values to replace A(ν) in Eqn. 3.8 and follow the same procedure

as in the two-channel case to calculate the time-dependent decay rate into each of the

nc continuum channels. The sum of the decay rates for all channels with J = 1 and

J = 3 is used to determine the total decay rate. This decay rate is equivalent to the

R(t, τ1) in Eqn. 3.11. This is applied in Eqn. 3.13 to calculate the time-dependent

bound-state survival probability of the autoionizing wavepacket. This calculation is

shown together with the data for two cases in Fig 3.13. There is very good agreement

between the data and the calculations.

Since the reason for using the entire MQDT analysis was to test the correctness of

our choice of scaled autoionization rate(γ) due to discrepancies in the best-fit value

of γ for the case of the decay of a rydberg state versus the decay of the rydberg

wavepacket, we have performed an MQDT analysis using the K-matrices to calculate

the expected decay rate for an autoionizing state. The comparison of the data with

various calculations are shown in Fig 3.14. It is found that the calculations using the

K-matrices do not give the same result as the experimental decay rate in the case of

the autoionizing state. The decay of the autoionizing state obtained from calculations
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Figure 3.13: Data and K-matrix calculations for 4p3/2N` wavepacket decay
Data and K-matrix calculations for survival probability of a 4p3/2Nd, N ∼ 40

autoionizing wavepacket for the two cases where (a)τ1 =1.4 ps and (b)τ1 = 5.4 ps.
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Figure 3.14: Data and calculations for 4p3/240d state decay
Data along with two-channel and K-matrix calculations for survival probability of a
4p3/240d state as a function of time after excitation. The dots correspond to the data
values from the experiment. The thick dark curve with the best fit to the data is a
two-channel calculation of the autoionizing state survival probability with γ = 0.21.
The thin line corresponds to the two-channel calculation with γ = 0.29 while the

dashed curve alongside it is the result of the MQDT analysis using the K-matrices.
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using the K-matrices are close to the decay rate that would be expected if the scaled

autoionization rate were γ ∼ 0.29 rather than γ ∼ 0.21 that is found from comparison

to the experimental data.

On the basis of our calculations with the two-channel approximation as well as

with the MQDT analysis using ab initio K-matrices, we can be confident about the

methods used in the experiment to detect the survival probability of the autoionizing

wavepacket. However, it still does not explain the discrepancy between the values of

the scaled autoionization rate in the case of exciting a rydberg eigenstate as opposed

to a rydberg wavepacket.

One possibility that we considered was to check for angular variation in the ejection

of fast electrons [77]. This was checked by rotating all the lasers into vertical and

horizontal polarizations and comparing the signal levels from the fast electrons. We

find that there is no difference in the variation of signal level with delay in the case

of using lasers with the two different polarizations. Calculation of autoionization

rates were also performed for 4pNs wavepackets and states and their decay rate

was found to be about half the decay rate of the 4pNd wavepackets/states. The

inclusion of 4sNs states with the same amplitudes as the 4sNd states makes the

calculations disagree with the experimental measurements significantly in the case

of the autoionizing wavepacket but actually matches better with experimental data

in the case of the autoionizing states. We are convinced, however, that there is no

significant excitation of 4sNs states along with the 4sNd states in the experiment

due to the fact that we do not see any signal from field ionization of 4sNs rydberg
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states separate from the 4sNd rydberg states when a dye laser used as L2 is scanned

over the energy range corresponding to rydberg N` states. We are therefore unable

to completely explain the lower decay rate for the autoionizing state than what is

expected from the MQDT analysis.

3.7 Conclusions

The main result of this experiment has been the detection of the stair-step form of

decay of an autoionizing wavepacket and the ability to control decay rates in au-

toionizing wavepackets by controlling the initial phase of the constituent eigenstates.

Since the aim of our experiments is to eventually create and study controlled double

rydberg wavepackets, this ability to control wavepacket decay rates allows for the

creation of specific wavepackets with the desired properties in an experiment.

We find that the autoionization rate of the autoionizing wavepackets that we

measure is in good agreement with the calculations performed using MQDT analysis

with the K-matrices. The results of our experiment suggest that a study of the decay

rates of autoionizing rydberg wavepackets can provide a more accurate measure of

autoionization rates than the measurement of the decay of autoionizing states.



Chapter 4

Experiments in wavepacket

dynamics

This chapter describes a few experiments that were attempted following the study of

the decay of autoionizing wavepackets described in the chapter3. For various reasons,

these experiments were not successful in terms of observing what we had set out

to observe. In the following sections, I will be describing three such experiments

which had to abandoned for different reasons. It is possible that the failure of these

experiments could have been due to reasons other than any error in the actual physics

that we set out to study.

96
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4.1 Double rydberg wavepackets in calcium

The first experiment that was attempted after our success in observing the stair-step

decay of autoionizing wavepackets was to see if we could further excite the inner

electron into a rydberg wavepacket and thereby create a double rydberg wavepacket.

In the previous experiment, we had been able to excite one electron into a rydberg

wavepacket and then excite the second electron into a 4d state. To excite this 4d state

into a rydberg state of the ion, we need to provide it with just under 4.8eV through

one or more laser pulses. We are also limited by the condition that we would like to

perform the excitation process in as few steps as possible to minimize the number of

laser sources that need to be simultaneously adjusted to get the experiment to work

properly. A set of possible excitation schemes is shown in Fig.4.1.

A possible single laser excitation scheme that could work to create double rydberg

wavepackets in calcium could be to excite the 4d state of the inner electron directly

into a rydberg nf state around n ∼ 60 with a pulse tuned to ∼ 258nm. However,

this wavelength is too close to the third harmonic of the fundamental Ti:sapphire

pulse but not close enough to be tuned to with a THG( third harmonic generation)

crystal. At the third harmonic of the 786nm Ti:sapphire laser pulse, we can excite

states around n ∼ 25 from the 4d state of the ion. However, this excitation scheme

does not have the range of tunability that we would like to have in creating double

rydberg wavepackets. We therefore decided to look at a two-step excitation of a

rydberg wavepacket from the 4d state.

From the 4d state, the inner electron can be excited into a 4f state with a pulse
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Figure 4.1: Possible double wavepacket excitation schemes in Calcium
A schematic of the possible excitation schemes that can be used to create double

rydberg wavepackets in calcium. The paths that have been shown in light grey are
the paths that were not chosen due to technical difficulties that would arise in

creating laser pulses of the required wavelengths. The path shown in black is the
path that was attempted. An explanation for lack of success in this experiment is

described in the text.
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tuned to 893nm or to a 5f state with a pulse tuned to 472nm or to a 6f state

with a 376nm pulse. Since these wavelengths are not at any integral fraction of the

fundamental Ti:sapphire laser wavelength of ∼ 786nm, we would need to use OPAs

to generate the laser pulse of the required color. However, OPAs are inefficient at

producing colors close to but not exactly at the color of the light they are converting

from or to integral multiples of their frequencies and this makes it difficult to generate

sufficient light with OPAs tuned to 893nm or 376nm which are not sufficiently far

from the fundamental and second harmonic of the Ti:sapphire laser. So we chose

to excite the 4d state into the 5f state of the calcium ion. An OPA was built to

generate light at 1180nm to be mixed with 786nm light to generate the 472nm pulse.

The 5fN` states are expected to decay by autoionization by emitting electrons of

even higher energy than that from the decay of the 4dN` states. The idea was to

try and observe the electrons from the decay of 5fN` states to measure the survival

probability of 4dN` states in a manner similar to the measurement of the survival

probability of the 4pNd wavepackets described in the previous chapter. An attempt

to observe signals from the decay of the 5fNd states was unsuccessful and so we did

some calculations to check if we should have expected to see any signal at all under

ideal conditions.

Table4.1 lists transition probabilities for transitions between states in the singly

positively charged calcium ion along with the laser wavelengths required to excite

the transitions. The transition probability in Ca+ from the 4d state to an nf state

is maximum for n = 4 by a factor of 100 or more compared to n > 4 [112]. In
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Table 4.1: Transition probabilities in Ca II [112]

from to Transition probability Wavelength (nm)

4s 4p 1.439 393.5

4p 4d 3.396 318.0

4d 4f 6.6× 10−1 893.0

4d 5f 4.143× 10−3 472.2

4d 6f 3.753× 10−3 375.9

4d 12f 4.273× 10−3 279.1

4f 5g 6.943× 10−1 989.3

4f 12g 1.491× 10−2 405.8

5f 6g 1.772× 10−1 1816.3

5f 12g 1.251× 10−2 681.8

6f 7g 5.935× 10−2 3009.3

6f 12g 8.672× 10−3 1081.9

comparison, the 4p−4d transition is a factor of 2.4 greater than the 4s−4p transition

and a factor of 5 more than the 4d−4f transition. This has to be considered with the

fact that the signal available to us from the decay of the 4d5/2Nd wavepacket was of

the order of 100mV at the maximum signal level. We need a signal level significantly

greater than the noise level of around 2mV to be able to distinguish the signal from

the noise.
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The factor of 800 difference between the transition probability of the 4p − 4d

and the 4d − 5f transitions meant that we would have to increase the observable

signal level from the decay of the 4dNd states by a factor of at least 20 to be able

to see any signal from the decay of the 5fNd states. However, this would still be

insufficient because we would eventually like to excite the inner electron into a much

higher rydberg wavepacket. To choose an excitation scheme going along a path of

transitions with the highest probability would mean increasing the number of lasers

needed to excite the double wavepacket as well as increasing the intensity in all the

lasers. In the face of these concerns, we decided to abandon this scheme of excitation

to create a double rydberg wavepacket in calcium.

At the time of this experiment, the Ti:sapphire laser was required to be tuned to

a central wavelength between 785 and 795 nm due to other experiments which made

use of the same laser beamline. Moreover, two of the initial steps in our excitation

scheme make use of the second harmonic of the Ti:sapphire laser around 393 nm. In

the absence of such a consideration, the 4d− 4f transition or the 4d− 6f transition

might be made more accessible by choosing a suitable central wavelength of the

Ti:sapphire laser. One of the reasons for abandoning this excitation scheme was the

requirement of a greater number of lasers than we were prepared to use. If this is not

an issue, it might be possible to create double rydberg wavepackets in calcium in this

manner.

However, in all of the possible excitation schemes that we have looked at in calcium

to create double rydberg wavepackets, the overall transition strength from the 4d to
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an ng rydberg state in the calcium ion through any path is almost a factor of 1000

weaker than the 4p−4d transition which essentially puts the condition that one would

need a significantly greater measurable signal from the decay of the 4dNd states to

be able to detect the electron decay signal from ngNd double rydberg wavepackets.

4.2 Autoionization suppression through wavepacket

interference

Another of the experiments leading directly out of the observation of stair-step decay

in autoionizing wavepackets was to see if we could observe interference effects between

wavepackets producing suppression or enhancement of autoionization. The idea is

that if we can excite one electron into a coherent superposition of two radial rydberg

wavepackets with some time delay between them such that the wavepackets return to

the core at the same time, it might be possible to choose the phase of the wavepackets

in a manner such as to suppress autoionization even when the inner electron is in an

excited state.

The excitation scheme that we used was to excite two different radial 4sNd

wavepackets in calcium with some time delay between them corresponding to the

difference in the Kepler period of their orbits so that both wavepackets return to

the core simultaneously. The coherence between the laser pulses is expected to be

transferred into the two wavepackets to produce interference between the wavepackets

when they come together at the core. The second electron is excited into the 4p state
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at some delay after the excitation of the two wavepackets. The survival probability of

the coherent superposition of the two autoionizing wavepackets that results is mea-

sured by monitoring the probability of excitation from the 4p to the 4d state for the

inner electron in an identical manner to what has been described in chapter 3.

In the absence of the second radial 4sNd wavepacket, the decay of the single

autoionizing 4pNd wavepacket would follow the stair-step decay pattern observed in

the previous chapter. However, in the presence of the second wavepacket, interference

effects can result in a change in the survival probability of the autoionizing wavepack-

ets depending on the delay between exciting the radial wavepackets over a very small

range of delays when the two wavepackets return to the core almost simultaneously

and in a coherent manner. Our experiment is to try and observe this variation in

the time-dependent survival probability of the autoionizing wavepackets in the form

of enhancement or reduction of the autoionization rate at the time when the two

coherent wavepackets return to the core.

Different methods were used to create the two coherent wavepackets and two of

these methods are shown in Fig.4.2. The experiment required adjusting the path

difference between the two pulses creating rydberg wavepackets in steps that were a

fraction of the pulse wavelengths of around 391nm. It also requires the wavepackets

to return to the core simultaneously so the delay between the two pulses had to be

adjusted precisely after measuring the kepler periods of the two wavepackets that we

produced. However, the major problem plaguing this experiment in both schemes

of creating the two wavepackets was that once the 786nm pulse was split into the
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Figure 4.2: Two methods of creating coherent pulses tuned to different wavelengths
The two figures show schematics of the methods used to create two coherent pulses
tuned to slightly different central wavelengths to create coherent wavepackets. In

method (a), a Michelson interferometer configuration is used with two KDP crystals
used to produce SHG at slightly different wavelengths in the two arms of the

interferometer. In method (b), a grating in combination with a cylindrical lens is
used to split the short pulse into its different wavelength components and a pair of
parallel mirrors introduce slight deviations in the retroreflected beams that are then
separated with adjustable delay between the components and then sent through the

same KDP crystal to produce SHG centered at different wavelengths.
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two parts tuned to different wavelengths, the strength of signal from the decay of the

individual wavepackets had decreased significantly so that we were unable to observe

clear stair-step decays in the two individual autoionizing wavepackets created through

the two arms of the interferometer.

Another method to generate two coherent wavepackets was to replace the split

mirror method in Fig4.2 with a single mirror but using a glass slide covering a part

of the spectrum to produce the delay between two wavepackets centered at different

wavelengths. Here, the problem was that first of all the two wavepackets had to

be centered at wavelengths such that they could each produce wavepackets with

well-defined stair-step decay (i.e states centered at states between principal quantum

numbers 30 and 50). The thickness of the glass slide (after allowing for increased

effective thickness by tilting the slide), limited the delay between the wavepackets

to between 6 and 10 ps. The spatial width of the expanded spectrum on the mirror

corresponding to the wavelengths required to produce wavepackets with the required

characteristics was not wide enough to be cleanly separated by the use of the glass

slide. It is possible that with the use of a wider mirror and greater spatial separation

of the wavelengths, this method could produce interfering wavepackets.

In addition to having a strong signal, the requirement that the two wavepackets

be coherent with each other requires the two beams producing the wavepackets to

be coherent over the entire interaction region since we are trying to transfer the

coherence between the light pulses to the wavepackets. The beam profile of the

Ti:sapphire pulses at the time of this experiment was not very uniform at the place
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where it was being used to create SHG with the result that the wavefront of the pulses

was curved resulting in circular interference patterns between the pulses (instead of

uniform bright or dark depending on the delay). To maintain the coherence between

the pulses, only the part of the beams producing a single fringe pattern are allowed

into the interaction region through the use of an aperture (so that the maximum path

difference between different parts of the pulse does not exceed the central wavelength

of the pulse). This is also one of the reasons for the decrease in signal size from the

decay of the autoionizing wavepackets.

The experiment to observe interference between two autoionizing wavepackets was

abandoned for all the reasons described above that led to an insufficient signal to noise

ratio for the effects we needed to observe. It might be possible to get better results

with this experiment if the intensity of the laser pulses can be improved significantly

as well as by using a precise translation stage to introduce small delays between the

beams producing the radial wavepackets.

4.3 Wavepacket creation by off-resonant ICE

A third experiment that arose out of the study of the decay of autoionizing wavepack-

ets was to try and create autoionizing wavepackets starting from a rydberg state by

using strong off-resonant ICE [79,93,114]. A 4snd rydberg state is excited in calcium

using long pulsed lasers. The rydberg electrons in the excited state do not have a

well-defined position in space around the core as a function of time. At some time
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after the excitation of the rydberg state, a short laser pulse tuned below the 4s− 4p

resonance of the calcium ion is applied to the excited rydberg state atoms. At the

4s − 4p resonance, we would expect the creation of 4pnd states while the rydberg

electron is far from the core. However, when the rydberg electron is close to the core,

there is a shift of the resonance for the excitation of the inner electron due to core

polarization by the nearby rydberg electron [79,93]. We would like to make use of this

shift in resonance to excite only the fraction of the total two-electron wavefunction

corresponding to the outer electron being near the core and affecting the transition.

Electrons in the rydberg state spend most of the time far from the core. We can

therefore expect only a small fraction of the atoms in the ensemble of excited atoms

to have the rydberg electron close to the core over the duration of a short-pulse ICE

(significantly shorter than the Kepler period of the electron orbit in the rydberg state).

If the ICE pulse is on resonance, the autoionizing state that we create would decay

in a manner identical to that measured by Thoma [106]. However, if we excite only a

small fraction of the atoms with the rydberg electron close to the core off-resonance,

the excitation spectral amplitudes are the off-resonant part of the spectral amplitudes

shown in Fig3.10 . If this occurs in a coherent manner with all the atoms, we expect

the creation of a wavepacket starting from the core with the energy of the rydberg

electron shifted from the energy of the rydberg state that was initially excited by an

amount equal to the shift in energy of the off-resonant ICE from resonance. In this

case, the decay of the autoionizing wavepacket would show stair-steps in a manner

similar to what has been observed in the previous experiment.
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The motivation for this experiment was the possibility that if we could create

wavepackets in this manner, we would need one less short pulse to create the autoion-

izing wavepacket. This could give us more options in choosing an excitation scheme

to create double rydberg wavepackets compared to the case in the previous chapter.

Like the other experiments described in this chapter, this too suffered from a low

signal level. As can be seen from Fig3.10, the excitation amplitude falls off rapidly

as we excite the inner electron off-resonance. To avoid direct resonant ICE that can

produce autoionizing states, the laser producing off-resonant ICE (L3 in Fig3.2), needs

to be tuned far from ICE transition. The further we tune this laser off-resonance,

the weaker is the excitation amplitude. To create a well-defined wavepacket, the

bandwidth of this laser (L3) has to be reduced and this produces further reduction

in the energy of the pulse available for off-resonant ICE. The reduction in bandwidth

of the pulse producing off-resonant ICE was done in practice by blocking the part

of the spectrum producing to resonant ICE in the setup used for controlling laser

bandwidths( Fig3.5). All these factors contribute to reducing our effective signal

levels.

One way of overcoming the problem of the low signal level is to increase the power

in the laser used for off-resonant ICE. Another method would be to operate the

Ti:sapphire laser at a wavelength such that the peak of the SHG is off-resonant from

the resonant 4s-4p ICE transition in calcium. At the time of this experiment, this

could not be done as the Ti:sapphire beam was being used for another experiment in

calcium that required the resonant ICE transition.



Chapter 5

Double Rydberg Wavepackets in

Barium

5.1 Introduction

In this experiment, we study the dynamic behavior of the two electrons in a DRW

as the highly excited atom autoionizes. We can vary the delay between exciting the

two wavepackets and we can also control their initial energies. The decay products

of the autoionization are analyzed as a function of the initial state distributions of

the wavepackets as well as the delay between the creation of the two wavepackets.

The technical difficulties faced in the creation of DRWs in calcium forced us to look

for other elements that could be used for this purpose. The choice is among the

alkaline-earth elements where we tried to find suitable excitation schemes to create

double rydberg wavepackets.

109
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Barium (atomic number: 56, ground state electronic configuration: [Xe]6s2) is

an alkaline earth element with two valence electrons. The first ionization limit of

barium lies 5.2 eV above the ground level (6s2) energy while the double ionization

limit lies 15.2 eV above the ground level. The energy levels in barium have been

well documented [115, 116, 117, 118, 119] and there are several pathways available for

exciting rydberg states and wavepackets with visible lasers both in Ba and Ba+.

For all these reasons, we have chosen to work with barium to create double rydberg

wavepackets.

We have attempted two different methods of creating DRWs in barium. The first

effort described in this section had to be abandoned for reasons that are explained

below. The second method of exciting the double rydberg wavepacket has been

successful and the rest of the chapter from the next section onwards describes that

experiment along with the results of our study.

In light of the fact that the problems with creating double rydberg wavepackets

in calcium arose out of an inability to create ionic Rydberg wavepackets, initial ex-

periments with barium were aimed at creating ionic Rydberg wavepackets. In exper-

iments to study multi-photon double ionization of barium over a decade earlier [113],

some multiphoton resonances had been observed in the Ba++ spectrum which had

been identified as corresponding to ionization occurring through ionic Ba+∗ Rydberg

states.

The first attempt at creating ionic wavepackets in barium (Fig 5.1)was made by

focussing short 300 fs pulses from an OPA tuned to 532 nm. The beam from the
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Figure 5.1: Excitation scheme to create ionic rydberg wavepackets in Barium by
multiphoton excitation
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OPA was focussed with a 5 cm converging lens to utilize multiphoton ionization of

barium to create ionic rydberg wavepackets. This method of creating ionic rydberg

wavepackets had the disadvantage that it was very hard to calibrate the wavepackets.

Among the methods that were tried to calibrate the wavepackets were to look for

Ramsey interference between the wavepackets and time-dependent half-cycle pulse

ionization of the wavepackets.

The idea behind using wavepacket Ramsey interference to identify wavepackets is

that when two identical pulses separated by some time delay are incident on an atom,

both pulses can excite wavepackets in the atom and produce an interference between

the wavepackets [105, 120, 121]. Since the wavepackets can only be excited when the

electron is near the atomic core, the interference pattern is also modulated by the

Kepler period of the wavepacket. The rms value of the interference waveform is also

equivalent to the autocorrelation of the wavepacket with itself. A Fourier transform

of this autocorrelation signal gives the excitation spectrum for the wavepacket [121].

This method of identifying the wavepackets did not succeed because of an inability

to precisely control the path difference between the two arms of the interferometer

and also limit the bandwidth of the laser pulses to excite a good wavepacket. The

7-photon process (a 3-photon step to ground state of ion plus a 4-photon process to

create ionic rydberg wavepacket) at 530 nm requires the delay lengths to be controlled

to within a fraction of the effective wavelength ((530/4) ∼ 132 nm). This requirement

in combination with the fact that the ionic rydberg state signal had a bad signal/noise

ratio, led us to abandon wavepacket interference as a method of identifying the ionic
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rydberg states.

Another method that was attempted as a means of identifying the ionic rydberg

wavepackets was to use time-dependent half-cycle pulse ionization of the wavepackets

[122]. The principle utilized here is to use the impulsive momentum retrieval method

[123] to measure the instantaneous momentum of the wavepacket as a function of time

and use the expected periodicity in wavepacket motion to identify the wavepacket.

There was no significant difference observed in the voltage levels to produce HCP-

ionization for different wavepackets excited by the multi-photon process. It is likely

that the bandwidth of the pulse was too high or the AC stark shifts [124] during

the pulse were too large to create a good localized wavepacket and so this method of

exciting ionic rydberg wavepackets was discarded.

The excitation scheme and the experiment that has been successful in creating

double rydberg wavepackets is described in the following sections.

5.2 Excitation Scheme

A study of the energy levels in barium revealed a possible excitation scheme for

creating double rydberg wavepackets that could be accomplished by using just two

OPAs together with the fundamental and second harmonic of the Ti:sapphire laser as

well as a dye laser. The double rydberg wavepackets are excited in two main stages.

In the first stage, we use a two-step excitation to create a rydberg wavepacket in one

electron. The next stage is a two-step ICE (isolated core excitation) to excite the
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second electron into an ionic rydberg wavepacket while the first electron is far from

the core.

The position and velocity of the first electron at any time is known from the knowl-

edge of its excitation spectrum or from the time-dependent decay of the wavepacket if

it is an autoionizing wavepacket. An electron excited into a radial rydberg wavepacket

leaves the core radially and returns periodically with a characteristic period deter-

mined by its central energy. In our excitation scheme, we excite an autoionizing

wavepacket that can be probed by ICE of the inner electron to identify the rydberg

wavepacket by the periodic change in autoionization rate when the rydberg electron

returns to the core [103, 106, 125]. We can choose the energy of excitation of the

second electron to control its initial velocity at the time of excitation. The delay of

the ICE pulses that excite the second electron is adjusted to choose the position of

the first electron when the second electron is excited. Thus, we can have very good

control over the initial compositions and velocities of both the electrons in the double

rydberg wavepacket.

The first rydberg wavepacket is excited in a two-step process. The ground state

6s2 is pumped into the 5d(2D)6p state by a 350.2 nm, 5 ns pulse. This pulse is

generated by mixing the 522 nm output of a dye laser (Coumarin 485 dye in 350mg/l

solution in methanol pumped by third harmonic of a Nd:YAG laser) with the Nd:YAG

fundamental at 1064 nm in a 3 cm KDP crystal. A 0.6-1 ps pulse from an OPA tuned

to ∼ 525 nm is used to excite 5d5/2N1d wavepackets with N1 ∼ 33. The OPA

(henceforth referred to as OPA1) is pumped by 200 fs pulses from a Ti:sapphire laser
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Figure 5.2: Excitation scheme to create double rydberg wavepackets
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tuned to 770 nm.

The 5d5/2N1d wavepackets with energies above the 6s+ and 5d+
3/2 ionization limits

in barium autoionize rapidly after excitation with each return of the rydberg electron

to the core. For a wavepacket centered around N1 ∼ 33, this corresponds to ∼

5 ps. We have a short time window of about 10-15 ps after the excitation of the

first wavepacket during which we can excite the second electron into an ionic rydberg

wavepacket while the first electron remains bound and localized. A 300 fs pulse at

233 nm is used to pump the 5d5/2 “inner” electron into the 4f7/2 state. The 233 nm

pulse is generated by mixing the 590 nm output of a second OPA (OPA2) with the

385 nm second harmonic of the Ti:sapphire laser. The 233 nm pulse is immediately

followed by a ∼ 500 fs pulse tuned to ∼ 312 nm to excite the 4f electron to an ionic

rydberg N2g wavepacket with principal quantum number N2 & 50. This 312 nm pulse

is generated by mixing the amplified output of OPA1 with the 770 nm fundamental

of the Ti:sapphire laser. The excitation scheme is shown in Fig 5.2.

The doubly excited N2gN1d double rydberg wavepackets decay by autoionization

into a range of possible N`+ rydberg states of the Ba+ ion which are then identified by

field ionization. The delay between L3 and L4 is kept constant in the experiment while

the delay between L2 and L3 is varied with a delay stage to control the delay between

exciting the two wavepackets. The distribution of N`+ rydberg states is monitored

as a function of the delay between L2 and L3 to study the effect of varying the initial

positions and velocities of the two wavepackets on the autoionization pathway.
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5.3 Experimental Apparatus

Figure 5.3: Detector schematic for double Rydberg wavepackets in barium

The experimental apparatus used in this experiment is essentially identical to the

apparatus described in chapter 2. The main modification in this experiment is the

addition of a second interaction region in the detector as shown in Fig 5.3.



CHAPTER 5. DOUBLE RYDBERG WAVEPACKETS IN BARIUM 118

The lasers interact with the barium atoms in the first interaction region. After

the autoionization of the double rydberg wavepackets, the remaining barium ions are

pushed into the 2nd interaction region by a 15V pulse applied on the bottom field

plate. A negative 7.5kV/cm field pulse with a rise time of 500 ns is applied through

the lower plate in the 2nd interaction region to field-ionize the rydberg states of

the barium ion. The electrons released by ionization of the ionic rydberg states are

detected by the microchannel plate detector. The grid in front of the microchannel

plates is maintained at a ∼ 60V potential to provide additional acceleration to the

electrons to be detected by the microchannel plates. The upper microchannel plate is

maintained at a positive 2kV potential while the lower microchannel plate is biased

at ∼ 60V through a resistor.

5.4 5dnd autoionizing wavepackets

We begin the study of the double Rydberg wavepacket by looking at the dynamics

of the first Rydberg wavepacket. The energy of the 5d5/2N1d wavepacket is higher

than the 6s+ and 5d+
3/2 ionization limits of neutral barium. The two electrons can

therefore exchange energy by collisional processes to redistribute the energy in favor

of a free electron and an ion.

The 5d5/2N1d autoionizing Rydberg wavepacket can decay into the 5d+
3/2 and 6s+

states by emitting electrons with energies of 0.1 eV and 0.7 eV respectively. A short

pulse laser at 233 nm is used as a probe to measure the survival probability of the
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5d5/2N1d wavepacket. The 233 nm pulse excites the 5d5/2N1d configuration into the

4f7/2N1d configuration by ICE. The 4f7/2N1d states decay by autoionization into

5d+ and 6s+ states among others by emitting electrons with energies of 5.3 eV and

6.0 eV respectively. These higher energy electrons are distinguished by time of flight

separation from the lower energy electrons released by the autoionization of 5d5/2N1d

states. Since the high energy electrons at 5.3 eV and 6 eV can only be emitted

by the decay of 4fN1d states, a measurement of the signal strength due to these

high energy electrons is equivalent to measuring the probability of excitation of the

4f7/2 configuration from the 5d5/2 configuration. If we now vary the delay of the

ICE pulse with respect to the time of excitation of the 5d5/2N1d wavepacket and

monitor the signal from the high energy electrons, the form of the signal as a function

of delay corresponds to the survival probability of the 5d5/2 state as a function of

time [106,125].

5.4.1 Experimental results and Analysis

Fig 5.4 shows the result of the measurement of signal from the high energy electrons

as a function of delaying L3 with respect to L2. We notice that the signal shows a

series of steps with widths of approximately 5 ps. In this measurement, all the lasers

in the experiment were polarized in the vertical direction. An unexpected result seen

by using horizontal polarization is described in a later section.

The features in the decay of the 5d5/2N1d wavepacket can be understood by looking

at the problem in a semiclassical manner similar to the case for the decay of 4p3/2N1d
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Figure 5.4: Survival probability of 5d5/233d autoionizing wavepackets in barium
The dotted curve represents the normalized, measured signal from higher energy
electrons as a function of delay between exciting the 5d5/233d wavepacket and the

ICE of the 5d5/2 to the 4f7/2 state. The smooth curve represents the K-matrix
calculation with the J=0 K-matrix for barium near the 5d+

5/2 limit.
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wavepackets in calcium seen in the previous chapter [125].

Autoionization occurs only at times when the two excited electrons are near the

atomic core. The Rydberg electron in the 5d5/2N1d wavepacket moves radially out-

ward from the core to its outer turning point and returns to the core in a time

corresponding to the Kepler period of an electron with energy −1
2N2

1
in a classical orbit

around the positively charged core. This motion of the Rydberg electron results in

the autoionization rate varying in the form of a series of spikes separated in time by

the Kepler period of the Rydberg electron. The survival probability of the autoion-

izing wavepacket then displays a series of steps spaced apart by the Kepler period

of the Rydberg electron [103, 106, 125]. A measurement of this survival probability

as a function of time can then be used to calibrate the average energy level of the

wavepacket.

The excitation of the 5d5/2N1d wavepackets from the 5d6p 1P1 intermediate states

can occur into either the J = 0 or J = 2 channels based on allowed excitation

with a linearly polarized laser pulse. However, van Leeuwen et.al [105] observed an

absence of direct excitation into the J = 2 channels while using the same excitation

scheme. We have therefore limited our analysis to include only the J = 0 channels

in this discussion. The calculations described in the analysis of the experiments were

also performed by including J = 2 channels but these calculations did not agree as

well with the experimental results as the case where we include J = 0 alone and

are therefore not presented in this work. This could be due to significantly smaller

transition matrix elements between the intermediate 5d6p state and the final 5dN1d
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channels of J=2 in comparison to J=0 [105].

The autoionizing 5d5/2N1d states are degenerate with the 5d3/2ε` and 6sε′` con-

tinuum states. The total wavefunction of the electron over the range of energies

in the 5d5/2N1d, J = 0 wavepacket is then a linear combination of the bound

φ1(E) = (5d5/2ν(E)d5/2)J=0 and the continuum φ2(E) = (5d3/2ε(E)d3/2)J=0 and

φ3(E) = (6sε′(E)s)J=0 states. [98, 77]

ψ(E) = A1(E)φ1(E) + A2(E)φ2(E) + A3(E)φ3(E) (5.1)

where Ai(E) are the energy-dependent spectral amplitudes in the different channels

and E is the total energy of the doubly excited states. When the electron is in a

continuum channel, it means that the atom is ionized.

We will consider only the population of atoms that are directly excited into the

bound 5d5/2N1d channel. The atoms excited directly into the continuum are not fur-

ther excited into the autoionizing 4fNd states whose decay releases the fast electrons

measured in the experiment. The use of time-domain spectroscopy in this manner

allows us to measure autoionization rates into different channels without the distor-

tions introduced by direct continuum excitation in the form of asymmetric Fano line

profiles in the frequency spectra of autoionizing states [127]. After excitation into the

5d5/2N1d wavepacket, the two electrons redistribute the total energy between them

over time and are no longer confined to the bound channel. As a function of time,

the population decay rate of atoms from the bound channel into the two continuum

channels can then be written as the Fourier transform of the excitation spectrum
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Table 5.1: R-matrix for barium J=0 near the 5d+
5/2 limit [98]

J = 0 5d5/2nd5/2 5d3/2nd3/2 6sns

5d5/2nd5/2 0.0 −0.23 −0.17

5d3/2nd3/2 −0.23 0.0 −0.139

6sns −0.17 −0.139 0.0

amplitude in the form:

R(t) =

∣∣∣∣∫ dEe−iEtA1(E) · F (E)

∣∣∣∣2 (5.2)

where F (E) is the spectral amplitude of the laser pulse which is taken to have a

gaussian energy profile. The excitation spectrum amplitudes into the various channels

are calculated using an R-matrix formalism.

The survival probability of atoms in the 5d5/2N1d states as a function of time

delay after excitation of the wavepacket is then given by

P (t) = 1−
∫ t

0

R(t′)dt′ (5.3)

in the same manner as the survival probability of autoionizing wavepackets in calcium

is determined in the experiment with calcium [125].

5.4.2 R-matrix Calculations

The excitation spectrum amplitude in the various channels are calculated using

MQDT R-matrix parameters obtained from experimental autoionization linewidth
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Figure 5.5: Decay of 5d5/2Nd wavepackets for different N
The graphs in this figure show the calculated dependence of the decay rates of

5d5/2Nd wavepackets with bandwidths of 9 cm−1 on the central energy level. The
central energy level in the graphs varies from wavepackets centered at N ∼ 32 to
N ∼ 35. The width of the flat sections of the decay curves is proportional to the

kepler period of electrons excited with energy − 1
2N2 . The dashed lines at 5 ps, 10 ps

and 15 ps are to shown to bring out the differences in the decay rates of the
different wavepackets.
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Figure 5.6: Decay of 5d5/2Nd wavepackets with different bandwidths
The graphs here are the calculations that show the effect of changing the bandwidth
of the lasers exciting the N ∼ 33 wavepackets on the decay rates of the wavepackets.

We notice the absence of strong time-dependent features when wavepackets are
excited either with very small small bandwidths (small number of states, long

pulses, time-dependent features get smeared out) or with very large bandwidths
(too many states, fast dispersion of wavepacket). We want the wavepackets to be

excited with bandwidths around 10 cm−1 to observe strong time-dependent features
in the decay of the wavepackets.
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measurements by Neukammer et.al [98]. The R-matrix used is given in Table 5.1. The

survival probability of the 5d5/2N1d wavepackets is calculated using the R-matrix for

different choices of energy and laser bandwidth to determine the best fit to the exper-

imental observations. This calculation is used to calibrate the autoionizing 5d5/2N1d

Rydberg wavepacket excited in the experiment. The method of calculation of the

wavepacket survival probability using R-matrices is presented in Appendix C as well

as in chapter 3. The calculated decay curves for a range of wavepackets excited with

different central energies and bandwidths are shown in Figs 5.5 and 5.6.

5.5 Ionic Rydberg states in Ba+

In the experiment to create double Rydberg wavepackets and then detect the distri-

bution of energy levels of the ions remaining after autoionization, we need to have

a reliable method of calibrating the ionic rydberg states. This is achieved by first

creating the barium ion in the 5d+
5/2 state followed by excitation into the 4f+

7/2 state

and then using a tunable, narrow bandwidth, 5 ns pulsed dye laser in place of L4 to

excite rydberg states of the barium ion.

The barium ion is created by allowing sufficient intensity of light from the first

dye laser(L1) tuned to 350.2 nm to be able to directly ionize the barium atoms in

a multiphoton process. The laser L3 tuned to 233 nm then selectively excites 5d+
5/2

states of the ion to 4f+
7/2. A dye laser (Rhodamine 640 and DCM in a 1:1 mixture in

methanol) pumped with the 2nd harmonic of a Nd:YAG laser is doubled in a 3 cm
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KDP crystal and tuned over the range of wavelengths(316.5 nm to 310.5 nm) to excite

ionic Ng+ Rydberg states (N ∼ 27 to ∞) from the 4f+
7/2 state.

The ionic Rydberg states are detected using a field ionization pulse in the second

interaction region in the detector (see Fig 5.3). The ionic Rydberg states are ionized

at different times during the pulse depending on their binding energy. This difference

in ionization times during the pulse results in a measurable difference in the time of

detection of electrons released by ionization of the different ionic rydberg states. The

time of detection of the electrons is calibrated by measuring the signal at different

time windows relative to the field pulse as a function of the ionic rydberg state. In

practice, this is done by placing several time windows, called ‘gates’, on the signal

detected by the oscilloscope and noting the signal level in each of these gates while

tuning the dye laser over the range of rydberg states that can be field ionized and

detected from the second interaction region. A simultaneous measurement of the

transmission of the dye laser through an etalon is used to calibrate the relative energy

separations. The number of peaks in the etalon signal between successive energy levels

is used to calibrate the absolute energies of the ionic rydberg states by making use

of our knowledge of the form of the energy separation between successive rydberg

states [128].

Unlike the case of identifying rydberg states in calcium by state-selective field

ionization as described in the third chapter, the unique identification of ionic rydberg

states based solely on their time of detection is quite difficult. The reason for this

is that the charged ions are not stationary in the presence of the rising electric field
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Figure 5.7: Gate calibration for ionic rydberg states
The signals in various gates as a dye laser in place of L4 is tuned over the N`+

resonances that can be excited from the 4f+ level in Ba+. The dashed curves are an
attempt to guess the absolute field assuming the two sets of peaks along the curves

correspond to diabatic and adiabatic field ionization.



CHAPTER 5. DOUBLE RYDBERG WAVEPACKETS IN BARIUM 129

Figure 5.8: Relative signal strengths in the different gates for different ionic rydberg
states

The above graphs show the relative strength of signal in the various
time-windows/gates used to detect the field ionized ionic rydberg states. Lower
numbered gates correspond to signals at earlier times. We see that the relative
signal strength in the gates at earlier times are higher for high N and the peak

relative signal strength moves towards later times as we decrease N.
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ramp. This means that the ionization of the ions in various rydberg states occurs

at different times as well as at different positions in the second interaction region.

Combined with the spatial extent of the initial double rydberg wavepacket and the

spread of the ions as they are moved from the first to the second interaction region,

this additional spread in positions of the ions leads to a wide temporal spread in the

signal from electrons released by field ionization of the ionic rydberg states. When we

apply a negative high voltage on the bottom plate in the second interaction region,

the ions that were initially moving upwards are accelerated back down at a varying

acceleration rate by the ramped electric field. As ions in different rydberg states get

doubly ionized by the electric field ramp, it is possible that electrons released when

the ions are on their way upwards arrive at the detectors later than some electrons

released when the ions are closer to the upper end of the interaction region and

from lower ionic rydberg states. This is a problem since we use the SSFI with the

expectation that states from higher rydberg states that get ionized at lower electric

fields get to the detector at earlier times. To minimize this effect of electrons released

at later times overtaking the electrons released earlier, we use trial and error to adjust

the timing of the electric field ramp such that the electrons released by ionization of

the highest ionic rydberg states that we can detect arrive at the detector at the

earliest time and signals from ionization of the lower energy rydberg states arrive at

the detector at later times. We also use a fast electric field ramp rising to the peak

value within 1 µs so that we can ionize the lower energy rydberg states before they

are accelerated out of the interaction region by the electric field ramp.
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The spread in the time when a signal is detected at the detector from field ion-

ization of different ionic rydberg states prevents us from using the time of arrival of

the electron as a unique identifier of the rydberg state of the ion. Instead, we use

the relative distribution of signal levels in the various gates to identify ionic rydberg

states. In this method of identifying rydberg states, it is not possible to uniquely

identify the component rydberg states and their contributions in an ionic rydberg

wavepacket by analyzing the relative signal distribution in the gates but it is possible

to get a good estimate of the range of states that are present in the wavepacket.

The relative strength of signal in the gates is calculated by adding together the

signals in all the gates and dividing the signal in each gate by this sum. Fig 5.8 shows

the relative signal strength in the gates for ionization of different ionic rydberg states.

Fig 5.7 shows the signal levels in each gate as a function of the total energy of exci-

tation of the ionic rydberg states. There are two sets of peaks corresponding to differ-

ent ranges of N states that have a maximum signal in the same time-windows/gates.

Comparison of the principal quantum numbers of the states that have a maxima in

different gates (each gate corresponds to a specific time-window and consequently the

same electric field), gives us a factor of ∼ 1.25 between the higher and lower N states

that have a peaked signal at about the same field. This factor is close to the factor

of 1.15 corresponding to the ratio of N states ionizing by diabatic or adiabatic field

ionization at fields of Z3

9N4 and Z3

16N4 respectively [25, 126]. We assume a linear field

variation over the time scale (0.5 µs) of observing the signal on the oscilloscope. The

dashed curves in Fig 5.7 represent the best guesses at the field using the two maxima
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of the signals in the gates as corresponding to diabatic and adiabatic field ionization.

The 5d+
5/2 ions produced by the first laser have |m| ≤ 2. The presence of both kinds

of field ionization among Ng+ states could be due to the presence of |m| = 2 states

which behave more like hydrogen and ionize at fields proportional to Z3

9N4 while the

m = 0 states ionize at fields of Z3

16N4 [25].

5.6 Double Rydberg wavepackets

We have so far excited and identified 5d5/2N1d autoionizing rydberg wavepackets in

barium. We have also developed a method for exciting ionic rydberg states from the

5d+
5/2 state and can identify the ionic rydberg states by noting the distribution in

time of the electrons extracted from the ionic rydberg states by time-dependent field

ionization. To create double rydberg wavepackets instead of ionic rydberg states, we

reduce the intensity of the first dye laser by placing a neutral density filter in the L1

laser beam to reduce the probability of multiphoton ionization of barium by the first

laser. The 5d5/2N1d states can now be excited with the output of OPA1. The 233 nm

laser pulse is used to excite the 5d5/2N1d states into the 4f7/2N1d states by ICE.

Instead of a dye laser used to excite the ionic rydberg states, we use a short 300 fs

laser pulse at 313 nm to excite the ionic Rydberg wavepackets by ICE immediately

following the excitation of the 4f7/2N1d states. The double rydberg wavepackets

created in this manner autoionize rapidly leaving behind the barium ion in an excited

state.
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After calibrating the ionic rydberg wavepackets, we use the same detection param-

eters for identifying the range of ionic rydberg states resulting from the autoionization

of the double rydberg wavepackets.

The first electron is excited into a 5d5/2N1d rydberg wavepacket with an energy

centered at N1 ∼ 33. We vary the delay between exciting the first rydberg wavepacket

and the ICE pulses that excite the second electron into a wavepacket centered at

N2 ∼ 70. The relative strength of signal in the different gates from the ionization of

the ionic rydberg states is monitored as a function of delay(τ) between the excitation

of the two wavepackets. The experiment is repeated with the first electron excited into

the same wavepacket but changing the wavepacket excited with the second electron

to one centered at N2 ∼ 50. These graphs are shown in Fig 5.9. We note that the

relative signal strength in the lower gates (corresponding to earlier times and hence

higher principal quantum numbers) for the N ∼ 70 wavepacket shows small dips at

τ = 0 and at τ ∼ 5 ps corresponding to the instant of excitation of the first wavepacket

and the Kepler period of the wavepacket at N1 ∼ 33. The higher gates show small

humps in the relative signal at these times. There is a second hump in relative signal

strength in the higher gates at ∼ 9 ps corresponding to just under twice the Kepler

period but it is much less pronounced than the one at ∼ 5 ps. These effects are

clearer in case (a) where the second wavepacket is excited into a higher energy range.

We also notice an absence of strong time-dependent features in the relative signal

strengths in the gates for the case (b) where the second electron is excited into an

N2 ∼ 50 wavepacket. The use of relative signal strength in the gates instead of the
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Figure 5.9: Relative signal strengths per gate in experimental data
The relative signal strengths per gate are shown as a function of delay between

exciting the two wavepackets in N2gN1d double rydberg wavepacket. In both the
cases, the first wavepacket is excited into a wavepacket at N1 ∼ 33. The second
wavepacket is excited to (a)N2 ∼ 70 and (b)N2 ∼ 50. The different graphs are

scaled according to the scales shown on the left.
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total signal level allows us to study the effect of different initial conditions of the two

wavepackets on the final states without worrying about the effect of the decay of the

5d5/2N1d wavepacket over time.

The decay of the 5d5/2N1d wavepacket changes the total number of doubly excited

atoms in the initial double rydberg state as a function of the delay between L2 and

L3. The use of relative signal strength in the gates instead of the total signal level

allows us to study the effect of the different initial conditions of the two wavepackets

on the final state distribution without worrying about the effect of the decay of the

5d5/2N1d wavepacket over time. The experiments have been repeated for different

initial wavepackets by changing N1 and noting that the features scale with the Kepler

period of a rydberg wavepacket centered at N1. Some examples of data and other

experimental details are presented in Appendix A.

The data in Fig 5.9(a) points to a preferential production of final ionic rydberg

states with low principal quantum numbers when the two wavepackets are excited

simultaneously or at time delays corresponding to the Kepler period of the first

wavepacket. It also suggests a preferential production of ionic rydberg states with

high principal quantum number when the electrons in the double rydberg wavepacket

are excited at times when the first electron is expected to be far from the core.
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5.7 Semi-classical Analysis

We can understand the features observed in the experimental data from a semi-

classical perspective in the following manner. When the first radial rydberg wavepacket

is excited, it has a high probability near the core and evolves in half a kepler period

to a high probability distribution of the electron far from the core before returning

to a distribution centered near the core at the kepler period. If we excite the second

electron into a rydberg wavepacket of the ion at different times, we would expect

the two radially localized wavepackets to interact most strongly when they overlap in

space. The radial position at which this interaction occurs for the first time depends

on the delay between exciting the wavepackets. If the second electron is excited when

the first wavepacket is close to the core, the interaction occurs close to the core. On

the other hand, if the first electron is near its outer turning point when the second

electron is excited, the first interaction between the electrons occurs far from the core.

The two wavepackets have different orbital periods and considerable wavepacket dis-

persion can occur with each overlap of the wavepackets. We can therefore expect

any significant dependence of the final state distributions on the delay between the

wavepacket excitations to be determined mainly by the first interaction between the

wavepackets.

Assuming that autoionization occurs at their first interaction, one of the electrons

escapes, leaving the other electron in a bound state with a spatial extent defined by

the radial position of the first interaction. In this case, at times close to zero and

integral kepler periods of the first electron, excitation of the second electron would
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lead to ionic rydberg states with small radial extents corresponding to rydberg states

with low principal quantum numbers and therefore from energy conservation, emission

of electrons with relatively high energy. In the case where the interaction occurs far

from the core, i.e. near half-integer multiples of the Kepler period, we expect to see

ionic rydberg states produced with high principal quantum numbers as seen in the

experimental data.

The agreement of the experimental data in the case of the N2 ∼ 70, N1 ∼ 33

double wavepacket with this seemingly simple physical picture suggests that at least

in this case, the most important interaction between the two electrons that deter-

mines the eventual ionic rydberg state distribution is the first interaction between

the electrons. However, this does not explain why we do not see any time-dependent

features in the case where N2 ∼ 50 as opposed to the case where N2 ∼ 70. In the case

where N2 ∼ 50, the second wavepacket has a radial extent ∼ 1.15 times the extent of

the first wavepacket. In the case of the N2 ∼ 70 wavepacket, the second wavepacket

has a radial extent ∼ 2.25 times the radial extent of the first wavepacket. In both

these cases, the inner electron is launched into a wavepacket that passes through the

first wavepacket on its way out from the core. To understand how the difference in

radial extents in the two cases makes such a difference in the time-dependent ionic

rydberg state distribution, we can consider a simple semi-classical picture that might

be able to explain the features that we have observed.
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5.7.1 Sudden Redistribution

The problem of autoionization processes when two wavepackets interact outside the

core have been studied by several groups. The dominant process ascribed as the

cause of autoionization is the impulsive/sudden redistribution of the rydberg states

of the outer electron in a Z=1 field to rydberg states in the Z=2 field of the ion when

the electronic wavepackets pass through each other [129,132,130,131]. The model of

sudden redistribution is applied to explain the effect of inner electron ionization(IEI)

on the final distribution of ionic rydberg states in the remaining ion [129, 131] and

even as a probe of rydberg wavepackets [133].

Our observations can be qualitatively understood by using an impulsive screening

model similar to one used by Huang [132]. Initially, the first electron in a rydberg

wavepacket has an energy −1
2n2

1
. The second electron has an energy just after excitation

of −2
n2

2
. As a function of radial distance, the potential energies of the two electrons are

−1
r

and −2
r

respectively. The first electron excited into a radial rydberg wavepacket

performs radial oscillations about the core in the absence of a second excited electron.

When the second electron is excited into a rydberg wavepacket with an orbital radius

greater than that of the first electron as we have done in our experiments, it moves

away from the core and beyond the the radial extent of the first wavepacket. As long

as the second electron wavepacket is smaller in radial extent than the first wavepacket,

it ‘sees’ a charge of +2 at the core whereas the first electron sees a charge of +1 on

the screened core. When the wavepackets cross, the second electron now becomes the

outer electron and the first electron becomes the inner electron. Now the first electron
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sees a charge of +2 while the second electron sees a charge of +1 on the screened core.

If the two electron orbits cross at a distance R from the core, the sudden redistribution

approximation suggests that the electrons interchange the effective potential energy

for each electron resulting in an exchange of energy equivalent to

∆E =

∣∣∣∣−2

R
− −1

R

∣∣∣∣ =
1

R
(5.4)

at the point of crossing.

If this gain in energy by the 2nd electron is sufficient to make it a free electron

(i.e. 1
R
> 2

n2
2
; R ≤ Rc; Rc =

n2
2

2
), the first electron stays bound in an ionic rydberg

state of the ion with a radial extent close to the point of crossing. For a given value

of n2, there is a maximum value of R where it can directly ionize by crossing through

the orbit of the first electron. With a sudden increase of the binding energy of the

first electron at the point of crossing, the first electron remains bound in a state with

a radial extent close to the point of crossing of the electrons. This explains the ionic

rydberg state distribution near low N at times near integer multiples of the Kepler

period when we expect the first electron to be close to the core. Sudden redistribution

causes autoionization only if the radial distance of crossing is smaller than the critical

value of R at which the second electron gains sufficient energy to escape from the

Z=1 binding potential.

On the other hand, if the energy gained by the 2nd electron does not enable it

to escape the atom, the two electrons continue to be bound until they can exchange

energy again at a later time. However, the evolution of the wavepackets after they

cross once without autoionizing is not a regular motion and so there is no fixed
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time delay at which the electrons in orbits of all orientations exchange energy. The

resultant ionic rydberg state distribution in such a case essentially exhibits no time-

dependent character.

In the case of n2 = 50(Z = 2), the critical radius Rc = 1250a.u. is smaller than

the radial extent of the first n1 = 33(Z = 1) wavepacket, r1max = 2178a.u.. In fact,

the first electron is present within Rc only for a short time for t . 0.6 ps and near

integral multiples of the kepler period, τK = 2πn3
1. We cannot resolve the effects over

this short interval since the lasers used to excite the wavepackets have a duration of

≥ 1 ps. This explains the lack of any strong time-dependent character in the case of

exciting double rydberg wavepackets with N1 ∼ 33, and N2 ∼ 50.

In the case of n2 = 70(Z = 2), the critical radius Rc = 2450a.u. is greater

than the radial extent of the first n1 = 33(Z = 1) wavepacket, r1max = 2178a.u..

This means that irrespective of the delay between exciting the two wavepackets, the

atom autoionizes at the first crossing of the wavepackets and the ionic rydberg state

distribution maps the redistribution of the N1 ∼ 33(Z = 1) wavepacket into the

N(Z = 2) states at the point of crossing of the wavepackets. In this case, we can see

a significant difference in the distribution of final ionic rydberg states as a function

of the delay between exciting the wavepackets.

To check the validity of sudden redistribution as the mechanism behind our ex-

perimental observations, we have performed a quantum impulse calculation of the

expected ionic rydberg state distribution if at different instants during the evolution

of the first rydberg wavepacket, the core changes instantaneously from Z = 1 to the
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Z = 2. The result of this calculation is shown in Fig 5.10 together with the result of a

classical simulation of the experiment that is discussed in the next section. Since the

interaction of the two electrons can produce angular momentum mixing through col-

lisions, the final ionic rydberg state distribution can have a range of possible angular

momentum states. The sudden redistribution calculation was performed for differ-

ent cases of initial and final angular momentum of the n1 = 33(Z = 1) wavepacket

and all of the calculations are qualitatively identical. The main difference between

the different cases is that for higher initial angular momentum, the lowest principal

quantum number of the ionic rydberg states that remain is spread over a lower range

of N but peaked at a lower N than for lower `. This is expected since for higher `,

the component of the wavepacket near the core decreases along with a decrease in

the radial extent of the wavepacket. The quantum impulse calculation that has been

plotted in Fig 5.10 corresponds to the case where we assume an equal contribution

from redistribution of states with 0 ≤ ` ≤ 30 in the N ∼ 33 rydberg wavepacket. The

results of the classical simulation presented in the next section are also shown along-

side the quantum calculation to show a remarkable similarity in the results obtained

by two different approaches to the problem.

If the first wavepacket has a principal quantum number centered at n1 with Z=1,

it has a maximum radial extent close to 2n2
1 (for n1 � `). Autoionization by sudden

redistribution can happen in this case at all delays of the second wavepacket if Rc

for the second electron is always greater than this radial extent. This condition is
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Figure 5.10: Sudden redistribution of an N ∼ 33 (Z=1) wavepacket into Z=2
In (a) and (c), the overlap of the ionic rydberg state wavefunctions (Z=2) with the
time-dependent wavefunction of an N1 ∼ 33 (Z=1) rydberg wavepacket is plotted as

a function of time and N. This is compared to the results (b) from a classical
simulation of the two-electron atom excited into a double rydberg wavepacket with

N1 ∼ 33 (Z=1) and N2 ∼ 70 (Z=2). In the quantum calculation, a uniform
distribution of ` is chosen from 0 ≤ ` ≤ 30 and added together to form the
distribution shown in (a) while in (c) ` = 2 is used for all states. Warmer
colors(Red,yellow) indicate greater overlap than cooler colors(green, blue).
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satisfied when

Rc ≥ 2n2
1 ⇒

n2
2

2
≥ 2n2

1 ⇒ n2 ≥ 2n1 (5.5)

Thus, if we excite the inner electron to a rydberg wavepacket centered at a state with

ionic principal quantum number more than twice the principal quantum number of

the first wavepacket in the neutral atom, the autoionization occurs at the instant

of the first interaction between the wavepackets at all delays between exciting the

wavepackets and the final state distribution can be qualitatively reproduced using a

quantum impulse model.

5.8 Classical simulations

The double rydberg wavepacket states studied in this experiment are in highly excited

energy levels close to the Ba++ limit. MQDT is valid only in a regime where one

of the electrons can be considered to be principally near the core in relation to the

other electron [27, 28]. In the case of the double rydberg wavepackets that we have

studied, this condition is no longer valid and we need to consider the effect of electron-

electron interaction far from the ionic core. Quantum mechanical calculations become

prohibitively difficult for doubly excited wavepackets as we need to include a very large

number of possible energy levels for the two electrons that are bound as well as the

energy levels in the continuum [134]. We have therefore decided to study the doubly

excited wavepackets by modelling the system classically.

The fact that both the electrons are excited into rydberg wavepackets allows us to
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view the system classically since radial rydberg wavepacket evolution can be modelled

as a classical particle (electron) in a central Coulomb force potential. We have used

a classical model with two spinless electrons in a central Coulomb potential that

are each given initial energies and momenta and allowed to evolve in the combined

potential of the central field from a doubly positively charged core and each other.

The calculation of the particle trajectories is performed for different initial states and

positions of the electrons as well as the delay between exciting the two electrons. The

initial energies for the two electrons are chosen according to a gaussian distribution

of energy with a bandwidth of 10 cm−1 around the central energy of the electrons

in the wavepackets excited in the experiment. We have used rectangular cartesian

coordinates to do all the calculations and the polarization of the lasers are taken

to be along the z-axis. The calculations are performed for different average delays

between the two wavepacket excitations. To simulate an experiment, in each set of

trajectories (about 3000), the actual delay is chosen as a gaussian distribution with

FWHM 0.5 ps around the central delay.

5.8.1 Choice of initial conditions

For the first electron, with an energy E1 centered around principal quantum number

N1, the effective principal quantum number for the simulation, n1, is calculated (in

atomic units) as

n1 =

√
−1

2E1

(5.6)
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The initial radial position of the first electron is chosen as the inner turning point of

a kepler orbit of an electron with principal quantum number n1 as

r1in = n2
1

[
1−

√
1− `1(`1 + 1)

n2
1

]
, (5.7)

and the initial velocity for the electron in an orbit with angular momentum `1 = 2 as

v1in =

√
`1(`1 + 1)

r1in
(5.8)

Without loss of generality, we choose the direction of the angular momentum

vector to be in the xz-plane and choose the initial orbits of the second electron in

relation to this direction. The angle of the angular momentum vector of the first

electron,~L1 with respect to the z-axis is chosen such that the projection of the angular

momentum on the z-axis (referred to as ‘m’) is distributed uniformly between its

maximum and minimum values.

~L1 · ẑ = m (5.9)

Once the direction of the angular momentum vector is chosen, the position of the first

electron is chosen randomly on a circle of radius r1in centered on the origin and in a

plane perpendicular to ~L1. The direction of the velocity vector is chosen as a tangent

to this circle at that point.

The motion of the first electron in the central coulomb field of a charge +1 is

calculated using adaptive Runge-Kutta techniques [135] for a time corresponding to

the delay between exciting the two wavepackets. The initial energy, E2 of the second

electron is chosen at this time to be in a gaussian distribution around the energy of
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an ionic rydberg wavepacket centered at principal quantum number N2. The effective

principal quantum number of this electron is calculated as

n2 =

√
−2

E2

(5.10)

The initial position and velocity of the second electron with principal quantum

number n2 and angular momentum `2 = 4 are calculated as

r2in =
n2

2

2

[
1−

√
1− `2(`2 + 1)

n2
2

]
, (5.11)

v2in =

√
`2(`2 + 1)

r2in
(5.12)

Since the projection of the total angular momentum along the common laser axis

is zero, the direction of the angular momentum of the second electron, ~L2, is chosen

to be along a direction vector such that

~L2 · ẑ = −m (5.13)

and the projection of ~L2 on the xy-plane makes an angle with the x-axis that is

randomly and uniformly distributed between zero and 2π. The position of the second

electron is chosen randomly on a circle of radius r2in centered at the origin and in a

plane perpendicular to ~L2. The direction of the velocity vector is chosen as a tangent

to this circle at that point.

5.8.2 Results

The motion of the two particles under the influence of the central field of the core

of charge +2 and of each other is calculated by adaptive Runge-Kutta integration
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techniques [135]. The calculations are performed until one of the electrons gains

sufficient energy to become a free particle (E > 0) leaving behind the other electron

in a bound state. The distribution of energies of the bound state electron is noted as a

function of the various initial conditions. Using the experimental calibration of signal

levels in each gate corresponding to different ionic rydberg states, the results of the

classical simulation are scaled to the expected relative signal levels in the same gates

that are presented in the experimental data in Fig 5.9. The results of the classical

simulation are presented in Fig 5.11.

We find that the results of our classical simulations are strikingly similar to our

experimental observations in Fig 5.9.

As in the experiment, for a choice of rydberg wavepackets such that the electrons

are excited into states with N1 ∼ 33 and N2 ∼ 70, the distribution of ionic rydberg

states is peaked at states with a low principal quantum number (lower energy) at

times when the delay between exciting the electrons corresponds to the Kepler period

of the first wavepacket. The state distribution also peaks at states with a higher

principal quantum number (higher energy) at relative excitation times near half-

integer multiples of the first wavepacket’s Kepler periods.

The simulations also predict the observed difference in the form of the distribution

of ionic rydberg states depending on the energy of the second electron for a fixed

choice of energy for the first wavepacket. We notice the almost total absence of any

time-dependent features in the ionic rydberg state distribution if the electrons are

excited into N1 ∼ 33 and N2 ∼ 50.
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Figure 5.11: Relative signal strengths per gate from classical simulation
The relative signal strengths per gate are shown as a function of delay between

exciting the two wavepackets in N2gN1d double rydberg wavepacket. In both the
cases, the first wavepacket is excited into a wavepacket at N1 ∼ 33. The second
wavepacket is excited to (a)N2 ∼ 70 and (b)N2 ∼ 50. The scales of the different

graphs are shown on the left.
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Figure 5.12: Relative signal strengths per gate from classical simulation(B)
This is identical to Fig 5.11 with the modification that the states with m < 2 are
assigned to gates with signal along 1/16n4 and states with m > 2 along 1/9n4 in

Fig 5.7to see if it agrees better with the experimental results. We do not notice any
significant difference between this figure and the previous one where there is no

distinction that is made between states with different m. The scales of the different
graphs are shown on the left.
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Figure 5.13: Final ionic state distribution
The distribution of final ionic states obtained from the classical simulations as a

function of the delay between exciting the two wavepackets when the first electron is
excited to an N1 = 33 wavepacket and the second electron is excited into
(a)N2 = 70, (b) N2 = 60, and (c) N2 = 50 rydberg wavepackets with laser

bandwidths of 10 cm−1 in all cases. Warmer colors (Red,yellow) indicate higher
probability while cooler colors (blue,green) indicate lower probability.
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So far, we have looked at the results of our calculations in a manner that matches

with the experimental data. However, there is much more information in the calcu-

lations than what is presented in Fig 5.11. A more detailed graph of the distribution

of ionic rydberg states as obtained from the calculations is shown in Fig 5.13. This

figure shows significant differences in the form of the final state distribution as a

function of the delay between the wavepackets for small changes in the energy of the

second wavepacket. The simulation with N1 ∼ 33, N2 ∼ 70 shows dramatic differ-

ences in state distribution with time whereas the simulation with N1 ∼ 33, N2 ∼ 50

shows hardly any variation in state distribution as a function of the delay between

the wavepackets. The case with N1 ∼ 33, N2 ∼ 60 represents an intermediate case.

We also note that the maximum N-state of the final ionic rydberg state decreases as

we decrease N2 while keeping N1 constant. This is due to energy conservation since

the total energy of the doubly excited atom is different in the three cases. To just

escape from the atom, the second electron needs less energy ( 2
N2

2
) at higher N2 and

therefore removes less energy from the bound electron, leaving it in a higher energy

bound state.

The classical simulations also indicate a spread in the angular momentum of the

the final ionic rydberg state. In the experiment, the calibration is performed with

ionic rydberg states having ` = 4, |m| ≤ 2. According to the classical simulation the

final rydberg states after the decay of the double wavepacket have N > ` ≥ |m| ≥ 0,

making the calibration less accurate for large values of `,m. It is therefore not possible

to uniquely identify the states present among the ions remaining after the decay of
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the double wavepacket. However, according to our simulations, over 70% of the final

N`+ ionic rydberg states have ` < 6 and the rydberg states we can measure have

N > 30, which allows us to use the calibration to get a reasonable estimate of the

state distributions. In our calibration of the ionic rydberg states in Ba+, we have

noticed two sets of peaks corresponding to the ionization of the rydberg states by

diabatic and adiabatic field ionization at fields of ∼ Z3

9n4 and ∼ Z3

16n4 . We expect

rydberg states with high m to ionize preferentially along the diabatic path similar

to hydrogen [25]. We have therefore scaled the state distribution obtained from the

simulations into the different gates depending on whether the states have m < 2 or

m ≥ 2. The observation of ionization along the diabatic path for direct excitation

of Ba+∗ rydberg states with m = 0, 1, 2 allows us to use m ≥ 2 as a possible cut-off

between diabatic and adiabatic field ionization. This m-dependent scaling does not

make any appreciable difference in the relative signal strength between the different

gates in Fig 5.12.

5.8.3 Two-electron dynamics from classical simulations

The classical simulations of the two-electron atom also provide a lot of information

that we do not measure in the experiment but can be used to gain further insight into

the dynamics of the two electrons before autoionization breaks up the atom into an

ion and a free electron. In our simulations, we calculate the path of the two electrons

from the moment of their excitation until one of the electrons escapes the binding

potential of the screened Z=1 core. The distribution of radial positions of the two
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electrons from the instant of excitation of the two electrons is presented in Figs 5.14

and 5.15 for the cases of exciting the first electron into N1 ∼ 33 and N2 ∼ 50, and

N2 ∼ 70 respectively.

We note in the distribution of radial positions of the second electron that it moves

far from the core just after excitation and in the case where N2 ∼ 70 ( Fig 5.15), it

continues to move away without returning to the core. This is just as we expected

from the semi-classical picture that the sudden impulse redistribution gives the second

electron enough energy to leave the atom as a free electron after the first interaction

between the electrons. In the case of N2 ∼ 50 (Fig 5.14), the second electron returns

to the core but it does so over a large range of times so that there is no coherence

left among the different paths chosen by the second electron. This contrasts with

the first electron which seems to retain its coherent motion for some time after the

first interaction between the electrons. The motion of the first electron depends on

the position of impact between the electrons at the first interaction. We also note

that in the case of N2 ∼ 50, the two electrons hang around the core for long times

and are released at a slow rate over a long time after the first interaction between the

electrons. These long lasting bound states appear in the Fig 5.14 as light green curves

that stay close to the origin (left margin for both particles) for a long time (vertical

axis in the downward direction). These slowly autoionizing states are discussed in

the next section.
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Figure 5.14: Radial positions of electrons in N1 ∼ 33, N2 ∼ 50 wavepacket
The three figures above show the distribution of positions of the two electrons as a

function of time for 50 ps after the excitation of the first electron. The second
electron is excited at times (a)2 ps, (b) 4 ps and (c) 6 ps in the three cases. Warmer

colors (Red→Green) represent higher probability of finding the particle at a
particular position while cooler colors (Blue→Green) represent low probability of
finding the particle at that position. The figures are split into two halves with the

left half representing the distribution of the first electron and the right half
representing the second electron’s position.
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Figure 5.15: Radial positions of electrons in N1 ∼ 33, N2 ∼ 70 wavepacket
The three figures above show the distribution of positions of the two electrons as a

function of time for 50 ps after the excitation of the first electron. The second
electron is excited at times (a)2 ps, (b) 4 ps and (c) 6 ps in the three cases. Warmer

colors (Red→Green) represent higher probability of finding the particle at a
particular position while cooler colors (Blue→Green) represent low probability of
finding the particle at that position. The figures are split into two halves with the

left half representing the distribution of the first electron and the right half
representing the second electron’s position.
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5.9 ‘Slow’ Autoionization

In the discussions of the previous sections, we have concentrated on the process of

autoionization that occurs via sudden redistribution. However, this is not always the

case when we excite a double rydberg wavepacket. In the case of the N1 ∼ 33, N2 ∼ 50

wavepacket, we see the absence of time-dependent variation in the distribution of fi-

nal ionic rydberg states both in experiment and in the classical simulations. From

our impulse model of the sudden redistribution, we can predict that the autoioniza-

tion process does not occur immediately after the first interaction but that it occurs

at a later time. We can term these delayed autoionization processes as ‘slow’ au-

toionization to differentiate it from the case where autoionization occurs at the first

interaction and will be referred to in this section as ‘fast’ autoionization.

We do not observe any strong dependence of the timing of slow autoionization on

the delay of the initial wavepackets. This can be understood from the observation

that when the initial interaction of the wavepackets does not cause autoionization,

the two bound electrons become highly correlated and their motion can no longer be

separated into the motion of individual wavepackets. In the classical simulations, this

manifests in the form of a position-dependent correlated motion of the two electrons

around the core. Unlike the case in fast autoionization where the two electrons in

almost all the different relative orientations move in the radial direction with similar

velocities and continue moving outwards after autoionization, the situation in slow

autoionization becomes a lot more complicated after the first interaction. After the

first interaction between the electrons far from the core, the motion of the electrons
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does not have any regular periodic features that characterize the collective motion of

the electrons in a wavepacket.

In spite of the absence of any time-dependent variations in the final ionic state dis-

tribution, the absence of significant variations depending on the initial configurations

of the particles is in itself an interesting concept. The classical simulations predict

that whenever slow autoionization occurs in the doubly excited system, irrespective

of the initial energies and positions of the two electrons, the distribution of final states

as a function of the principal quantum number, N, of the final states, varies as ∼ N3

for the most part. We can perform a semi-classical analysis of the autoionization

process to see if we can reproduce the result of classical simulations in an analytical

form.

In the classical simulations, the velocity of the two electron as they cross through

each others’ orbit is noted at the last crossing before one of the electrons is released

by autoionization. We notice that in almost all the cases that we have considered,

the velocity of one of the electrons is always significantly greater (order of magnitude

or more) than the velocity of the other electron. This suggests that for all practical

purposes, we can consider one of the electrons to be nearly stationary at some distance

from the core and the other electron to have gained sufficient energy to be moving

with high velocity through the orbit of the nearly stationary electron and be ionized

by sudden redistribution. We can therefore think of the final ionic state probability

distribution being decided by the probability of the electrons crossing at a certain

distance from the core.
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Let us consider a semi-classical model of the two-electron atom with the first

electron ‘e1’ excited into a wavepacket around principal quantum number n1 (Z=1)

and the inner electron subsequently excited into an ionic rydberg wavepacket around

n2 (Z=2). As we have seen earlier, the motion of the wavepackets before the first

interaction is well defined by a classical model and we can assign specific times to the

first interaction depending on the delay between exciting the two electrons. However,

after the first interaction the exact time of the next interaction is not well-defined

due to e-e scattering. Without loss of generality, we can refer to the outer electron

just before sudden redistribution as ‘e1’ and the inner electron that gains sufficient

energy through the sudden redistribution to become free as ‘e2’.

If at the first interaction, there is no autoionization, e2 and e1 exchange energy 1
R1

at the first crossing point, 1
R2

at the next crossing point and so on. This continues till

the exchange of energy at the kth crossing occurs at a radius of Rk that is smaller than

a critical radius corresponding to the effective principal quantum number n2(k) of e2

given as Rk <
n2

2(k)

2
. We will drop the subscript k for further analysis. The probability

of the two electrons crossing at some R can be expressed as the probability of e1 being

at R at some time. So the partial probability of e1 being within ∆R of R over the

duration of its orbit is

∆P =
∆t

τ
(5.14)

where ∆t is the time spent by e1 within ∆R and τ = 2πn3
1 is the orbital period of

the electron. Using ∆t = dt
dR

∆R, we can write

∆P

∆R
=

dt
dR

τ
(5.15)
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The numerator in this term can be written as

dt

dR
=

1
dR
dt

=
1

v1

(5.16)

where v1 is the radial velocity of e1 at R.

Since the electron is at the same R twice in each orbit, we can then write the

variation in probability of e1 being at R at the time of crossing as

dP

dR
=

1

2πn3
1

2

|v1|
=

1

πn3
1

1√
2
R
− 1

n2
1

(5.17)

If the bound electron in a rydberg state of the ion after autoionization has principal

quantum number N from sudden redistribution, we can write

− 2

N2
= − 1

2n2
1

− 1

R
(5.18)

⇒ R =

(
2

N2
− 1

2n2
1

)−1

(5.19)

The dependence between the final ionic rydberg state and the point of crossing of

the electrons can be expressed as

dR

dN
= −

(
2

N2
− 1

2n2
1

)−2 (
− 4

N3

)
= 4N

(
2− N2

2n2
1

)−2

=
N(

1− N2

4n2
1

)2 (5.20)

The probability distribution of the final ionic rydberg states can be expressed as

dP

dN
=
dP

dR

dR

dN
(5.21)
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Using Eqn 5.17, and Eqn 5.19, we can write

dP

dR
=

1

πn3
1

1√
2
(

2
N2 − 1

2n2
1

)
− 1

n2
1

=
1

2πn3
1

N√
1− N2

2n2
1

(5.22)

Substituting Eqs 5.20 and 5.22 in Eqn 5.21, we get

dP

dN
=

1

2πn3
1

N2(√
1− N2

2n2
1

) (
1− N2

4n2
1

)2 (5.23)

An electron in state n1 in a Z=1 potential is more tightly bound to the core when

the potential corresponds to Z=2 after sudden redistribution. We note that Eqn 5.23

has a denominator on the right hand side that becomes imaginary for N ≥
√

2n1. So

we can only have N <
√

2n1. This limit corresponds to the point where the outer

turning point of the ionic rydberg state equals the outer turning point of the initial

rydberg state, n1. The radial extent of the first wavepacket, therefore, places a limit

on the radial extent of possible final ionic rydberg states that are produced by sudden

redistribution.

The critical radius Rc =
n2

2

2
places a further restriction on the possible values of

R where ionization can occur.

R < Rc ⇒
1

2
N2 − 1

2n2
1

<
n2

2

2

⇒ N2 <
2

1
2n2

1
+ 2

n2
2

⇒ N <
2n1√
1 +

4n2
1

n2
2

(5.24)
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We then have a limit on the possible values of N as

N < Min(
√

2n1,
2n1√
1 +

4n2
1

n2
2

) (5.25)

We can make use of Eqn 5.23 and the limits on N given by 5.25 to calculate the form

of the probability distribution of the final ionic rydberg states.

When e2 crosses for the first time with e1 without autoionizing, the energy ex-

change occurs such that the new energies are

e1 : − 1

2n2
1

− 1

R1

e2 : − 2

n2
2

+
1

R1

At the next crossing, the energy of the two electrons are given by

e1 : − 1

2n2
1

− 1

R1

+
1

R2

e2 : − 2

n2
2

+
1

R1

− 1

R2

and at the kth crossing, the energies are given by

e1 : − 1

2n2
1

+
k∑
i=1

(−1)i
1

Ri

e2 : − 2

n2
2

−
k∑
i=1

(−1)i
1

Ri

At each crossing of the electrons, we expect the maximum probability of crossing

without autoionization to occur close to the outer turning point of the first wavepacket

that we excite except at the last crossing where one of the electrons can autoionize

within the critical radius. Assuming such a case, we expect the successive values of
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Figure 5.16: Final ionic state distribution from Slow Autoionization
The above figures show the distribution of final ionic rydberg states calculated from

the classical simulation as well as from the semi-classical arguments. The upper
graph, (a), shows the final state distribution starting from N1 ∼ 33, N2 ∼ 50 for a

range of delays between exciting the wavepackets that goes from 0.7 ps to 4.3 ps all
plotted on the same scale. This shows the almost identical distribution of final

states independent of relative wavepacket delay. The lower graph, (b), compares the
average form of the distribution shown in (a) as a thin curve over the thicker curve

obtained from the semi-classical calculation.
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Ri to be very close and almost cancel so that the distribution of states n1 and n2 for

e1 and e2 just before they cross is similar to the distribution of states in the original

double rydberg wavepacket. To test this assumption, we have performed a calculation

of the expected form of the probability distribution as

dP (N) =
∑
n1

∑
n2

g(n1)g(n2)
dP

dN
(n1, N)dN (5.26)

where g(n1) and g(n2) are the distribution of states around n1 and n2 respectively for

e1 and e2 in the initial double rydberg wavepacket. This is expanded and rewritten

as

dP (N) =
∑
n1

∑
n2

g(n1)g(n2)
1

2πn3
1

N2(√
1− N2

2n2
1

) (
1− N2

4n2
1

)2 (5.27)

The distribution of final states is normalized so that the total probability is unity

and this calculation has been compared with the distribution of states obtained from

the classical simulation in Fig 5.16. We notice a remarkable agreement between the

classical picture and the semiclassical calculation that assumes the distribution of

states among the interacting electrons to be the same over time. This is not an in-

tuitive result as one might expect the state distributions to vary significantly with

each interaction between the electrons. This seems to suggest, according to the clas-

sical simulation and its comparison with the semi-classical analysis, that the energy

distribution in each electron does not change significantly with successive collisions.

This could be due to the fact that non-autoionizing interactions far from the core are

most likely when both electrons are near their outer turning point and outside the

critical radius for fast autoionization (Rc =
n2

2

2
) and subsequent interactions without
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autoionization also occur close to the same radial position.

5.10 Correspondence of classical and quantum ap-

proaches

We have been able to use an impulsive redistribution model of the autoionization

process to explain the dependence on the delay between exciting the two electrons and

their energy on the ionic rydberg state distribution remaining after autoionization.

A quantum calculation of the overlap between the first wavepacket and possible final

states of the ion have shown a remarkable similarity to results obtained from classical

simulations of the double rydberg wavepackets. This leads us to wonder about the

cause of the similarity of results given the different nature of the two approaches to

the problem.

In the classical model, we perform a few thousand iterations of the three-body

problem to get a distribution of final states after autoionization. This is performed

for each relative delay between exciting the two electrons. In each iteration, the two

electrons can be in a large possible choice of relative orientation of orbits. In each

iteration, the final ionic rydberg state that results from the simulation is unique and

not a distribution of states.

On the other hand, the quantum mechanical model looks at the overlap between

the wavefunction of the first wavepacket and all possible ionic rydberg wavepackets

at different delays after the excitation of the first wavepacket. In a single set of
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calculations of the overlap integrals, this calculation predicts the distribution of final

ionic rydberg states as a function of the time at which the sudden redistribution

occurs.

Looking at the problem and trying to visualize it in an intuitive manner, we are

tempted to look at the wavefunctions in the quantum calculation and think that it

might be possible to model the wavefunctions classically as “breathing spheres” [132]

instead of as thousands of iterations with point particles. However, this is not strictly

the case as we cannot have any interaction between different parts of the same shell

which would be the situation in a truly classical model of a charged shell. Picturing

the wavepackets as shells of charge is a convenient way of visualizing the entire range

of possible orbits of the electrons without worrying about their specific paths in three

dimensions. We have to realize, however, that a wavefunction is the square root of

the probability of finding a particle at a given location at some time and has an

amplitude and a phase associated with it. To assign it a physical picture of a classical

distribution of particles is not a true representation of the system.

When we perform an experiment with rydberg atoms as described in this disser-

tation, the classical picture tells us that we are essentially looking at several million

instances of the excitation of atoms into different energy levels with each laser pulse.

In each atom, we excite one particular set of energy levels and not a range of energy

levels. However, in a different atom, the specific energy levels that are excited can

be different. The probability of exciting a particular energy level is decided by the

bandwidth of the laser used in the excitation.
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The quantum mechanical picture gives us a way to visualize all the possible exci-

tations in a collective manner that is not possible in a simple classical picture. Thus,

while the quantum mechanical picture allows us to use the spatial potential energy

distribution to determine the probability of finding a particle in the potential at dif-

ferent points in space, it does not fix the position of the particle in space. As soon

as we get into the classical world and fix the position and velocity of the particle

(electron), the probability distribution collapses to a single point and we no longer

have a range of possible positions of the particle.

The classical simulations give us a similar result as the quantum calculation only

after we perform a large number of simulations of the problem. A single instance of the

classical simulation of the two-electron excitation leads to a single final ion in a well-

defined energy level. The large number of possible situations that are considered in

the simulations allow the overall results pictured collectively to resemble the quantum

mechanical picture.

In situations where the potential energy of the system remains nearly invariant as

in a one-electron atom, a quantum mechanical analysis provides a convenient way of

determining the dynamics of the electron in the atom in a large number of possible

orbits. However, in a doubly excited atom where the potential experienced by each

of the two electrons varies considerably as a function of the position of the other

electron, a complete quantum mechanical calculation becomes extremely difficult as

the number of energy levels that need to be considered increases. In such a situation,

classical calculations can provide an easier path towards gaining a better insight into
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the dynamics of the problem.

5.11 Conclusions

In this experiment, we have been able to create controlled double rydberg wavepackets

in barium. This is to our knowledge, the first experimental realization of such doubly

excited coherent wavepackets where the interaction of the two electrons far from the

core has been studied in a time-dependent manner. We have observed that when

the two electronic wavepackets interact far outside the ionic core, the radial position

of the first interaction between the wavepackets is the most important parameter

that decides the final distribution of ionic rydberg states in the remaining ions after

autoionization. This is to our knowledge, the first experimental time-domain study

of double rydberg wavepackets where the inner Z=2 electron is excited into a state

with a radial extent greater than ∼ 1/4 of the radial extent of the Z=1 electron.

Classical simulations of the experiment that reproduce the experimental results

have been understood using semi-classical analysis and provide a better insight into

the dynamics of autoionization in two-electron atoms for an entire class of orbits

where the inner electron is launched into an orbit that passes through the orbit of

the outer electron.



Chapter 6

Controlled Post Collision

Interaction

6.1 Post-Collision Interaction

In atoms excited above their first ionization limit, Auger processes (similar to au-

toionization) can lead to one of the electrons being ejected as a free electron while the

other electron stays bound. As an example, if an electron in an inner shell of an atom

is photoionized near threshold, this electron moves away from the atom with some

small velocity. The remaining ion with an unfilled inner shell is not in its ground

state. If any two electrons in the outer shells of the ion exchange energy with each

other so that one electron fills the inner unfilled shell and the other electron is released

with high energy, the electron that is released from the ion can interact with the first

electron that had been released into the continuum at some distance from the core.

168
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Such an interaction is termed as “post-collision interaction” (PCI) and the effect is

seen as a broadening of transitions in x-ray studies of photoelectron excitation or in

electron-ion scattering experiments. PCI in Auger processes is essentially the interac-

tion of a slow electron released by inner-shell ionization with a fast electron released

by an Auger process from the remaining ion [136]. PCI need not be between the first

electron released from the inner shell and the following fast electron but could also

be between the fast-moving electron and another electron in the vicinity of the atom.

In our experiments with DRWs, we have excited the inner electron into wavepack-

ets that pass through and go beyond the first outer electronic wavepacket. We could

extend such studies to the case where the outer electron is excited into a continuum

wavepacket and then exciting the remaining bound electron into the continuum with

a higher energy to overtake it in a manner similar to PCI in Auger processes. Thus,

sequential excitation of continuum wavepackets can provide a method of studying

PCI in a controlled manner by choosing the initial energy of both the electrons as

well as the ability to distinguish between different final states of any recombined ions

that might be created in the process. This experiment is similar to studies of inner

electron ionization(IEI) from radial wavepackets [133] with the modification that the

radial wavepacket is excited into the continuum.

The process of autoionization that occurs by sudden redistribution of the potential

energies of the two electrons in the DRW can also be looked at in terms of the energy

change of the electron that stays bound. The electron that had been excited into

the first rydberg wavepacket and is the outer electron initially becomes more tightly
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bound to the doubly charged positive core when the second electron moves out to a

greater radial extent than the first electron. The increase in binding energy of the first

electron by an amount − 1
R

at the radius of interaction, R, means that it is possible

for the initial energy of the first electron to be greater than zero and yet the electron

can be bound after interaction with the second electron.

6.2 Experimental Realization of PCI

We test our proposition by tuning L2 (see Fig5.2) to excite the first electron into

a wavepacket just above the 5d+
5/2 ionization limit. We then tune L4 such that it

excites the second electron into a wavepacket above the Ba++ second ionization limit

starting from the 4f+
7/2 state in the barium ion. If the excitation of the two electrons

occur sufficiently well separated in time, we would expect the two electrons to become

free and we would be left with Ba++. However, if we excite the second electron soon

after the excitation of the first electron such that it overtakes the wavepacket of the

first electron at a distance close enough to the core to be able to recombine the first

electron, we can detect ionic rydberg states.

The experiment is performed in an identical manner to the experiment looking

at DRWs and the results are shown in Fig6.1(a). The graphs show the presence of

recombined ionic rydberg states when the two electrons are excited with very short

time delay between the excitations and an absence of ionic rydberg states at later

times. We also note that the distribution of final ionic rydberg states is peaked
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Figure 6.1: Continuum wavepacket recombination
The signals from ionization of of ionic rydberg states resulting from the

recombination of an electron when both electrons are excited into continuum
wavepackets with a relative time delay between them. The horizontal axis

represents the time delay between the excitation of the two wavepackets while the
vertical axis represents the strength of signal observed in different gates. The upper

graph (a), shows the case where the second electron is excited with a low energy
just above the Ba++ limit while the lower graph, (b), shows the case where the
second electron is excited by a two-photon process by L3 far above the Ba++

continuum. The dashed lines are shown to aid comparison of the position of the
peak signal in different gates.
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Figure 6.2: Gate distribution of signal from continuum wavepacket recombination
This shows the fractional distribution of signal from ionization of Ba+ rydberg
states resulting from the recombination of an electron when both electrons are

excited into continuum wavepackets with a relative time delay between them. (a)
corresponds to the case where all four lasers are used in the excitation. Case(b)
corresponds to the signals in the absence of L4 where L3 is believed to produce

multiphoton excitation into the continuum.
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Figure 6.3: Total signal strength in continuum wavepacket recombination
The two curves in the graph show the total signal from the recombination of an

electron after both electrons in Ba are sequentially excited into the continuum with
a delay between excitations shown on the horizontal axis. The bold curve

corresponds to the case where all four lasers are used in the excitation. The lighter
curve corresponds to the signal in the absence of L4 and has been multiplied by a

factor of ∼ 3 to be on the same scale. Both curves are normalized to 1 at the
maximum signal level.
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toward states with higher binding energy (or lower principal quantum number) at

times close to t=0 while the distribution peaks at states with lower binding energy

(or higher principal quantum number) at a later time before the signals disappear

completely. We had also noticed a time-dependent distribution of ionic rydberg states

in the absence of L4 and the fractional distribution of this background signal is shown

in Fig6.1(b). The dashed lines in the graphs in Fig6.1 from left to right are shown

to point to the peaks of the distribution in the highest and lowest gates respectively.

This data is also presented as the fractional distribution of the total signal in the gates

in Fig6.2. The total strength of this background signal is a factor of ∼ 3 smaller than

the peak of the signal in the presence of L4. This background could be due to direct

ionization of the electron in the Ba+ ion by L3 through multiphoton excitation into

the continuum above Ba++. The total signal in all the gates from ionization of the

ionic rydberg states is shown as a function of delay between lasers L2 and L3 in

Fig6.3.

We can understand the signal distribution in a manner similar to the autoion-

ization of the DRW by sudden redistribution. In this case, the first electron excited

into the 5d5/2ε` continuum moves radially outward from the core. When the second

electron is excited after some time delay into a wavepacket in the continuum above

the Ba++ limit, this electron moving radially out from the core can catch up with

and overtake the first electron at some radial distance R. In a manner identical to

what has been considered previously, the effective potential seen by the two electrons

is interchanged at the crossing point and the resulting exchange of energy results
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in the binding energy of the first electron increasing by − 1
R
. When this increase in

binding energy is greater than the total energy of the electron, the electron becomes

bound to the core as a rydberg state of the ion. The second electron which already

had enough energy to be a free electron gains an energy of 1
R

and leaves the ion as

a free electron. Since the recombination of the first electron can only occur at radial

distances R smaller than a critical value determined by the energy, (ε1), of the first

electron ( R < 1
ε1

), we can only see this effect if the second electron is excited soon

enough after the excitation of the first electron to catch up with it at distances smaller

than the critical value of R. At smaller time delays between exciting the wavepackets,

the two electrons cross closer to the core and leaves the first electron bound in orbits

that are closer to the core and with higher binding energies.

If our analysis of the background signal in the absence of L4 is correct, then

the recombination of the electron can be explained as being due to the excitation

of the second electron into the Ba++ continuum with much higher energy than the

excitation in the presence of L4. However, it does not explain why the signal from

this recombination is observed for a shorter duration than the signal in the presence

of L4. An intuitive picture of the recombination process suggests that if the second

electron has a higher energy, it should be able to overtake and recombine the first

electron at greater delays between the wavepacket excitations.

One possible explanation for the lack of such an observation could be that the

multiphoton excitation by L3 occurs preferentially in the presence of L2 and L3

(hence recombination signal is strong at smaller delays) rather than in the presence
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Figure 6.4: Continuum wavepacket recombination - classical simulation
The calculated form of the signals from ionization of of ionic rydberg states

resulting from the recombination of an electron when both electrons are excited into
continuum wavepackets with a relative time delay between them. The horizontal

axis represents the time delay between the excitation of the two wavepackets while
the vertical axis represents the strength of signal expected in different gates. The
upper graph (a), shows the case where the second electron is excited 5 cm−1 above
the Ba++ limit while the lower graph, (b), shows the case where the second electron

is excited 10700 cm−1 above the Ba++ continuum.
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Figure 6.5: Expected signal from continuum wavepacket recombination
The two curves in the graph show the calculated form of the total signal from

recombination of an electron after both electrons in Ba are sequentially excited into
the continuum with a delay between excitations shown on the horizontal axis. The

thick curve corresponds to the case where the second electron is excited 5 cm−1

above the Ba++ limit. The thin curve corresponds to the second electron excited
10700 cm−1 above the Ba++ limit. Both curves are normalized to 1 at the

maximum expected signal level.
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of L3 alone at later delays. This would explain the sharp peak in the recombined ion

signal that falls off rapidly when the delay between the pulses exceeds 2 ps. Since L2

and L3 are almost 1 ps long, this would explain the 2 ps width of the signal which

occurs mainly when both the laser pulses are present.

We have performed a classical simulation of the two electron excitation in a man-

ner identical to the simulation with bound electrons in the previous chapter. The

results of the classical simulation are presented as the expected form of the signal

levels in different gates in Fig.6.4. The comparison of the total measured signal from

recombination in the two cases where the second electron is excited just above the

Ba++ limit and far above the limit is shown in Fig6.5. This calculation shows the

result that we expected from a simple semi-classical argument. Here, the recombined

signal is expected to occur for longer delays when the second electron is excited with

higher energy. Although, the two cases are hardly distinguishable from the total

signal, the relative signal in the gates shows a difference in the two cases.

6.3 Conclusions

The ability to excite two electrons sequentially into continuum wavepackets allows us

to study PCI experimentally in a controlled manner by varying the excitation energy

of the two electrons. Although the excitation scheme does not represent a true Auger

process, it can still be used to study the energy dependence of electron recombination

through PCI in Auger processes.



Chapter 7

Conclusion and Future Prospects

We have demonstrated the ability to create independently controlled double ryd-

berg wavepackets by multiphoton excitation using pulsed lasers. This is an essential

ingredient for further studies of the dynamics of the two-electron atom in a con-

trolled manner. We have found that a semi-classical model of the two-electron atom

can be used to understand some of the major features observed in the decay of the

double rydberg wavepacket when autoionization occurs at the first collision between

the wavepackets. The experiments described here are the first time-dependent mea-

surement of any property of double rydberg wavepackets where the inner electron is

excited into bound rydberg wavepackets with a greater radial extent than the first

wavepacket. Previous time-dependent studies of double wavepackets have had the

inner electron excited to states with radial extents that are a fraction of the radial

extent of the first wavepacket [63, 78].

The classical simulations together with the experimental data allows us to explain

179
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the process of autoionization on the basis of a sudden redistribution model for a class

of double excitations where we can know that the electron-electron interaction occurs

within a certain critical radius around the core. However, in our experiments, we have

studied just one of the features that are predicted from the classical simulations. We

can therefore perform a few other experiments that can be used to check the veracity

of our classical model and check some of the other predictions made by the model.

In our classical simulations, we have observed some time-dependent behavior in

the resultant rydberg ion (see Fig5.14 and Fig5.15). This opens up the possibility of

using experiments to look for such dynamics in the ion in a time-dependent manner.

One possible way to do this might be to use half-cycle pulses (HCP) in a manner

similar to the study of rydberg wavepacket dynamics in neutral atoms [123, 137]. It

might also be possible to use half-cycle pulses to recombine the electron released from

the decay of the double rydberg wavepacket in a manner similar to recombination

studies of electrons released into the continuum states from a neutral atom [138].

The experiments described here could be improved upon by devising a better

method of detecting the ionic rydberg states. One of the possibilities that had been

considered during the experiments was to use microwave pulses to ionize the ionic

rydberg states. This would avoid the problem of the ions moving in the electric

field ramp and limiting our resolution in identifying the rydberg states. It might

be possible to use a ramped microwave field to ionize the ionic rydberg states in a

time-dependent manner [139,140].

Previous theoretical work using classical [80, 141] and quantum mechanics [142]
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have predicted the possibility of creating electron wavepacket that are well-localized in

three-dimensional space using half-cycle pulses and electron-ion recombination tech-

niques. A creation of such a wavepacket in place of the first wavepacket that we have

produced would allow for the study of the angular dependence of the initial positions

of the two electrons on the decay channel of the double rydberg wavepackets.



Appendix A

Notes on creating DRWs

A.1 Another calibration method for N1

In chapter 5, we have already seen that we can use the time-dependent decay of the

5d5/2N1d wavepackets to determine the energy and bandwidth of the first wavepacket.

The decay of the 5d5/2N1d wavepackets changes the total population of the initial

state accessible for creating double rydberg wavepackets. The total signal obtained

by detection of the ionic rydberg states is therefore expected to be proportional to

the population of initial states available for the excitation.

We notice a decrease in total signal from the ionization of ionic rydberg states

at delays near the kepler period of the first wavepacket. Ideally, if we detect all the

ionic rydberg states remaining after the decay of the double wavepacket, the total

signal should be directly proportional to the survival probability of the 5d5/2N1d

autoionizing wavepacket as a function of the delay between L2 and L3. However, the

182
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Figure A.1: Population dependence of final ionic rydberg states on wavepacket delay
The total signal from ionization of the ionic rydberg states that remain after

autoionization of the N2gN1d double rydberg wavepacket is compared with the
survival probability of the 5d5/2N1d autoionizing wavepacket (the first wavepacket).
A K-matrix calculation of the survival probability of the first wavepacket is overlaid
as a solid curve. We notice that we can use the dip in the total ionization signal to
get a good estimate of the kepler period of the first wavepacket and hence its central

energy without a need to separately measure the survival probability of the first
wavepacket.
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fraction of ionic rydberg signals that are detected by field ionization corresponds to

states with principal quantum numbers, N & 30. The total signal level from field

ionization of the N`+ states relative to the signal level that corresponds to 5dN1d

wavepacket survival probability shows dips when the final ionic rydberg states have

lower principal quantum numbers than what can be measured by the field ionization.

Figure A.2: Population in ionic rydberg states as a measure of N1

The total signal from ionization of the ionic rydberg states that remain after
autoionization of the N2gN1d double rydberg wavepacket is compared with the

calculated survival probability of the 5d5/2N1d autoionizing wavepacket at N1 ∼ 29.
The position of the dip in the total signal is used as a measure of the kepler period
of the first wavepacket. This shows the case of exciting a different first wavepacket

than that shown in the data in chapter 5.
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The total signal from the ionization of ionic rydberg states that we can detect is

shown along with the survival probability of the 5d5/2N1d wavepacket as a function

of delay between exciting the two wavepackets in Fig.A.1. At times close to the

Kepler period of the first electron, the fraction of final ionic rydberg states in lower

N is greater than at other times and this appears as a lower signal level in the total

ionization signal. The position of this dip in relation to the delay between L2 and L3

can be used as a good estimate of the kepler period of the first wavepacket. FigA.2

shows the total ionization signal when the first wavepacket is changed to N1 ∼ 29.

A.2 Effects of Laser Polarization

In the experiments with barium, the detector is always in the same direction in rela-

tion to the interaction region. We only detect electrons that are ejected in the vertical

direction from the interaction region. However, the atoms do not distinguish between

vertical and horizontal as seen by the outside observer but their orientation is fixed by

their relation to the polarization direction of the laser beams interacting with them.

When the lasers are polarized vertically, the signals from electrons seen at the detec-

tor arise due to emission of electrons along the direction of laser polarization. On the

other hand, if the lasers are polarized horizontally, the electrons ejected perpendicular

to the direction of laser polarization are the ones that are predominantly present at

the detector. We can thus change the polarization direction of the laser to look for

angular dependence of the emission of electrons [77].
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In the experiment creating double rydberg wavepackets, all the lasers are polarized

parallel to each other. We have performed this experiment with all the lasers polarized

vertically as well as with all the lasers polarized horizontally to see if we there is any

angular dependence of the signals that we measure [77]. We found that as expected,

the signals from the ionization of the final ionic rydberg states does not change when

all the polarizations are rotated equally, i.e. the distribution of ionic rydberg states

is the same whether all the lasers are polarized vertically or horizontally. This is

because all the ions are sent into the second interaction region before field ionization

irrespective of their orientation. However, it was found that the fast-electron signal

showed a difference in the time-dependent signal strength depending on whether all

the lasers were polarized horizontally or vertically.

We monitor the fast-electron signals arising from the decay of the 4fN1d states

to determine the survival probability of the 5d5/2N1d autoionizing wavepackets. The

scaled autoionization rate (fraction of autoionizing wavepacket that decays at the end

of each kepler period) of the 5d5/2N1d wavepackets was measured to be lower in the

case where all the lasers are polarized horizontally compared to when the lasers are

vertically polarized. Since we monitor the decay of the 4fN1d states, the signals that

we observe can be interpreted as the survival probability of the 5dN1d wavepacket only

if there is no angular variation in the signal level. The calculated scaled autoionization

rate is found to match better with the experiment for the case where the lasers are

vertically polarized rather than with the lasers polarized horizontally. van Leeuwen

et. al [77] have observed experimentally and in MQDT simulations in calcium that
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Figure A.3: Fast electron signal when lasers are polarized horizontally
The fast electron signal in the case where all the lasers are polarized horizontally
shows a stair step decay but this does not match the form of the stair-step decay

predicted by the K-matrix calculations in chapter 5. The smooth curve is the
calculation of the survival probability of the 5d5/2N1d wavepacket with N1 ∼ 37 and

a bandwidth of 10cm−1 for the wavepacket excitation.
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autoionization produces electrons that are ejected preferentially along the direction

of laser polarization. They [77] have also calculated that ejection of electrons perpen-

dicular to the laser polarization axis is a slow process and occurs over a longer time

period than ejection along the laser polarization axis. It could have been such an ef-

fect that we see in this experiment except for the fact that we do not excite two bound

channels which can interact and create an angular wavepacket. We are currently un-

able to account for the difference in the form of the fast electron signal ejected in the

mutually perpendicular directions in the absence of a radial wavepacket. We have

therefore used the data for the decay of the autoionizing 5d5/2N1d wavepackets from

the case where all the lasers are vertically polarized since these are best reproduced

by the K-matrix MQDT calculations.

The experiments with the double rydberg wavepackets were initially performed

with all the lasers polarized horizontally. It was to understand the reasons for the

difference in decay rates of the 5d5/2N1d autoionizing wavepackets from the MQDT

calculation with K-matrices that we repeated the experiment with vertical polariza-

tion of the lasers without changing their central wavelengths or bandwidths. We had

better signal-to-noise ratios for the signal from ionization of the ionic rydberg states

when the lasers are all polarized horizontally. This could have been due to the fact

that the design of the paths used to send the lasers into the interaction region had

been initially optimized with horizontally polarized pulses but had to be modified

without much optimization of the signals when we checked for the effect of having

the lasers vertically polarized. Due to the observation that the only change between
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vertical and horizontal polarization as far as the signal from ionization of ionic ryd-

berg states is concerned is a difference in the S/N ratio, the data from ionization of

the final ionic rydberg states that is presented in chapter 5 is from the cases where

all the lasers are horizontally polarized.



Appendix B

One-electron Atoms

B.1 The Hydrogenic Atom

Consider an isolated hydrogenic atom( an atom with only one electron like H, He+,

Li++ etc). The non-relativistic, time-independent Schrödinger equation for a spinless

electron in a central Coulomb potential with the infinite nuclear mass approximation

for a hydrogenic atom is (in atomic units)

−(
1

2
∇2 +

Z

r
)ψ = Eψ (B.1)

where E is the energy of the electron and Z is the charge on the nucleus.

In spherical coordinates, the Laplacian is
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This allows us to rewrite the Schrödinger equation as
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We could write the wavefunction ψ(r, θ, φ) as a product of three wavefunctions by

separation of variables. Let

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (B.3)

Then we have

∂ψ
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Substituting these in Eq.B.2 and multiplying by r2 sin2 θ
RΘΦ

and rearranging the terms,

we get
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We see that the left side of the equation is a function of r and θ only while the

right hand side of the equation is a function of φ alone. This is possible only if both

sides are equal to a constant, say −m2 for convenience. This reduces Eq.B.4 to a set

of two equations

1
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= −m2 (B.5)

and
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We can rewrite Eq.B.6 as
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(B.7)

In Eq.B.7, the left side is a function of r alone while the right side is a function

of θ alone. So we once again equate both sides to a constant that we can choose as
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l(l + 1). We can then write the problem of solving the Schrödinger equation for the

hydrogenic atom in the form of three ordinary differential equations as

d2Φ

dφ2
+m2Φ = 0 (B.8)
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The solution to Eq.B.8 has the form

Φm(φ) = Aeimφ (B.11)

where A is a normalization constant. To get a unique solution, we require that

Φm(0) = Φm(2π)

, i.e. e0 = eim2π. We can also write this as

1 = cos(2mπ) + i sin(2mπ)

This gives us the quantization condition for m, the magnetic quantum number as

m = 0,±1,±2,±3, . . . .

The orthogonality condition∫ 2π

0

Φ∗
m′Φmdφ = δm′m
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together with normalizing the orthogonal set to unity gives the normalization factor

A = 1√
2π

. We then have the solution to Eq.B.8 as

Φm(φ) =
1√
2π
eimφ m = 0,±1,±2,±3, . . . (B.12)

The solution to Eq.B.9 as a function of l,m is given by [143]

Θlm(θ) = B sinm θ · Pm
l (cos θ) (B.13)

where B is the normalization constant and Pm
l (cos θ) are the associated Legendre

polynomials which are defined as

Pm
l (cos θ) = (−1)l

sin|m| θ

2ll!

dl+|m|

(d cos θ)l+|m|
sin2l θ

These polynomials vanish unless |m| ≤ l and l is a positive integer. l is called the

orbital angular momentum quantum number. The orthogonality condition for the as-

sociated Legendre polynomials leads to the normalization constant B =
√

(2l+1)·(l−m)!
2(l+m)!

.

We can then write the solution to Eq.B.9 as

Θlm(θ) =

√
(2l + 1) · (l −m)!

2(l +m)!
sinm θ · Pm

l (cos θ) (B.14)

l = 0, 1, 2, 3, . . . m = 0,±1,±2, . . . ,±l

The products of the two solutions Θlm(θ) and Φm(φ) are termed as spherical

harmonics and represented as

Y m
l (θ, φ) =

√
(2l + 1) · (l −m)!

4π(l +m)!
sinm θeimφPm

l (cos θ) (B.15)
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To solve the radial part of the wave equation in Eq.B.10, it is convenient to use

new variables defined as χ = rR. The resulting wave equation after making the

substitutions in Eq.B.10 is [13]

1

χ

d2χ

dr2
+ 2

(
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r
− l(l + 1)

2r2

)
= 0 (B.16)

The radial wavefunction for bound states should be valid and vanishing for r →∞

and r → 0. As r → 0,

1

χ

d2χ

dr2
− l(l + 1)

r2
= 0 =⇒ χ = Arl+1 +Br−l (B.17)

The condition that R(r) has to be finite as r → 0 limits the solution to χ ∝ rl+1.

As r →∞, Eq. B.16 reduces to

1

χ

d2χ

dr2
+ 2E = 0 =⇒ χ ∝ e±i

√
2Er (B.18)

The case of E > 0 corresponds to the states in the continuum. In this case,

there are no boundary conditions at r →∞ and so the radial wavefunctions are the

same as that of a free particle with energy E and the boundary condition at r → 0

determining the phase of the wavefunction.

=⇒ χ(E>0) = α sin(
√

2Er) + β cos(
√

2Er) (B.19)

For the case of E < 0, the boundary conditions lead to the final solution for radial

wavefunctions and is given by [13]

Rnl = Nnl
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)
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where Nnl is the normalization constant and L2l+1
n+l

(
2Zr
n

)
are associated Laguerre poly-

nomials [143]. These polynomials vanish unless n = 1, 2, 3, . . . ,∞. n is called the

principal quantum number. For a given n, l = 0, 1, 2, . . . , (n− 1).

After normalization and resubstitution of variables, the solution to the radial wave

equation is given by

Rnl =

√
4(n− l − 1)!Z3

[(n+ l)!]3n4

(
2Zr
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)l

· e−Zr/n · L2l+1
n+l
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(B.21)

n = 1, 2, 3, . . . ,∞ l = 0, 1, 2, . . . , (n− 1)

We can now write the total wavefunction solutions for a hydrogenic atom as

ψnlm = RnlΘlmΦm (B.22)

where the individual wavefunction solutions are given by Eq.B.12, Eq.B.14 and Eq.B.21.

n, l and m are the principal, orbital and magnetic quantum numbers respectively for

the eigenstates.

The probability for finding the electron at any position relative to the nucleus

(which is taken to be the origin) is then given by

ψ∗nlmψnlm = R∗nlRnl ·Θ∗
lmΘlm · Φ∗

mΦm (B.23)

which is also called the probability density.

The energies of the eigenstates are given by

En = − Z
2

2n2
(B.24)

n = 1, 2, 3, . . .
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B.2 Non-hydrogenic Atoms

In any atom other than hydrogen, the presence of more than one electron modifies the

Coulomb potential experienced by a rydberg electron. The effective potential seen by

the rydberg electron is a Coulomb potential far from the core outside a critical core

radius rc but is modified close to the core for r < rc. The presence of the additional

electrons does not introduce any additional orientation dependence on the rydberg

electrons so that the angular wavefunctions are the same for a non-hydrogenic atom

as for a hydrogenic atom. We will therefore only consider the changes to the radial

wavefunction in the case of a non-hydrogenic atom for r > rc.

The radial part of the Schrödinger equation for the hydrogen atom as we have

seen is

1

χ

d2χ

dr2
+ 2

(
E +

1

r
− l(l + 1)

2r2

)
= 0 (B.25)

which has two linearly independent normalized solutions f(ν, l, r) and g(ν, l, r) [27,

25, 126] with E = −1/2ν2 for all energies. The asymptotic forms of the f and g

functions are such that

f(ν, l, r)−→
r→0

rl+1 ; g(ν, l, r)−→
r→0

r−l (B.26)

For r →∞, the asymptotic forms depend on the sign of E. For E ≥ 0,

f(ν, l, r) ≡ f(iγ, l, r) −→
r→∞

√
2γ

π
· sin

[
r/γ − 1

2
πl + γ ln(2r/γ) + σ(l,γ)

]
g(ν, l, r) ≡ g(iγ, l, r) −→

r→∞
−

√
2γ

π
· cos

[
r/γ − 1

2
πl + γ ln(2r/γ) + σ(l,γ)

]
where σ(l,γ) ≡ argΓ(l + 1− iγ) (B.27)
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and for E < 0,

f(ν, l, r) −→
r→∞

u(ν, r) sinπν − v(ν, r)eiπν

g(ν, l, r) −→
r→∞
−u(ν, r) cos πν + v(ν, r)eiπ(ν+ 1

2
) (B.28)

where

u(ν, r) ≡ (−1)l
√
ν

(
1

π

) ( ν

2r

)ν
er/ν

√
Γ(ν − l)Γ(ν + l + 1)

v(ν, r) ≡ (−1)l
√
ν

(
2r

ν

)ν

e−r/ν
(√

Γ(ν − l)Γ(ν + l + 1)
)−1

(B.29)

The most general form of a solution for Eq. B.25 is

χ(ν, l, r) = f(ν, l, r) cos πδl − g(ν, l, r) sinπδl (B.30)

where δl is determined by the boundary conditions at r = rc so that the wavefunction

is smooth at r = rc. g is not allowed as r → 0 which necessitates δl to be an integer

for hydrogenic atoms. The solution χ(ν, l, r) = f(ν, l, r) for hydrogenic atoms is the

same result obtained in the previous section. For bound states, the condition that

the wavefunction must vanish as r →∞ requires the coefficient of u to vanish.

sin(πν) = 0 =⇒ ν = n ≡ integer as in previous section (B.31)

For non-hydrogenic atoms, the condition at r → 0 does not exist so that Eq. B.30

represents the wavefunction. However, the condition at r → ∞ still holds, requiring

the coefficient of u to be zero.

∴ sin πν cos πδl + cosπν sin πδl = 0

=⇒ sin π(ν + δl) = 0 =⇒ ν + δl = n ≡ integer (B.32)
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The energies of the non-hydrogenic atoms are defined as

E =
−1

2ν2
=

−1

2(n− δl)2
(B.33)

where n = 1, 2, 3, . . .

and δl is now defined as the “quantum defect”. Experimentally observed spectra are

used to find the energy levels of the different elements and the best fit to an analytical

expression is used to determine the quantum defect for different states.

We can also write

cos(πδl) = cos(π(n− ν)) = ± cos(πν)

sin(πδl) = sin(π(n− ν)) = ∓ sin(πν) (B.34)

The radial wavefunction for the non-hydrogenic atoms can then be rewritten as

Rνl ∝
1

r
[f(ν, l, r) cos(πν) + g(ν, l, r)sin(πν)] (B.35)



Appendix C

Two-Electron Atoms

C.1 Independent particle model

Figure C.1: Two-electron system
The coordinates of the two electrons are relative to the core as the origin.
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Consider a two-electron atomic system. The spinless Hamiltonian is

H = [
1

2
p2

1 −
2

r1
] + [

1

2
p2

2 −
2

r2
] +

1

|~r1 − ~r2|
(C.1)

The partial wave expansion of the scalar interaction potential can be written

as [144]

1

|~r1 − ~r2|
=

1

|~r12|
=

∞∑
k=0

rk<
rk+1
>

Pk(cos γ) (C.2)

where γ is the angel between the position vectors of the two electrons as shown in

FigC.1.

This can be rewritten using the addition theorem for spherical harmonics as [144]

1

|~r12|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗
lm(θ1, φ1)Ylm(θ2, φ2) (C.3)

Using spherical tensor operators Ck
q which are defined as [143]

←→
C k

q =

√
4π

2k + 1
Y k
q (θ, φ), (C.4)

we can write the scalar interaction potential as

1

|~r12|
=

∞∑
k=0

rk<
rk+1
>

←→
C

(k)
1 ·
←→
C

(k)
2 (C.5)

We will only consider the case where one electron (say “1” )is in a rydberg state

while the other electron (“2”) is in a low excited state so that r> = r2 and r< = r1 for

all but a negligible fraction of their respective wavefunctions. We can then expand

EqC.5 as

1

r12

=
1

r2︸︷︷︸
monopole

+
r1
r2
2

←→
C

(1)
1 ·
←→
C

(1)
2︸ ︷︷ ︸

dipole

+
r2
1

r3
2

←→
C

(2)
1 ·
←→
C

(2)
2︸ ︷︷ ︸

quadrupole

+ . . . (C.6)
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If we retain only the monopole term, the Hamiltonian reduces to

H =

[
1

2
p2

1 −
2

r1

]
+

[
1

2
p2

2 −
1

r2

]
(C.7)

This represents an independent particle system where particle 1 sees a charge of

+2 while particle 2 sees a charge of +1. The total wavefunction is the product of the

two wavefunctions and the energy is the sum of the energies of the two particles.

We can now include the effect of higher order terms in the electron-electron in-

teraction as a perturbation to the independent particle model. If we denote the state

of the doubly excited system as |ψij >= |φi > ·|ξj > where |φ > and |ξ > are

complete basis sets of the independent particle wavefunctions for particles 1 and 2

respectively, then the wavefunctions and energies of the system with the inclusion of

the electron-electron correlation as a perturbation can be represented as

|ψ〉 = |ψij〉+
∑

k 6=i,l 6=j

〈φk · ξl|Vdipole + Vquadrupole + . . . |φi · ξj〉
Eφiξj − Eφkξl

(C.8)

and

Eψ = Eφi
+ Eξj +

∑
k 6=i,l 6=j

|〈φk · ξl|Vdipole + Vquadrupole + . . . |φi · ξj〉|2

Eφiξj − Eφkξl

(C.9)

These expressions represent a lot of terms to be added to get the energy of any

state. To overcome this problem, we make use of the assumption that the energy

states of the ion as experienced by the inner electron are separated to a much greater

extent than the energy states of the rydberg electron. This is a valid assumption

for this problem since energy separation between successive states varies with the

principal quantum number as Z2/n3. This allows us to calculate the interaction
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for an entire configuration corresponding to a set of quantum numbers for the two

electrons over a range of energies of the outer electron. These configurations are also

termed as “channels”.

C.2 Multichannel Quantum Defect Theory (MQDT)

We define channels as a series of states corresponding to a certain configuration of

quantum numbers for two electrons over a range of energies of the outer electron.

The presence of the inner electron in an excited state is assumed to have an effect of

introducing a phase shift to the wavefunction of the rydberg electron and the phase

shift is termed as a quantum defect in the same way as in the case of one-electron

non-hydrogenic atoms discussed in Appendix A.

The wavefunction of the rydberg electron in any channel i can be written as

φi ∝
1

r
[f(Ei, li, r) cos(πνi) + g(Ei, li, r) sin(πνi)] ζi (C.10)

where ζi contains all the angular and spin parts of the wavefunction along with the

radial wavefunction for the inner electron. Ei is the energy with respect to the

ionization limit in the ith channel and νi is determined by the boundary conditions.

The non-hydrogenic atoms have no boundary conditions at r → 0 and for Ei ≥ 0,

there are no boundary conditions at r →∞. So νi is undetermined for energies in the

continuum. For bound states, the boundary condition at r →∞ requires Ei = −1
ν2

i
.

At distances close to the core and r < rc, the phase of the wavefunction is inde-

pendent of Ei [25]. At distances close to the core, the independent particle model
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eigenstates are no longer a valid basis set. We can therefore write the wavefunctions

near the core as

ψα ∝
1

r

∑
i

ζiUiα [f(νi, li, r) cos(πµα)− g(νi, li, r) sin(πµα)] (C.11)

where ψα is assumed to be energy normalized,

Uiα is an energy independent unitary rotation matrix,

and µα is an energy independent phase shift.

ψalpha and φi form the two complete basis sets of the wavefunction, which can be

expressed as a linear combination in either basis set. Let the total wavefunction be

represented by

Ψ =
∑
i

Aiφi =
∑
α

Bαψα (C.12)

Since ζifi and ζigi are linearly independent, we can equate Eq. C.10 and Eq. C.11

at any value of r so that

∑
i

Ai [fiζi cos(πνi) + giζi sin(πνi)] =
∑
α

∑
i

BαUiα [fiζi cos(πµα)− giζi sin(πµα)]

(C.13)

=⇒ Ai(cos(πνi) =
∑
α

BαUiα cos(πµα) (C.14a)

Ai sin(πνi) = −
∑
α

BαUiα sin(πµα) (C.14b)
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We can multiply Eqs.C.14a and C.14b by sin πνi and cosπνi respectively and

adding and subtracting them with each other leads to

Ai =
∑
α

UiαBα cos π(νi + µα) (C.15a)

0 =
∑
α

UiαBα sin π(νi + µα) (C.15b)

We can also use the fact that Uiα is unitary,i.e. UT = U−1 to multiply both sides

of Eqs.C.14a and C.14b by Uiα and sum over i to get

∑
i

UiαAi(cos(πνi) = Bα cos(πµα) (C.16a)

∑
i

UiαAi sin(πνi) = −Bα sin(πµα) (C.16b)

We can multiply Eqs.C.16a and C.16b by cos πµα and − sin πµα respectively and

adding and subtracting them with each other leads to

Bα =
∑
i

UiαAi cos π(νi + µα) (C.17a)

0 =
∑
i

UiαAi sin π(νi + µα) (C.17b)

Eqs.C.15a and C.17a have a non-trivial solution iff

det |Uiα sin π(νi + µα)| = 0 (C.18)

For a system with N channels, Eqn. C.18 defines the (N−1)-dimensional quantum

defect surface. Plots of the quantum defect surface are termed Lu-Fano plots [126,25].
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C.3 R-matrix formulation

Eq.C.18 represents a set of N simultaneous equations. There are N2 elements in Uiα

and N elements of µα. However, the unitary matrix U has N(N − 1)/2 independent

elements so that the solution to Eq. C.18 is not unique. For a system with one electron

in a rydberg state, the rydberg electron spends most of its time far from the core so

that most of the properties of the system can be understood by knowing the values

Ai to determine the wavefunction of the rydberg electron far from the core.

We can rewrite Eq. C.17b as

0 =
∑
i

UiαAi sin π(νi + µα)

=
∑
i

UiαAi [sin πνi cos πµα + cosπνi sinµα]

= cos πµα

{∑
i

UiαAi [sin πνi + cosπνi tanµα]

}
=⇒ 0 =

∑
i

Uiα [tan πνi + tanµα] cos πνiAi︸ ︷︷ ︸
ai

=⇒ 0 =
[
UT tan πν + tan πµUT

]
a (C.19)

Multiplying both sides by U , we get

0 = [tanπν + Utan πµUT︸ ︷︷ ︸
R

]a (C.20)

=⇒ 0 = [tanπν +R]a (C.21)

Since tan πν is diagonal and R is symmetric, the problem is reduced to finding

N(N + 1)/2 elements. This is a factor of 2 reduction in the number of elements to
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be determined compared to Eq. C.18. This can be further transformed to separate

the diagonal and off-diagonal matrix elements by defining R′ which has no diagonal

elements, ν ′i = νi + δi and a′i = Ai cos πν ′i so that

[tan πν ′ +R′]a′ = 0 (C.22)

where

R′ = [cos πδ +Rsin πδ]−1 · [Rcos πδ − sin πδ] (C.23)

Since R′ is off-diagonal, all solutions occur for tan πνi = 0, i.e. for integer values

of ν ′. The solutions represent a set of non-interacting rydberg series with a constant

quantum defect δi for each series. Eqs.C.21 and C.22 are equivalent to Eq.C.18. The

quantum defect surface can be evaluated as

det |tan πν +R| = 0 (C.24)

or

det |tan πν ′ +R′| = 0 (C.25)

If we have nb bound and nc continuum channels then we can rewrite Eq. C.22 in

blocks as  [R′ + tan πν ′]bb R′bc

R′cb [R′ + tan πν ′]cc


 a′b

a′c

 = 0 (C.26)

where b and c correspond to the bound and continuum channels. Expanding Eq.C.26,

we get

[R′ + tan πν ′]bb a
′
b +R′bca

′
c = 0 (C.27)

and R′cba
′
b + [R′ + tan πν ′]cc a

′
c = 0 (C.28)
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which can be solved to get

a′b = − [R′ + tan πν ′]
−1
bb R

′
bca

′
c (C.29)

=⇒
{
R′cb [R

′ + tan πν ′]
−1
bb R

′
bc −R′cc

}
a′c = tanπν ′cca

′
c (C.30)

Since tan πνcc has no relation to the energy of the system, we can choose νcc to

be any value to solve the equation. The matrix elements of tan πνcc act as the nc

eigenvalues of this problem [126, 109]. We use
∑nc

i

∣∣∣ a′i
cosπν′i

∣∣∣2 = 1 to normalize a′c and

use a′c to calculate a′b and eventually Ai for all the channels.

We can thus use these MQDT R′-matrices (or R-matrices) to calculate the spectral

amplitude from any channel in a two-electron system to compute the wavefunction

of the system.



Appendix D

Imaging Stark Spectra

This appendix contains the publication of the experiment to study the stark spectrum

of sodium and use it to calculate scaled energy spectra in which the recurrences are

interpreted as corresponding to different kinds of orbits of electrons in an atom in the

presence of an electric field.
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