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Abstract

Novel electronic wavepackets have been created and probed through multistep laser

excitations and electric field pulse interactions. Three experiments are presented here,

each of which uses a half cycle pulse of THz radiation (HCP) as a tool for manipulating

wavepacket dynamics. In the first experiment, a HCP field recombines a continuum

electron with a nearby ion in the presence of a static field. The relative alignment of

the HCP and the static field turns out to be a crucial factor in determining recom-

bination rates. In a second experiment, a HCP influences the rate of autoionization

(AI) in a doubly excited Rydberg state. Some suppression of the AI rate is observed

due to HCP redistribution of the Rydberg population. In the final experiment, the

time dependent momentum space probability distribution of a recombined electronic

wavepacket is measured by observing the response of the recombined wavepacket to

a HCP field. A highly localized three dimensional electronic wavefunction is created

through the recombination process and the dynamics of this distribution are measured.

A new technique of lock-in impulse momentum retrieval (IMR) is developed to improve

signal to noise in the recovered momentum distribution. Both classical and quantum

mechanical simulations are performed which reproduce measured spectra.



Contents

0 Acknowledgments 1

1 Introduction and Motivation 3
1.1 The Alkali Rydberg Atom . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Wavepackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Ultrafast Lasers and Broad Bandwidth . . . . . . . . . . . . . . . . . . 13
1.4 Half Cycle Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Experimental Apparatus 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Atomic Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Vacuum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Production of Laser Pulses . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Lab Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Nd:YAG Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Dye Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4 Ar+ Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.5 Short Pulse Ti:Sapphire Laser . . . . . . . . . . . . . . . . . . . 40
2.4.6 Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.7 Regenerative Amplifier . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.8 Multipass Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.9 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Characterization of Laser Pulses . . . . . . . . . . . . . . . . . . . . . . 51
2.5.1 Single Shot Autocorrelator . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Single Shot Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Data Collection Software . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7.1 DC410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7.2 HL Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



CONTENTS ii

3 Half Cycle Pulses (HCPs) 66
3.1 Half Cycle Pulse Generation . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 HCP Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Impulse Momentum Retrieval . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Normal IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Lock-In IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.3 Momentum of a Radial Wavepacket . . . . . . . . . . . . . . . . 84

4 Centrifugal Electron - Ion Recombination 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Suppression of Autoionization 122
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Single HCP Measurements . . . . . . . . . . . . . . . . . . . . . 131
5.3.2 Measurements with Two Orthogonal HCPs . . . . . . . . . . . . 136
5.3.3 Measurements with Orthogonal HCP and Static Electric Fields 140

5.4 Discussion and Numerical Analysis . . . . . . . . . . . . . . . . . . . . 141
5.4.1 Single HCP Calculations . . . . . . . . . . . . . . . . . . . . . . 142
5.4.2 Calculations with Two Orthogonal HCPs . . . . . . . . . . . . . 147
5.4.3 Calculations with Orthogonal HCP and Static Fields . . . . . . 148

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 The Dynamics of a Recombined Wavepacket 160
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4 Discussion and Numerical Analysis . . . . . . . . . . . . . . . . . . . . 180
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7 Calculations of Electron Localization 197
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 Analytical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.2.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2.3 HCP Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 203



CONTENTS iii

7.2.4 Determining Parameters of the Post-Impulse Motion . . . . . . 205
7.2.5 Orbital Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.2.6 z Intercept Information . . . . . . . . . . . . . . . . . . . . . . 215
7.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.3 Numerical Calculations of Localization . . . . . . . . . . . . . . . . . . 222
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.3.2 Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.3.3 Time Evolution of Measurable Quantities . . . . . . . . . . . . . 231
7.3.4 z Intercept Information . . . . . . . . . . . . . . . . . . . . . . . 239
7.3.5 Static Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.3.6 Multiple HCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8 Conclusions 251

A Radial Wavepacket Maps 255
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
A.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B Classical Numerical Simulations 270
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
B.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
B.3 Electron Orbital Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B.4 Computational Implementation . . . . . . . . . . . . . . . . . . . . . . 274
B.5 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
B.6 Initial Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
B.7 Stepsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
B.8 Performing the Integration . . . . . . . . . . . . . . . . . . . . . . . . . 281
B.9 External Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

C Quantum Simulations 285
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
C.2 Time Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . 286
C.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
C.4 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

C.4.1 Direct Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 298
C.4.2 Autoionization . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
C.4.3 Calculated Survival Probability . . . . . . . . . . . . . . . . . . 304



CONTENTS iv

C.5 Rotation of Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
C.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

D The Stark Effect 313
D.1 Analytic Calculations for Hydrogenlike Atoms . . . . . . . . . . . . . . 314

D.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
D.1.2 Zero Field Solution . . . . . . . . . . . . . . . . . . . . . . . . . 316
D.1.3 Changing Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
D.1.4 First Order Perturbation Theory . . . . . . . . . . . . . . . . . 321
D.1.5 Stark Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
D.1.6 Higher Order Effects . . . . . . . . . . . . . . . . . . . . . . . . 326

D.2 Non-Hydrogenic Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
D.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
D.2.2 Quantum Defects . . . . . . . . . . . . . . . . . . . . . . . . . . 328
D.2.3 Calculated Stark Maps . . . . . . . . . . . . . . . . . . . . . . . 333
D.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



List of Tables

1.1 n dependence of various physical properties. . . . . . . . . . . . . . . . 9

C.1 Calculated 4s continua autoionization rates for selected n,` states in
calcium in cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

D.1 Experimentally obtained values for the quantum defects in calcium. . . 331

v



List of Figures

1.1 A short laser pulse exciting a Rydberg wavepacket . . . . . . . . . . . . 12
1.2 Electric field of a 100 fs optical pulse . . . . . . . . . . . . . . . . . . . 15
1.3 Electric field of a 1 ps THz pulse . . . . . . . . . . . . . . . . . . . . . 17

2.1 Overhead schematic diagram of the vacuum chamber. . . . . . . . . . . 28
2.2 Diagram of a Hansch style dye laser. . . . . . . . . . . . . . . . . . . . 36
2.3 Diagram of a Littman style dye laser. . . . . . . . . . . . . . . . . . . . 37
2.4 Tuning element of a Littman dye laser. . . . . . . . . . . . . . . . . . . 38
2.5 Diagram of the self mode-locked Ti:Sapphire laser cavity. . . . . . . . . 42
2.6 Diagram of the short laser pulse expander. . . . . . . . . . . . . . . . . 45
2.7 Diagram of the regenerative amplifier. . . . . . . . . . . . . . . . . . . . 47
2.8 Diagram of the laser pulse compressor. . . . . . . . . . . . . . . . . . . 51
2.9 Diagram of the single shot detector set to measure ∆t. . . . . . . . . . 56
2.10 Screen shot of the data collection software. . . . . . . . . . . . . . . . . 61

3.1 Diagram of the method used to produce a HCP field. . . . . . . . . . . 68
3.2 Typical pulse shape of a HCP field. . . . . . . . . . . . . . . . . . . . . 69
3.3 Measured ionization probabilities for specific eigenstates of calcium. . . 74
3.4 Classical calculation of HCP ionization of Rydberg eigenstates. . . . . . 76
3.5 Experimental momentum distribution of the Na 25d state obtained using

the IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 HCP ionization of a Rydberg eigenstate due to dithered input voltage. 81
3.7 Fourier transform of a sample Gaussian window used in the lock-in IMR

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 SSFI scan of the radial Rydberg wavepacket used to test the lock-in IMR

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 Recovered momentum distribution of a radial Rydberg wavepacket using

the lock-in IMR method. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10 Quantum mechanical calculation of the momentum distribution of a ra-

dial Rydberg wavepacket. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Recombination collision angle schematic. . . . . . . . . . . . . . . . . . 94

vi



LIST OF FIGURES vii

4.2 Schematic of the Stark potential and the relative HCP orientations. . . 96
4.3 Timing diagram of the orthogonal recombination experiment. . . . . . . 99
4.4 Recombination probability as a function of HCP field strength for aligned

and antialigned HCP fields. . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Recombination probability as a function of HCP field strength for or-

thogonal HCP orientation. . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Recombination probability as a function of time for the three cases of

collision angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Measured recombination probability as a function of HCP field strength

for selected values of ∆tHCP . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.8 Classical calculations of recombination probability for selected ∆tHCP

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.9 Classical calculation of recombination probability as a function of HCP

field strength for ∆tHCP = 3.8 ps. . . . . . . . . . . . . . . . . . . . . . 115
4.10 Classical calculation of recombination probability as a function of HCP

field strength for ∆tHCP = 4 ps for several values of mc. . . . . . . . . 116
4.11 Classical calculation of the average m value of a recombined electron. . 118

5.1 Excitation scheme for the autoionization suppression experiment. . . . 128
5.2 Timing diagram of the AI suppression experiment. . . . . . . . . . . . . 129
5.3 Amount of autoionization of the 19d state in calcium as a function of

the detuning of the ICE laser from 4s+ → 4p+ transition. . . . . . . . . 132
5.4 Amount of autoionization of the 27d state in calcium as a function of

the detuning of the ICE laser from 4s+ → 4p+ transition. . . . . . . . . 133
5.5 Diagram of the experimental approach used to measure AI suppression. 137
5.6 Amount of autoionization of the 20d state in calcium as a function of

the detuning of the ICE laser from 4s+ → 4p+ transition. Two HCPs
are used to suppress AI. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 Frequency integrated ion yield as a function of relative HCP delay,
∆tHCP . ∆tICE = 0 at the same point as ∆tHCP = 0. Therefore, neg-
ative values of ∆tHCP correspond to the zero-field case, as described in
the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 AI signal of a n = 22 Stark state in calcium before and after HCP
interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9 Quantum mechanically calculated ` state distribution of a 22d state after
HCP interaction. The simulation lasts for 3 ps. . . . . . . . . . . . . . 145

5.10 Quantum mechanically calculated ionization of a 22d state after HCP
interaction. The simulation lasts for 3 ns. . . . . . . . . . . . . . . . . . 146

5.11 Quantum mechanically calculated m state distribution of a 22d state
subject to two orthogonal HCP fields not separated in time. . . . . . . 149



LIST OF FIGURES viii

5.12 Quantum mechanically calculated m state distribution of a 22d state
subject to two orthogonal HCP fields separated in time by 0.8 ps. . . . 150

5.13 Quantum mechanically calculated m state distribution of a 22k Stark
state subject to a HCP field polarized perpendicular to the static field. 152

6.1 Schematic of the relevant energy levels in the recombined wavepacket
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Timing diagram of the recombined wavepacket experiment. . . . . . . . 165
6.3 A schematic representation of the fraction of the wavepacket which is

recombined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 Measured survival probability of the recombined wavepacket as a func-

tion of A1 and ∆tprobe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5 Fraction of recombined atoms not subsequently ionized by the HCP

probe as a function of A2 and ∆tprobe. . . . . . . . . . . . . . . . . . . . 171
6.6 Similar to figure 6.5, but the HCP probe is polarized along +x̂. . . . . 172
6.7 Fourier transform of the data shown in figure 6.5(a) used to determine

the average energy of the recombined wavepacket. . . . . . . . . . . . . 174
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7.21 ẑ momentum distributions as functions of t for the weak kick and strong

kick cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.22 The z coordinate of each electron when its orbit crosses the ẑ axis as a
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Chapter 1

Introduction and Motivation

In the time since the days of Democritus, man has been fascinated with the atom. For

nearly 2000 years, the fascination was considered “philosophy” as no methods existed

to directly investigate individual atoms. That all changed with the discovery of the

electron in 1897. Since that point, the field of atomic physics has evolved into one of

the most investigated areas in all of science. Developments such as the laser and the

transistor both have their roots firmly in atomic physics and many new developments

are on the horizon.

Current research in atomic physics focuses largely on the response of atomic systems

to electromagnetic fields. The electromagnetic fields used in these studies come from

a variety of sources. Examples include externally applied fields (like from a laser or

pulse generator) as well as fields from other passing atoms or from the atom itself.
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The response of an atom to these fields is of significant interest due to the inherent

electromagnetic structure of the atom. As experimental advances are made in the

types of electromagnetic fields which can be produced, new discoveries are made in

how atomic systems respond when exposed to the new fields. Furthermore, the atomic

response to new and novel types of electromagnetic fields can be used to characterize

properties of the field itself.

The response of atomic systems to electromagnetic fields can be measured from

two different points of view. From the discovery of quantized electron energy levels up

through the 1980s, the prevailing picture of the atom was taken from the frequency

domain. Experiments proceeded by shining specific colors of light upon a given atom

and measuring how much of the light was absorbed. Since the energy corresponding to a

given frequency of light is known, the energy spacing between levels can be determined.

If an atom did absorb a given color of light, then it was known that the atom must

be in an excited state. Furthermore, the atom must then contain a given amount of

energy above its ground state. Such measurements are known as frequency domain

spectroscopic measurements. With the invention of narrow bandwidth lasers in the

1960s and 1970s, it became possible to perform spectroscopic measurements in precise

detail and determine the positions of the energy levels of any given atom very exactly.

With the introduction of very short laser pulses in the mid 1980s, it became pos-

sible to start looking at atomic systems in the time domain. In typical time domain
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spectroscopy, an electromagnetic field interacts with an atom at some known time. The

field may contain many different frequencies which each excite slightly different states

of the atom. Therefore, after interaction the atom takes on time dependent or “non-

stationary” characteristics. A variable time delay after the initial field interaction, a

short field pulse probes the state of the system. By varying the time delay of the probe,

the time evolution of the system can be measured. For time domain spectroscopy to be

most effective, the electron being measured must move very little during the time the

probe pulse interacts with it. This requirement is why advances in time-domain spec-

troscopy have coincided with the development of extremely short laser pulses. Since

the shortest pulses are still several atomic units long, time domain spectroscopy usually

focuses on excited states of atoms. The properties of excited atoms will be discussed

in the following section.

Even though the atomic response is measurable with both frequency-domain and

time-domain techniques, certain experiments which are technically impossible through

frequency domain spectroscopy become much simpler in the time domain [1]. Fur-

thermore, time domain spectroscopy is very closely related to the classical concept of

following the trajectory of an orbiting electron [2]. This typically produces a more

intuitive understanding of the time domain measurements.

The main goal of this thesis is to develop methods to control atomic processes and

manipulate wavepackets. To this end, we use time domain spectroscopy to measure
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the response of an atom to changes in its environment. In each experiment presented,

combinations of time dependent electromagnetic fields are applied which alter the sur-

roundings of an atomic system in some manner. Through these fields, we are able to

exert control over the evolution of an atomic system. Both extremely short optical

pulses and unipolar bursts of terahertz electromagnetic radiation are used as control

pulses. The subsequent time evolution of the system is then probed with time-domain

spectroscopic techniques to characterize the effects generated by the time dependent

fields. Information about the fields themselves is also recovered from the measured

atomic responses.

We are able to specify the properties of the control pulses in each experiment.

This can be done in a repeatable manner. By applying these fields, we are able to

control several atomic processes. Some examples which are presented in this work are:

simulated atomic collisions (chapters 4 and 6), configuration interactions (chapter 5),

and wavepacket localization (chapters 6 and 7). Many other areas may also be studied

with the techniques developed here. These include the areas of quantum control [3]

and quantum information [4].

1.1 The Alkali Rydberg Atom

Scientists tend to study the simplest possible system which exhibits a certain property

of interest. From there, results are extended to more complex systems. In atomic
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physics, the simplest system to study is the neutral hydrogen atom. Some of the first

experimental atomic physics was done with hydrogen, and certainly much of theoret-

ical atomic physics begins with the hydrogen atom. In general however, hydrogen is

experimentally difficult to work with.

To investigate atomic structure of hydrogen, its electron must be transferred from

the ground state to some higher lying excited state. The field free energy levels of

hydrogen are given by

E(n) =
−13.6 eV

n2
, (1.1)

where n is the principle quantum number of the nth energy level. The first excited

state of hydrogen lies 10.2 eV above the ground state. To perform a photoexcitation

from the ground state of hydrogen to the first excited state requires 10.2 eV of en-

ergy, corresponding to a ultraviolet light pulse with a wavelength of 121.6 nm. The

generation and manipulation of coherent light with such short wavelengths presents a

daunting experimental obstacle. Furthermore, hydrogen typically comes as a diatomic

molecular gas. Creating a sample of monatomic hydrogen can done in various ways (for

example, by colliding a proton beam with an atomic or molecular target [5] or with RF

discharge techniques). However, the experimental complexities in creating monatomic

hydrogen add an unwelcome level of difficulty prior to beginning the study of any elec-

tron dynamics. Despite these difficulties, the isolated hydrogen atom has been studied

extensively over the past 100 years and its dynamics are fairly well understood both



CHAPTER 1. INTRODUCTION AND MOTIVATION 8

theoretically and experimentally.

We then turn our focus to the alkali earth elements. We choose alkali earth elements

instead of the alkalis due to the two valence electrons. The complexity of the electron

- electron interactions in a non-hydrogenic system is of much interest. Furthermore,

alkali earth elements have relatively small binding energies and are readily available in

monatomic form. Compared to hydrogen, the alkali earth elements can be optically

excited quite easily. For example, an excited state of calcium lies only 2.93 eV above

the ground state. A 423 nm photon generated from a easily obtainable dye laser can

populate this state (and does so in each of the experiments in this thesis). Further-

more, with two optically accessible valence electrons alkali earth elements provide a

nice system for investigating the effects of varying external field environments on elec-

tron - electron dynamics. In the work presented here, we use an alkali earth system

(specifically calcium) to investigate the effect of time dependent electromagnetic fields

on both atomic dynamics in general and electron - electron dynamics in specific.

In a each experiment performed in this thesis, ground state electrons are photoex-

cited to high lying states with n > 20. Such highly excited electrons are known as

Rydberg electrons [6]. The orbital period of a Rydberg electron is very large when

compared with either the orbit time of a ground state electron or the duration of the

current shortest ultrafast laser pulses. This property will be exploited in each experi-

ment presented in this work. Several other properties of Rydberg electrons also make
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Property n dependence n = 1 n = 35

Binding Energy −1/2n2 -109737.3 cm−1 -89.58 cm−1

Energy Between Adj. States 1/n3 82303.1 cm−1 4.908 cm−1

Outer Turning Point ` = 0 2n2 2 a.u. 2450 a.u.
Orbital Period 2πn3 0.15 fs 6516.3 fs

Adiabatic Field Ionization 1/16n4 3.214 × 108 V/cm 214.2 V/cm
Stark Manifold Crossing 1/3n5 > 107 V/cm 32.6 V/cm

Table 1.1: n dependence of various physical properties.

them attractive experimental entities. Some of these properties are shown in table 1.1.

Rydberg atoms have many attractive experimental properties. The lifetime of a

Rydberg state is relatively long. The binding energy of a Rydberg state can be overcome

easily with a common lab power supply. The transition frequencies between low lying

states and Rydberg states are typically in the visible spectrum. The time period of

a Rydberg orbit is much longer than the typical duration of current experimentally

produced short laser pulses. Therefore, probing of the electron dynamics on a sub-

orbital time scale is possible. In comparison, the 150 attosecond orbit time of a n = 1

ground state electron is less than 1/10th of a single optical cycle of the electric field in

a 600 nm laser pulse. Due to the exaggerated properties of Rydberg atoms, they are

almost exclusively chosen for investigation of atomic time dynamics, including in all of

the experimental work presented in this thesis.
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1.2 Wavepackets

A great deal of both experimental and theoretical work has been performed recently

on the subject of wavepacket dynamics [7–11]. A wavepacket is a quantum state which

exhibits time dependence in one or more observable quantities [9]. It can be described

as a coherent superposition of a number of non-degenerate stationary eigenstates [12]

and written

ψ(~r, t) =
∑

k

ak(t) e
−i(Ekt−δk) φk(~r) , (1.2)

where k runs over all eigenstates present in the wavepacket. Here, ak(t) is the (possibly

time dependent) complex state amplitude of the kth state, Ek is the energy, φk(~r) is the

eigenfunction of the kth eigenstate, and δk is the constant initial phase for that state.

Experiments presented in this thesis focus on a small subset of possible wavepack-

ets, specifically electronic wavepackets in atomic systems. Electronic wavepackets can

be generated by exposing a stationary eigenstate of an atom to a short pulse of electro-

magnetic radiation. The evolution of the wavepacket depends critically on the charac-

teristics of the initial pulse. The creation of coherent electronic wavepackets is possible

as long as the duration of the radiation pulse is short compared to any incoherent relax-

ation processes within the atom. Typically, the difficult aspect of wavepacket creation

is the creation of a particular wavepacket which exhibits a behavior of interest, rather

than the creation of any general wavepacket [9]. Once a particular type of wavepacket

can be made on a consistent basis, then we can manipulate each copy of the wavefunc-
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tion in a different manner and use time dependent spectroscopic techniques to observe

how it responds.

The time dependent probability distribution of the wavepacket describes the time

evolution of an atom after feeling the influence of a particular electromagnetic pulse.

It is obtained by multiplying ψ(~r, t) from equation 1.2 by its complex conjugate. The

resulting distribution is given by

|ψ(~r, t)|2 = | < ψ(~r, t)|ψ(~r, t) > | ∝
∑

j

∑

k

a∗j(t)ak(t) φ
∗
j(~r)φk(~r) exp[i∆Ejkt−∆δjk] ,

(1.3)

where the energy difference and phase difference are given by

∆Ejk = Ej − Ek and ∆δjk = δj − δk . (1.4)

The complex phase of each component of ψ(~r, t) evolves at its own rate determined

by the energy of that state. However, the time scales important to the wavepacket

dynamics are governed by the energy differences between each of the states given in

equation 1.4. As constituent eigenstates beat in and out of phase, variations in physi-

cally measurable quantities (such as the probability density) occur.

The electronic wavepackets which are investigated in this thesis are comprised of

a coherent superposition of Rydberg states. The stationary eigenstates φk(~r) from

equation 1.2 are given by the |n`m > spherical eigenstates or the |nkm > parabolic

eigenstates. A Rydberg wavepacket can be made up of states with different n values and

similar ` values (radial Rydberg wavepacket), or the same n value but with different
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Figure 1.1: Two possible excitation possibilities to a Rydberg series. In each scenario,
the frequency width of the laser pulse which makes the Rydberg transition is shown by
the curves above the Rydberg levels. In the first case (marked “1”), a laser pulse with
a 20 cm−1 bandwidth makes a transition from a low lying state to a single Rydberg
eigenstate, in this case n = 17. In the second case (marked “2”), a laser pulse (also with
a 20 cm−1 bandwidth) makes a transition from a low lying state to a range of Rydberg
states centered around n = 42. Since all the Rydberg levels are excited coherently by
the same laser pulse in case 2, a wavepacket is created.
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` values (angular Rydberg wavepacket), or many other combinations [13]. We will

investigate radial Rydberg wavepacket dynamics explicitly in chapter 3 and appendix

A. Both angular and radial Rydberg wavepacket dynamics are present in each of the

other experiments. Since the energy spacing between individual eigenstates is small,

forming a coherent wavepacket is straightforward with a short laser pulse. This is shown

schematically in figure 1.1.

1.3 Ultrafast Lasers and Broad Bandwidth

The typical orbital periods of the Rydberg electrons produced for this thesis range from

1 ps to tens of picoseconds. We wish to make measurements of the motion of Rydberg

wavepackets on a time scale shorter than the average orbital period of the wavepacket.

Therefore, the probe pulse we use must be short in duration when compared to the

orbital time of the Rydberg electrons being studied. Only in the last two decades

have pulses short enough to perform these measurements become available. We use

pulses which are typically on the order of 1 ps FWHM in duration to probe the time

dynamics of Rydberg wavepackets. The details of how we retrieve information about a

given wavepacket will be discussed in a later section.

Coherent bursts of light lasting only a few femtoseconds (10−15 seconds) can be

generated and measured with current laser technology [14], although doing so is quite

difficult. To get a feel for the time scale of a 100 fs pulse, consider that 100 fs is the
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time that it takes a supersonic aircraft to travel the width of a ground state hydrogen

atom [15]. Laser pulses with such extremely short durations are known as ultrafast

pulses [16].

The duration of a laser pulse and the width of the frequency components contained

in the pulse are related through the uncertainty principle. Since ∆t∆ν ≈ 1, as ∆t

decreases, the spread in frequencies (∆ν) must increase. For example, a 100 fs long

Gaussian laser pulse has a bandwidth of approximately 150 cm−1. The broad band-

width allows the laser pulse to be resonant with many transitions at the same time.

Just because many frequency components are present does not however guarantee an

ultrashort pulse. The key to generating the ultrashort pulses used here is not just a

generation of a large range of frequencies, but maintaining phase coherence between all

the frequency components and keeping each of the frequency components oscillating in

phase [17].

1.4 Half Cycle Pulses

As discussed earlier, a 100 fs laser pulse is extremely short in duration. However, a 780

nm, 100 fs pulse still contains 38 full cycles of the electric field. The time integrated

electric field of this pulse is zero. A schematic of a typical short optical pulse is shown

in figure 1.2. A free electron (or an electron far from the atomic core) which feels the

influence of a 100 fs optical pulse wiggles back and forth due to the oscillating electric
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Figure 1.2: The electric field of a 100 fs FWHM, 780 nm laser pulse. Shown in grey is
the Gaussian envelope which bounds the maximal values of the electric field. The time
integrated electric field is zero.

field. After the pulse interaction however, the total energy of the electron is unchanged.

Only when an electron is near a third body (like the atomic core) can it scatter and

receive a net change in its total energy.

To create a pulse which has a nonzero time averaged effect on a free (or loosely

bound) electron, the time integrated electric field must be nonzero. Two possibilities

exist to satisfy this condition. First, a typical optical pulse can be reduced in duration

from 100 fs to less than one full optical cycle. For a 780 nm pulse, this corresponds

to a pulse with a full width at half maximum (FWHM) of less than 1 fs. While x-ray
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pulses with FWHM less than 1 fs have been created and measured [14], at present no

sub-single cycle optical pulses have been experimentally produced.

A second possibility for generating a nonzero time integrated electric field pulse

involves using a terahertz electric field. Instead of decreasing the width of a pulse so

that it encompasses less than a single optical electric field cycle, the wavelength of the

radiation is chosen so that one half of a cycle fits into roughly 1 ps. The resulting pulse

has a wavelength in the terahertz part of the electromagnetic spectrum. In this thesis,

we use half-cycle pulses (HCPs) of terahertz radiation to both affect atomic dynamics

and then to measure the subsequent response of various atomic systems. One version

of a terahertz HCP is shown graphically in figure 1.3. While the true temporal profile

of the experimental HCPs used in this thesis is slightly more complicated than figure

1.3 (see chapter 3 and figure 3.2), a simple comparison of the electric fields in figures

1.2 and 1.3 reveals the origin of the nonzero integrated electric field.

If the duration of the HCP is significantly less than the Kepler period of an electron,

then the HCP acts like an impulsive kick to the electron. The component of the elec-

tron’s momentum along the direction of the HCP is changed by an amount determined

by the strength of the HCP field. A HCP field can even deliver enough energy to a

Rydberg electron to directly ionize it [18]. Furthermore, by varying the strength of the

HCP field and observing the amount of ionization, HCPs can be used to manipulate and

probe the momentum distribution of Rydberg atoms and wavepackets [19]. Through
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Figure 1.3: The electric field of a 1 ps FWHM, 0.5 THz pulse. Shown in grey is the
Gaussian envelope which bounds the maximal values of the electric field. The time
integrated electric field is not typically zero and is determined by the absolute phase of
the THz oscillation.
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the techniques presented in [19], the HCP field provides the basis for all momentum

measurements presented in this thesis. In general, the HCP is a good tool for measuring

the momentum distribution of wavepackets with principle quantum numbers n ≥ 20. If

the momentum distribution is measured, position space information can be recovered

through Fourier analysis.

1.5 Discussion

This thesis is organized into three main sections. Chapters 2 and 3 discuss the tools

used to study wavepacket dynamics. Chapter 2 provides a detailed overview of the

laser systems and experimental setup, as well as a description of the experimental

detector and data acquisition software. Chapter 3 discusses the half cycle pulse in

detail. HCP production and calibration are explained, as well as how HCPs are used to

recover information about the momentum distribution of a wavepacket through impulse

momentum retrieval (IMR). A new variation on IMR is discussed and momentum

distributions from the new method are compared to those generated with the original

IMR technique.

In the second part of the thesis, three experiments are described which all cen-

ter around using HCPs to manipulate and measure wavepacket dynamics. Chapter 4

presents an experiment in which a HCP is used to recombine an ion with a continuum

electron in the presence of an external static field. The relative angle between the col-
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lision field and the static field is shown to be an important factor in determining the

probability of electron - ion recombination. Chapter 5 presents an experiment which

uses HCPs to control the probability of autoionization of Rydberg eigenstates in a dou-

bly excited configuration. Finally, chapter 6 discusses an experiment in which HCPs

are used to probe the dynamics of a recombined wavepacket. In each of these chapters,

novel electromagnetic fields significantly change the environment of an atomic system.

We then measure the response of the atom to these changes.

The final section of this thesis concentrates on an interesting aspect of electron

dynamics which occurs during HCP induced recombination. It is possible to highly

localize an electron distribution far from the atomic core through the use of HCP

fields. The experimental evidence for this effect is presented in chapter 6 and a full

calculation of this effect is presented in detail in chapter 7.

An introductory experiment is presented in appendix A which demonstrates the

large parameter space which can be investigated with the methods developed in this

thesis. Many individual radial Rydberg wavepackets are created, each with a slightly

different average energy. The evolution of each wavepacket is then measured. Overall

trends in the evolution of an entire class of wavepackets are thereby recovered.

To aid the reader in understanding the precise methodology used in this thesis,

three additional appendices are also included. An appendix is presented on the Stark

effect. It contains a quantum mechanical description of the Stark effect and parabolic
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coordinates, as well as several examples of computer generated Stark maps. Appendices

on both the classical and quantum mechanical computer code used to simulate the

experiments presented in this thesis are also included. Each appendix is designed to be

a guide to someone attempting to begin similar calculations.
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Chapter 2

Experimental Apparatus

2.1 Introduction

Legitimate successful completion of the experiments presented in this thesis required

the coordination of several diverse apparatuses. In this chapter, each of these systems

is described in some detail. We begin with a discussion of the atom source and vacuum

chamber. This is followed by a discussion of the creation of ultrashort laser pulses

in general, as well as the specific laser systems used in this work. A major obstacle

in the field of ultrashort laser pulses is the lack of simple methods to measure the

characteristics of a pulse with a FWHM of less than 1 ps. Therefore, we present a

section in this chapter concentrating the methods we use to characterize ultrashort

laser pulses. The chapter concludes with a discussion of the single shot detector used

24



CHAPTER 2. EXPERIMENTAL APPARATUS 25

to collect data and the associated data collection software.

2.2 Atomic Source

The experiments presented here are performed on calcium atoms. Calcium is chosen

over the other alkali earth metals due to the location of its energy levels. A dye laser

pulse is used to perform an excitation to the first excited state in calcium, the 4s4p

state. The wavelength range that is needed to perform transitions from the 4s4p state to

the calcium Rydberg series closely matches half the wavelength of the fundamental of a

Ti:Sapphire laser. Since the Ti:Sapphire laser system provides a reliable source of broad

bandwidth pulses which can be used to create Rydberg wavepackets, we concentrate

our studies on calcium.

An effusive beam of neutral calcium atoms is produced in the vacuum chamber by

resistively heating a 3/8 inch stainless steel tube with a small hole in the side. The

stainless steel tubing is made of 316 steel and has .006 inch thick walls. A 400 µm hole is

drilled into the side of a 6 inch long section of tube. The atomic beam will exit through

this hole. To get the calcium into the tube, initially one end of the stainless steel tubing

is crimped. Metallic calcium pellets are placed into the tube to a level just below that

of the 400 µm hole. After filling, the top end of the tubing is crimped. The filled

tube or “oven” is then mounted in the vacuum chamber so that the exit hole points

directly towards the interaction region and the oven is electrically isolated from the rest
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of the vacuum chamber. As current flows through the oven, the stainless steel heats

due to its resistance to the applied current. Ca atoms in the oven are vaporized due to

the heating process and leave through the exit hole and move towards the interaction

region. Typically, an atomic beam is produced with a density of 107 - 108 atoms / cm3

approximately 10 cm away from the oven.

A water cooled copper shield separates the oven from the rest of the vacuum cham-

ber. The oven shield guards the majority of the vacuum chamber from debris and other

particulate matter. The shield also prevents unwanted blackbody radiation emitted by

the hot oven from reaching the rest of the chamber. A copper plate with a 5 mm by

3 mm slit is mounted on the copper shield. The plate acts as a mask for the effusive

atomic beam. Only the portion of the beam directed precisely between the field plates

and perpendicular to the laser propagation direction is permitted to leave the shielded

area.

A high current power supply consists of a series of alternating current transformers

that step down standard 120 V AC, 60 Hz to approximately 6 V AC. The output cur-

rent is correspondingly increased by a factor of 20. The amount of current delivered

by the transformers is regulated by a Variac AC voltage regulator. The oven typically

has a resistance of approximately 0.1Ω. In order for the voltage drop to occur mainly

across the oven and thereby only dissipate power in the form of oven heating, con-

nections between the power supply and the oven are made with thick copper wiring
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approximately 3/8 inch in diameter. High current 1/4 inch diameter copper voltage

feedthroughs are attached to the top and bottom of the oven. Connections between

the high current power supply and the voltage feedthroughs are made on the exterior

of the vacuum chamber. Typically, around 80 - 100 amps of current flows through a

calcium oven to produce a satisfactory effusive atomic beam density.

2.3 Vacuum Systems

The experiments presented in this work are performed in a vacuum of approximately

10−6 torr. The vacuum chamber is made of aluminum and approximately cylindrical,

24 inches in diameter and 12 inches tall (see figure 2.1). Eight flanges are located

around the circumference which allow laser beams, electrical pulses and cooling water

to enter the vacuum chamber. Vacuum pressure gauges and rotation feedthroughs are

also located on various flanges. The lid of the vacuum chamber has 5 flanges. The

center flange is made of plexiglass and allows visual inspection of the interior of the

vacuum chamber and detector. All flanges are sealed to the vacuum chamber with

Buna-type O-rings. A gate valve is located immediately below the chamber allowing

the chamber to be isolated from the diffusion pump and water baffle below.

Pumping the chamber to low pressure from atmospheric pressure is a two step

process. After closing the chamber, a valve is opened to an evacuated tube connected

to a mechanical roughing pump. The roughing pump lowers the chamber pressure to
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Figure 2.1: Overhead schematic diagram of the vacuum chamber. Elements shown are
consistent for all experiments. Optics and other devices are placed inside the chamber
depending on the specifics of each particular experiment [1].
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approximately 50 mtorr in about 1 hour. Once the pressure falls to 50 mtorr, the valve

to the roughing pump is closed and the gate valve is slowly opened. Below the gate

valve is a Varian VHS-6 model diffusion pump and Varian model 336 water baffle. The

diffusion pump contains 500 mL of vacuum pump oil (Duniway part number DS-7040)

and runs continuously. The diffusion pump achieves a pressure of approximately 10−6

torr. The gate valve is closed to separate the chamber from the diffusion pump if

the pressure in the chamber is too high. Chilled water flows through the baffle which

prevents significant quantities of diffusion pump oil from contaminating the vacuum

chamber during normal operation.

The diffusion pump uses approximately 2200 watts of power. To ensure that this

large amount of power is properly safeguarded, the 208 V AC that powers the diffusion

pump is regulated through an interlock switch. The interlock system prevents possible

damage to either the lab equipment or the pump itself. Power is shut off to the diffusion

pump if the pressure in the foreline of the is too high (> 100 mtorr) or the temperature

of the pump is too hot. If the pump temperature is too high then the pump oil begins

to crack, reducing its pumping effectiveness. Once this happens, the pump must be

removed from the chamber, all the oil must be removed, the pump must be scrubbed

clean, and new oil must be added. The pump may begin to overheat if the flow of

cooling water to the pump or water baffle is interrupted for any reason. Once the

interlock has been triggered, it must be manually reset.
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Pressure in the chamber is measured with two devices. From atmospheric pressure

to about 10−2 torr, it is measured with a thermocouple. Pressures below 10−2 torr

are measured with an ion gauge controlled by a Varian BA2 ion gauge controller.

The actual pressure is calculated by the controller and displayed on an LED readout.

The first time a new oven is heated after being installed into the vacuum chamber,

contaminants on the metals boil off and the pressure in the chamber rises significantly.

Therefore, the current in the oven must be increased very slowly or the pressure will rise

above the safe operational limits of the diffusion pump. Typically, this decontamination

procedure takes about a day.

2.4 Production of Laser Pulses

An array of lasers are used to generate the many individual pulses necessary for the

experiments presented in this thesis. A Nd:YAG laser is used to optically pump several

tunable dye lasers. Each dye laser produces 5 ns long pulses with bandwidth of less than

1 cm−1. By varying the type of dye and laser configuration, nanosecond long pulses

can be created from the infared through the entire visible spectrum. A Ti:Sapphire

laser is used to create 150 fs FWHM pulses from 780 nm to 786 nm. These pulses are

subsequently amplified and used for a variety of purposes. This section explains the

components of each laser system and provides some background information which will

hopefully provide an understanding of how each system operates.



CHAPTER 2. EXPERIMENTAL APPARATUS 31

2.4.1 Lab Environment

To achieve stability of the laser system, several factors must be held constant. Among

them, the temperature of the room, flow of air over the optical tables, and vibration

of the surroundings. The laser systems are located on 5 optical tables which are all

joined together forming one large platform. The system of optical tables is isolated

from vibration by pneumatic isolation legs. Situated 4 feet above the optical tables

are plywood platforms bolted to the ceiling of the lab by Unistrut. On these platforms

sit various power supplies, pulse generators, and assorted other electrical devices (and

a couple of dinosaur skeletons). Sheets of clear plastic are draped from the plywood

platform to below the height of the optical tables. The plastic separates the air flow

over the optical tables from that of the room in general. Situated on the upper plat-

form, about 1/3 the way down the length of the optical tables is a heating unit. The

thermostat on the heating unit is accurate to 0.1◦ F. The temperature setting of the

heating unit is set higher than the ambient temperature of the surrounding room. The

heater warms the air over the optical tables to a constant temperature, usually around

72.5◦ F.

2.4.2 Nd:YAG Lasers

In a rod of crystalline yttrium aluminum garnet, approximately 0.7% of the rare earth

element yttrium is replaced by neodymium. This material has a strong lasing transition
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at 1064 nm. To create a population inversion, neodymium atoms are optically excited

by an external source. In the two Nd:YAG lasers used in the lab, the Nd excitation

to the metastable state occurs by a pulsed flash lamp. The flashlamps typically have

lifetimes of about 700 hours of operation, which equates to changing them three to four

times a year [2, 3].

As the population inversion builds up, light oscillation in the cavity is prevented

by the Q switch located in front of the back mirror of the cavity. The Q switch is an

electronically triggered switch which varies the Q factor of the laser cavity from low to

high. When the Q switch is open, loss in the cavity is high and light quickly escapes.

When the Q switch is closed however, the cavity losses become low and light oscillates.

As the light oscillates, the 1064 nm laser transition is stimulated in the YAG rod and

the population inversion is quickly depleted. The output from the laser is a short (<

10 ns) pulse of 1064 nm light with a peak power of several megawatts [4,5]. The lasers

are triggered to output pulses at 15 Hz, delivering an average power of 0.65 J per pulse.

Two KDP (Potassium Dihydrogen Phosphate) crystals are mounted directly after

the output of the Nd:YAG laser. They perform frequency doubling and sum frequency

mixing. The second harmonic (532 nm) and third harmonic (355 nm) of the fundamen-

tal Nd:YAG frequency are created as the 1064 nm light passes through the crystals.

Varying the angles of the two crystals controls how much output power is delivered in

each harmonic. The output power at 532 nm is measured with a power meter sensi-
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tive to this wavelength at the start of each day and after each laser realignment. Any

changes in laser output indicate a potential problem with the Nd:YAG system.

2.4.3 Dye Lasers

Several dye lasers are used in this thesis. In each of them, the second or third harmonic

of the Nd:YAG laser is focused into a solution of organic dye, creating a population in-

version. The dye is contained in a glass cell mounted within a laser cavity. Fluorescence

from the dye cell travels along the axis of the cavity and strikes a grating. The grating

is the tuning element of the cavity, removing all of the light from the cavity except that

within a small frequency range. Therefore, only light at the selected frequency oscil-

lates within the cavity. Two different styles of dye lasers are used in the experiments

presented in this work. They are the Hansch type dye laser and the Littman type dye

laser [6, 7] and the details of each are described below.

The dye cell is a quartz cuvette with 3/8 inch diameter glass tubes blown onto

the top and bottom. Plastic tubing is clamped to the glass tubes and is connected

through a pump to a dye reservoir. A solution of dye is pumped through the cell at

approximately 1 L per minute. A particular dye is chosen for the laser depending on

the desired output frequency. The dyes we choose for this thesis have a 30 nm to 40 nm

wide range of wavelengths where lasing is possible. Each dye comes with instructions

on the proper solvent and concentration to be used.



CHAPTER 2. EXPERIMENTAL APPARATUS 34

During laser operation, the Nd:YAG pump light gradually decomposes the dye

molecules, which are typically large complex molecules with multiple ring structures.

Degradation can be either thermal or photochemical. Pump light with higher frequen-

cies more rapidly decompose the dye molecules. In our experiments, dye degradation

is typically first observed by a noticeable decrease in the Rydberg state field ionization

signal. As the dye begins to degrade, the pump light penetrates further into the dye

cell. If more than the first 2 mm of the dye is illuminated by the pump light, significant

dye degradation has occurred and the dye must be changed. Changing laser dye is a

fairly straightforward process. First the pump light is blocked. Then the dye reservoir

is removed from the pump intake. The remaining dye is allowed to drain into the reser-

voir. Once all the dye has been removed from the system, the reservoir is emptied and

subsequently filled with fresh dye.

During alignment, dye laser performance is frequently evaluated with an étalon

placed after the output coupler. The laser output is first expanded with a diverging

lens, then is incident upon an étalon. Concentric interference fringes are observed

on a screen placed 1 m past the étalon if the laser is properly aligned. Adjacent

intensity maxima in the interference pattern are separated by 1
2nd

, where n is the index

of refraction of the étalon and d is the étalon thickness. Small, relative changes in

laser wavelength are measured by placing a photodiode at the center of the interference

pattern. The voltage output of the photodiode is proportional to the amount of light
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incident upon it. Varying the frequency of the laser by ∆ν = 1
2nd

results in a change

in the output voltage of the photodiode from a maximum to a minimum and back to

a maximum. These changes are measured on an oscilloscope. Relative values of dye

laser wavelength are calibrated in this manner.

Hansch Style

A diagram of a Hansch dye laser is shown in figure 2.2. Fluorescence from the organic

dye is sent through a telescope so that the beam diameter significantly increases. After

the light passes through the telescope it is incident upon a diffraction grating. The

grating is tilted so that a diffraction order is sent back along its incident path. Small

changes in the grating angle determine the color of the light which leaves the grating

along the axis of the cavity. After passing through the dye cell a second time, the

majority of the light escapes the cavity through an output coupler. A second dye cell

can be placed after the output coupler for additional single pass amplification. The

bandwidth of laser pulses from a Hansch dye laser is typically on the order of 1 cm−1.

This can be further reduced by adding a Fabry-Perot étalon within the laser cavity,

however this makes the system difficult to tune during data collection.

Littman Style

A diagram of a Littman dye laser is shown in figure 2.3. Light emitted from the dye

cell strikes a diffraction grating at near grazing incidence. The first order diffraction off
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Figure 2.2: Diagram of a Hansch style dye laser [1].

the grating strikes a mirror located directly above the grating. The frequency of light

which is incident upon the mirror at precisely a right angle is reflected back off the

grating and through the dye cell again. Changing the angle of the mirror determines

the lasing frequency as long as the chosen frequency falls within the gain profile of the

laser dye. After light passes off the grating the second time and through the dye cell

again, it reflects off the back mirror of the cavity and back to the dye cell. As the

light again strikes the grating at grazing incidence, the 0th order reflection escapes over

the top of the grating. This is how light is output from the laser. Each pass off the

diffraction grating further reduces the bandwidth of the light. A diagram of the angles

associated with the grating - mirror system is shown in figure 2.4.

After exiting the laser cavity, the output light can be subsequently amplified by
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Figure 2.3: Diagram of a Littman style dye laser [7].

a single pass through a second dye cell if desired. The output power of the Littman

style dye laser is less than that of the Hansch style, however the bandwidth of the

Littman configuration may be considerably narrower. The bandwidth of the Littman

style dye laser may be further reduced by replacing the frequency selecting mirror with

a second diffraction grating. In the double grating Littman configuration, the first

order diffraction off of the first grating is incident upon a second grating. The angle

of the second grating is then adjusted so that the first order diffraction of the second

grating reflects light back off the first grating and completes the cavity. Using a double

grating Littman configuration constructed in the lab, a bandwidth of 0.14 cm−1 has

been achieved [8].
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Figure 2.4: Diagram of the tuning arrangement in a Littman style dye laser illustrating
the important angles in the system. The laser wavelength is determined when θ1 = θ4
[7].
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2.4.4 Ar+ Laser

An argon-ion laser is one of a family of noble gas ion lasers which have been developed.

Singly charged argon has several emission lines in the blue-green. The strongest of

these lines is the 514.5 nm Ar II line. The Ar+ system is fairly inefficient due to the

fact that the 3 eV lasing transition is approximately 36 eV above the ground state.

This is offset by the ability to deliver tens of watts of continuous wave (cw) output

power [4].

A long, evacuated tube is filled with approximately 1 torr of pure argon gas. The

gas in the tube is excited by a high current discharge that travels the length of the

tube. The discharge is confined to a cylindrical region along the center of the tube

approximately 2 mm in diameter. An initial voltage pulse of a few kilovolts ionizes the

argon and forms singly ionized Ar+. Following the initial gas breakdown, the voltage

falls to around 100 - 400 volts at a discharge current of between 10 amps and 60

amps. The high current density populates an upper energy state, creating a population

inversion among the argon ions. Once an inversion is created, lasing begins. The

tube terminates in a quartz Brewster’s angle window which ensures the output beam

is vertically polarized. Care must be taken to ensure that no residue builds up on the

output window. If a buildup does occur, the output beam quality becomes poor and

Ar+ laser does not effectively pump the Ti:Sapphire laser. If this occurs, the output

window must be cleaned using a couple drops of ammonium bi-fluoride to etch away a
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surface layer from the output window and remove contaminants.

The Ar+ laser we have used typically takes close to an hour to stabilize after being

turned on. Furthermore, the output power tends to rise and fall throughout the day.

The system must be aligned frequently by adjusting the back mirror of the laser cavity to

obtain the maximum possible output power. Another disadvantage with the Ar+ system

is that the Argon tubes have a relatively short lifetime due to the harsh conditions

that exist inside the tube during lasing. Typically this lifetime is no more than 3000

hours. Near the end of this time, the output power decreases and the beam develops

complicated mode structure. Due to these considerations, the Ar+ system has been

replaced as of this writing with a solid state cw Nd:YLF laser. However, all the data

presented in this thesis was collected using the Ar+ system.

2.4.5 Short Pulse Ti:Sapphire Laser

Titanium doped sapphire (Al2O3) is a solid state material which is capable of lasing

over a very broad range of wavelengths (700 nm - 1100 nm). In a Ti:Sapphire crystal,

titanium is introduced into the crystal lattice and replaces approximately 0.05% of the

aluminum [4]. Ti:Sapphire laser systems can operate in either cw or pulsed mode. The

Ti:Sapphire system used in this work is a short pulse, self mode-locking system. Figure

2.5 shows a schematic diagram of the self mode-locked Ti:Sapphire laser cavity. After

absorbing the light from the Ar+ pump beam, the Ti:Sapphire crystal emits a broad
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spectrum of radiation into the laser cavity. The longitudinal mode separation ∆ν of a

cavity of length d and index of refraction n is given by

∆ν =
c

2nd
. (2.1)

For the Ti:Sapphire laser cavity used here, the mode spacing is 78 MHz, or approxi-

mately 2.6 × 10−3 cm−1. Therefore, over 100,000 longitudinal modes are possible within

the gain curve of the Ti:Sapphire crystal. The fixed length of the laser cavity ensures

that all the longitudinal modes have equal frequency separation. If all the supported

modes are in phase (a situation referred to as being phase-locked or mode-locked), then

the electric fields present add constructively at one time, creating a short pulse.

To operate the Ti:Sapphire system in pulsed mode, some source of noise is initially

introduced into the laser cavity. This can be a random fluctuation over the background

or an impulse generated by physically tapping on an element in the cavity. Since the

disturbance is more intense than the background noise, a nonlinear process occurs in

the material known as the Kerr effect which focuses the disturbance, causing it to be

preferentially amplified.

When a beam of sufficiently high intensity passes through an optical material, the

index of refraction of the material is altered by the intensity of the beam. This change

in the index of refraction of a material is known as the optical Kerr effect. If the beam is

more intense in the center than the edges, then the index of refraction of the material

becomes higher at the center of the beam. Due to the Kerr effect, an intense pulse
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Figure 2.5: Schematic diagram of the self mode-locked Ti:Sapphire laser cavity [9].
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creates a positive lens which slightly focuses itself in a material. The Kerr effect also

produces self-phase modulation, broadening the frequency spectrum of the pulse [5].

As the noise pulse which was initially introduced into the laser cavity gains intensity, it

self-focuses and begins to contain more and more frequency components. Eventually,

the pulse exceeds the oscillation threshold of the laser cavity and begins to sweep out

gain from the Ti:Sapphire crystal. The end result of this process is an ultrashort pulse.

The temporal profile of the pulse is critically dependent on the fixed, coherent

relationship between the various frequency components present. However, as the pulse

passes through various optical components, group velocity dispersion (GVD) occurs. As

a pulse interacts with any material, each frequency component experiences a different

index of refraction. Therefore, each frequency propagates at a slightly different velocity.

To correct for this, two prisms are positioned in a manner which introduces an amount of

negative GVD to precisely correct for the linear component of the dispersion introduced

by the laser rod, mirrors, and output coupler.

The output from the Ti:Sapphire laser used for this work is a train of 100 fs trans-

form limited pulses occurring at 78 MHz. Each pulse has approximately 1 nJ of energy

and a central wavelength between 780 nm and 786 nm. Rotation of a birefringent

crystal in the laser cavity controls the central output wavelength by altering the phase

matching conditions of the crystal. The total output power of the Ti:Sapphire laser is

approximately 200 mW. A fraction of the output of the Ti:Sapphire laser is directed
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into a photodiode by a glass microscope slide. The output of the photodiode is moni-

tored with an analog Tektronix oscilloscope. Even though the width of an individual

Ti:Sapphire output pulse is on the order of 100 fs, the response time of the photodiode

is a few nanoseconds. Therefore, we are able to qualitatively determine the relative

intensity of individual pulses on the oscilloscope. Occasionally, the laser will support

more than one transverse mode simultaneously. This results in a reduced maximum

intensity and increased instability. The photodiode is used to watch for this. A cooling

water line runs through the laser system. The temperature of this water is regulated

by a small heater to prevent instability due to temperature fluctuations.

The relatively small pulse energy (≈ 1 nJ) makes the direct output from the

Ti:Sapphire laser ineffective for studying atomic systems without some form of ampli-

fication. Therefore, every 15th of a second, a single pulse from the 78 MHz Ti:Sapphire

pulse train is selected for amplification. Due to the high peak pulse intensity in a sin-

gle 100 fs pulse, direct amplification is difficult. Instead, the short pulse is reversibly

expanded by a factor of several thousand prior to being amplified to prevent damage

to the optics and crystals used in amplification.

2.4.6 Expander

Figure 2.6 shows a diagram of the short pulse expander. In the expander, longer

wavelengths travel a shorter distance than shorter ones, creating a frequency chirp
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Figure 2.6: Schematic diagram of the short laser pulse expander. The beam diffracts
four times off the diffraction grating. The beam path is offset in the plane of the page
for clarity. Each reflection off the grating spatially separates the frequency components
of the incident pulse. The expanded pulse is temporally chirped by a factor of 2000 [1].

in the pulse which effectively “expands” each pulse. When a pulse is expanded, it

retains approximately half of its initial energy and the peak power is decreased by

approximately three orders of magnitude. The expanded pulse may then be amplified

safely without causing damage to the optical components of the amplifier. Following

amplification, the frequency chirp can then be removed by the inverse process, pulse

compression.
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The short pulse enters the expander just above mirror 2 and diffracts from the grat-

ing. The grating is typically positioned at an angle of approximately 54◦ to the input

pulse propagation direction. Each frequency component diffracts at a different angle

determined by sinθout−sinθin = λ
2d
, where λ is the wavelength of a particular frequency

component and d is the line separation in the diffraction grating. The diffracted beam

leaves the grating, passes through a lens, off mirror 1, back through the lens, and onto

the grating again. The lens enlarges the chirped image of the input beam before it

strikes the grating the second time. This allows a larger geometrical path difference

between the various frequency components of the pulse. After the pulse diffracts off

the grating the second time, it bounces off mirror 2, causing it to retro-reflect along

its input path. Mirror 2 introduces a small vertical offset that allows the output pulse

from the expander to be separated from the input pulse. In total, the pulse diffracts

off the grating four times and emerges from the expander frequency chirped by about

a factor of 2000 compared to the initial pulse. The reddest frequencies present in the

original pulse arrive approximately 200 ps before the bluest frequencies.

2.4.7 Regenerative Amplifier

A diagram of the regenerative amplifier (regen) is shown in figure 2.7. The 532 nm

second harmonic of the Nd:YAG laser creates a population inversion in a Ti:Sapphire

crystal. For normal operation, approximately 0.6 W of power is input to the crystal (40
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Figure 2.7: Schematic diagram of the regenerative amplifier. A thin film polarizer
(TP1) directs light into a laser cavity. The polarization of the beam is rotated with a
Pockels cell (PC1) so that it remains in the cavity. A population inversion is created
in the Ti:Sapphire crystal by the 532 nm Nd:YAG pump light. The chirped pulse
circulates through the cavity sweeping gain from the crystal on each pass. After the
intensity of the pulse saturates, the polarization is rotated by PC2. The amplified pulse
is deflected out of the cavity by TP2 [1].

mJ per pulse). The crystal is temperature regulated with a cooling water line. A single

pulse from the Ti:Sapphire laser is sent into the regen from the first thin film polarizer

(TP1). It passes through a Pockels cell (PC1) which rotates the polarization of the

pulse by 45◦ [10]. The pulse reflects off mirror M1 and passes again through PC1 which

rotates the polarization by another 45◦. The pulse is now polarized orthogonal to its

initial polarization and therefore passes through TP1. The voltage on the Pockels cell

is now turned off, preventing further pulses from entering the regen cavity and trapping

the first pulse in the cavity.
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The pulse oscillates approximately 18 times in the regen. During each pass, the pulse

sweeps out gain from the Ti:Sapphire crystal. The output pulse energy is increased by

roughly a factor of 5 × 106 over the input energy. The second Pockels cell (PC2) is then

triggered, rotating the polarization of the pulse so that the amplified pulse is ejected

from the cavity by TP2.

A photodiode monitors the portion of the amplified light leaking out of the regen

cavity through M1. Only during the last 4 or 5 passes through the cavity is there

enough light to measure in this manner. The time delay between triggering PC1 and

PC2 is adjusted so that the pulse is switched out just after the pulse energy saturates. If

the pulse remains in the cavity too long, no more gain can be removed from the crystal

and the pulse energy decreases. The switching is performed slightly after saturation to

remove dependence on the fluctuation of the input beam. The timings of the Pockels

cells are controlled by a Stanford Research Systems (SRS) DDG 535 pulse box, which

is synchronized to the Nd:YAG laser. The output of the regen is typically 5.0 mJ per

pulse.

The regen cavity is itself a laser cavity and must be aligned frequently for proper

operation. Typically, alignment is performed at the beginning of each day and three to

five times a day depending on the stability of the Ti:Sapphire laser output. To begin

alignment, the input seed light from the Ti:Sapphire laser is blocked. The switching

time of PC2 is then increased by 3 µs. This traps any light in the cavity for a large
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number of round trips. Then, 0.2 W of 532 nm Nd:YAG pump light is sent into the

Ti:Sapphire crystal in the regen cavity. The crystal fluorescence is enough to promote

lasing in the cavity. A CCD camera observes the laser output reflected off of M3. The

alignment of the cavity is adjusted to maximize the observed intensity. The strength

of the Nd:YAG pump light is then reduced to a level where lasing in the regen cavity is

barely visible. The amount of pump light is then measured with a power meter and this

value is recorded as the threshold value. The typical threshold value is approximately

0.18 W. Significant deviation from this value indicates potential problems with the

regen such as: poor Nd:YAG input pulse quality, problems with either PC1 or PC2,

a significant misalignment of the regen cavity, or dust on the face of the Ti:Sapphire

crystal. The switching time of PC2 is then reduced by 3 µs. Failure to do so may cause

significant damage to the regen system. The seed light from the Ti:Sapphire laser is

then reintroduced into the cavity. The alignment of the seed light is tuned to maximize

the output power in the regen as seen by the photodiode. The power of the pump light

is then slightly adjusted so that the system lases just at the saturation point of the

regen.

2.4.8 Multipass Amplifier

The multipass amplifier provides a second amplification step for chirped laser pulses

prior to compression. Output pulses from the regen are directed into the multipass
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amplifier. Just like the regenerative amplifier, amplification is achieved by passing

the laser pulse through a Ti:Sapphire crystal that is pumped with the 532 nm output

from a Nd:YAG laser. The crystal is cooled with a chilled water line. While the

regen makes use of two Pockels cells to switch a pulse in and out of a laser cavity,

the multipass amplifier passes a laser pulse through a Ti:Sapphire crystal three times

without retracing its path. The gain of the multipass amplifier can be continuously

varied from zero up to a factor of 10 by controlling the amount of Nd:YAG pump light

introduced into the Ti:Sapphire crystal. Final output pulse energy from the multipass

amplifier is typically 40 mJ, with a total output power of 0.6 W.

2.4.9 Compressor

The temporal chirp which was introduced by the expander is mostly linear and re-

versible. Therefore, after amplification, pulses are sent through a compressor which

removes the linear chirp. A schematic of the compressor is shown in figure 2.8. Func-

tionally, it is quite similar to the expander. Input pulses are diffracted off a grating

four times to reverse the frequency chirp introduced by the expander. The grating

angle of the compressor is approximately 54◦ and exactly matches that of the expander

when properly aligned. The retro-reflecting mirror pair in the compressor (the analog

of mirror M2 in figure 2.6) is mounted on a translation stage so that the relative path

lengths for the various frequency components can be adjusted. This adjustment allows



CHAPTER 2. EXPERIMENTAL APPARATUS 51

Figure 2.8: Schematic of the laser pulse compressor [1].

some “fine-tuning” of the relative path lengths of the frequency components. Proper

alignment of the compressor results in zero temporal chirp of the output pulses. The

output pulses from the compressor are approximately 150 fs in duration and have a

pulse energy of 30 mJ. The peak power present after pulse compression is on the order

of 1011 W.

2.5 Characterization of Laser Pulses

A typical problem that arises when trying to characterize ultrashort laser pulses is that

only recently have electronic devices been developed which have response times less
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than 500 ps. Measuring pulses that are typically orders of magnitude shorter than

this limit can only be achieved optically. In short, only ultrashort laser pulses are

short enough to measure ultrashort laser pulses. Several different techniques exist for

recovering the temporal and / or frequency profile of ultrashort laser pulses. In this

thesis, single shot autocorrelation is used to recover the temporal profile of ultrashort

pulses. The frequency profile of each pulse is then measured with a spectrometer.

2.5.1 Single Shot Autocorrelator

In a single shot autocorrelator, a beam splitter is used to create two copies of an

ultrashort laser pulse. The two pulses then cross at a small angle in a nonlinear second

harmonic generation crystal. A burst of second harmonic light is created if the two

input pulses are overlapped both spatially and temporally. The geometrical width of

the frequency doubled light is proportional to the length of the initial pulse. A charge

coupled device (CCD) camera observes the position of the second harmonic output.

When a glass slide of known thickness is inserted into one leg of the autocorrelator,

the slide delays one leg of the input light by an amount ∆t = d
c
(n − 1), where d is

the thickness of the slide and n is the index of refraction of the glass. This time delay

causes the doubled light to appear in a different spatial position. Direct comparison

of the glass slide induced shift in the centroid of the doubled light to the width of the

doubled light pulse leads to a calibrated value for the FWHM of the original pulse.
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2.5.2 Spectrometer

A simple grating spectrometer is used to roughly measure the absolute frequency of

the laser pulses used in the lab. Light is directed into the spectrometer through a 0.5

mm wide slit. The output of the spectrometer is measured with a CCD camera which

is hooked up to a monochrome video monitor. A vertical line marked on the monitor

indicates the alignment point of the output. To determine the frequency of the light

entering the spectrometer, the frequency dial is turned until the spectrometer output,

as seen on the monitor, is aligned with the calibration point marked on the monitor

screen. The wavelength of the input pulse is then read off of the frequency dial. The

spectrometer is accurate to 0.1 nm. The calibration point is determined by directing

light from several known frequency standards into the spectrometer. The frequency

dial is turned until the readout matches the known value of the frequency standard.

Then a mark is made on the monitor screen at the brightest point of spectrometer

output.

2.6 Single Shot Detector

Monitoring the evolution of wavepacket dynamics on the picosecond time scale can be

more complicated than manipulating dynamics on that time scale. Due to the relatively

slow response time of electronic measuring devices, the only method to measure events
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which occur in such short times is interaction with ultrashort optical pulses. To observe

wavepacket dynamics at a given instant, it is necessary to use a “camera” with a shutter

that is faster than the dynamics of interest. Otherwise, the picture is blurred. This is

the main idea behind time dependent spectroscopy.

In a typical pump - probe experiment, an initial short optical “pump” pulse puts

the system into some state of interest. The goal is to determine the subsequent dy-

namics of this state. Some time delay, ∆t after the pump pulse creates the state, a

second “probe” pulse affects the dynamics of the system in a detectable manner. By

varying ∆t and observing the final state of the system after the two pulses, conclu-

sions can be drawn about the dynamics of the initial wavepacket. Many variations of

time domain spectroscopy have developed in recent years. Among them photoioniza-

tion spectroscopy [11], fluorescence spectroscopy [11], the optical Ramsey method [12],

impulse momentum retrieval [13], pulsed field ionization [14], and the atomic streak

camera [15].

All present time domain methods are inherently destructive to the wavepacket. To

recover dynamical information for a large number of time delays, many identical copies

of the original wavepacket must be created. This introduces a potentially large source

of error if each copy of the initial wavepacket is slightly different. Furthermore, over the

course of an hour long scan of pump - probe time delays, many experimental parameters

may drift by some amount. If any other parameters are to be varied as well, the amount
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of time necessary to complete one measurement becomes prohibitively long.

To avoid these difficulties, a method of recording a 100 ps long window of pump

- probe information in a single laser shot has been developed [1, 16]. The pump and

probe pulses counterpropagate through an interaction region. Due to the finite speed

of propagation, a position dependent pump - probe time delay exists along the axis of

propagation. The path lengths of the pump and probe beam are arranged so that they

arrive simultaneously on one edge of the interaction region.

A schematic of the single shot detector is shown in figure 2.9. The atomic beam

enters a 12 mm tall region between two 7.5 cm × 7.5 cm parallel field plates. The upper

field plate has a 25 mm by 2 mm slit cut in it such that the long dimension of the slit is

perpendicular to the atomic beam. Ions are created in the interaction region through

interaction with a combination of laser pulses and electrical pulses and fields. The ions

are accelerated upward by an electric field. Ions pass through the slit in the upper field

plate and are incident upon a pair of microchannel plates (MCPs) with their position

along the length of the slit preserved.

The MCPs are located approximately 1 cm above the upper field plate. A steel

ring assembly consisting of three rings holds the two MCPs. The first steel ring is

located directly below the lowest MCP and is held at -1400 V. A second ring is located

between the two MCPs and is allowed to float. The third ring is located above the top

MCP and is grounded. The assembly is held together with three plastic screws. The
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Figure 2.9: Schematic of the single shot detector when used to measure a continuous
range of pump - probe time delays in a single laser shot. About 100 ps of time delay
can be measured per laser shot [16].
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two MCPs have matched resistances of 1.5 × 108 Ω. Each MCP provides a gain of

approximately 300 with a bias voltage of -700 V. Increasing the magnitude of the bias

voltage does increase the gain in the MCPs, however the MCPs begin to deviate from

a linear response for bias voltages larger than 700 V in magnitude. All experiments

performed in this thesis take data in “current” mode, where the total amount of ion

yield is measured. This differs from “single-event” mode where each individual ion

striking the MCPs is counted.

A phosphor screen with a 3 cm2 active area is situated 3 mm above the microchannel

plates. The phosphor is mounted on a piece of glass held between two stainless steel

plates. The phosphor assembly is held at a bias voltage of 4500 V. Electrons leaving

the microchannel plates strike the phosphor screen, causing the screen to fluoresce.

The electron flux energy threshold for phosphor fluorescence is 5 × 10−5 W/cm2. The

phosphor saturates at a current of 0.3 A/cm2 [17].

Position information observed on the phosphor screen is directly correlated to the

position of ions in the interaction region. The fluorescence of the phosphor is observed

by a CCD camera located directly above the phosphor screen and exterior to the vacuum

chamber. The phosphor output is blue (approximately 450 nm) and the CCD camera is

most sensitive to red and the near IR. One possible future improvement to the detector

would be to replace the current CCD camera with one more sensitive to the wavelength

of light emitted by the phosphor. The video signal from the CCD camera is recorded
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by the data acquisition software (see section 2.7).

The ensemble position of the ion cloud along the laser propagation axis is preserved

from the interaction region to the phosphor screen. Therefore, the pump - probe time

delay information is displayed as position information on the phosphor screen. The

detector can measure approximately 100 ps of time delay information in a single laser

shot. Other parameters (such as laser frequency or HCP field strength) are varied be-

tween successive laser shots. The single shot detector greatly reduces the time necessary

for data collection when compared with traditional pump - probe experiments.

2.7 Data Collection Software

Two different data collection programs are used to record data from the experiments

presented in this thesis. The first program (DC410) is designed to record single line

traces directly from an oscilloscope and was written by T.J. Bensky. The second pro-

gram (HL Image) captures a standard NTSC screen image from a CCD camera through

a PCI frame grabber card in a computer. The main HL Image program was purchased,

however a data collection tool for HL Image unique to the current experimental setup

was written by T.J. Bensky and edited by J.G. Zeibel.
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2.7.1 DC410

The program “Data Collection 410” or DC410 reads voltage vs. time output from a

video triggered Tektronix 410A oscilloscope through a General Purpose Interface Board

(GPIB). The oscilloscope records a single digitized video line from a CCD camera image.

DC410 averages a single line of data from approximately 50 successive separate laser

shots together to form an averaged data file. This averaged data file is then recorded

to disk. Voltage pulses are sent through the parallel port of a computer to command

a stepper motor to turn a set amount after each data file is recorded. Typically, the

stepper motor is connected to a micrometer dial on a delay stage or a knob on a voltage

supply. In this way, an oscilloscope trace is recorded for each value of time or voltage

determined by the position of the motor. The change in position or voltage between

steps occurs over less than 0.5 seconds. Each motor step is considered instantaneous

relative to the 15 seconds required to record each data file. The DC410 program is

used primarily for daily HCP calibration, where oscilloscope traces are taken at small

(∼1V) steps of HCP input voltage. The HCP calibration procedure will be described

fully in section 3.2.

2.7.2 HL Image

The majority of the data collected for the experiments presented in this work is taken

with a frame grabbing software called HL Image. The “active” region of the phosphor
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(where data signals are observed) contains approximately 600 pixels by 60 pixels when

viewed by the CCD camera. The line output from the camera is connected to a frame

grabbing board in a computer. HL Image translates the video input into a window

on the computer desktop. A region of interest (ROI) is selected in the video window.

The ROI contains the signal to be measured. Typically, some number of individual

video frames are averaged together to produce an average image. This number varies

depending on the signal to noise ratio of the data being taken, but is usually between

10 and 50. Data may be collected in either raw mode or integrated mode. In raw mode,

the 36,000 individual points in the ROI are each recorded as a matrix for each data

file. In integrated mode, data points along the shorter dimension of the ROI are added

together and then saved. The result is 600 individual data points. Each point contains

the integrated signal in each column of 60 points. Through this added integration

step, data collected through HL Image has a 60 fold increase in signal averaging when

compared to data collected with DC410. However, HL Image lacks the stepper motor

controls present in DC410. A screen shot of the computer desktop while HL Image is

being used to take data is shown in figure 2.10.

Real time normalization is possible with HL Image. Averaged data files are taken at

the maximum and minimum signal strengths and saved to disk as Snorm and Sbackground

respectively. During data collection, the raw signal is normalized by equation 2.2 prior
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Figure 2.10: A screen shot of HL Image while taking data. The video window shows
the image sent to the computer by the CCD camera. The red box in the video window
is the region of interest (ROI). Light regions in the video signal correspond to areas of
the interaction region where large numbers of ions are being produced. Data is being
taken in integrated mode in this figure. The trace that appears in the data toolbox
window is data which will be written to disk [18].
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to being saved to disk.

Scorrected =
Sraw − Sbackground
Snorm − Sbackground

(2.2)

The normalization is necessary to correct for geometrical differences in laser alignment

and atomic beam position in the interaction region as well as phosphor sensitivity.

Data recorded by HL Image for this thesis is taken entirely in integrated mode. No

variables are changed as a function of two spatial coordinates simultaneously. Experi-

ments may be performed in the future which make use of the full 3 dimensional data

recording capabilities of HL Image. For example, time of flight information may be

encoded along the horizontal axis, orthogonal to the time delay information. Such a

modification would require data to be taken in raw mode. Future improvements such as

this will hopefully extend the size of the parameter spaces which may be investigated.
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Chapter 3

Half Cycle Pulses (HCPs)

Only when a wavepacket is near the atomic core is it able to absorb light from an optical

pulse [1–4]. In contrast, HCPs are used to give the entire wavefunction a ‘kick’ in one

direction regardless of the position distribution. HCPs have been used to measure

the exact quantum state of wavepackets [5] as well as to determine momentum space

distributions [4]. When used to manipulate electron dynamics, HCPs have been used

to ionize both wavepackets and eigenstates [1–3,6], to cause transitions between states

[7], and to recombine electrons that have ionized to again form bound systems [8, 9].

Together, the combination of short optical pulses and HCPs provide two essential tools

for manipulating and probing wavepacket dynamics.

The method used for generating the HCP fields used in this thesis is discussed in the

next section. Calibration of HCP fields is then discussed in section 3.2. The Impulse

66
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Momentum Retrieval (IMR) method is used to determine the momentum distribution

of a wavepacket through HCP interaction. The details of IMR are introduced in section

3.3. Finally, a new variation on the IMR method known as lock-in IMR is introduced.

Sample results from lock-in IMR are compared to previous results to demonstrate the

effectiveness of the new method.

3.1 Half Cycle Pulse Generation

HCPs are generated by illuminating a wafer of biased gallium-arsenide (GaAs) semi-

conductor with a short pulse of ∼780 nm Ti:Sapphire light. The GaAs wafer is photo-

conductive with a band gap of approximately 1.4 eV. Light with wavelengths less than

approximately 880 nm will promote the semiconductor to the conduction band. Only

approximately 40 µJ/cm2 is necessary to saturate conduction within the GaAs wafer [1].

Therefore, much of the Ti:Sapphire laser light is attenuated prior to hitting the GaAs

wafer. Each wafer is 0.5 mm thick and has an internal resistance of 109 Ω/cm [10].

While in the insulating band, each GaAs wafer can hold off several kilovolts across 1

cm without breaking down.

A schematic of the HCP production process is shown in figure 3.1. When the

Ti:Sapphire laser pulse hits the wafer, electrons within the wafer quickly accelerate due

to the bias field. The accelerating electrons radiate a short, nearly uni-polar pulsed

field which propagates away from the wafer. The radiated field is polarized along the



CHAPTER 3. HALF CYCLE PULSES (HCPS) 68

Figure 3.1: Diagram of the method used to produce a HCP field.

axis defined by the +HV lead and ground. The radiated field strength is linearly

proportional to the strength of the bias field. The rise time of the radiated field is

approximately 0.5 ps.

After the Ti:Sapphire laser pulse has past, the wafer returns to the insulating state.

This transition is much slower than the conduction band transition. Electrons decel-

erate over a period of hundreds of picoseconds. The deceleration produces a field in

the opposite direction to that of the initial field, however the maximum strength of

the ‘recoil’ field is typically a factor of 5-10 smaller than the initial pulse height. This

negative tail reduces the total time averaged force produced by the total radiated field,

although the net force is still nonzero. A graphical representation of a typical HCP

temporal profile is shown in figure 3.2.
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Figure 3.2: Schematic of a typical pulse shape of a HCP field [11]. The initial positive
pulse is approximately 1 ps in duration. The negative tail of the HCP persists for
hundreds of picoseconds.

The HCP field produced by the GaAs wafer scales linearly with the area of the wafer

up to an area of approximately 1 cm2. The GaAs wafers which are used in this thesis

are initially roughly circular and approximately 5 cm in diameter. Each large wafer

can be cut into approximately 4 smaller rectangles, each approximately 1.5 cm on a

side. Uniform, thin voltage leads approximately 1 mm wide are applied to the top and

bottom of one of the wafer pieces with silvered conducting paint. The painted voltage

leads must be smooth and uniform as any sharp features in the leads will result in large

field gradients and breakdown of the wafer. A wire is connected to the upper lead,

while the lower lead is grounded and mounted to the vacuum chamber on a piece of
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aluminum. The wire connected to the upper lead is attached to an insulated metal rod

on a voltage feedthrough. A bias voltage of up to 10 kV is applied to the rod outside

the vacuum chamber. The applied voltage is monitored with a high voltage probe.

The Ti:Sapphire laser pulse used to promote the wafer to the conduction band is

expanded in a telescope so that it covers the entire area of the wafer. Any portion of the

wafer shielded from the Ti:Sapphire light will not conduct and breakdown may occur

within the wafer as electrons are forced to find ways around the shaded area. Once a

breakdown of the semiconducting material has occurred in any part of the wafer, the

effective area which produces HCP fields is significantly reduced and the wafer must

be replaced. An IR card is used to check the size and alignment of the laser pulse by

looking at the shadow created by the wafer in the laser pulse while the chamber is open.

The bias field to the GaAs wafer is created in a HV transformer pulse box. A small

input voltage (0 V - 60 V) is applied to a transformer. When triggered, the pulse box

outputs a 500 µs long voltage pulse with a 50 µs rise time. The maximum output

voltage is approximately 100 times the input voltage. The polarity of the HV pulse is

selected by a switch. The HV bias field polarity determines the polarity of the HCP

field. The trigger for the HV pulse arrives approximately 60 µs before the main laser

trigger so that the point of highest voltage of the HV bias field corresponds to the

arrival of the Ti:Sapphire laser pulse.
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3.2 HCP Calibration

One difficulty with using HCPs is the need to obtain a calibration of the impulse

strength of a given HCP field. As discussed in section 2.5, pulses shorter than 1 ns can

not be effectively measured by electronic means. A method of measuring the amount

of momentum imparted to an electron by a given HCP field is needed. A calibration

procedure was developed by Jones et al. which measures the nonzero time integrated

component of a HCP field by analyzing HCP interaction with specific, known states [1].

They use HCP ionization of Rydberg eigenstates to perform the calibration and this

method will be employed to calibrate the HCP fields used in this work.

The nature of the interaction of HCPs with Rydberg states and Rydberg wavepack-

ets is determined by the orbit time of the Rydberg electron. HCPs generated by the

procedure discussed in section 3.1 are typically around τHCP = 1 ps in duration. The

Kepler period of a Rydberg eigenstate with principle quantum number n is given by

τK = 2πn3. If τK is much greater than τHCP , the the HCP - electron interaction can be

treated impulsively. The HCP field can be approximated by a delta function impulsive

kick. However, if τK ¿ τHCP , then the HCP field must be treated like a slowly varying

field. In this thesis, we work entirely in the impulsive regime. For a 1 ps FWHM HCP

field, to be safely in the impulsive limit we restrict our analysis to n > 17 [12].

For the purpose of this analysis, we consider a Rydberg electron to be a classical

entity with momentum ~p0. In the impulsive HCP limit, its momentum after interacting
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with a HCP field is ~p = ~p0 + ~A. Here ~A is defined as the impulse transferred to the

electron by the HCP. ~A is determined from the time integral of the HCP field and is

given by

~A = −
∫

~FHCP (t)dt . (3.1)

Only for a half cycle pulse is the value of ~A significantly different from zero.

Prior to HCP interaction, an electron moving with momentum ~p0 has energy

E0 =
p20
2

+ V (~r) (3.2)

where V (~r) is the potential energy of the electron. By substituting the momentum

after HCP interaction, an expression for the final energy of the electron is obtained,

Ef =
1

2
|~p0|2 + V (~r) + ~p0 · ~A +

1

2
| ~A|2 , (3.3)

where we have made the assumption that the electron’s motion during the HCP is

negligible. The shift in energy, ∆E, due to HCP interaction is therefore given by:

∆E = Ef − E0 = ~p0 · ~A +
1

2
| ~A|2 . (3.4)

The energy gained or lost by the electron due to HCP interaction depends only on its

initial momentum (and direction) and the time integrated field of the HCP.

For a HCP field to ionize a Rydberg eigenstate, the change in energy given by

equation 3.4 must be greater than the electron’s binding energy. The binding energy

of a Rydberg electron with principle quantum number n in the absence of any static



CHAPTER 3. HALF CYCLE PULSES (HCPS) 73

fields, is given by

En = − Z2

2n2
, (3.5)

where Z is the effective charge of the atomic core. Combining equations 3.4 and 3.5

and solving for the momentum yields

pc ≡
Z2

2n2A
− A

2
. (3.6)

A HCP impulse of strength A will ionize a Rydberg state with principle quantum

number n if the momentum of the electron along the direction of the HCP is greater

than or equal to pc.

The calibration procedure is performed in the following manner. First, a population

of Rydberg eigenstates with identical principle quantum number n is prepared in a given

atomic sample. The amount of HCP ionization of the sample is then measured as a

function of HCP field for several values of n. The HCP field strength is controlled by the

DC410 data acquisition software which slowly increments a stepper motor controlling

the input voltage to the HV transformer. Weak HCP fields do not ionize any of the

Rydberg population. Very strong HCP fields ionize all of the Rydberg population,

regardless of the momentum of each electron in the ensemble. Due to the symmetry

of the eigenstates, equal fractions of the wavepacket have p0 > 0 and p0 < 0. When

pc = 0 in equation 3.6, 50% of the initial Rydberg population has been ionized. [1–3].

Figure 3.3 shows HCP ionization of four different Ca Rydberg states as a function

of input voltage to the HV transformer. The solid lines are ionization scans taken
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Figure 3.3: Measured ionization probabilities for the 40d, 35d, 30d, and 25d eigenstates
of calcium as a input voltage to the HV transformer which generates the HV bias on
the GaAs wafer. The solid (dashed) curves are for a positive (negative) bias field.
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at positive bias voltages. The dashed lines are ionization scans taken at negative bias

fields. The polarity of the bias voltage determines the polarity of the HCP field. Higher

n states are completely ionized at lower HCP fields than lower n states. The maximum

amount of observed ionization for each n state is normalized to unity. Input voltages

resulting in 10% and 50% ionization are then recorded. Uncertainty in the measured

ion yield corresponding to 100% ionization introduces an error of ∼5% in the input

voltage of the 50% ionization point. The HCP field is calibrated in atomic units by

setting the value of the HCP impulse that results in 50% ionization to the value A = 1
n

(i.e. pc = 0). These values are compared to calibrated values to recover the HCP field

in V/cm [1–4,13].

HCP ionization data similar to figure 3.3 are measured at the beginning and end

of each day, as well as after any major change in the alignment of the laser system.

Any significant deviation in the location of the 50% ionization point signals a problem

with either the laser alignment, GaAs wafer integrity, or both. The average value of

the 50% ionization point for each n state is calculated from an average of all HCP

ionization scans taken on a given day. These values are used to calibrate all HCP field

measurements taken that day.

Classical calculations of HCP ionization of Rydberg states have been done by several

people [1–4,13,14]. The classical calculations are performed by numerically integrating

the equations of motion for an electron bound to an atomic core by the Coulomb



CHAPTER 3. HALF CYCLE PULSES (HCPS) 76

Figure 3.4: Classical calculation of HCP induced ionization of a Rydberg eigenstate.
Shown for d state eigenstates of n = 45,35,27,22,19, and 15.

potential. A complete description of the classical calculations performed for this thesis

can be found in appendix B. Calculated HCP ionization curves for six values of n are

presented in figure 3.4. The overall shape of the HCP ionization curves is reproduced

well by the calculations. The relative magnitudes of HCP ionization for successive n

values is also consistent with measured data.

3.3 Impulse Momentum Retrieval

As discussed in section 1.4, an electron may gain or lose energy due to HCP interaction

regardless of its position. From equation 3.6, we know that a HCP field will ionize an



CHAPTER 3. HALF CYCLE PULSES (HCPS) 77

electron with momentum p along the HCP axis when p ≥ pc. Therefore, it is possible

to recover information about the average momentum distribution of an ensemble of

electrons by applying a HCP field. The technique used to recover the momentum

distribution is known as impulse momentum retrieval or IMR. IMR relies on the fact

that the total HCP ionization signal is the integral of the momentum distribution in

scaled units. Therefore, recovering a derivative of the HCP ionization data yields a

momentum distribution along the direction of the HCP polarization axis.

3.3.1 Normal IMR

Experimentally, the amount of HCP induced ionization of a given Rydberg eigenstate

or electronic wavepacket is measured as a function of HCP field. The ionization curves

are then calibrated in atomic units of HCP impulse. A spline fit to the ionization

curves is performed. The derivative of the ionization curves, dI
dA

is recovered through

the spline fitting routine. Here, I represents the measured ionization probability. It is

this quantity that is measured. After we measure I as a function of A, we then compute

dP
dA

, where P is the probability that system has ionized due to a HCP of strength A

with field polarized along n̂. We want to determine dP
dpn

. From the chain rule we have

dP

dpn
=

(

dP

dA

) (

dA

dpn

)

, (3.7)

The resulting graph is the normalized momentum distribution of the system along the

direction of HCP polarization. An example of IMR for an eigenstate is shown in figure
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Figure 3.5: Measured probability distribution for p0z
for the Na 25d state obtained using

the IMR technique (solid curve). Shown also is a theoretical momentum distribution
for comparison. Inset: The ionization probability used to generate the experimental
momentum distribution. Actual data points are shown with circles and the spline fit
to the data is shown in the solid line [4].
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3.5 [4].

3.3.2 Lock-In IMR

Previous applications of IMR have directly measured the amount of wavepacket ioniza-

tion as a function of HCP field strength. Suppose we have a wavepacket with average

energy Ewp. Any portions of the wavepacket with momentum p0 along the HCP field

polarization axis with

p0 ≥
Ewp

A
− A

2
(3.8)

will be ionized by a HCP field of strength A. The probability the wavepacket has

momentum equal to p0 is proportional to the derivative of the HCP ionization curve.

Unlike the previous IMR work [4,16], lock-in IMR measures the derivative of the HCP

induced ionization directly instead of measuring the fraction of the wavepacket ionized

and then calculating its derivative.

In lock-in IMR, the ramped voltage applied to the GaAs wafer which creates the

HCP field has the form

F (t) = F0

(

t

T

)

+∆F · cos
(

2πft
)

. (3.9)

F0 is the maximum voltage applied to the GaAs wafer, T is the total length of the

scan, and f and ∆F are the frequency and magnitude of a small applied sinusoidal

voltage variation. Figure 3.6 shows a plot of measured HCP ionization signal of an

n = 35 Rydberg eigenstate. The ionization signal oscillates at the same frequency as
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the HCP bias voltage. For the data shown in figure 3.6, f = 0.02. The magnitude of

the oscillation in the ionization signal is proportional to the derivative of the ionization

signal.

A small window of the data is created by multiplying the oscillating “dithered”

signal by a Gaussian envelope. An example of the resulting data window is shown in

figure 3.6(b). One window is created for each value of HCP field strength, F0(t/T ).

Each window is then Fourier transformed, yielding a frequency spectrum for each field

strength. Multiplication of the each data window by a Gaussian envelope removes all

artificial hard edges created in each data window before Fourier transforming. This

eliminates a source of artificial noise in the Fourier spectrum. The spectral power at

the frequency f for each data window is recovered by integrating an area around f in

the Fourier spectrum. This power is proportional to the amount of variation in the

ion signal and is labeled SAC . Similarly, the zero frequency component of the Fourier

transform yields the DC component of each data window (labeled SDC). SDC is equal

to the previous direct measurements of HCP ionization [4]. The Fourier spectrum for a

typical data window is shown in figure 3.7. The sections of the frequency distribution

which are integrated to yield SAC and SDC are shaded. For this technique to be

meaningful, it is required that ∆F ¿ F0 and 1/f ¿ T . These conditions ensure

that the number of oscillation cycles over any small range of F0 is large and that ∆S
∆F

approximates dS
dF

.
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Figure 3.6: (a) HCP ionization scan of a Rydberg eigenstate with a dithered HCP input
voltage. Modulations in the ionization signal due to the HCP voltage dither are visible
in the inset. (b) The black curve is the HCP ionization signal which was shown in the
inset in (a). The red curve is the ionization signal multiplied by a Gaussian envelope
function centered at 4.25 kV/cm. A Fourier transform of the red curve yields the values
of SAC and SDC at 4.25 kV/cm.
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Figure 3.7: The black curve is a Fourier transform of a single Gaussian window of a
sample lock-in IMR data scan. This frequency spectrum is the Fourier transform of the
red curve in figure 3.6. A large peak in the frequency spectrum occurs at zero frequency
due to the DC offset of the data. A smaller peak occurs at the dither frequency f . A
small region (sampling window) around each peak is integrated to determine the values
of SAC and SDC for the HCP field strength at the center of the Gaussian envelope.

Due to the redundancy introduced by simultaneously measuring an ionization sig-

nal (SDC), and its derivative (SAC), additional DC noise reduction is possible. The

measured value of SDC can be written as

SDC(F ) = S(F ) ·N(F ) , (3.10)

where S(F ) is a reduced noise signal as a function of HCP field and N(F ) is a function

which represents the noise common to both the “AC” and “DC” signals. N(F ) is

composed of amplitude noise which varies over time scales longer than the sampling
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window. This may arise from fluctuations in the laser power or atom density. In a

similar manner, the measured value of SAC can be written as

SAC(F ) =
dS(F )

dF
·N(F ) ·∆F , (3.11)

where dS(F )
dF

is the noise reduced derivative signal as a function of HCP field and ∆F is

the constant magnitude of the applied sinusoidal oscillation. The noise function N(F )

is identical for both SDC(F ) and SAC(F ). Solving this system of differential equations

for N(F ) yields

N(F ) =
(

N(0)

SDC(0)

)

SDC(F ) exp
[

−
∫ F

0

(

SAC(F
′)

SDC(F ′)

) (

1

∆F

)

dF ′
]

. (3.12)

Therefore, dS(F )
dF

can be obtained by dividing SAC(F ) by N(F ) and ∆F . The normal-

ization function N(F ) typically varies by at most 20% across all field values. To get

the momentum distribution from dS(F )
dF

, a simple chain rule yields

dS(F )

dp
=

(

dS(F )

dF

) (

dF

dA

) (

dA

dp

)

. (3.13)

Equations 3.1 and 3.8 are then used to convert S(F ) to S(p).

In principle, a single scan of HCP field strength can be used to recover the entire

momentum distribution of a given wavepacket along a given axis. In practice however,

it is experimentally difficult to accurately map the portion of the distribution which

requires very strong HCP field strengths. To correct for this, two separate scans are

typically taken with opposite HCP polarities (for example along +ẑ and -ẑ) to create
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a single momentum distribution. For example, a HCP field polarized along −ẑ is used

to measure momentum values −∞ < pz < .015. Then a HCP polarized along +ẑ

measures the fraction of the wavepacket with −.015 < pz <∞. In the region of overlap

a difference function is created such that

δ = p+z − a · p−z . (3.14)

The value of a is chosen which minimizes the parameter δ and a final, combined mo-

mentum distribution is obtained. Typically, 0.9 ≤ a ≤ 1.1. Once a value for a has been

determined then the momentum distributions are combined into a single distribution.

A weighted linear interpolation between the two halves is performed in the region of

overlap. For example, at precisely p = 0 the final momentum distribution is determined

by adding 0.5× p+z and 0.5× a · p−z .

3.3.3 Momentum of a Radial Wavepacket

To test the effectiveness of the lock-in IMR technique, the momentum distribution of a

radial Rydberg wavepacket is recovered and compared to a similar result using normal

IMR. First, a wavepacket is created by exciting Ca atoms through an intermediate

4s4s state to a 4snd radial wavepacket. The wavepacket is created with a 15 cm−1, 1

ps laser pulse and contains approximately seven n states centered around n = 36. A

state selective field ionization scan of the wavepacket is shown in figure 3.8 [15]. HCP

ionization scans of the wavepacket are taken for HCP fields aligned along both +x̂ and
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Figure 3.8: State selective field ionization (SSFI) scan of the radial Rydberg wavepacket
used to test the lock-in IMR technique. The packet is centered around n = 36 and
contains approximately seven n states. Each n value is shown on the plot.

−x̂ with the lock-in IMR technique. The two scans are then combined through the

method described in equation 3.14. The resulting momentum distribution is shown in

figure 3.9.

Momentum distributions of radial wavepackets taken with the normal IMR tech-

nique can be found in reference [16], however that work did not combine two antiparallel

scans to produce a final distribution. (For comparison, momentum distributions of a

Stark wavepacket obtained through normal IMR can be found in [17] which are created

by combining two antiparallel HCP ionization scans.) A quantum mechanical calcula-

tion of the x̂ momentum distribution of a radial Rydberg wavepacket is shown in figure
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Figure 3.9: Recovered momentum distribution of a radial Rydberg wavepacket using
the lock-in IMR method. The time axis shows the time between the creation of the
wavepacket and the probe.
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3.10 [16, 18]. Both full and fractional revivals of the radial wavepacket can be seen in

both the lock-in IMR obtained momentum distribution and the quantum calculations.

The fractional revivals are not observed in [16]. In general, the signal to noise ratio

achieved through lock-in IMR is up to a factor of two better than the original IMR

method. However, small features such as the fractional revival structure are visible

with the lock-in IMR method which are not seen in the regular IMR method.

The main advantage to the lock-in IMR technique is the reduced sensitivity to noise.

A high signal to noise ratio is possible in the experimental investigation of the radial

Rydberg wavepacket. Therefore, the normal IMR method can be applied to recover

momentum distribution information. In this case, the lock-in IMR method is used to

improve the detail which can be measured in the momentum distribution. However,

when trying to study more complex wavepackets (such as the recombined electronic

wavepacket in chapter 6) the signal to noise ratio is frequently low. A low signal to

noise ratio renders the normal IMR method ineffective. In these cases, the only possible

way to recover the momentum distribution of the wavepacket is through lock-in IMR.
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Figure 3.10: Quantum mechanical calculation of the momentum distribution of a radial
Rydberg wavepacket [18].
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Chapter 4

Manipulating Wavepacket

Dynamics Part 1: Centrifugal

Electron - Ion Recombination

4.1 Introduction

Very well described in chapter 3 is one type of novel electromagnetic interaction (the

HCP field) which we use to change the electron’s environment. In this chapter, we use

HCPs to affect the dynamics of atoms which have “fallen apart”. That is, we apply

HCP fields to a system of an electron and a nearby ion and monitor how the electron

- ion system responds. The work presented in this chapter has been published in [1].
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The formation of a neutral atom from the combination of an ion and a free elec-

tron is a complicated process which has been the subject of considerable study [2, 10].

Typically, recombination is facilitated by a third body which extracts energy from a

continuum electron while it is in the vicinity of an ion. In radiative recombination

(RR), the third body is a photon that is produced, via spontaneous or stimulated emis-

sion, during an electron-ion collision. In three-body recombination (TBR), the primary

electron-ion collision takes place in the field of a passing charged particle which carries

off the excess energy and momentum. Dielectronic recombination (DR) is a two-step

process that proceeds via resonant collisional energy transfer from the free electron to

a bound electron on the participating ion. The continuum electron is captured into an

autoionizing state which is stabilized via spontaneous or stimulated photon emission.

While each of these recombination mechanisms is conceptually simple, calculating

accurate recombination rates is difficult in practice. In any plasma, the net recombina-

tion rate and the relative importance of the various recombination mechanisms depends

on a number of parameters including the density, temperature, and electronic structure

of the constituent ionic and neutral species [2–6]. Nevertheless, detailed knowledge of

recombination rates is critical to studies in diverse areas such as the stability of fu-

sion or interstellar plasmas [2,7], the behavior of ultra-cold Rydberg gases [8], and the

formation of antihydrogen from trapped positrons and antiprotons [9].

One method of experimentally investigating recombination events was developed by



CHAPTER 4. CENTRIFUGAL ELECTRON - ION RECOMBINATION 93

Bensky et al. [11]. In their method, HCPs (such as those introduced in chapter 3) have

been successfully used to mimic the time dependent collision fields responsible for TBR.

In this chapter, experiments are described which investigate a new method of studying

the effects of static fields on electron - ion recombination based on the techniques

developed by Bensky [11, 12]. The role of the collision angle, θ, between an applied

static field and the direction of motion of a passing charged particle is investigated.

The angle θ is measured in radians from the polarization axis of the static field. We

have measured up to a factor of three increase in TBR probability compared to the

previous work [11] for certain values of θ. In Bensky’s work, the motion of the third

body, and therefore the collisional field, is colinear with the direction of polarization

of an external static field (θ = 0, π). They studied only two limiting cases of collision

angles in TBR. We extend this work by investigating electron - ion recombination

probability for a range of θ values. The inherent cylindrical symmetry involved in the

problem implies that the results can be extended to any field orientation.

Three individual cases are considered experimentally. In the first case, the HCP

field mimics that of a charged particle passing a free electron and a nearby ion along

the same direction as the static field polarization axis. This case is called the “parallel”

case (θ=0). In this case, the atom experiences a kick along the static field polarization

axis. In the second case, (θ = π), the system feels a kick in a direction opposite, or

antiparallel to the static field polarization axis. This is called the “antiparallel” case.
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Figure 4.1: A schematic diagram of the three orientations of three body recombination
studied in this chapter. The (a) “parallel” (θ=0), (b) “antiparallel” (θ = π), and (c)
“orthogonal” (θ = π/2) cases are shown. The passing charge q is shown in green. The
electron is shown in blue next to a nearby ion.
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Finally, in the third case the system feels a kick orthogonal to the static field axis

(θ = π/2). This is analogous to a charged particle moving past the system orthogonal

to the static field axis. This will be known as the “orthogonal” case. A schematic of

the corresponding three body recombination collision angles in shown in figure 4.1. A

schematic of the combined Stark and Coulomb potentials is shown in figure 4.2(a). The

saddle point is the −z location of the local maximum in the potential. Shown in figures

4.2(b) and 4.2(c) are “top views” of two of the three field orientations studied in this

work. Recombination probability is also measured for values of θ aside from the three

main cases (parallel, antiparallel, and orthogonal). The results show a simple linear

superposition of the three main cases. Therefore, only results from the three main cases

will be presented.

As stated previously, our primary interest is the effect of static electric fields on

the recombination process to better understand actual recombination rates in plasma

environments. Therefore, Ca atoms are photoionized and recombined in the presence of

a uniform static field, and we record the number of Rydberg atoms produced as a func-

tion of (i) the delay between the photoionizing laser and recombining HCP (∆tHCP );

(ii) the initial energy of the continuum electron; (iii) the HCP field strength; and (iv)

the relative orientation of the HCP and static fields. For relatively weak kicks, we find

that the recombination probability is significantly higher for orthogonal, as opposed to

parallel or antiparallel, HCP and static fields. The enhanced recombination is due to
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Figure 4.2: Shown in (a) is a schematic “side view” of the laser excitation and HCP
ionization scheme in the presence of a static electric field. In (a), the “antiparallel”
orientation of the HCP field and static field is illustrated. Figure (b) shows a “top
view” of the Coulomb and Stark potentials for the “antiparallel” field orientation. The
solid line represents a potential barrier which prevents the electron from exiting the
system. The electron’s motion in the figure is towards the hole in the potential. Figure
(c) shows a similar situation to (b) except with the “orthogonal” field orientation.

a centrifugal effect in which the free electron is dynamically stabilized due to a change

in its angular momentum rather than a decrease in its energy.

4.2 Experimental Methods

In the experiment, a 5 ns dye laser promotes Ca atoms in a thermal atomic beam

from the 4s4s ground state to an intermediate 4s4p level. The excitation takes place

in a static field which does not appreciably effect the ground or intermediate state
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of the calcium atoms. Each laser pulse is polarized along the direction of the static

field polarization axis. The ensemble of atoms is then exposed to a 1 ps laser pulse

which transfers population from the 4s4p state to a coherent superposition of 4sεk

continuum Stark states. The newly created 4sεk continuum wavepacket then moves

radially outward. Without further interaction, each portion of the wavepacket that

moves towards the saddle point in the Stark potential will escape to infinity since

its energy is greater than the saddle point energy, Ec = −2
√
Fs. The time that it

takes for the wavefunction to be completely ionized depends on the average energy

and bandwidth of the laser pulse that excites the wavepacket, and the strength of

the applied field. For a wavepacket with an average energy E0 > Ec, a significant

portion (≥90%) of the wavefunction will ionize after a few multiples of the Kepler

period (τK = 2πn3), where n is the principal quantum number of the central state

of the wavepacket. Eventually, all the wavepacket ionizes, independent of the launch

direction due to the coupling between the “uphill” and “downhill” Stark states in the

non-hydrogenic potential. Obviously, no recombination occurs in this case since there

is no passing charge in the system. The role of the non-hydrogenic potential is critical

to understanding the observed recombination and will be discussed in detail in the

following section. Furthermore, appendix D presents a full description of Stark states

and non-hydrogenic state coupling for completeness.

The effect of a passing charged particle in a plasma is simulated by a HCP whose
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duration is small compared to the time scale of τK . The HCP field arrives at a variable

time delay ∆tHCP after the creation of the Stark continuum wavepacket. The short

HCP duration allows treatment of the system in the impulsive regime. The probability

for successful electron - ion recombination is a function of ∆tHCP as well as the direction

and magnitude of the impulse delivered by the HCP field. Similarly, the probability

of observed recombination is dependent upon the relative positions of an ion and a

nearby free electron as well as the strength of the field generated by a passing charge

and the impact parameter. An impulse incident upon the electron - ion system will

recombine only the part of the electron’s wavefunction that is both radially inside the

saddle point and, after HCP interaction, has total energy less than the effective m -

dependent saddle point energy.

Figure 2.9 shows a schematic of the interaction region and detector assembly used

in this experiment. A constant voltage is applied to the upper field plate to create the

static field which is oriented in the ẑ direction. 4s4p calcium atoms are transferred

into the field induced continuum by a picosecond laser pulse with a wavelength of

approximately 391 nm. The laser pulse has a bandwidth of approximately 20 cm−1 and

is therefore resonant with a band of zero field Rydberg levels. The HCP “collision field”

is generated through the method described in chapter 3. The HCP only simulates the

component of the true collision field seen by an atomic system transverse to the motion

of the passing charge. Since the time integrated impulse generated by the longitudinal



CHAPTER 4. CENTRIFUGAL ELECTRON - ION RECOMBINATION 99

Figure 4.3: Timing diagram of the experiment.

component of the collision field is zero, simulating only the transverse component is

still a reasonable method of performing “artificial collisions.” The GaAs wafer which

generates the HCP field is mounted on a rotation stage so that the angle between the

HCP polarization axis and the static field may be varied continuously. This angle is

the TBR collision angle, θ, and can be varied from 0 to π.

Interaction with the HCP causes a portion of each atom’s wavefunction to be re-

combined. The recombined fraction is bound and experiences no acceleration due to

the static field. The remaining fraction of each wavepacket completely ionizes, resulting

in both an ion and a free electron. The ions are accelerated towards the lower field

plate due to the presence of the static field. The free electrons are similarly removed

to the upper field plate. In approximately 3 µs all charged species are cleared from
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the interaction region, leaving only neutral atoms. Unless the HCP field is present, no

neutral Rydberg atoms are formed. Following the 3 µs delay, a strong (∼ 5 kV/cm) field

pulse is applied to ionize any Rydberg atoms in the interaction region. The Rydberg

atoms move less than 1 mm during the 3 µs delay. A schematic of the experimental

timings of the various laser pulses and electrical pulses is shown in figure 4.3. Since

the 391 nm laser pulse and HCP field counterpropagate, a continuous range of pump -

probe time delays is measured in a single laser shot with a resolution of approximately

1 ps [17]. In this manner, the probability of recombination as a function of ∆tHCP

is directly related to the amount of observed field ionization as a function of linear

position along the slit in the upper field plate. Data is taken for peak HCP collision

field strengths ranging from 0→ 6 kV/cm.

4.3 Results

Consider a continuum wavepacket created at t = 0, with a central n of n = 35 in an

electric field of 450 V/cm. After t = ∆tHCP , a HCP is incident upon the continuum

wavepacket. This HCP field recombines a fraction of the wavepacket with its parent ion.

Figure 4.4 shows density plots of the recombined fraction as a function of HCP field

strength and ∆tHCP for the antiparallel (a) and parallel (b) cases. Dark represents

greater probability for recombination. HCP field strength is plotted on the vertical

axis and ∆tHCP is shown on the horizontal axis. The data agree well with previous
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Figure 4.4: Density plot of recombination probability as a function of HCP field strength
(vertical axis) and time delay between the wavepacket creation and HCP interaction,
∆tHCP (horizontal axis) for (a) parallel fields and (b) antiparallel fields. Dark represents
areas of greater recombination probability. The ∆tHCP bin size is approximately 1 ps.
Horizontal modulations in the data are an artifact of shot to shot laser fluctuations.
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observations of TBR for both field orientations [11]. The previous work however only

measured recombination probability for a single value of HCP field strength.

Figure 4.5 shows a density plot of the recombination probability as a function of

HCP kick strength (vertical axis) and ∆tHCP (horizontal axis) for the orthogonal field

orientation. Again, dark represents greater recombination probability. All the experi-

mental conditions are the same in figures 4.4 and 4.5 with the exception of the collision

angle θ. For early times (0 ≤ t ≤ 10ps) in both the parallel and antiparallel cases,

a maximum in recombination probability is observed for a HCP impulse of approxi-

mately A = 0.025. For longer times (t > 10ps) the location of the maximum shifts

to weaker values of HCP strength. In the orthogonal case however, the maximum in

recombination probability occurs at roughly the same value of HCP strength for all

times, A = 0.018.

Horizontal slices through the data in figures 4.4 and 4.5 are shown in figure 4.6

for a HCP impulse of A = 0.021. In both the parallel and antiparallel cases, the

recombination signal shows two sets of pronounced modulations as a function of time.

A fast modulation with a period of ∼10 ps is superimposed over a slower modulation

with a period of ∼20 ps. The fast modulation is consistent with the classical Kepler

period τK = 2πn3 (τK = 9.7 ps for n = 40). The slow modulation is consistent with

the angular momentum precession or Stark period τS = 2π/3Fn (τS = 19 ps for the

conditions in figure 4.4). The phase of the Stark oscillation changes for the parallel
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Figure 4.5: Density plot of recombination probability as a function of HCP field strength
(vertical axis) and time delay between the wavepacket creation and HCP interaction,
∆tHCP (horizontal axis) for the orthogonal field orientation. Dark represents areas of
greater recombination probability.
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Figure 4.6: Recombination probability as a function of time for the three cases of
collision angle. In each case the HCP impulse is A = 0.021. Each line is a single
horizontal slice through the data shown in figures 4.4 and 4.5. Modulations are seen
which are consistent with both the Kepler and Stark oscillation frequencies.
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and antiparallel cases [11]. For the orthogonal case, the Kepler modulations are not as

obvious, however the Stark oscillations are seen clearly. In the rest of this chapter, we

will focus mainly on early times, or approximately the time duration of the first Kepler

oscillation of the wavefunction.

We turn our attention to how the recombination probability changes as a function

of HCP strength (vertical slices through the recombination probabilities in figures 4.4

and 4.5. At early times, a maximum in recombination probability as a function of HCP

strength occurs at much weaker HCP fields (around A=0.018) in the orthogonal case

than in the parallel or antiparallel cases. Furthermore, the amount of recombination

signal observed for weak collision fields is greater for the orthogonal case than in the

other two cases for all values of ∆tHCP . This is the main experimental result of this

chapter. In the orthogonal case, recombination probability is enhanced for weak colli-

sion fields due to dynamical stabilization of the continuum electron rather than energy

extraction. This effect will be described in detail in the next section.

Figure 4.7 shows the measured amount of recombination as a function of HCP

strength for selected values of time delay, ∆tHCP . These curves are vertical slices

through data similar to that presented in figures 4.4 and 4.5. Note the enhancement

of recombination probability for weak HCP fields for the orthogonal field orientation

when compared with the parallel and opposite field orientations. For ∆tHCP = 3.0 ps,

we see the greatest relative enhancement of recombination probability, approximately
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Figure 4.7: Experimentally measured recombination probability as a function of HCP
field strength for selected values of ∆tHCP . Data from the parallel (2), antiparallel
(©), and orthogonal (4) field orientations are shown for each value of ∆tHCP . Note
that at short times, greater recombination probability exists for weaker kick strengths.
Noise in the signal is due primarily to shot to shot laser fluctuations.
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a factor of 3 for AHCP = 0.015. Even though modulations in recombination proba-

bility are observed at ∆tHCP = τK and ∆tHCP = τS, the weak orthogonal HCP field

recombination enhancement persists throughout. For example, at ∆tHCP = 2 ps, the

antiparallel case shows a greater recombination probability than the parallel case. At

∆tHCP = 5 ps, the situation has reversed. At both ∆tHCP = 2 ps and ∆tHCP = 5 ps

however, the orthogonal case is enhanced relative to either the parallel or antiparallel

cases for weak HCP fields.

4.4 Discussion

To understand the variation in recombination probability as a function of the relative

field orientation, the role of the parabolic quantum number m in the Stark effect must

be understood. Appendix D provides a general overview of the Stark effect as well

as parabolic coordinates. The concepts introduced there are extended in this chapter

to deal with field ionization. The effective energy of the saddle point in the Stark

potential has a dependence on m due to the eccentricity of the electron’s motion. In

the hydrogenic case, an electron in a given m state is bound if its energy is lower than

the critical energy given by [18]

Ec(m) = −Fs
2
ηc −

2Z2

ηc
+
m2 − 1

2η2c
. (4.1)
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In equation 4.1, ηc = r−z is the η position of the saddle point in parabolic coordinates,

Fs is the static field, and Z2 is the parabolic separation constant. The location of the

η minimum in the potential (labelled ηc) is found by locating the zero of the derivative

of equation 4.1 with respect to η. Care must be taken when applying the result as the

separation constant Z2 is determined by the orientation of the electron’s orbit.

If the energy E0 of the electron is greater than Ec(m), then the potential surface is

open and a hole exists on the −ẑ or “downhill” side of the potential. The spatial extent

of the hole grows with increasing values of E0. The ẑ projection of the electron’s angu-

lar momentum and time-averaged dipole moment determine if and when a particular

orbital trajectory will intersect the hole [19]. In hydrogen, the orientation of a given

electron orbit is defined by the Runga-Lenz vector ~M , given by [20–22]

~M = ~p× ~L− Zr̂ + 1

2
(~r × ~F )× ~r . (4.2)

The ẑ component of ~M , given by Mz, is proportional to the time-averaged projection

of the electron’s dipole moment on the ẑ axis. Mz is a constant of the motion and

takes on values from −1 ≤ Mz ≤ 1. In this case, the separation constant Z2 is best

determined by the orientation of the electron’s orbit and can be written in terms of

Mz,

Z2 =
1

2
(Z − < Mz >) . (4.3)

An electron moving along the −ẑ axis has Mz = −1 and passes directly through the

hole in the potential. However, orbital orientations which haveMz > −1 do not sample
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the potential at large values of −z and may remain bound even if E > Ec(m). Also, for

trajectories with large values of |m|, the electron may temporarily encounter the hole

in the potential, however the large angular velocity at its outer turning point ensures

its return unless E À Ec(m) [23]. For each combination of m and Mz, there exists a

critical energy Ec(m,Mz) ≥ Ec(m), above which, the electron will ionize [20]. As either

m or Mz increases, so does Ec(m,Mz).

The ionization mechanism proceeds quite differently in non-hydrogenic atoms. Due

to the penetration of the atomic core, the potential is non-Coulombic at small values

of r. Therefore, no true “uphill” or “downhill” orbits exist and Mz is no longer con-

served. Uphill (downhill) orbits are defined as orbits where the net dipole moment of

the electron distribution is parallel (antiparallel) to the static field polarization axis.

In non-hydrogenic atoms (such as in the case of calcium studied here), uphill orbits

precess into downhill orbits and vice versa as time evolves. Consequently, all classical

electron trajectories for a given value of |m| ionize at the same critical energy, Ec(m),

irrespective of their initial orientations [18, 19, 24]. Ec(m) is determined by equation

4.1 by considering the value of Z2 corresponding to the most downhill hydrogenic tra-

jectory. For low m Rydberg orbits, Z2 can be given to lowest order in terms of n, m,

and the parabolic quantum number n2 as

Z2(m,n2) =
1

n

(

n2 +
|m|+ 1

2

)

. (4.4)

In the case of the most downhill trajectory, n2 takes on the value n−m− 1 and Z2 is
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given to lowest order by

Z2(m) = 1− |m|+ 1

2n
. (4.5)

In the θ = π/2 field orientation, HCP interaction transfers electron population to

states with high m values. Electrons in higher m states, experience a more hydrogenic

potential since the non-Coulombic portion of the binding potential is forbidden. We

define mc to be the critical value of m above which the electron behaves hydrogenically.

Consequently, for |m| > mc, Ec is orientation dependent as in the purely hydrogenic

case. Therefore, recombination can occur via angular momentum transfer rather than

by energy extraction. It is even possible for a HCP field to increase the total energy of

an electron and still recombine it, if Ec(m,Mz) > E0.

A full quantum simulation of electron - ion recombination is beyond the scope of

this work, however significant theoretical advances have been made along these lines

[25]. Instead, to obtain an approximation of the dynamics involved we numerically

integrate the classical equations of motion [26]. In the classical simulation, an ensemble

of electrons is launched from the inner turning point of the hydrogenic ` = 2, m` = 0

orbit. The orientation of each electron’s orbit is randomly chosen. The exact time

when an electron is launched in the simulation is determined by randomly sampling a

Gaussian distribution centered at t = 0 with a 1 ps FWHM. Each electron is allowed to

evolve in the presence of a constant static field until acted upon by a Gaussian shaped

HCP with a 0.75 ps FWHM. This field pulse is the analog of the field of a passing
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charged particle. The angle of incidence, θ, between the static field and the HCP may

be varied for each calculation. After interaction with the HCP, each electron evolves for

a long time relative to any other time scales in the problem (À 100 ps). To determine

if a given electron has been recombined, first its final η position is determined. If the

electron has a final value of η > ηc, then it is located outside the saddle point and

was not recombined. For the remaining events, the m value and final energy Ef of

each electron are determined. For an electron which has a final m value |m| ≤ mc, if

Ef < Ec(m) then the electron is counted as recombined. Similarly, if an electron has

|m| > mc, and Ef < Ec(m,Mz) then it is also considered recombined. All other events

are considered ionized.

The degree of hydrogenic character of the high m states is determined from a calcu-

lation of the avoided crossings in a calcium Stark map. Stark maps are created for each

value of m by the methods introduced in appendix D. The size of a typical avoided

crossing is determined for each m value. The lifetime of each state is inversely pro-

portional to the size of the avoided crossing. For a state to be considered hydrogenic,

its lifetime should be comparable to the 4 µs delay between HCP interaction and the

HV field pulse. The average avoided crossing energy separation is approximately 10

MHz for m = 4 and 200 kHz for m = 8. The value mc = 4 is chosen for the calcu-

lations presented here to match the calculations and the data. The effect of making

different choices for the value of mc on the calculated recombination probability will be
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investigated later in this section.

The calculated amount of recombination is plotted as a function of HCP field

strength for the parallel, opposite, and orthogonal cases in figure 4.8 for selected values

of ∆tHCP . These results can be directly compared with the experimentally observed

recombination probabilities in figure 4.7. Qualitative agreement exists between the ex-

perimental data and the classical simulations. An overall reduction in the total amount

of calculated recombination is seen for increasing values of ∆tHCP . This is not directly

seen in the experimental data over the small time scales shown in figures 4.7 and 4.8.

However, the average amount of observed recombination does decrease after each Ke-

pler period. The main result of this chapter is however reproduced by the calculations:

An enhancement in recombination probability exists for orthogonally oriented collision

fields when compared to either the parallel or antiparallel orientations.

Figure 4.9 shows results from five different classical calculations. Shown are the

m = 0 calculations for the parallel and opposite field orientations, as well as three

different orthogonal case calculations. Each of the different orthogonal calculations

illustrates a different method of treating the m dependence of Ec in the calculation.

In the thin black solid line, all dynamical effects have been ignored. Recombination

occurs only if the electron has energy less than that of the reddest Stark state for m = 0

(E < −2
√
Fs). In the thin black dashed line, the m dependence of the saddle point

energy is considered, but not the hydrogenic nature of the high m states. Neither of
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Figure 4.8: Classical calculations of recombination probability as a function of HCP
field strength for selected time delays, ∆tHCP between continuum wavepacket creation
and HCP interaction. Black boxes are calculations of the parallel case, dark grey
circles are calculations of the opposite case, and light grey triangles are calculations of
the orthogonal case.
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these curves reproduces the significant recombination enhancement seen in the data.

Only when the orientation dependence of the hydrogenic high m states is added to

the calculations does the weak field enhancement appear in the calculations. This case

is shown by the light grey triangles. The significant enhancement of the calculated

recombination rate is mainly due to the production of high m states by the HCP.

In figure 4.10, we examine the effect that different choices of mc have on the re-

combination probability. Shown is the recombination probability at ∆tHCP = 4 ps for

the orthogonal field orientation. For the calculated recombination probabilities in the

orthogonal configuration presented thus far, we have used mc = 4. Figure 4.10 shows

recombination probabilities for many choices of mc (mc = 4, 6, 10, 20, and∞). The cal-

culated recombination probability for mc =∞ represents the calculated recombination

probability when no hydrogenic high m state behavior is considered. The amount of re-

combination enhancement does depend on the value chosen for mc, but for all mc ≤ 20,

some enhancement is seen over the parallel and antiparallel orientations. Therefore, the

existence of the recombination enhancement for orthogonally oriented collision fields is

not critically tied to our choice of mc. As long as the hydrogenic nature of the high m

states is considered at some level (mc ≤ 20), then recombination enhancement is seen

in the simulations.

The m distribution of the recombined electrons in the classical simulation is also

recovered and shown in figure 4.11. Only electrons recombined in the orthogonal field
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Figure 4.9: Classical calculations of recombination probability as a function of HCP
field strength for a time delay of ∆tHCP = 3.8 ps. The black squares and dark grey
circles are calculations of recombination probability for the parallel and antiparallel
field orientations respectively. The light grey triangles show recombination probability
for the orthogonal case when both the m dependence of the saddle point energy and the
hydrogenic nature of the high m population are considered. The dashed black curve
shows the calculated recombination probability for the orthogonal field geometry if
only the m dependence of Ec is considered. The solid black curve shows the calculated
recombination probability in the orthogonal case if all dynamical effects are ignored.
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Figure 4.10: Classical calculations of recombination probability as a function of HCP
field strength for a time delay of ∆tHCP = 4 ps for several values of mc. The en-
hancement of recombination probability decreases for increasing values of mc. The
value mc = 4 most closely matches the experimental data and therefore is used in the
calculations of recombination probability in the orthogonal case.
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orientation have nonzero m distributions. For a HCP field of 4 kV/cm, and ∆tHCP =

1.0 ps, the mean m value of a recombined electron is approximately m = 17. Such high

averagem values indicate that the majority of the electrons that undergo recombination

do so due to promotion to very high m states. Quantum calculations indicate the high

m transfer is possible due to the large static field present in the experiment and the

orientation of the HCP field. This will be discussed in detail in chapter 5. In a field

free environment however, transfer to very high m values can not be done with a single

linearly polarized HCP field. This too is discussed in chapter 5.

4.5 Conclusions

We have used HCPs to examine electron - ion recombination in the presence of a static

field. We find a significant enhancement of the recombination yield when the static and

HCP fields are orthogonally polarized. The enhancement is due to a dynamical effect

associated with the excitation of high-|m| states during the HCP. This mechanism is

analogous to the collisional and static field induced ` and m mixing which enables zero

electron kinetic energy (ZEKE) spectroscopy by suppressing autoionization of highly

excited Rydberg molecules [27]. Moreover, centrifugal recombination should play a role

in TBR or pulsed-field recombination in any plasma where static micro- or containment

fields are present.
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Figure 4.11: Average m value of the recombined electrons in a classical simulation for
∆tHCP = 1,2,3,4, and 5 ps in the orthogonal field orientation. The static field present
in the simulation is FS = 500 V/cm. For small values of ∆tHCP , the majority of the
recombined electrons have high m values.
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Chapter 5

Manipulating Wavepacket

Dynamics Part 2: Suppression of

Autoionization

5.1 Introduction

Electrons which have been ionized and subsequently subjected to HCP fields were

studied in chapter 4. In this chapter however, we look at the effect of applying HCP

fields to a bound system with total energy above the first ionization limit. In other

words, instead of looking at the response of a system which has already ionized, we

look at the response of a system which has yet to ionize. The experiment presented in
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this chapter is being published here [1].

Autoionization (AI) is a process by which a doubly excited neutral atom ionizes

via resonant collisional energy transfer from one excited electron to another. AI is

the dominant stabilization mechanism for multiply excited atoms with low angular

momentum. Both theory and experiment suggest AI probability can be influenced

by the presence of electric fields [2–11]. AI in the presence of electric fields has been

studied under many conditions [6,7,12], however to our knowledge no studies have been

performed which investigate the effect of transient electric field pulses on AI probability.

In this chapter, we study the effect of transient, half-cycle electric field pulses (HCPs)

on AI, where the duration of the HCP field is significantly shorter than τK . The process

of field ionization due to impulsive electric fields has been shown to be dramatically

different than for slowly varying or adiabatic fields [13]. Therefore, we test whether AI

is different in the two regimes as well.

AI is an important process in astrophysical plasmas [6, 7, 14] and Zero Electron

Kinetic Energy (ZEKE) spectroscopy [15–23]. AI is the inverse process of dielectronic

recombination (DR) and therefore one can gain information on DR by studying AI

[2–5, 12, 24–28]. Our measurements have implications for DR in plasmas due to the

similarities of the HCPs used here with the field of a passing charge [29]. We can

mimic these fields experimentally and directly measure their effects on AI probability.

Another interesting effect of HCP interaction with an autoionizing system is the
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possibility of effectively “turning off” AI through the application of a specific set of

impulsive fields. If it is possible to turn off AI with HCP field interactions, then HCPs

can be used to probe the time dependent population transfer among AI states. In

this case, a HCP field would be used to turn off AI at specific times to measure the

remaining population as a function of time.

For constant `, the probability for finding the Rydberg electron in the vicinity of the

ion core scales as n−3, in inverse proportion to the electron’s classical Kepler period,

τK = 2πn3. For constant n there is no simple ` scaling formula. The electron/ion

core overlap is relatively constant for low-` states due to the finite size of the ion

core. However, the overlap decreases extremely rapidly with increasing ` due to the

centrifugal barrier at small electron radius. Typically, for `>∼ 3, the ion core is localized

well within the radial volume, r<∼`(`+1)/2, that is classically forbidden to the Rydberg

electron [30, 31]. Consequently, for these high-` states the AI rate drops precipitously

with increasing `, and is considerably smaller than the corresponding rate of the low-`

(<∼ 3) states [26–28,32].

We define the AI rate and radiative rate of a given atom as ΓAI(`) and ΓR respec-

tively. For doubly-excited Rydberg states, ΓR is often dominated by emission from the

core and, therefore, is ` independent. ΓAI(`) however depends critically on the overlap

of the Rydberg wavefunction with the small atomic core. This overlap decreases with

increasing values of principal and angular momentum quantum numbers, n and `, for
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the Rydberg electron [30].

In the presence of a static or adiabatically varying field, the potential that binds

the Rydberg electron no longer possesses (near) spherical symmetry and, therefore,

electronic angular momentum is no longer a conserved quantity. However, m, the

quantum number corresponding to the projection of the electron’s angular momentum

on the field axis, remains good in the field [18,22]. For each principal quantum number

n and angular momentum projection m, there are n−m Stark states which are linear

combinations of the available n −m angular momentum eigenstates [33]. To a rough

approximation, all of the states corresponding to a specific Stark manifold share a single

average AI rate, ΓAIS [34–37] where

ΓAIS =
(

1

n−m

) n
∑

`=m

ΓAI(`) > ΓR . (5.1)

Because the large core-scattering rates for the lower ` states dominate the average, in

low m (<∼ 4) manifolds ΓAIS is a factor of order of 1/n smaller than the corresponding

rate for a pure ` ∼ m level. By the same reasoning however, ΓAIS can be many orders

of magnitude greater than the zero field rate for a pure high ` (` ∼ n) level [34–37].

In this chapter, we test for AI suppression in the transient impulsive field regime.

In the case of a slowly varying field, the angular momentum states are mixed by the

field, producing a mixture of Stark states. In the case of a transient pulse however, the

single transient field pulse transfers population from some initial level (or levels) and

produces a linear superposition of different pure angular momentum states [38]. The
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angular momentum of the superposition state is not continuously mixed in the absence

of the field. The evolution of this coherent wavepacket can be very different from that

of a mixed angular momentum state. For example, if a transient field creates a linear

superposition of high and low ` states, only the low ` < `c part of the wavefunction will

participate in AI. Here `c is defined as the the critical value of ` where ΓAI(`) = ΓR. The

remaining high ` components eventually stabilize, via spontaneous emission or another

relaxation process. While a static or long lived oscillatory field can alter AI rates

through angular momentum mixing, transient fields might eliminate possible decay

channels by angular momentum transfer.

5.2 Experimental Methods

Figure 2.9 shows a schematic of the interaction region and detector assembly. A thermal

beam of Ca atoms enters the interaction region along +x̂. A 432 nm, 5 ns dye laser

enters in the interaction region along +ŷ. This pulse promotes Ca atoms from the 4s4s

ground state to an intermediate 4s4p level. A second 5 ns dye laser pulse also enters the

interaction region along +ŷ and creates a 4snd Rydberg eigenstate. The second pulse

is tunable from 389 nm to 393 nm and can excite any eigenstate from 17 ≤ n ≤ ∞.

Typically, we excite initial n states in the region 17 ≤ n ≤ 30. A 1 ps FWHM HCP field

is generated by the method discussed in chapter 3. The HCP is linearly polarized along

the bias field axis and is directed into the interaction region by a parabolic mirror [39].
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The HCP field performs transitions from the 4snd eigenstate to a range of 4sn′` and

4sε` states. The actual final state distribution depends on the strength and orientation

of the HCP and the initial state distribution.

At approximately the same time as the interaction with the HCP field, atoms in

the interaction region undergo an isolated core excitation (ICE) to an autoionizing

state [40]. The ICE is performed by exciting the core 4s+ Ca electron to the 4p+ state

with a 393 nm, 1 ps FWHM laser pulse. The 393 nm pulse is created by frequency

doubling the 120 fs, 782 nm output from the Ti:Sapphire laser system in a 3 cm long

KDP crystal [41]. The resulting laser pulse has a bandwidth of approximately 20 cm−1.

The ICE occurs at a variable time delay ∆tICE after the arrival of the HCP field. When

the HCP field arrives before the ICE pulse, ∆tICE > 0. The complete laser excitation

process is summarized in figure 5.1.

The system evolves for 100 ns after the HCP and ICE pulse interactions. During

this time, either autoionization will occur, or the inner electron will spontaneously

decay [42–44]. If the system spontaneously decays, a singly excited neutral Rydberg

atom remains. Otherwise, an ion and free electron are formed. After 100 ns, a -60

V clearing pulse is applied to the lower field plate. Ions present in the interaction

region are accelerated towards a slit in the upper field plate by the clearing pulse. The

magnitude of the clearing pulse is strong enough to ionize neutral atoms with n > 50.

Any neutral Rydberg atoms with n > 50 present in the interaction region are therefore
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Figure 5.1: Laser excitation schematic for the experiment. Two dye lasers create a 4snd
Rydberg eigenstate in calcium. If ∆tICE > 0, a HCP field interacts with the Rydberg
eigenstate creating a 4sn′`′ wavepacket. A 1 ps, 393 nm pulse then performs an ICE on
the 4sn′`′ wavepacket, creating a 4pn′`′ autoionizing wavepacket. For ∆tICE < 0, the
ICE is performed on the 4snd Rydberg eigenstate creating a 4pnd autoionizing state
with a lifetime of approximately 3 ps.



CHAPTER 5. SUPPRESSION OF AUTOIONIZATION 129

Figure 5.2: A schematic diagram of the experimental timings used in this experiment.
All relevant laser pulses and electrical pulses are shown.

indistinguishable from autoionization events. The ions pass through a narrow slit in

the upper field plate and are incident upon the single shot detector. AI probability

is directly proportional to the measured ion yield. Approximately 100 ps of ∆tICE

information is recovered by the detector in each laser shot with 1 ps resolution [45,46].

Either the HCP field strength or the ICE laser excitation frequency is varied after each

laser shot while taking data. In this way, ion yield is recovered as a function of either

∆tICE and HCP field strength or ∆tICE and ICE laser frequency. A schematic diagram

of the relative timings of the laser pulses and electric fields used in data collection is

shown in figure 5.2 for reference.
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5.3 Results

AI probability is measured in three different electric field configurations. First, the

effect of a single HCP field incident upon an autoionizing atom is studied. In this case,

both laser pulses are polarized in the same direction as the HCP field, creating an

m = 0 initial state. In the absence of other fields, the HCP polarization axis becomes

the good axis in the problem and the azimuthal quantum number m along this axis is

a good quantum number. Therefore, the initial m = 0 state will remain so during the

interaction with the HCP field. In a second experiment, AI probability is measured in

the presence of two orthogonally polarized HCP fields separated in time by ∆tHCP . This

pulse combination closely resembles the fields experienced in a true collision event [29].

In the two pulse case, ∆m 6= 0 transitions are allowed. In a third case, the effect of

a HCP field interacting with an autoionizing state in the presence of an orthogonally

applied static electric field is investigated. In this configuration ∆m 6= 0 transitions are

also allowed.

For the three field configurations, the ion yield vs. ∆tICE data are essentially

bi-level curves for all values of HCP field strength (FHCP ) and ICE laser frequency.

Within our signal to noise, the ion yield vs. ∆tICE has constant values for negative and

positive ∆tICE, respectively. The delay independence of the ion signal is expected at

negative delays of more than a few picoseconds. In this case, all of the atoms excited

to 4pnd states have autoionized before the arrival of the HCP, so the HCP has no
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effect on the ion yield or AI rate. Therefore, the ∆tICE < 0 curves are a measure

of the ion yield in the absence of the HCP field. For ∆tICE > 0, the HCP arrives

before the ICE and interacts with singly excited 4snd atoms. For all positive values

of the ∆tICE, the amount of ion yield observed is approximately constant. Therefore,

for simplicity the ∆tICE > 0 and ∆tICE < 0 data are referred to as “in-field” and

“zero-field” respectively. The fact that the ion yield is roughly constant in the in-

field case is somewhat surprising. Complex, time dependent wavepacket behavior has

been observed in similar cases, such as a 4snd radial wavepacket [47, 48] and a Stark

wavepacket [49]. However in this situation, it is possible that the number of different

states excited by the HCP is too great to observe any coherent time dependent features.

5.3.1 Single HCP Measurements

In the first experiment, ion yield is measured as a function of detuning of the ICE laser

from the 4s+ → 4p+ ionic transition and time delay ∆tICE. The ion yield is directly

proportional to the excitation and autoionization probability. The atoms are initially

prepared in a 4s19d eigenstate. For the in-field case (∆tICE > 0), a HCP field (≈ 3

kV/cm) promotes the 4s19d eigenstate to a 4sn′` wavepacket. An ICE is performed

on the inner 4s+ electron resulting in an autoionizing 4pn′` wavepacket. The measured

autoionization probability of the 4pn′` wavepacket is shown in the solid curve in figure

5.3(a). In contrast, for the zero-field case (∆tICE < 0), the 4s19d eigenstate undergoes
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Figure 5.3: (a). Observed ion yield plotted as a function of the detuning of the ICE laser
from 4s+ → 4p+ transition. The solid curve represents the in-field case (∆tICE > 0),
while the dashed curve corresponds to the zero-field case (∆tICE < 0). The initial state
is 4s19d and the maximum HCP field is 2.5 kV/cm. (b). Integrated ion yield as a
function of frequency. Note that the integrated ion yield is the same for ∆tICE > 0 and
∆tICE < 0. The linewidth of the ICE laser is approximately 15 cm−1 and the curves
in (a) are obtained by scanning the frequency of the ICE laser.
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Figure 5.4: (a). Observed ion yield as a function of the detuning of the ICE laser
from 4s+ → 4p+ transition for an initial 4s27d state. The solid curve represents the
in-field case (∆tICE > 0), while the dashed curve corresponds to the zero-field case
(∆tICE < 0). The maximum HCP field is 2.5 kV/cm. Integrated ion yield is shown in
(b). As in Figure 5.3, no suppression of AI is observed.
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ICE to a 4p19d state which quickly autoionizes prior to HCP interaction. The AI

probability for the zero-field case is shown with the dashed line in figure 5.3(a). The

integrated AI probability as a function of ICE laser frequency is shown in figure 5.3(b)

for both the in-field (solid curve) and zero-field (dashed curve) configurations.

At some frequencies, fewer ions are produced in the in-field configuration. This was

the expected result if the influence of the HCP has stabilized the atoms against ICE.

However, at other frequencies, the opposite effect is observed. In fact, a noticeable shift

in the centroid of the AI resonance is observed for the in-field case. To explain this

phenomenon, we consider the quantum defects of the states involved. The difference

between the quantum defects of the 4s19d and 4p19d states results in an ICE resonance

which is detuned from the 4s+ → 4p+ ionic transition. The quantum defects are

δ4s19d = 0.975 and δ4p19d = 0.85 [50, 51], leading to an energy shift of approximately

4.6 cm−1. However, in the in-field case, the HCP populates high ` states which have

negligible quantum defects in both the 4s and 4p configurations. Therefore, the in-

field resonance appears at the ionic transition frequency [40]. For comparison, we

show the AI probability for a 4s27d initial state in figure 5.4. The shift in energy of

the AI resonance between the zero-field (solid curve) and in-field (dashed curve) cases

observed in figure 5.4(a) is less than in figure 5.3(a). In this case, δ4s27d = 1.150 and

δ4p27d = 0.98 [50, 51]. Even through the difference in quantum defects is larger, the

resulting energy difference is less due to the smaller energy spacing between n states.
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Therefore, the zero-field resonance is shifted by only 2.1 cm−1.

The extremely low AI rate from the high ` states should also result in an extremely

narrow in-field ICE resonance. Since the 1 ps ICE laser pulse has a large bandwidth,

the ICE resonance is instrument limited to approximately 20 cm−1. From this analysis,

it appears that the HCP is creating high ` states, however we still need to determine

whether any stabilization occurs.

To determine the amount of stabilization (if any) in the data, we take advantage of

the fact that the integratd strength of the ICE resonance must be independent of the

initial Rydberg state, and therefore must be identical for both the in-field and zero-field

measurements. Since (in the absence of HCP ionization) the number of singly-excited

Rydberg atoms is the same before and after the HCP, any difference in the frequency in-

tegrated ion yield for the two cases indicates a difference in the AI probability following

the ICE. The total integrated ion yields in both figures 5.3(b) and 5.4(b) are identical

within experimental error, indicating no HCP induced stabilization against autoion-

ization. Similar results are obtained for all initial Rydberg configurations. There are

two possible explanations for the lack of AI suppression. Either the population is not

being transferred into bound states with high enough ` values to significantly reduce

the AI rate, or the population is not remaining in these high ` states once it is initially

transferred there.
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5.3.2 Measurements with Two Orthogonal HCPs

In the second experiment, AI probability is measured when an atom in an autoion-

izing state interacts with two separate, orthogonal HCP fields. This combination of

two orthogonal HCPs closely resembles the full collision fields in a plasma [29]. Each

pulse enters the interaction region at a small angle to the x̂ axis and approximately

perpendicular to the ICE pulse (see figure 5.5). With this geometry, AI probability is

measured for a range of time delays ∆tHCP in a single laser shot. The combination of

two orthogonal HCP fields transfers population from the initial Rydberg eigenstate to

a wavepacket of various n, `,m states. An ICE laser pulse propagates collinear with

the slit in the upper field plate (+ŷ) a time delay ∆tICE after the HCP pulses pass

through the interaction region.

AI probability as a function of ICE laser detuning is shown in figure 5.6. These

curves are completely analogous to figures 5.3 and 5.4. The dashed curve in figure 5.6 (a)

corresponds to the zero-field case (∆tICE < 0). In this case the ICE is performed prior

to the HCP interactions. The solid curve in figure 5.6(a) shows in-field AI probability

(∆tICE > 0). For the in-field case, the initial Rydberg eigenstate is exposed to two

orthogonal HCP fields prior to ICE. As in the single pulse case, the center of the AI

resonance is shifted slightly in the zero-field case due to the difference in the quantum

defects of the 4s20d and 4p20d states. A slight suppression (≈ 10%) of the total

integrated AI probability is observed for the in-field scenario.
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Figure 5.5: A schematic diagram of the experimental approach used to measure AI
suppression due to two orthogonal HCP fields. HCP1 is polarized along +ẑ moves
through the interaction region at some small angle θ/2 to the −x̂ direction. HCP2 is
approximately polarized along +ŷ and moves through the interaction region at an angle
−θ/2 to −x̂. A spatially dependent time delay ∆tHCP exists between the two HCP
fields. The point in the interaction region where the two pulses arrive simultaneously
(∆tHCP = 0) is defined to be y = 0. Typically θ < 10◦ and we can study a range of -20
ps < ∆tHCP < 20 ps.

We also examine the effect of varying the relative time delay between the two HCP

fields on the ion yield. Figure 5.7 shows the frequency integrated ion signal as a

function of the delay ∆tHCP between the two HCPs. For this data scan, the ICE

pulse delay is set so that ∆tICE = 0 when ∆tHCP = 0 at the center of the extraction

slit. Therefore, the zero-field data appears at negative values of ∆tHCP and the in-

field measurement is shown at positive ∆tHCP . Of course, from symmetry, the in-

field signal is symmetric about ∆tHCP = 0. This symmetry is not obvious in figure
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Figure 5.6: (a). Observed ion yield as a function of the detuning of the ICE laser from
4s+ → 4p+ transition. The solid curve is the in-field case (∆tICE > 0), and the dashed
curve is the zero-field case (∆tICE < 0). The initial eigenstate is 4s20d and each HCP
field has a maximum field of ≈ 3 kV/cm with, ∆tHCP ≈ 5 ps. Integrated ion yield is
plotted in (b) analogous to Figs. 5.3,5.4. A small amount of AI suppression (≈ 10%)
is observed.
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Figure 5.7: Frequency integrated ion yield as a function of relative HCP delay, ∆tHCP .
∆tICE = 0 at the same point as ∆tHCP = 0. Therefore, negative values of ∆tHCP

correspond to the zero-field case, as described in the text.

5.7 due to the positioning of ∆tICE = 0 at ∆tHCP = 0. The data is displayed in

this way to highlight the small, but significant, AI stabilization that is induced by

the HCP fields. Our measurements indicate that the stabilization effect is relatively

insensitive to the delay between the two HCPs. Clearly, the stabilization observed with

the two HCPs is facilitated by population transfer to high-m, high-` levels. This is

in contrast to the single HCP measurements where low-m, high-` states are populated

and no stabilization is observed. Simulations will be presented in section 5.4.2 which

investigate the relationship between ∆tHCP and the final state m distribution.
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5.3.3 Measurements with Orthogonal HCP and Static Electric

Fields

Finally, in the third experiment, a static field is applied along the ẑ axis and an im-

pulsive field kick is applied along x̂. A constant voltage is applied to the upper field

plate, creating a static field in the interaction region in the ẑ direction. A two step

laser excitation promotes ground state Ca atoms into an m = 0 Stark manifold. The

frequency of the second laser is tuned to either the location of the d state in zero field

or the reddest state of the high ` part of the Stark manifold. The static field is along ẑ

and mixes the ` states into n− 1 Stark states, all with m = 0. The magnitude of F is

less than the the Inglis - Teller limit, the field where adjacent Stark manifolds intersect.

After the laser excitation, a HCP field polarized along +x̂ is incident upon the system.

The HCP field transfers population from the initial Stark state to a distribution of

n, `,m final states. Any high m states in the resulting distribution are forbidden from

having any low ` character. AI probability is measured as a function of ICE laser fre-

quency for a number of different static field and HCP field values. Typical experimental

results are shown in figure 5.8. The integrated AI probability is shown as a function of

ICE laser frequency for a n = 22 manifold in a field of 50 V/cm. Total AI probability

is suppressed approximately 8% for the in-field case (∆tICE > 0). Even though the

evolution of the Rydberg electron is very different in the cases of (i) two orthogonal

HCPs and (ii) a HCP and an orthogonal static field, similar stabilization probabilities
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Figure 5.8: Integrated ion yield as a function of detuning from the ionic 4s+ → 4p+

transition. The initial state is a distribution of 4s22k Stark states in a 50 V/cm static
field. The solid curve shows the in-field case (∆tICE > 0) and the dashed curve is the
zero field case. The same static field is present in both cases. The HCP has a peak
field of ∼ 3 kV/cm and is polarized orthogonal to the static field. As in the case of two
orthogonally polarized HCPs, a small amount of AI suppression is observed.

are observed. Clearly, the key to AI suppression is the transfer of population to high-m

states.

5.4 Discussion and Numerical Analysis

Stabilization of an autoionizing system occurs when an excited inner electron decays

to its ground state by spontaneously emitting a photon, rather than scattering off

another excited electron. AI can only occur while the inner electron is in an excited



CHAPTER 5. SUPPRESSION OF AUTOIONIZATION 142

state. Therefore, the lifetime of that state determines the maximum amount of time

during which AI can occur. The lifetime of the Ca inner 4p state studied in this work

is approximately 3 ns [53]. An electron in a 22d state performs approximately 1850

Kepler orbits during 3 ns. The lifetime of the 4p22d state is approximately 4.2 ps [51].

Therefore, each time an electron in a 22d state returns to the 4p atomic core (every

1.6 ps), it has roughly a 32% chance of being autoionized. Due to the large number

of Kepler oscillations, the probability that a 4p22d state does not autoionize during

the 3 ns lifetime of the 4p inner electron state is practically zero. Instead, measurable

suppression of AI is expected only if the outer electron remains in a high ` state with a

small autoionization probability during the entire lifetime of the inner excited state [36].

5.4.1 Single HCP Calculations

In the first experiment presented, a single HCP field transfers population to several

final ` states. The shift in the position of the resonance in figure 5.3(a) indicates that

the HCP is populating states with high `. Since no suppression of AI is observed in this

experiment however, no stabilization occurs. One possibility for this is that the HCP

could be directly ionizing the Rydberg electron. A HCP, which has sufficient strength to

transfer a substantial fraction of the Rydberg population to high ` states also increases

the energy of the electron. The change in energy can be great enough so that the

electron is ionized (or has n ≥ 50). Another possibility is that any high ` population
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resulting from HCP interaction samples low ` character prior to stabilization. Since the

low ` states have a large AI probability, if the high ` states sample any low ` character,

AI occurs.

A numerical integration of the time dependent Schrödinger equation for a doubly

excited calcium atom under the influence of an electric field is performed. Details of this

calculation can be found in appendix C. Matrix elements are calculated for all possible

dipole transitions in a range of 10 < n < 90. For a single HCP, only ∆m = 0 transitions

are considered. At t = 0, the population in a specified Rydberg eigenstate is set to 1.

The system evolves for 3 ns (approximately the lifetime of the 4p+ inner excited state).

After t = ∆tICE, population is removed from each state in the system according to the

autoionization rates calculated in section C.4.2. Any population reaching the highest

n state in the simulation is considered ionized and removed. The magnitude of the

clearing pulse used to accelerate ions toward the microchannel plates is sufficient to

ionize n > 50 Rydberg states.

The temporal profile of the HCP fields used in this work are not completely described

by a “half - cycle”. The true temporal shape of the HCPs is approximated by a 1 ps

FWHM Gaussian pulse convoluted with a 5 ns to 10 ns long, low amplitude negative

tail, such as shown in figure 3.2 [54]. The long time negative tail brings the total

integrated field of the HCP closer to zero, even though the short term impulsive part

of the HCP field is nonzero. The electric field profile used in the calculations closely
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matches the HCP field in figure 3.2. Typical numerical results are shown in figures 5.9

and 5.10 for an initial state of n = 22, ` = 2,m = 0, with ∆tICE = 1.5 ps. A maximum

HCP field of 5 kV/cm is applied. Even though higher HCP fields yield larger amounts

of ` transfer, they also lead to a non-negligible probability of direct HCP ionization. For

HCP fields greater than 5 kV/cm, a significant portion of the initial population reaches

the edges of the basis set of the simulation and is counted as ionized. Figure 5.9 shows

remaining population as a function of time for the first 3 ps after HCP interaction. Over

50% of the initial population is located in high ` states at t = ∆tICE, however, after

3 ns (shown in figure 5.10) less than 1% of the initial population remains unionized.

Even though population is transferred to high ` states by the impulsive part of the

HCP field, no stabilization occurs.

The “stair-step” decrease in Rydberg population that is shown in figure 5.10 is due to

the coherent evolution of angular momentum in the tail of the HCP field. Immediately

after autoionization commences, the fraction of the Rydberg population that has low-`

character rapidly ionizes. At this time, all of the surviving bound population resides

in high-` states. However, the small static field causes a precession of the angular

momentum in the “Stark wavepacket” from high- into low-` [49, 55, 56]. After one

“Stark period,” τS = 2π/(3Ftailn), a significant fraction of the bound population again

has low-` character [49, 55, 56]. Autoionization of the low-` part of the wavepacket

results in another rapid decrease in the Rydberg population. The cycle repeats until the
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Figure 5.9: Quantum mechanical simulation of the interaction of a single HCP with
an autoionizing state as discussed in the text. The initial Rydberg state has n = 22,
` = 2, and m = 0. The HCP has a peak field of 5 kV/cm and a static negative tail
of 10 V/cm. The solid curve shows the population in low ` states (` < 6), while the
dashed curve shows the population in high `.

atom has completely ionized. In the best case (i.e. the greatest survival probability),

the simulation predicts less than 10% surviving Rydberg population after 1 ns and

less than 1% remaining after the 3 ns 4p core lifetime. The effective autoionization

rate is proportional to the magnitude of the static field. Choosing a HCP tail field

of 20 V/cm would result in an autoionization lifetime that is half of that indicated in

Figure 5.10. Therefore, even though the HCP induces angular momentum transfer that

should stabilize some fraction of the atoms from AI, the quasi-static tail field mixes low

` character back into the Rydberg wavefunction.
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Figure 5.10: Surviving Rydberg population as a function of time calculated under the
same conditions as in Figure 5.9. The system is allowed to autoionize after a time
∆tICE = 1.5 ps according to calculated AI rates for calcium. Calculated surviving
population is shown as a function of time for three values of HCP field strength. Less
than 1% of the initial population remains after 3 ns.
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5.4.2 Calculations with Two Orthogonal HCPs

To simulate two orthogonal fields interacting with the system, all m states for each

allowed ` value must be included in the simulation. In this case, the density of available

states grows rapidly with increasing n (as n2 instead of as n in the previous case).

Therefore, the simulation must be restricted to 10 < n < 45 due to computational

limitations. At t = 0, all the population resides in a specified n, `,m Rydberg eigenstate.

Two orthogonal HCP fields separated in time by ∆tHCP interact with the system.

The orthogonal fields transfer population from the initial state to many n, `, and m

final states. After the main impulse of each HCP field interacts with the system, any

remaining field is effectively constant and polarized along some axis. This resultant

field direction is now the good axis of the problem. The m distribution of the system

along this resultant field axis is examined as a function of HCP field strength and

∆tHCP . In the constant residual field, m is a good quantum number, so the angular

momentum may mix only between ` = m and ` = n − 1. Any fraction of the initial

population that has been transferred to high m is then forbidden from sampling low `

states with ` < m.

As a check of the two pulse simulation, the time between the two HCPs (∆tHCP )

is set to zero, and the strength of the two HCP fields is set equal. The final m distri-

bution is calculated for every possible orientation angle in the x̂z plane. The resulting

dynamics should be identical to that of a single HCP with strength
√
2 times that of
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either individual pulse interacting with the same initial state. In this case, no high m

transfer along the line z = x is expected. Figure 5.11 shows the m distribution for two

orthogonal HCPs with maximum field strengths of 3 kV/cm along +x̂ and +ẑ with an

initial state of |22, 2, 0 >. Since the initial state is an ` = 2 state as measured along ẑ,

the m distribution along 1√
2
(x̂ + ẑ) may have |m| = 0, 1, 2 character, but is forbidden

from having any higher m components (see section C.5 for further explanation).

Figure 5.12 shows the calculated m distribution after the passage of two orthogonal

HCP fields with a relative delay of ∆tHCP = 0.8 ps. The first HCP is polarized

along x̂ and the second along ẑ. Along 1√
2
(x̂ + ẑ), less than 10% of the population is

actually transferred to states with m > `c. All population with m ≤ `c is considered

autoionized due to the ` state mixing. Similar calculations are performed for a variety

of values of ∆tHCP , with similar results. Increasing the peak field of the two HCPs

to greater than 3 kV/cm leads to direct HCP ionization. Approximately 10% of the

final Rydberg population resides in states with m > `c, and therefore, is stable against

autoionization. This value is in good agreement with our experimental observation of

≈ 10% stabilization probability for two crossed polarized HCPs.

5.4.3 Calculations with Orthogonal HCP and Static Fields

Finally, the effect of applying an orthogonal HCP field on an autoionizing system in

the presence of a static field is calculated. The static field is applied along the ẑ
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Figure 5.11: Quantum mechanical calculation of the interaction of two orthogonal HCP
fields with an autoionizing state as discussed in the text. The initial Rydberg eigenstate
has n = 22, ` = 2, andm = 0 when measured along ẑ. Both HCP fields have peak fields
of 3 kV/cm (first HCP along ẑ and second HCP along x̂) and static negative tails of
10 V/cm. The time delay between the two pulses is ∆tHCP = 0.0. The m distribution
is shown 2 ps after the HCP interaction as measured along any axis from ẑ to x̂. Dark
represents m values with a greater population. The m distribution along a 45 degree
axis, contains only |m| = 0, 1, 2 since this is the resultant field axis.
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Figure 5.12: Quantum mechanical calculation of the interaction of two orthogonal HCP
fields with an autoionizing state as discussed in the text. The initial Rydberg eigenstate
has n = 22, ` = 2, and m = 0 measured along ẑ. Both HCP fields have peak fields of
3 kV/cm (first HCP along ẑ and second HCP along x̂) and static negative tails of 10
V/cm. The time delay between the two pulses is ∆tHCP = 0.8 ps. The m distribution
is shown 2 ps after the HCP interaction as measured along any axis from ẑ to x̂. Dark
represents m values with a greater population. The m distribution along 1√

2
(x̂ + ẑ)

only contains less than 10% of the population in m > `c.
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axis. A HCP field polarized along x̂ interacts with the system. The Stark states

in calcium within a Gaussian window centered at the zero field energy of the 4s22d

state are populated at t = 0. The window has a bandwidth of 0.5 cm−1. The initial

state is chosen to resemble the initial state in the experiment in section 5.3.3. The

exact energy levels and oscillator strengths for calcium are calculated as a function of

F from a diagonalization of the non-hydrogenic |n, `,m > basis. The details of this

diagonalization can be found in section D.2.3. The system evolves according to the time

dependent Schrödinger equation in the presence of both the static field (along ẑ) and

the HCP field (along x̂). The calculation includes all allowed n, `, and m states in the

range 10 < n < 45. Following the impulsive part of the HCP interaction, the final m

state distribution along ẑ is recovered. Figure 5.13 shows the final state m distribution

for a static field of 200 V/cm and a maximum HCP field of 3 kV/cm. Less than 10%

of the total population arrives in high m states (m > `c). Increasing the maximum

field strength of the HCP much above 3 kV/cm in a field of 200 V/cm again results

in a breakdown of the simulation as population begins moving to the highest n values.

This is analogous to direct ionization of the system due to interaction with the HCP

and static fields. All population with m ≤ `c is again considered autoionized. The

calculated amount of AI in the presence of a combination of static field and orthogonal

HCP field differs from the zero field amount by ≈10%.

The final state m distribution is also calculated if all the k states in the n =
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Figure 5.13: Quantum mechanical calculation of the interaction of a HCP and an
orthogonal applied static field as discussed in the text. Initially, an ensemble of 4s22k
states is excited in a 200 V/cm static field. The initial state energy distribution is
centered around the zero field location of the 4s22d state. The static field is oriented
along the ẑ axis. The HCP is polarized in the x̂ direction and has a peak field of 3
kV/cm with a 10 kV/cm static field tail. The m distribution is shown 2 ps after the
HCP interaction as measured along any axis from −ẑ to +ẑ. Dark represents m values
with a greater population. Less than 10% of the population has m > `c after HCP
interaction.
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22 manifold are excited equally. This is the experimental analog of using a broad

bandwidth laser to excite the entire Stark manifold. The results do not significantly

differ from those of the previous cases.

5.5 Conclusions

We have extended the study of an autoionizing system in the presence of electric fields

from the adiabatic field regime into the impulsive field limit. We have examined, ex-

perimentally and theoretically, transient electric field induced stabilization of Rydberg

atoms against AI for three different transient/static field configurations. These time

dependent field configurations mimic the micro-fields experienced by atoms, molecules,

and ions embedded in neutral plasmas or space-charge distributions. We have found

that impulsive transients, oriented parallel to relatively weak static electric fields, are

totally ineffective in stabilizing atoms against autoionization due to angular momen-

tum mixing in the static field. We predict and observe the stabilization of autoionizing

atoms for field configurations where high-m states are populated. These states are

stable against autoionization and, in contrast to low-m states, are immune to angu-

lar momentum mixing with rapidly autoionizing low-` levels. However, the fraction of

atoms that is stabilized is small (≈ 10% or less) due to the relatively low probability for

populating high-m states during a field impulse. Ultimately, impulsive field ionization

of the Rydberg electron limits the strength of the transient field that can effectively



CHAPTER 5. SUPPRESSION OF AUTOIONIZATION 154

stabilize the atom against AI.
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Chapter 6

Manipulating Wavepacket

Dynamics Part 3: The Dynamics of

a Recombined Wavepacket

6.1 Introduction

An investigation of the effects that HCP fields have on the system of an ion and a

free electron in a static field was presented in chapter 4. We were able to determine

the probability that the HCP caused the electron and ion to recombine to form a

bound atom. Recombination probability was investigated as a function of a number of

parameters. However, no information was recovered about the subsequent motion of
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the newly recombined atom [1]. In this chapter, we again look at the response of an

electron - ion system to a HCP field. However, this time we investigate the system in

a field free environment. In addition, we try to recover information about the motion

of the recombined system following HCP assisted recombination.

Furthermore, recent work has suggested that the dynamics of a recombined atomic

system may exhibit interesting properties [2–4]. Both classical and fully quantum sim-

ulations indicate it is possible to localize a recombined electron far from the atomic

core under certain experimental conditions. This spatial localization can recur periodi-

cally for long times [2,3]. To our knowledge however, this effect has yet to be observed

experimentally. In this chapter, we attempt to: (i) recover the momentum distribution

of a recombined wavepacket as a function of time after recombination occurs and, (ii)

investigate the phenomenon of electron localization within a recombined wavepacket.

6.2 Experimental Setup

In this experiment, a 1 ps laser pulse photoionizes Ca atoms from a thermal beam,

producing a low density, ρ ∼ 107 cm−3, non-equilibrium plasma. The frequency of the

laser pulse is tuned just above the field free ionization threshold. Immediately following

the laser pulse, each photoionized electron moves slowly away from its parent ion in

the form of a radially localized continuum wavepacket. After a short time delay τ , the

plasma is exposed to a sub-picosecond half cycle pulse of THz radiation [5]. The HCP
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stimulates the recombination of a fraction of the outgoing electrons with their parent

ions, forming highly-excited Rydberg atoms [2]. A second HCP is then used to probe

the resulting recombined wavepacket. The momentum distribution of the wavepacket

is recovered through the lock-in IMR technique introduced in chapter 3 [7].

Technically, the recombination induced by the HCP can be classified as stimulated

RR. However, the electric field in our pulse is not oscillatory. In fact, the temporal

profile of the HCP (shown in figure 3.2) is essentially identical to the transverse field

that an electron-ion pair experiences during a fast, long-range collision with a third

charged particle. Therefore, rather than describe HCP assisted recombination in terms

of stimulated emission and absorption of multiple photons, it is more intuitive to con-

sider the process as artificial TBR with the HCP replacing the collision field [2]. In

classical terms, the HCP field gives an electron an impulse or kick of strength ~A [9,10].

If the kick opposes the motion of the electron, sufficient momentum and energy may be

extracted to recombine the electron with its parent ion. Quantum mechanically, this

momentum and energy transfer is manifest in the redistribution of electron amplitude

from the outgoing wavepacket into a coherent superposition of bound and continuum

states [2, 3]. The recombination probability per atom is equal to the bound-state pop-

ulation in this final superposition state.

The goal of this chapter is to recover information about the evolution of the re-

combined wavepacket. To this end, atoms are photoionized and recombined, and then
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probed with a second HCP field. The number of Rydberg atoms remaining after the

final HCP probe is recorded as a function of (i) the delay between the recombining

HCP and the probe HCP (∆tprobe); (ii) the initial energy of the recombined electron;

(iii) the HCP probe field strength; and (iv) the relative orientation of the two HCP

fields.

A schematic diagram of the detector used in this work is shown in figure 2.9. Ini-

tially, ground state Ca 4s4s atoms are excited to a 4s4p level by a a 5 ns, 423 nm, dye

laser pulse. A 1 ps, 389 nm laser pulse then photoionizes the 4s4p atoms, producing

a continuum wavepacket with a mean energy, Ewp ∼ 15cm−1. The wavepacket has an

energy spread of approximately 15 cm−1 due to the bandwidth of the 389 nm laser

pulse. The two laser beams are linearly polarized perpendicular to the plane of the

field plates, and the photoionized electrons have azimuthal quantum number, m = 0.

After a delay, τ < 10 ps, the plasma and neutral atoms in the interaction region

are exposed to a 1 ps HCP. The HCP is generated from a GaAs wafer by the method

introduced in chapter 3. The HCP field is linearly polarized parallel to the bias field

on the GaAs wafer, and proportional to the bias voltage [5]. The HCP field amplitude,

FHCP < 20 kV/cm is insufficient to affect the neutral 4s4s or 4s4p Ca atoms. However,

depending on the HCP strength and delay τ , the HCP can recombine a small fraction

(∼ 20%) of the continuum electrons with their parent ions [2].

After a further delay, ∆tprobe < 100 ps, the plasma and recombined atoms in the
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Figure 6.1: A schematic diagram of the relevant energy levels in this experiment. The
actual measurement performed determines the fraction of the final states still bound
after the HCP probe. This is shown graphically by the states indicated by green bracket
on the right.

interaction region are exposed to a second, 1 ps HCP. This second (probe) HCP is

generated from another GaAs wafer which is mounted on a rotation stage so that the

angle between the first HCP (pump) and the second HCP (probe) can be continuously

varied. The pump and probe HCPs counterpropagate through the interaction region.

The probe HCP ionizes a fraction of the neutral atoms created by the HCP pump

pulse. The fraction of recombined atoms which are ionized depends on the strength

and relative delay of the HCP probe, as well as the relative orientation between the

pump and probe pulses. An energy level diagram for this experiment is shown in figure

6.1.

Approximately 20 ns following the HCP probe pulse, a 30 V, 4 µs long field pulse
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Figure 6.2: A timing diagram of the experiment.

is applied to the upper field plate creating a pulsed field of 25 V/cm in the interaction

region. Any ions present in the interaction region are accelerated toward the lower

field plate due to their interaction with this “clearing pulse”. Loosely bound (n > 60)

Rydberg atoms are also ionized by the clearing pulse and are therefore indistinguishable

from ionization events. Following the clearing pulse, a high voltage pulse (∼7 kV) is

applied to the lower field plate. This HV pulse field ionizes any neutral Rydberg atoms

remaining in the interaction region. Ions that are produced via SSFI travel through a

slit in the upper field plate and are collected by the single shot detector (see section

2.6). Ion signal measured by the detector is proportional to the number of recombined

atoms which are not ionized by the HCP probe. A timing diagram for this experiment

in shown in figure 6.2.

Before the dynamics of a recombined wavepacket can be investigated, a recombined

wavepacket must be created. We want to create a wavepacket which contains the largest
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amount of the initial electron population possible for a given set of initial conditions.

Consider a HCP impulse of strength ~A = −An̂ incident upon a classical continuum

electron with energy E0 at time t = τ . The HCP field causes a change in the energy of

the electron

∆E = ~p(τ) · ~A+
| ~A|2
2

. (6.1)

The continuum electron will recombine if

E0 + ∆E > 0 . (6.2)

This condition is satisfied when

pn(τ) ≡ ~p(τ) · n̂ ≥ E0

A
+
A

2
. (6.3)

Therefore, we define a critical momentum pc ≡ E0

A
+ A

2
, such that the recombination

probability of a continuum wavepacket is equal to the probability that the electron has

pn ≥ pc.

Figure 6.3 shows the momentum distribution of a continuum wavepacket at two

different times. In (a), the distribution is broad and a relatively large portion of the

wavepacket has pn ≥ pc. Therefore, in (a) the recombination probability is large.

However, in (b) the momentum distribution is narrow and only a small portion of the

wavepacket has pn ≥ pc, resulting in a low recombination probability. Therefore, by

measuring the recombination signal as a function of time delay and HCP field, one

can recover a portion of the wavepacket’s time dependent momentum space probability
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Figure 6.3: A schematic representation of the fraction of the wavepacket which is
recombined. Here, pc = 0.01. In (a), a large fraction of the wavepacket has pn ≥ pc.
This situation will lead to a larger recombined fraction than in (b), where only a small
fraction of the initial wavepacket has pn ≥ pc.
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distribution [2].

To obtain the largest possible amount of recombination, pc must be as small as

possible. This occurs for an optimum kick strength Aopt such that Aopt =
√
2E0.

However, interesting behavior of the recombined wavepacket is predicted not for A =

Aopt, but rather when A = pn(τ). In this case, ∆E = − 1
2
p(τ)2 and the HCP field

removes all the kinetic energy from the outgoing electron. Simulations of the motion

of the recombined wavepacket for various values of A will be presented in section 7.3

In this work, A is determined experimentally by fixing a value of τ and a value of

HCP probe field strength, then scanning the HCP pump field strength. The pump field

strength which results in long term modulations in the HCP probe ionization signal

is chosen as the appropriate HCP pump field strength. The recombined wavepacket

created with these parameters is then studied with the lock-in IMR technique.

6.3 Results

Figure 6.4 shows the survival probability of a recombined wavepacket as a function of

HCP pump strength A1 and HCP probe time delay, ∆tprobe. The time delay τ between

the initial photoionization and the pump HCP is 3 ps [6]. The pump and probe pulses

are both polarized along +ẑ. The probe pulse has an impulse of A2 = 0.021 and ionizes

all portions of the recombined wavepacket with pz > p0, where p0 is defined in equation

3.8 in section 3.3.2. Dark regions in figure 6.4 correspond to combinations of ∆tprobe and
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Figure 6.4: Measured survival probability of the recombined wavepacket as a function
of HCP pump strength A1, and HCP probe time delay, ∆tprobe. The initial time delay τ
between launching of the continuum radial wavepacket and recombination is 3 ps. The
pump and probe pulses are both polarized along +ẑ. The probe pulse has a impulse of
A2 = 0.021 and will ionize all of the recombined wavepacket with pz > 0 > p0. Dark
regions correspond to combinations of ∆tprobe and A1 which result in a high probability
of pz < p0. The pump and probe pulses are both polarized along +ẑ. Long time
oscillations in the momentum distribution are observed around A1 = 0.023. This is
shown graphically in the three insets.
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A1 which result in a high fraction of bound electrons following both pump and probe

interactions. Long time oscillations in the momentum distribution are seen for HCP

pump fields around A1 = 0.023. For the most part, if the magnitude of A1 is slightly

greater or less than 0.023, then no long lived oscillations in the survival probability

exist. Some oscillatory features are however observed at A1 > 0.045. The origin of this

effect will be discussed in a later section.

A value of HCP pump strength is chosen from the data shown in figure 6.4 which

shows the longest lived oscillations in the momentum distribution. The HCP pump

strength is then fixed to this value. For the data in figure 6.4 this is A1 = 0.023 and is

shown graphically in the middle insert. The strength and direction of the HCP probe

is then varied to study the dynamics of the recombined packet. The measured fraction

of recombined atoms which remain bound after the probe pulse is shown in figures 6.5

and 6.6 as a function of both A2 and ∆tprobe. In figure 6.5(a), both the pump and probe

are polarized along +ẑ, while in figure 6.5(b), the probe is polarized along −ẑ. When

the pump and probe pulses are parallel (opposite), dark areas in the plots represent

combinations of A2 and ∆tprobe which lead to a net negative (positive) value of pz in the

recombined wavepacket. In figure 6.6, the probe is polarized along +x̂, perpendicular to

the pump pulse. Very little change in the bound fraction of the recombined wavepacket

is seen as a function of ∆tprobe. This indicates that there is little or no net motion of

the recombined wavepacket in the x̂ direction after ∆tprobe = 0. Therefore, any long
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Figure 6.5: Measured fraction of recombined atoms which remain bound after the probe
pulse as a function of both probe strength A2 and ∆tprobe. In (a), the HCP pump and
probe are both polarized along +ẑ. In (b) however, the pump pulse is polarized along
+ẑ and the probe is polarized along −ẑ.

lived net motion of the momentum distribution is primarily confined to the ẑ direction.

A vertical slice through the data shown in figure 6.5(a) at a single value of ∆tprobe

yields the bound state probability of the recombined wavepacket as a function of HCP

probe strength. One minus this quantity is the amount of HCP ionization of the recom-

bined wavepacket. It is possible to follow the normal IMR technique outlined in chapter

3 and directly recover the momentum distribution of the recombined wavepacket from
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Figure 6.6: Similar to figure 6.5, but the HCP probe is polarized along +x̂. For the
perpendicular pump - probe geometry shown here, very little change in the number
of bound atoms is seen after ∆tprobe = 0 for a given value of A2. Any long lived net
motion of the momentum distribution is confined to the ẑ direction.
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the data in figures 6.5 and 6.6 [7]. However, due to the relatively small signal to noise

ratio in the measured ionization curves, direct application of the IMR method yields

extremely noisy momentum distributions. Instead, we use a variation on the normal

IMR technique known as lock-in IMR to recover the momentum distribution of the re-

combined wavepacket. The lock-in IMR method is described in detail in section 3.3.2.

Briefly, instead of trying to take the derivative of the HCP ionization data to recover

the momentum distribution, the derivative signal is measured directly. With lock-in

IMR, we can avoid the need to take the derivative of a noisy signal.

Before IMR can be applied to the experimental data however, an average recombined

wavepacket energy Ewp must be found. To determine Ewp, a Fourier transform of

a horizontal slice through the data shown in figure 6.5(a) is taken. The resulting

frequency spectrum reveals the relative strength present at each frequency component.

Each frequency component can be mapped to an energy splitting between two levels

in the wavepacket [8]. In this manner, we plot the Fourier spectrum in figure 6.7 as a

function of energy. In region (a) of figure 6.7, a peak is seen at an energy corresponding

to the splitting of the Rydberg angular momentum states. No ∆n = 1 transitions can

be detected in region (a) as states with n > 60 are ionized by the clearing pulse and

are not present in the recombined wavepacket. In region (b), a large peak is seen at

the energy splitting corresponding to the ∆n = 1 transitions for n ∼ 52. The center of

this peak is located at E = 39 cm−1. In region (c), any peaks present are from ∆n > 1
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Figure 6.7: To determine the average energy of the recombined wavepacket, a Fourier
transform of the data shown in figure 6.5(a) is taken. The measured frequency spectrum
is plotted as a function of E as discussed in the text. In region (a), the energy splittings
between angular momentum levels gives rise to a peak at low E. Regions (b) and
(c) indicate regions with energy splittings between levels with ∆n = 1 and ∆n = 2
respectively [8]. The HCP pump and probe are both polarized along +ẑ. The value Ewp

= -39 cm−1 is chosen from the large peak in region (b). Since the initial continuum
wavepacket is approximately 15 cm−1 in the continuum, the average change to the
energy of the wavepacket induced by the HCP is ∆E = -54 cm−1.
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energy splittings [8].

The central energy of the recombined wavepacket is therefore set to Ewp = -39 cm−1

based on the data in figure 6.7. Since the initial continuum wavepacket is approximately

15 cm−1 in the continuum, the average change to the energy of the wavepacket induced

by the HCP is ∆E = -54 cm−1. The distribution of final energies in the recombined

wavepacket will be discussed in more detail in the next section.

The classical derivation of IMR assumes that the wavepacket has a well defined

energy, Ewp. Therefore, optimal IMR conditions exist when the spread in the energy

distribution of the wavepacket (∆E) is much less than Ewp. Since the distribution of

energies in the recombined wavepacket studied here is continuous from approximately

Ewp = -60 cm−1 to the continuum, the assumptions implicit in IMR are not strictly

valid. Nevertheless, we apply the lock-in IMR method to recover some information

about the momentum distribution of the recombined wavepacket. By examining the

momentum distributions which result from IMR in these less than ideal conditions,

information about the robustness of the IMR technique is also determined.

After the value of Ewp is determined, the momentum distribution of the recombined

wavepacket along the axis of the HCP probe is recovered through lock-in IMR. The

angle of the probe pulse can be varied to recover the momentum distribution along any

axis. Figure 6.8 shows the experimentally determined momentum distribution along ẑ

for a range of time delays 0 ≤ ∆tprobe ≤ 70 ps. The momentum distribution is recovered
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Figure 6.8: Experimentally determined momentum distribution along ẑ for a range of
time delays 0 ≤ ∆tprobe ≤ 70 ps. The distribution is recovered from two separate scans
of HCP probe strength A2 as discussed in the text.
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Figure 6.9: Experimentally determined momentum distribution of the recombined
wavepacket measured along x̂. The distribution is recovered in the same manner as
the distribution shown in figure 6.8.
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Figure 6.10: Measured expectation values of px and pz from the data presented in
figures 6.8 and 6.9. Even though < px > is expected to be zero, some oscillation is
noted. This is most likely due to slight misalignments between the pump and probe
HCPs.

from two separate scans of HCP probe strength (one with the probe polarized along +ẑ

and one along −ẑ) as discussed in section 3.3.2. Figure 6.9 shows a similar momentum

distribution but measured along x̂. Some initial motion along +x̂ is seen in the first 10

ps. Following this, no net motion of the recombined wavepacket along x̂ is observed.

This initial x̂ motion is likely due to slight misalignment between the pump and probe

HCPs. The average values of px and pz are calculated from the data in figures 6.8 and

6.9 and the results are shown in figure 6.10.

Once the momentum distribution is recovered from the data, it can be used to

obtain position space information. At any instant in time, the average value of radial
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position is related to the average momentum value through the equation

< r > =

〈

1
|~p|2
2
− Ewp

〉

. (6.4)

Due to the inherent symmetry of the problem, the average values of px and py should

be equal. Equation 6.4 then can be written as

< r > =

〈

1
p2z+2p2x

2
− Ewp

〉

. (6.5)

The wavepacket energy (Ewp) is determined from the data in figure 6.7 and the values of

pz and px are determined from the distributions shown in figures 6.8 and 6.9 respectively.

Some error may be introduced into the calculation of < r > due to the oscillations

present in the experimentally determined value of px > in figure 6.10.

To obtain a value for < r > at a given time ∆tprobe, the pz and px distributions

are first combined to form a net |~p|2 distribution. Then, this distribution is summed

over all momentum values to determine < r >. Since no forces act along x̂ or ŷ, the

expectation values < x > and < y > are approximately zero. Therefore, changes in

the value of < r > are due primarily to changes in < z >. Therefore, the recovered

< r > distribution should be approximately proportional to < z >. The value of < r >

recovered from the momentum distributions in figures 6.8 and 6.9 is shown in figure

6.11 as a function of ∆tprobe. Within each oscillation in the < r > distribution, some

asymmetry is present. The value of < r > increases rapidly to a maximum value and

then slowly decreases back to a minimum. For example, at ∆tprobe = 12 ps, < r > is a
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minimum. From 12 ps to 17 ps, the value of < r > quickly increases to a maximum.

Then from 17 ps to 30 ps, < r > decreases back to a minimum value. The origin of

this asymmetry will be discussed in the next section.

6.4 Discussion and Numerical Analysis

Classical trajectory Monte-Carlo (CTMC) calculations have been performed to simulate

the experiment presented in this chapter. Full details of the calculations can be found

in appendix B. In the calculation, an ensemble of approximately 10 000 electrons is

launched into a Coulomb potential from the inner turning point of a semi-classical

angular distribution of hydrogenic ` = 2, m = 0 orbits. Electrons are released at

t = 0 and have a Gaussian energy distribution (FWHM = 15 cm−1) centered about a

mean energy, E = 15 cm−1. These initial conditions mimic laser photoionization into

the continuum. After a time t = 3 ps, each electron is exposed to a 0.80 ps FWHM

Gaussian HCP which is polarized along +ẑ. After the HCP field, the intermediate

energy E1 of each electron is recorded. A variable time ∆tprobe after the first HCP,

each electron is exposed to a second 0.80 ps FWHM Gaussian HCP probe. After the

probe HCP interaction, final values of ~r, ~p, and Ef are recorded for each electron. If an

electron has Ef < −30 cm−1, then it is counted as bound after the probe pulse. The

offset in Ef from zero is due to ionization of loosely bound high Rydberg states by the

clearing pulse. Calculations are performed for values of pump strength 0 ≤ A1 ≤ 0.05
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Figure 6.11: The average value of the radial position (< r >) as a function of ∆tprobe.
Changes in the value of < r > are due primarily to changes in < z >. Within each
oscillation in the < r > distribution, some asymmetry is present. The value of < r >
increases rapidly to a maximum value and then slowly decreases back to a minimum.
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and values of probe time delay, 0 ≤ ∆tprobe ≤ 50 ps. Figure 6.12 shows the results of

these calculations. Dark areas represent combinations of A1 and ∆tprobe which result in

a higher probability of having electrons still bound after the HCP probe. For a range of

HCP pump field strengths centered around A1 = 0.024, clear oscillations in the number

of remaining electrons exists as a function of ∆tprobe.

The energy distribution of the continuum wavepacket following the HCP pump is

shown in figure 6.13 as a function of A1 for the same initial conditions that are present

in figure 6.12. When A1 = 0.024, the oscillations in recombination probability in figure

6.12 are the strongest. The energy distribution of the wavepacket corresponding to this

case is sharply peaked at E1 = −39 cm−1 (figure 6.13(b)). Approximately 12% of the

initial population has E1 < −30 cm−1, which is defined as the continuum limit due to

the clearing pulse used in the experiment. Of this recombined population, over 40%

has energy between -40 cm−1 and -38 cm−1. In other words, 40% of the recombined

wavepacket has principal quantum number n = 52, 53, or 54 for A1 = 0.024. The narrow

peak in the energy distribution broadens for A1 either greater or less than A1 = 0.024.

Additional CTMC calculations are done to simulate the effect of varying HCP probe

strength on recombination probability. Instead of fixing a value for A2, the magnitude

of the HCP pump pulse is set to the value which results in the long lived oscillations

in figure 6.12 (A1 = 0.024) and then the probe strength is varied. Sample results are

shown in figures 6.14 and 6.15. Dark areas indicate combinations of A2 and ∆tprobe
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Figure 6.12: Calculated recombination rates as a function of HCP pump impulse (A1)
and the HCP probe delay (∆tprobe). Dark areas represent combinations of A1 and
∆tprobe which lead to a higher probability of having electrons still bound after the HCP
probe interaction. In this figure, A2 = 0.016. For a range of HCP pump field strengths
centered around A1 = 0.024, clear oscillations in the number of remaining electrons are
observed as a function of ∆tprobe. This feature is also seen in the experimental data
in figure 6.4. Fast oscillations in the fraction of bound electrons that are seen in the
experimental data are not reproduced in the calculations. The intermediate energy
distribution (E1) of the wavepacket following the HCP pump is shown in figure 6.13
for three selected values of A1. These values are shown here by the three arrows.
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Figure 6.13: Calculated energy distribution of the continuum wavepacket following the
HCP pump pulse for three values of A1: (a) A1 = 0.016, (b) A1 = 0.024, and (c)
A1 = 0.030. The initial energy distribution of the continuum wavepacket is a Gaussian
envelope centered at +15 cm−1, with a 10 cm−1 full width at half maximum. The value
of A1 which leads to the strongest oscillations in figure 6.12 has a sharp peak in the
energy distribution at E1 = −39 cm−1.
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Figure 6.14: Calculation of bound state probability as a function of both HCP probe
strength (A2) and ∆tprobe. Dark areas on the plot show combinations of A2 and ∆tprobe
which yield a high probability of a bound electron after both pump and probe interac-
tion. The magnitude of the HCP pump pulse is fixed to A1 = 0.024. The calculations
show good agreement with the data shown in figures 6.5 and 6.6. The pump pulse
is polarized along +ẑ. In (a), the calculated amount of recombination is shown for a
probe pulse along +ẑ. In (b), the probe pulse is oriented along −ẑ.

which result in a high probability of having electrons bound to the core following both

the pump and probe pulses. When the probe pulse is aligned along the same axis

as the pump (as in figure 6.14), pronounced oscillations are seen in the bound state

probability. However, when the pump and probe pulses are orthogonal (figure 6.15),

the bound state probability is relatively independent of ∆tprobe.

The calculations presented in figures 6.14 and 6.15 simulate the measured HCP
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Figure 6.15: Similar to figure 6.14, but for a HCP pump polarized along +ẑ and a HCP
probe polarized along +x̂.

probe scans shown in figures 6.5 and 6.6. The IMR technique is applied to the cal-

culation results to obtain calculated momentum distributions which can be compared

to the measured ones. The momentum calculation results are shown in figure 6.16.

Each IMR momentum distribution is assembled from two separate calculations of HCP

probe strength. For positive (negative) momentum values, a parallel (opposite) pump

- probe orientation is used. Some overlap is present when performing IMR and this

region is used to match the two halves of the distribution. The details of the matching

are described in section 3.3.2.

The momentum distributions obtained from the calculated IMR can then be com-
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Figure 6.16: Plot of the calculated momentum distribution obtained from IMR of the
calculation shown in figures 6.14 and 6.15. In this figure, the momentum distribution
is obtained through the same method used to obtain momentum distributions from the
experimental data. A couple features are observed in the calculated spectra that do not
correspond to the measured momentum distributions, although the overall resemblance
is good.
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pared to the momentum distributions obtained directly from the CTMC calculations.

Instead of simulating IMR, the x̂ and ẑ momentum of each event in the simulation is

recorded for 200 ps. A histogram is then made of the pz and px values for each time

step in the simulation. All the histograms are combined in a single greyscale plot and

shown in figure 6.17. Shown are the pz and px momentum distributions of a simulated

recombined wavepacket with the same initial conditions as in figures 6.14 and 6.15.

Qualitative agreement exists between the IMR recovered momentum distributions in

figure 6.16 and the direct calculation results in figure 6.17. Even though ideal condi-

tions are not present for IMR, it appears that the IMR method performs acceptably for

recovering the momentum distribution of a recombined wavepacket. Additional simu-

lations of the creation and evolution of recombined wavepackets is presented in chapter

7.

The first HCP (the pump pulse) gives an the continuum wavepacket an initial kick in

the −ẑ direction. Therefore, for the first few picoseconds after interaction with the HCP

pump, the momentum of the wavepacket in the ẑ direction is almost entirely negative.

This is seen in both the measured and calculated momentum distributions (figures 6.8

and 6.16 respectively). Portions of the initial continuum wavepacket which initially were

moving along −ẑ continue to do so. However, some portions of the initial wavepacket

which were moving in the +ẑ direction prior to HCP interaction have been recombined

and move back along −ẑ. Once the recombined wavepacket passes the atomic core,



CHAPTER 6. THE DYNAMICS OF A RECOMBINED WAVEPACKET 189

Figure 6.17: Calculated (a) pz and (b) px momentum distributions of a recombined
wavepacket.
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it then quickly reverses direction and moves back along +ẑ again. For the measured

momentum distribution in figure 6.8, this transition happens at 7 ps. As the recombined

wavepacket evolves in the Coulomb potential, the average value of pz continues to

oscillate between positive and negative values. This oscillation is shown in figures

6.10(a) and 6.18(a) for the measured data and calculations respectively. Dephasing of

the measured recombined wavepacket washes out the details of the distribution at large

values of ∆tprobe. A simulation of the evolution of the recombined wavepacket is shown

in figure 7.14.

Zeros in the calculated IMR pz momentum distribution occur at approximately

23 ps intervals. Of particular interest is the characterization of the crossover from

positive to negative momentum values when compared to the crossover from negative

to positive values. For example, at ∆tprobe = 14 ps, the average value of pz (< pz >) is

approximately +0.006. (Calculated values of < pz > are shown in figure 6.18.) From

∆tprobe = 14 ps to ∆tprobe = 24 ps, < pz > decreases slowly (but is still positive). At

24 ps, < pz >= 0. The change from small positive values of < pz > to small negative

values of < pz > occurs relatively slowly. Then, from ∆tprobe = 24 ps to ∆tprobe = 29

ps < pz > decreases to ever more negative values. At approximately ∆tprobe = 29 ps,

< pz > switches sign very rapidly, changing from -0.01 at 29 ps to +0.004 at 34 ps.

Such evolution is consistent with a large portion of the recombined wavepacket being

localized along the +ẑ axis. The switch from positive to negative values of < pz >
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occurs slowly as electrons reach the outer turning point of their orbit oriented with

major axis along ẑ. Likewise, the switch from negative to positive values of < pz >

must occur quickly as each electron rapidly passes the inner turning point of a Kepler

orbit. The asymmetry in the pz momentum distribution therefore indicates a high

degree of localization on one side of the atomic core. This localization phenomenon

will be investigated further in chapter 7. This asymmetry is similarly observed in the

experimental data (figure 6.10), although the effect washes out after a few oscillations

due to the spread of energies present in the recombined wavepacket. Note the lack of

similar momentum oscillations in the calculated < px > distribution in figure 6.18(b).

A small feature is seen at small values of ∆tprobe in the measured < px > distribution

in figure 6.10(b). This is likely due to the pump and probe pulses not being completely

perpendicular.

Overall, the qualitative features of the measured momentum distribution in figure

6.8 are reproduced in figure 6.16(a). Small details evident in the calculated distribution

are not completely reproduced in the data. Similarly, there are some observed features

in the experimental data which are not reproduced in the calculations. Fast oscillations

in the fraction of bound ions are seen in figure 6.4 for large values of HCP pump

strength. No similar feature is observed in the calculations. The time spacing of these

oscillations corresponds roughly to the Kepler period for n = 40. There are some

potential explanations for these oscillations.
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Figure 6.18: Calculated value of < pz > and < px > for a recombined wavepacket for
0 ≤ ∆tprobe ≤ 80 ps.

One possible explanation arises from the temporal profile of the HCPs used in this

experiment. The analysis provided so far in this chapter assumes that the HCP is

approximated by a Gaussian envelope. However, the experiment presented in chapter

5 showed that the HCP profile is probably more closely given by figure 3.2, with a

strong impulsive part and a long lasting tail of opposite polarity. Perhaps when a very

strong (A1 ≥ 0.045) HCP pump performs recombination, the large impulsive part of

the HCP sends the portion of the continuum wavepacket with initial motion along +ẑ

flying back past the atomic core. As the wavepacket passes the core, the negative tail

of the HCP slows down the wavepacket and allows it to be captured into a lower n

state.

For completeness, HCP probe scans are taken in the region of the fast oscillations
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with a pump impulse A1 = 0.047. The lock-in IMR technique is applied to the resulting

data and a momentum distribution is recovered. It is shown in figure 6.19.

6.5 Conclusions

Recombined electronic wavepackets have been made in calcium with sub-picosecond

unipolar pulses of terahertz radiation (HCPs). The fraction of the wavepacket ionized

when exposed to a second “probe” HCP is measured. Subsequently, the momentum

distribution of the recombined electronic wavepacket is recovered through a variation of

the impulse momentum retrieval method known as lock-in IMR. Experimental results

are compared to classical calculations. Acceptable qualitative agreement is achieved.

We were able to show that impulse momentum retrieval can be used to recover mo-

mentum distributions even when the ideal conditions for IMR are not strictly satisfied.

Calculations show that when long lived oscillations occur in the HCP probe ionization

signal, then a large fraction of the recombined wavepacket is composed of states within

a narrow band of energies. This is likely the reason for the success of the IMR method

in recovering the momentum distribution of the recombined wavepacket. We were also

able to observe features in the recombination probability which are not predicted by

the simulations. An asymmetry is observed in < pz >. This is consistent with a time

dependent localization of the electron distribution along ẑ. This localization will be

investigated in detail in chapter 7.



CHAPTER 6. THE DYNAMICS OF A RECOMBINED WAVEPACKET 194

Figure 6.19: HCP probe scans are taken in the region of the fast oscillations with the
pump impulse A1 = 0.047. The IMR technique is applied to the resulting data and a
momentum distribution is recovered and shown here.
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Chapter 7

Classical Calculations of Electron

Localization

7.1 Introduction

Underlying the results from chapter 6 is an intriguing possibility. The main goal of

chapter 6 was to investigate the time evolution of a recombined wavepacket. However,

the motion of the recombined wavepacket was found to be consistent with the formation

of a three dimensionally localized electronic wavepacket. The creation of a 3-D localized

wavepacket moving along a classical trajectory has been a goal of atomic physics for a

long time [1]. While wavepackets have been created which are localized in either the

angular [2] or the radial [3] coordinate, the search for a truly localized 3-D wavepacket

197
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has been elusive. This has been the case despite theoretical work which has proposed

possible methods to produce such a packet [4].

While the creation of a 3-D localized wavepacket is an important step in the inves-

tigation of quantum - classical correspondence and the classical limit state of highly

excited atoms, perhaps a more exciting application is the area of quantum control [5].

Wavepackets can be though of in two separate, yet complimentary ways: (i) as a wave,

or (ii) an ensemble of particles. Rydberg atoms lend nicely to the ensemble picture,

where a Rydberg wavepacket can be thought of as an ensemble of particles, each in

classical motion [6]. The problem of quantum control then is analogous to the control

of an ensemble of classical particles. From this point of view it is clear why creating

a 3-D localized wavepacket is important to quantum control. If all the particles in

the ensemble are localized in a small region of phase space, then a control pulse will

affect them similarly. If the ensemble is diffuse however, then each particle in the en-

semble will react differently to the same control pulse. Therefore, the creation of a

3-D localized wavepacket is an essential first step into the realm of quantum control

experiments. Once this is accomplished, a wide variety of controlling pulses may be

used in an attempt to control the subsequent evolution of the system [7,8].

Recently a 3-D localized wavepacket was created by exciting an extremal Stark state

in an externally applied static field [8, 9], however this state only remains localized in

the presence of the field. Further manipulation of this localized wavefunction is com-
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plicated by the external field. Recently, a technique for the creation of a field-free 3-D

localized wavepacket has been postulated through the process of electron-ion recom-

bination [10, 11]. This method was attempted in the experiment presented in chapter

6 and the results are consistent with the creation of a 3-D localized wavepacket. In

this chapter, we perform classical calculations and Classical Trajectory Monte Carlo

(CTMC) simulations of the electron - ion recombination process performed in chapter

6. The goals of this chapter are (i) to investigate the effect that each experimental pa-

rameter (initial energy, kick strength, and kick timing) has on the degree of localization

of the recombined wavepacket, and (ii) to determine the parameters which lead to the

highest degree of localization.

The localization of an electron may proceed in the manner first described in chapter

6. First a neutral atom is photoionized, creating an outgoing continuum wavepacket.

Before the packet has moved from the influence of the atomic core it is subjected to

an impulsive electric field. Experimentally, this impulse is delivered by a HCP. Some

portion of the continuum wavepacket becomes bound to the atomic core again due to

HCP interaction. The bound fraction of the wavepacket may localize at a specific point

away from the atomic core under certain conditions. Once a 3-D localized distribution

is created, it is predicted to recur repeatedly.
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7.2 Analytical Calculations

7.2.1 Introduction

In an attempt to understand the degree of wavepacket localization, we solve the equa-

tions of motion of a continuum electron after it experiences a HCP kick. The motivation

for this is simple. We desire to show, through analytic means, that electron localization

is possible through HCP induced recombination for a wide variety of initial conditions.

Furthermore, we attempt to quantify the bounds of initial parameters which lead to the

maximum possible localization. We begin with Newton’s laws and Kepler’s equations

and calculate the electron’s motion as function of its initial energy, position, velocity,

and the magnitude of the linear kick which performs the recombination. Useful quan-

tities are calculated along the way which help describe the orbital dynamics. These

include the energy after HCP interaction, angular momentum, and eccentricity of the

electron’s orbit.

In this section, the HCP impulse is assumed to be instantaneous, affecting only one

component of the momentum at one specified time. In contrast, a classical numerical

simulation of the dynamics of a localized wavepacket will be presented in section 7.3

which studies the effect of non-instantaneous impulsive fields along various axes. In

both sections, the effect of the timing and strength of a linear impulse on the localized

wavepacket dynamics is investigated.
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7.2.2 Initial Conditions

A continuum electron is excited at t = 0 and moves radially away from its parent

ion. The electron is initially in m = 0 and ` = 0 and moves under the influence of the

Coulomb potential V (r) = − 1
|~r| . (See figure 7.1 for a diagram of the initial system.) The

electron is released from the origin of the coordinate system. Technically, the equations

of motion are singular at the origin, so the electron should be though of as having been

released at a distance r = ε at a time t = δt. The initial motion of the electron is

purely radial. Its position and velocity are given by ~r(t) and ~̇r(t) respectively. The

initial energy E0 of the electron is constant. From conservation of energy, we retrieve

the familiar equation

E0 =
1

2
|~̇r(t)|2 − 1

|~r(t)| . (7.1)

Without loss of generality, we assume that the motion of the electron is entirely

confined to the x̂z plane. An angle θ0 is defined which is the angle the initial radial

trajectory makes with the ẑ axis. The position and velocity of the electron in terms of

x and z is then given by

x0(t) = |~r0(t)| sinθ0 (7.2)

z0(t) = |~r0(t)| cosθ0 (7.3)

ẋ0(t) = |~̇r0(t)| sinθ0 (7.4)

ż0(t) = |~̇r0(t)| cosθ0. (7.5)
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Figure 7.1: Schematic diagram showing the initial starting point for the analytic cal-
culations of electron localization. The electron is shown in grey.

The next step is to determine the values of ~r0(t) and ~̇r0(t) for a given value of E0.

Equation 7.1 can be solved for ṙ(t) and yields

ṙ(t) =

√

2E0 +
2

r(t)
, (7.6)

where r(t) ≡ |~r(t)| and ṙ(t) ≡ |~̇r(t)|. Equation 7.6 is separable and yields the differential

relation

√
2 dt =

√

r

1 + E0r
dr . (7.7)

Direct integration of equation 7.7 (with the aid of a symbolic integration program such

as Mathematica) yields the messy relation:

t =
(

1

2E0

)

·
[

√

(r)(1 + E0r) −
(

1√
E0

)

sinh−1
√

E0r
]

. (7.8)
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Unfortunately, equation 7.8 is transcendental in r and must be inverted numerically to

obtain an expression for r(t). This is done in Mathematic through Newton’s method,

and an expression for r(t) is obtained which can then be substituted into equation 7.6

to obtain values for ṙ(t). Then, equations 7.2 through 7.5 yield expressions for the x

and z position and momentum of the electron as a function of time.

To get a physical sense of this solution, if E = −.0002 a.u. ≈ -44 cm−1, (corre-

sponding to the binding energy of an n = 50 eigenstate) then at t = 3 ps,

r0(3ps) = 3376.0 and ṙ0(3ps) = 0.0139 . (7.9)

Similarly, if E = 0, and t = 3 ps,

r0(3ps) = 4105.9 and ṙ0(3ps) = 0.0221 , (7.10)

and for the initial conditions in the experiment in chapter 6: E0 = 15 cm−1,

r0(3ps) = 4331.0 and ṙ0(3ps) = 0.0245 . (7.11)

7.2.3 HCP Interaction

The outgoing electron is allowed to evolve for a time t0. At t = t0, a HCP impulse of

magnitude A is applied in the −ẑ direction. Figure 7.2 shows a schematic drawing of

the system for a given initial launch angle. Just after t0, the position and momentum

of the electron are now given by:

x(t0) = |~r0(t0)| sinθ0 (7.12)
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Figure 7.2: Schematic diagram of an electron as it feels the impulse ~A directed in the
−ẑ direction. Initially, the electron is moving radially outward at an angle θ0 to the ẑ
axis. After the impulse, the ẑ component of its velocity is changed by −A.
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z(t0) = |~r0(t0)| cosθ0 (7.13)

ẋ(t0) = |~̇r0(t0)| sinθ0 (7.14)

ż(t0) = |~̇r0(t0)| cosθ0 − A . (7.15)

From these initial conditions, the subsequent motion of the electron can be calculated.

7.2.4 Determining Parameters of the Post-Impulse Motion

From this point on, we define ~r0 ≡ ~r(t0) and ~̇r0 ≡ ~̇r(t0) for ease of notation. The HCP

breaks the convenient radial symmetry. The energy of the electron after the impulse is

given by

Ef =
1

2

(

ṙ20 + A2 − 2Aṙ0 cosθ0

)

− 1

r0
, (7.16)

where r0 ≡ |~r0| and ṙ0 ≡ |~̇r0|. A graphical representation for Ef as a function of θ0 is

given in figure 7.3 for representative values of E0 and t0.

To determine what values of initial launch angle θ0 result in Ef < 0, equation 7.16

is solved for θ0, yielding

cosθ0 =
ṙ0
2A

+
A

2ṙ0
− 1

r0ṙ0A
− Ef

Aṙ0
. (7.17)

An angle θc is defined by setting Ef = 0 in equation 7.17 and solving for the positive

root of θ0. For all |θ0| < θc, Ef < 0 and the electron is bound. Similarly, if |θ0| > θc

then Ef > 0. A graphical representation for θc as a function of A is given in figure 7.4

for representative values of E0 and t0.
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Figure 7.3: Final energy of an electron after interaction with a linear impulse in the −ẑ
direction as a function of initial launch angle, θ0. For this figure, A = 0.02, E0 = 15
cm−1, and t0 = 3 ps. Similar curves can be constructed for any initial values of E0, A,
and t0.
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Figure 7.4: Critical launch angle θc such that for θ0 = θc, Ef = 0 as a function of the
impulse strength A. Here t0 = 3 ps. In the solid curve E0 = 0, in the long dashed curve
E0 = −15 cm−1 and in the short dashed curve E0 = 15 cm−1.

Another question which can be asked is: what combination of initial time delay t0

and impulse strength A will lead to the most negative values of Ef? The impulse only

affects the ẑ component of the velocity vector. Therefore, an impulse which makes

|ż| as small as possible will result in the greatest decrease in Ef . As t0 increases, the

electron is farther and farther from the atomic core, however it is moving slower and

slower due to the influence of the Coulomb potential. The impulse A which will cancel

this motion similarly decreases with increasing values of t0. Plotted in figure 7.5 is the

impulse strength A which exactly cancels the initial momentum along ẑ as a function

of t0. By zeroing |ż|, Ef is a minimum.
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Figure 7.5: Impulse strength which results in the minimum value of Ef as a function of
t0. Points along this curve correspond to combinations of t0 and A which exactly cancel
the initial ẑ momentum of the electron. The solid curve corresponds to E0 = 0, the long
dashed curve corresponds to E0 = −15 cm−1 and the short dashed curve corresponds
to E0 = 15 cm−1. The short dashed curve most closely represents the situation present
in chapter 6.

In general, the angular momentum of the electron following the HCP is nonzero. To

calculate `, we use the familiar relation ~̀ = ~r× ~̇r. Using the position and momentum

of the electron immediately after the impulse, the angular momentum for all times

t > t0 is given by

~̀ = Ar0 sinθ0 ŷ . (7.18)

Now that the energy and angular momentum after the impulse are known, other

quantities can be calculated. A useful one is the eccentricity of the orbit after interaction
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with the impulse. We know from Goldstein [12] that the eccentricity of a Kepler orbit

is given by:

e =
√
1 + 2E`2 . (7.19)

Therefore, the eccentricity of the orbit that results after the continuum electron receives

an impulsive kick of strength A at an angle θ0 is obtained by combining equations 7.16,

7.18, and 7.19.

e =

√

1 +
(

ṙ20 + A2 − 2Aṙ0 cosθ0 −
2

r0

)(

r20A
2 sin2θ0

)

(7.20)

The resulting eccentricity is shown in figure 7.6 as a function of initial launch angle,

θ0 for typical values of E0 and A. Values of the eccentricity less than 1 correspond to

elliptical (bound) orbits. Conversely, for |θ0| > θc, the eccentricity is greater than 1

and the electron motion is unbounded.

The Kepler orbit period of the electron after its interaction with the HCP can be

determined simply from semi-major axis a of its orbit [12]. Since we know both the

angular momentum and eccentricity of the electron’s orbit, we choose to express τK as

τK = 2πa3/2 = 2π
(

`2

1 − e2

)3/2

. (7.21)

It should be noted that τK is independent of `, however we choose to use `, and e to

determine a. Simple substitution of equations 7.18 and 7.20 into equation 7.21 yields

the Kepler period as a function of E0, t0, A, and θ0. Of course, this relation only holds

for closed (bound) orbits where Ef < 0.
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Figure 7.6: The eccentricity of the orbit that results from the HCP of magnitude
A = 0.02 applied to an electron 3 ps after it is launched from the core, shown as a
function of initial launch angle, θ0. The short dashed, solid, and long dashed curves
represent initial electron energies of E0 = +15 cm−1, 0, and −15 cm−1 respectively.

To get a feel for how variations in HCP magnitude affect the Kepler period of the

recombined electron, we look at the limiting case where θ0 = 0 in figure 7.7. At t0 = 3

ps, a minimum in the Kepler orbit time occurs at approximately A = 0.022. However,

for a range of kick strengths (0.015 ≤ A ≤ 0.035) fairly uniform, bound motion occurs.

To investigate both the effect of the impulse strength and launch angle on the Kepler

period at the same time, a 3-D plot is created and shown in figure 7.8 which shows

τK(A, θ0) for typical values of E0 and t0. Note that a large range of A and θ0 values,

yield similar Kepler periods for the recombined electron.
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Figure 7.7: The Kepler period of an electron with θ0 = 0 after interacting with a
HCP of magnitude A at t0 = 3 ps. In both graphs, the short dashed, solid, and long
dashed curves represent initial electron energies of E0 = +15 cm−1, 0, and −15 cm−1

respectively. The lower graph shows only a small range of τK and A values to highlight
how the minimum value of τK varies with E0 and A.
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Figure 7.8: The Kepler period of an electron with initial launch angle θ0 after interacting
with a HCP of of magnitude A at t0 = 3 ps. In this graph E0 = +15 cm−1. Therefore,
the conditions shown here closely resemble the initial conditions in the experiment
presented in chapter 6. A large section of the A, θ0 parameter space leads to orbits
with similar Kepler periods.
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7.2.5 Orbital Dynamics

After the impulse, each bound electron performs an elliptical orbit. For any electron

in an elliptical orbit, the radial distance from the origin to the electron is given by

`2

r
= 1 + e cos φ , (7.22)

where φ is measured from the outer turning point of the electron’s orbit. Solving for φ

yields,

cos φ =
1

e

(

`2

r
− 1

)

. (7.23)

Equation 7.23 can be used to determine the orientation of the electron’s orbit after

interaction with a HCP of magnitude A. An angle φ0 is defined as the angle between

the major axis of the new orbit of the electron and the electron’s position immediately

after the impulse. (See figure 7.9 for a schematic.) A new Cartesian coordinate system

is defined to be along the major and minor axes of the elliptical motion of the electron

following the impulse interaction. +ẑ ′ is defined to be along the major axis of the orbit

and pointed in the direction of the outer turning point of the orbit. Therefore, −ẑ ′

points towards the inner turning point of the orbit. The x̂′ axis lies along the minor

axis of the new orbit. Therefore, φ0 is the angle between the −ẑ axis and the vector

~r0. To find a value for φ0, we apply equation 7.23, resulting in

cos φ0 =
1

e

(

`2

r0
− 1

)

. (7.24)
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Figure 7.9: Important angles of the electron’s motion instantaneously after interaction
with a HCP of magnitude A applied in the −ẑ direction. θ0 is the angle that the initial
motion of the electron makes with the ẑ axis. The electron loses energy and becomes
bound in an elliptical orbit at t = t0. We define a new Cartesian coordinate system
such that the major and minor axes of the new elliptical orbit form the axes of the
new coordinate system. +ẑ′ is defined to be in the direction of the outer turning point
of the new orbit and along the major axis. Therefore −ẑ ′ is along the major axis of
the new orbit and pointed in the direction of the inner turning point. The x̂′ axis is
the minor axis of the new orbit. The angle between the old and new axes is given by
δ. The angle φ0 is the angle that the electron’s position at t = t0 makes with the −ẑ
axis. φ0 is defined to be zero at the inner turning point of the new elliptical orbit and
measured positive in the clockwise direction in the x̂z plane.
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Substitution of the values of e and ` from equations 7.20 and 7.18 yields the angle φ0

as a function of E0, θ0, A, and t0.

7.2.6 z Intercept Information

Finally, some information regarding the intersection of the electron’s post-impulse orbit

with the original kick axis can be obtained. Recall that the main goal of this section is

to determine the degree of localization of the recombined wavepacket as a function of a

variety of initial conditions. Due to the symmetry of the problem, localization is only

possible along the axis which the HCP was applied. Therefore, determining where and

when each orbit intersects this axis is crucial in determining the degree of wavepacket

localization. For notational simplicity, we have defined the HCP to be incident along

−ẑ. Therefore we seek to determine the z intercept position and timing as a function

of the experimental parameters. It should be noted that there is no inherent symmetry

about the ẑ axis. The analysis presented here is equally valid for any choice of HCP

kick axis.

Classical Trajectory Monte Carlo (CTMC) simulations suggest that a wide range of

initial launch angles, θ0 lead to similar values of z axis intercepts after interaction with

a −ẑ oriented HCP field [10,13]. To determine where a recombined electron’s orbit will

intersect the original z axis, the orbit equation is solved for r yielding

r =
`2

1 + e cos φ
. (7.25)
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The orbital radius vector r̂ is entirely along the +ẑ axis when φ = φ0 − θ0, leading

to

zint =
`2

1 + e cos (φ0 − θ0)
. (7.26)

A symbolic expression for zint in terms of A, t0, E0, and θ0 is long and uninforma-

tive, and is therefore omitted. However a graphical representation of zint is useful for

visualizing the dynamics. In figure 7.10, zint is shown as a function of the initial launch

angle for two different values of impulse strength. Note that for A ≥ 0.023, the zint

values are very similar over a large range of θ0. This is shown more clearly in figure

7.11 by the large plateau of zint values above A = 0.023. In this region, the values

of zint increase for increasing values of A, however zint is approximately constant as a

function of θ0 when θ0 < θc. Care must be taken in examining figure 7.11 however as

not all values of A and θ0 lead to bound orbits. Specifically, if E0 = +15 cm−1 and

t0 = 3 ps, then for A > 0.046, no bound orbits exist regardless of the initial launch

angle. Similarly, if |θ0| > 57◦, then no value of impulse strength will result in bound

orbits.

Figure 7.11 clearly shows that a diverse set of initial conditions may all lead to

electron orbits which cross the kick axis (in this case the ẑ axis) in approximately

the same location. However, to show that the initial conditions are consistent with

wavepacket localization, we must also show that each orbit crosses the kick axis at the

same time as well. To determine when the electron crosses the z axis, (for that matter,
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Figure 7.10: zint as a function of θ0 for two values of A. In the graph on the top,
A = 0.02, while in the graph on the bottom, A = 0.026. In both graphs, the short
dashed, solid, and long dashed curves represent initial electron energies of E0 = +15
cm−1, 0, and −15 cm−1 respectively. In both graphs t0 = 3 ps. Note that once A passes
a threshold value, a large range of θ0 values result in very similar z intercepts.
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Figure 7.11: zint as a function of θ0 and A. For this graph E0 = +15 cm−1 and t0 = 3
ps.
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to determine the time the electron reaches any given location in its orbit) we make use

of Kepler’s equation [12]

t =
(

τ

2π

)

(ψ − e sin ψ) . (7.27)

The variable ψ is known as the eccentric anomaly. ψ ranges from 0 to 2π and is defined

by the relation

r =
(

`2

1 − e2

)

(1 − e cos ψ) . (7.28)

The variables φ and ψ are related through the following equation [12]

tan
φ

2
=

√

1 + e

1 − e
tan

ψ

2
. (7.29)

Therefore, to find the time when the electron’s orbit crosses the z axis, we set φ = φ0−θ0

and solve for ψ with equation 7.29. Once the value of ψ is known, then we plug this

value into equation 7.27 to determine when the electron crosses the z axis. Figure 7.12

shows the first z intercept time as a function of θ0 and A for the approximate values of

E0 and t0 which are present in the experiment in chapter 6. An “island” of initial θ0

and A values leads to fairly short z intercept times. The center of this island in impulse

strength corresponds to A = .023, θ0 = 0. These conditions lead to the shortest possible

Kepler period of the recombined electron. The value of A = .023 is also roughly equal

to the HCP kick magnitude which results in long lived modulations in the measured

HCP probe ionization signal shown in figure 6.4.
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Figure 7.12: The time of the first +z intercept as a function of θ0 and A. Again,
E0 = +15 cm−1 and t0 = 3 ps. In the lower graph, the time scale has been truncated
to allow observation of conditions which lead to the shortest +z intercept.
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7.2.7 Conclusions

The main goal of this section was to demonstrate that a potentially diverse range of

initial conditions all can lead to roughly the same localized wavepacket dynamics. In

other words, a large portion of an initial distribution (with slightly different initial

conditions) may wind up localized at the same point at the same time. We see that

this is indeed the case. For a range of initial launch angles (roughly −30◦ ≤ θ0 ≤ 30◦),

HCP magnitudes (0.02 ≤ A ≤ 0.03), initial energy (|E0| ≤ 15 cm−1), and launch times

(2 ps ≤ t0 ≤ 4 ps), most electron trajectories cross the +ẑ axis at roughly the same time

and in roughly the same place. Clearly, the more the initial conditions are narrowed,

the tighter the localization becomes. However, a good deal of localization is expected

for even the diverse initial conditions which are used in the HCP induced recombination

in chapter 6.

Most of the graphs presented in this chapter are done under the same initial condi-

tions for the launch of the continuum wavepacket, namely E0 = +15 cm−1 and t0 = 3

ps. These values are chosen to closely reproduce the experimental conditions that are

used in the experimental work presented in chapter 6. Similar calculations have been

performed for many different values of both E0 and t0, but the results do not provide

any new information. To properly simulate the experimental parameters, calculations

should be done for a range of initial launch times and initial energies and added to-

gether with the proper weighting. Performing these calculations analytically becomes
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increasingly difficult. Therefore, instead of trying to extend the analytical calculations

further, a shift to a completely numerical approach is indicated. To that end, in the

following section we perform Classical Trajectory Monte Carlo (CTMC) simulations of

HCP induced electron - ion recombination to investigate the range of initial conditions

which lead to 3-D wavepacket localization.

7.3 Numerical Calculations of Localization

7.3.1 Introduction

The analytic methods described in the previous section can only be extended so far

before the equations may not be solved in closed form, or even with only modest nu-

merical techniques such as Newton’s method. Most notably, for electric fields that

are non-instantaneous, analytic solutions of the equations of motion are quite difficult.

Therefore, to extend the analysis of the localized recombined wavepacket to interaction

with non-instantaneous fields, several Classical Trajectory Monte Carlo (CTMC) en-

semble simulations are performed. The technical details of the simulations are described

in appendix B. In this section we present results from the simulations. These results

are used to gain further understanding about the effect that a wide range of initial con-

ditions have on the creation and subsequent evolution of a 3-D localized recombined

wavepacket.
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In the simulation, each electron in an ensemble of 25 000 points is launched from the

core into am = 0, ` = 2 continuum orbit. The angle θ0 that the major axis of the initial

orbit makes with the ẑ axis is randomly distributed between −180◦ and 180◦. Without

loss of generality, we assume that the orbit is confined to the x̂z plane. The results can

then be rotated into the full 4π angular coordinate space. A time ∆t after the electron

leaves the core, it is subject to a 1 ps FWHM Gaussian HCP field. The polarity of

the HCP is arbitrarily chosen so that the electron feels a kick in the −ẑ direction. The

results are independent of the initial choice of coordinate axes however. In this choice

of orientation, the ẑ axis is therefore defined to be the “kick” axis. The position and

momentum of the electron is calculated numerically from t = 0 through some t = tmax.

A classical electron probability distribution is created from the cumulative results at

each time step [14]. The distributions from each time step are then combined and a

movie of the electron probability is created which shows the position and momentum

distributions for an ensemble of electrons for all times 0 ≤ t ≤ tmax.

7.3.2 Movies

Unfortunately, the printed format of this thesis does not present an easy method to

show movies of the time evolution of electron distributions. Therefore, a CD - ROM is

included with the thesis which contains the movies discussed in the text. The printed

figures in this section are a single frame from each movie. Each individual frame
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presented in the printed format is chosen in an attempt show the main feature from

the movie.

In each movie, a 1 ps FWHM HCP field interacts with an ensemble of electrons

approximately 3 ps to 4 ps after the launch of the electrons from the atomic core. The

initial motion is unbounded, with the initial energy of each electron in the ensemble

chosen from a Gaussian distribution centered at approximately 15 cm−1 with a FWHM

of 10 cm−1. After HCP interaction, a portion of the electrons in the ensemble will have

Ef < 0 and therefore be bound. These electrons execute elliptical orbits. This is shown

in figure 7.13. It is important to keep in mind when examining the overall behavior

of each ensemble that all the bound distribution shows is a bunch of elliptical orbits

added together.

Figures 7.14, 7.15, and 7.16, show movies of the time evolution of classical electron

probability densities before, during, and after interaction with a HCP field. Three

individual cases of HCP kick strength are considered. Each distribution is assembled

from 25 000 individual runs of a classical simulation. Probability density is shown in the

vertical axis. The direction that the HCP kick is applied is chosen to be −ẑ. The HCP

arrives approximately 4 ps after the initial launch of the electrons. In figure 7.14, the

magnitude of the HCP field is chosen so that the momentum of an electron along the

kick axis is zero after HCP interaction. In other words, the HCP field removes all the

kinetic energy from an electron launched with θ0 = 0. This situation is referred to as
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Figure 7.13: A single frame from a movie which shows 50 individual runs of the classical
simulation of electron motion. Initially, each electron is launched into a ` = 2 orbit
from the atomic core with an energy E0 chosen from a Gaussian distribution of energies
centered at 15 cm−1. The angle θ0 that each electron’s initial motion makes with the ẑ
axis is randomly chosen. A Gaussian HCP of maximum magnitude 4.5 kV/cm interacts
with the system approximately 4 ps after the initial launch of the electrons. In this
movie, the tracks of the electrons are displayed to demonstrate the elliptical nature of
the electron orbits after the HCP interaction. Note that bound orbits intersect the +ẑ
axis at approximately the same location. Also note that electrons with small values of
|θ0| form the most tightly bound orbits. Red denotes greater probability for finding an
electron at that location.
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the “magic kick” case. For the “magic” HCP kick strength, a large spike in probability

density occurs along the kick axis. This occurs approximately 22 ps after the launch of

the electrons. The maximum in probability density recurs approximately every 22 ps.

For the initial conditions presented here, this magic kick strength is 4.5 kV/cm.

If the magnitude of the HCP is weaker than magic kick strength, as in figure 7.15,

the HCP does not remove all the kinetic energy from the +ẑ directed outgoing electrons.

This case is referred to as the “weak kick” case. In contrast, if the HCP field is stronger

than the magic kick strength, as in figure 7.16, then electrons moving in the +ẑ direction

are turned around and have momentum directed along −ẑ after HCP interaction. This

situation is referred to as the “strong kick” case. In both the strong kick and weak kick

cases, the large spike in probability density which occurs in the magic kick case does not

occur. Figure 7.17 shows a plot of the maximum density of the electron distribution as

a function of time for each of the three cases. After the first 50 ps of the simulations, no

time dependent features are seen in the maximum density in either the weak or strong

kick cases. However, a spike in probability density recurs every 23 ps in the magic kick

case. This feature persists for several nanoseconds.

HCP interaction changes the energy of each electron by an amount

∆E = ~pe · ~A +
1

2
| ~A|2 , (7.30)

where ~pe is the momentum of the electron prior to HCP interaction and ~A is the HCP

strength. (A full treatment of HCP interactions is contained in chapter 3, and an
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Figure 7.14: A single frame from a movie showing the time evolution of a classical
electron probability density during interaction with a HCP. Probability density is shown
in the vertical axis. The initial state is a classical ` = 2 orbit launched from the atomic
core with an energy E0 chosen from a Gaussian distribution of energies centered at 15
cm−1. The angle θ0 that each electron’s initial motion makes with the ẑ axis is randomly
chosen. A Gaussian HCP of maximum magnitude 4.5 kV/cm interacts with the system
4 ps after the initial launch of the electrons. This is the “magic kick” case discussed in
the text. Note at approximately 22 ps after the launch of the electrons, a large spike
in probability density forms along the +ẑ axis. Over 50% of the bound population is
located in the peak. The peak reforms several times throughout the duration of the
simulation.
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Figure 7.15: A single frame from a movie showing the time evolution of a classical elec-
tron probability density during interaction with a HCP. The distribution is assembled
from 25 000 individual runs of a classical simulation. Probability density is shown in
the vertical axis. This simulation contains the same parameters as figure 7.14, however
the maximum HCP amplitude is reduced to 3 kV/cm. Note that the spike in probabil-
ity density does not form as was seen in figure 7.14. This is the “weak kick” scenario
discussed in the text.
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Figure 7.16: A single frame from a movie showing the time evolution of a classical elec-
tron probability density during interaction with a HCP. The distribution is assembled
from 25 000 individual runs of a classical simulation. Probability density is shown in
the vertical axis. This simulation contains the same parameters as figures 7.14 and
7.15, however the maximum HCP amplitude is increased to 5.5 kV/cm. No spike in
probability density occurs. This is the “strong kick” scenario discussed in the text.
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Figure 7.17: Maximum density of the classical electron distribution as a function of
time after the launch of the continuum electrons. Initial conditions are discussed in the
text. The black curve is for the magic kick strength case, the red curve is for the weak
kick case, and the green curve is for the strong kick case. Only the magic kick case
results in a recurring spike in the probability density.
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explanation of HCP induced recombination is given in section 6.2.) The energy of an

electron is a conserved quantity both before and after HCP interaction. Only during

HCP interaction is E not conserved. Therefore, the energy distribution after HCP

interaction reveals information about the fraction of the total electron distribution

bound as well as the distribution of n states among the bound fraction. Figure 7.18

shows the energy distribution both before (E0) and after (Ef ) HCP interaction in the

magic kick case. The energy distribution before HCP interaction is a Gaussian and

centered at E0 = 15 cm−1 as discussed previously. The Ef distribution is peaked near

the lowest (bound) energies in the distribution. The lowest possible energy that an

electron may have after HCP interaction is determined by its potential energy when it

interacts with the HCP field. For the initial conditions in figure 7.18, Efmin
= −40.5

cm−1, corresponding to a Rydberg orbit with principle quantum number of n = 52. A

large fraction (≈ 33%) of the bound population has energy between -40.5 cm−1 and -35

cm−1, corresponding to 52 ≤ n ≤ 56. For comparison, the Ef distributions in all three

cases are shown in figure 6.13. The narrow peak in the Ef distribution broadens for

both the weak and strong kick cases.

7.3.3 Time Evolution of Measurable Quantities

At each time step of the simulations, the position and momentum of each electron is

recorded. The data is then complied to form position and momentum distributions as
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Figure 7.18: Energy distribution of a classical ensemble of electrons before (black curve)
and after (grey curve) HCP interaction. The HCP field has a maximum strength of
4.5 kV/cm (magic kick case). The initial energy distribution is Gaussian and centered
at approximately 15 cm−1 with a 10 cm−1 FWHM. Approximately 24% of the initial
distribution has Ef < 0. Of that bound population, over 33% has principle quantum
number 52 ≤ n ≤ 56.
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functions of time. In this way, classical distributions are created for the position and

momentum along any axis. Figures 7.19 and 7.20 show the position and momentum

along the ẑ axis and x̂ axis respectively for the classical electron distribution shown in

figure 7.14. These distributions are for the magic kick case. For comparison, figure 7.21

shows the ẑ momentum distribution in the weak kick and strong kick cases. Momentum

plots such as those in figures 7.19(b), 7.20(b), and 7.21 can be directly compared

to experimental momentum distributions obtained through the impulse momentum

retrieval (IMR) method (see chapters 3 and 6).

When the ẑ momentum distributions of the three kick strength scenarios are com-

pared, one main feature is evident. Long lasting time dependent features only occur in

the magic kick case. In both the weak and strong kick strength scenarios, all time de-

pendent features wash out after the first 75 ps. In contrast, in the magic kick simulation

the same oscillatory feature can be seen for up to several nanoseconds. Some dephasing

occurs after each oscillation, however the basic structure remains. This is consistent

with the plot of maximum wavepacket density shown in figure 7.17 This main recurring

feature in the momentum distribution in figure 7.19(b) has the shape of a backwards

“S”. The crossover from positive to negative values of pz generally occurs slowly as a

function of time. In contrast, the switch from negative values of pz to positive values

is typically extremely rapid.

A low ` Rydberg electron moves very quickly past its inner turning point and then
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Figure 7.19: Classical position and momentum distributions measured along the ẑ axis
as functions of time for the magic kick simulation shown in figure 7.14. Note the
asymmetry in the pz distribution. The changeover from positive to negative values of
momentum is very gradual. The switch from negative to positive values of momentum
however occurs almost instantaneously.
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Figure 7.20: Classical position and momentum distributions measured along the x̂ axis
as functions of time for the magic kick strength simulation shown in figure 7.14. Note
that the distributions are symmetric about x = 0. Therefore, there is no net motion of
the electron distribution along the x̂ axis.
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Figure 7.21: ẑ momentum distributions as functions of time for the weak kick and
strong kick regimes. (a) The weak kick case (HCP maximum field of 3 kV/cm). (b)
The strong kick case (HCP maximum field of 5.5 kV/cm). All time dependent features
wash out fairly quickly compared to the magic kick case shown in figure 7.19.
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Figure 7.22: Probability distribution of z intercepts as a function of z value and t for
the magic kick case. Almost all the electron orbits cross the +ẑ axis at roughly the
same value of +z. However, a significant fraction cross the +ẑ axis at roughly the same
time as well.

much more slowly through its outer turning point [12]. For a low ` Rydberg orbit

oriented along the ẑ axis with the outer turning point of its orbit along +ẑ, the change

in the ẑ component of the momentum from large negative to large positive values occurs

very quickly. In contrast, the change from positive pz to negative pz is much slower.

This can be seen by watching the low ` orbits oriented along the ẑ axis present in figure

7.13.
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Figure 7.23: Probability distribution of z intercepts as a function of z value and t for
(a) the weak kick case, and (b) the strong kick case. Even though many of the electron
orbits cross the +ẑ axis at roughly the same value of +z, when they cross the axis is
not correlated in either case.
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7.3.4 z Intercept Information

For a HCP kick in the −ẑ direction, a maxima in the electron probability distribution

occurs along the +ẑ axis. Therefore, investigating the time and location of when

each orbit crosses the +ẑ axis yields some information about the degree of electron

localization. Figure 7.22 is a density plot which shows when and where each orbit

crosses the ẑ axis in the magic kick case. Almost all electron orbits cross the +ẑ axis

in roughly the same location (x = 0, y = 0, and z = zint). This is expected due to

the analysis presented in section 7.2.6. However, only in the magic kick case do a large

portion of the orbits cross the +ẑ at approximately the same time as well. This is seen

in figure 7.22 by the peak in probability which occurs for zint ≈ 4600 a.u. at 23 ps, 46

ps, 69 ps, and so on. This does not occur in either the weak or strong kick scenarios as

shown in figure 7.23. Only the conditions which are defined in the magic kick case are

consistent with a 3-D localized wavepacket.

7.3.5 Static Fields

The structure of the classical simulation program allows study of electron motion in

any combination of electric fields and pulses. In the previous sections, only the effect

of a single HCP field along the ẑ direction is considered. One complication which

can be added to the system is the application of a static field. It has been shown

that it is possible to achieve some degree of 3-D wavepacket localization by exciting



CHAPTER 7. CALCULATIONS OF ELECTRON LOCALIZATION 240

an extremal red or blue Stark state and then applying a HCP kick to the state [9].

Instead of simulating a HCP interacting with an eigenstate of the Stark basis, in this

section we simulate a Stark continuum wavepacket interacting with a HCP kick. The

wavepacket has energy E above the classical field ionization limit, but below the field

free continuum limit. The HCP recombine a portion of the initial state, creating a

recombined wavepacket [10]. We investigate the amount of localization present in the

recombined wavepacket as a function of kick strength and the angle between the HCP

and the static field.

The static field breaks the spherical symmetry of the problem. Now, the initial

launch angle, the static field direction, and the HCP field direction must be taken into

account. As was shown in chapter 4, the orientations of the various fields have large

influences on the subsequent electron motion. We arbitrarily choose the static field

to be along the +ẑ axis. We then simulate the motion of an electronic wavepacket

in the static field after it feels a HCP kick along some axis. Again, the choice of

coordinate systems is arbitrary and has no effect on the problem, however the relative

angle between the HCP kick and the static field axis is important.

Shown in figures 7.24, 7.25, and 7.26 are movies of an electron distribution interact-

ing with both a HCP and a static field. In all three cases, the initial state has energy

centered around the location of the n = 35 state in zero field (E0 ≈ −90 cm−1). A 450

V/cm static field is present in the +ẑ direction in all three movies. The HCP field has
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Figure 7.24: One frame from a movie of classical electron probability density as a
function of time. The simulation which creates this movie consists of 25 000 individual
electron trajectories. Each electron is launched with energy chosen from a Gaussian
distribution centered at the zero field n = 35 bound state. A 450 V/cm static field is
present and directed along +ẑ. Each electron has ` = ±2,m = 0 and is launched from
the inner turning point of its orbit. A HCP of maximum field 3 kV/cm interacts with
the electrons 4 ps after the launch. The simulation runs for 100 ps and is 15 000 atomic
units on a side. Red represents regions with greater electron probability density. A red
box appears around the edge of the frame when the HCP field is at its maximum value.
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Figure 7.25: One frame from a movie of classical electron probability density as a
function of time. The simulation which creates this movie consists of 25 000 individual
electron trajectories. The initial conditions are the same as those in figure 7.24. The
HCP field is oriented in the −ẑ direction.
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Figure 7.26: One frame from a movie of classical electron probability density as a
function of time. The simulation which creates this movie consists of 25 000 individual
electron trajectories. The initial conditions are the same as those in figure 7.24. The
HCP field is oriented in the +x̂ direction.
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a maximum strength of 3 kV/cm. In figure 7.24, the HCP impulse is directed along the

−ẑ axis. In figure 7.25, the HCP impulse is directed along the +ẑ axis, and in figure

7.26, the HCP impulse is along +x̂. In each case, the movie shows the classical electron

probability density as a function of time for 0 ≤ t ≤ 100 ps. A red border appears

around the edge of the frame in which the influence of the HCP field is maximum.

Qualitative information can be gained from these distributions, such as the net value

of the momentum along a given axis. Some amount of localization occurs in each case,

however the amount of localization present in the static field simulations is significantly

less than was observed in the zero field magic kick case.

7.3.6 Multiple HCPs

Another interesting situation which can be modeled by the classical calculations is the

case of two separate HCP fields interacting with an atomic system. Often, experiments

are performed which use two HCP fields. Frequently the second pulse is used as a

probe of the dynamics created by the first one. Typically, the second HCP is used to

perform IMR or some other measurement technique. Therefore, only the final energy

of the system is measured at a time after both HCP interactions. However, interesting

possibilities exist for manipulation of electron dynamics with two (or more) HCP fields

[15]. One example is the creation of a “circular” electron state. A circular state is

superposition of phase locked eigenstates with maximal ` andm values [16]. Classically,
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a circular state resembles the Bohr picture of an electron orbit. Circular type states have

been produced by exciting an extremal Stark state in a fixed n manifold [17]. However,

these states are stationary. Some theoretical work has been done into possible creation

of circular wavepackets [18], however such states have yet to be experimentally verified.

One possible method we propose for the creation of a circular state begins by local-

izing an electron away from the atomic core. This can be done through HCP induced

recombination, as presented in chapter 6. Then, a second kick orthogonal to the first

one, may set the localized distribution in circular motion around the atomic core. A

simulation of this process is shown in figure 7.27. Even though some elements of the

circular state are visible in the simulation, the variation in the energy and trajectory

of each electron orbit make the creation of an “electron ball” circling the atomic core

somewhat too simplistic of a picture.

7.3.7 Conclusions

The calculations presented in this section characterize a method of creating a localized

electron distribution far from the atomic core with an impulsive field. Classical calcu-

lations provide an intuitive description of the dynamics of the localized distribution.

These calculations show that up to 1/2 of the bound electron probability density can

be localized in an extremely small region in space at a specific times. Furthermore,

the calculations suggest several possible future experiments including the creation of a
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Figure 7.27: One frame from a movie of classical electron probability density as a
function of time. The initial conditions are the same as those in figure 7.24. Two
HCP fields interact with the system. The first HCP arrives 3 ps after launch of the
electrons and is at the magic kick strength. A localization of the electron probability
density is then formed on the +ẑ axis at t=22 ps. At that time, a second HCP field
of 2 kV/cm oriented in the +x̂ direction interacts with the electrons. The time of the
maximum of each HCP field is represented by a red box around the edge of the frame.
The simulation is 20 000 atomic units on a side and runs for 100 ps.
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circular state and the observation of interesting static field wavepacket dynamics. The

simulations presented in this section show that HCP induced electron - ion recombina-

tion can produce a wavepacket localized in 3-D in a field free environment. Since this

localization method is free of the complications presented by an applied static field,

HCP recombination may be an attractive method to create localized wavepackets for

future experiments in the area of quantum control.
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[16] R. Bluhm and V.A. Kostelecký, Phys. Rev. A 51, 4767 (1995).



BIBLIOGRAPHY 250

[17] R.G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983); D. Delande and

J.C.Gay, Europhys. Lett. 5, 303 (1988).

[18] Z. D. Gaeta, M. Noel, and C.R. Stroud, Phys. Rev. Lett. 73, 636 (1994).



Chapter 8

Conclusions

Developed in this thesis are three experiments in which HCP fields are used to manipu-

late the environment of selected atomic systems. The three experiments study a variety

of different atomic systems which are each relevant to real-world physical processes. In

performing these experiments, we have advanced the technique of HCP assisted recom-

bination in chapters 4 and 6, used HCPs to alter the dynamics of novel wavepackets in

chapters 5 and 6, and developed the technique of dither impulse momentum retrieval.

Orthogonal Recombination

In this experiment, HCP fields are used to control the rates of artificial electron - ion

recombination in a static electric field. For weak HCP fields (A < 0.03), the probability

for recombination increases if the HCP field is oriented perpendicular to the static field.
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The hydrogenic nature of high-m states created by the orthogonal geometry prevents

sampling of the saddle point in the Stark potential by orbits located on the “uphill”

side of the atom. This effect is important in properly determining the total electron -

ion recombination rates in a microfield plasma environment.

Suppression of Autoionization

In chapter 5, we investigate how an autoionizing system responds to HCP interaction.

Three separate configurations were investigated. Each configuration is representative of

a time dependent field configuration present in the microfield environment of a neutral

plasma. We find that HCP fields oriented parallel or antiparallel to a weak static

field fail to stabilize the autoionizing system. Even though the HCP field populates

states with high `, the mixing of the angular momentum states in the static field

ensures that each state contains some low ` character and is therefore not stable against

autoionization. In contrast, HCP fields oriented orthogonal to a weak static field do

suppress autoionization by approximately 10% by populating states with high values

of m. These high m states are stable against autoionization, however the HCPs are

only able to promote a small fraction of the initial distribution to high enough m to be

stabilized. Even though stronger orthogonal HCP fields do promote a larger portion

of the initial population to high m states, the amount of population which can be

stabilized is capped due to direct ionization of the Rydberg electron by the HCP field.
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Even so, the use of orthogonally oriented HCP fields as a probe for Rydberg electron

dynamics in an autoionizing system may be possible.

Recombined Wavepacket Dynamics

In chapter 6, a HCP recombines a portion of an outgoing continuum wavepacket. The

momentum distribution of the resulting recombined wavepacket is then probed by a

second HCP through the lock-in IMR technique introduced in chapter 3. Results show

momentum distributions consistent with the formation of a highly localized 3-D elec-

tron distribution located far from the atomic core. If HCP induced electron - ion

recombination can be used to create spatially localized 3-D electronic wavepackets in

a zero static field environment, then this method may be used as a starting point for a

variety of quantum control experiments as well as a method to investigate the classical

limit state of an atom.

Although a quantum mechanical simulation of the recombined wavepacket dynam-

ics is technically possible for short times, the extremely large (infinite) number of

states makes such an approach difficult. Instead, the large state density make classi-

cal (CTMC) simulations applicable. These simulations indicate that up to half of the

bound (recombined) distribution can be localized in a small area of space. Furthermore,

only a small range of HCP field strengths will result in wavepacket localization. This

range is determined by the initial energy of the continuum wavepacket and the time
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delay between the launch of the continuum packet and the arrival of the recombining

HCP field. Analytical calculations are performed in chapter 7 which investigate how

varying each of these initial parameters affects the degree of localization.

Future Projects

Research into HCP control of wavepacket dynamics is ongoing. Several experiments

involving the manipulation of the three dimensionally localized wavepacket character-

ized in chapter 6 are possible. The realization of a circular, or planetary state can be

attempted, as well as experiments which probe the correspondence between quantum

mechanics and classical dynamics. Experiments involving quantum control of physical

processes are facilitated by first creating a phase space localized wavepacket in a field

free environment. When a series of control pulses is applied to this distribution, all por-

tions of the distribution are affected in roughly the same manner. Localization through

recombination may be a simple method of generating such an initial wavepacket.

In all the experiments presented in this thesis, the capabilities of the HCP field have

been extended into new regimes. HCPs can be used to affect the environment of an

atomic system in an impulsive way, as well as to measure the resulting dynamics. Over-

all, the experiments presented add to the general understanding of electron dynamics

associated with physical processes.



Appendix A

Measuring Wavepacket Dynamics:

Radial Rydberg Wavepacket Maps

A.1 Introduction

Results from the experiment presented in this appendix demonstrate the large param-

eter space of wavepacket dynamics which we can investigate through HCP interaction.

Many individual radial Rydberg wavepackets are created, each with a slightly different

average energy. The evolution of each wavepacket is then measured. Overall trends

in the evolution of an entire class of wavepackets are thereby recovered. Unlike the

experiments presented in chapters 4, 5, and 6, the HCP is used solely to probe the dy-

namics of an existing wavepacket, rather than to manipulate the environment in which
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the wavepacket evolves.

Due to their high density of electronic states and long coherence times, isolated Ryd-

berg atoms are pristine systems for investigating the correspondence between quantum

and classical physics and for testing fundamental notions relevant to the manipulation

and observation of quantum dynamics. Indeed, over the past two decades, a great num-

ber of experimental and theoretical studies of various aspects of Rydberg wavepacket

dynamics have appeared in the literature [1]. One topic of continuing interest is the

periodic “collapse” and “revival” of localized wavepacket structures as they move in

the anharmonic Coulomb binding potential [2–6].

In this appendix, we examine the global revival structure for radial wavepackets,

coherent superpositions of Rydberg states with different principal, but identical angular

momentum quantum numbers. Previous experimental works have focussed on the

revival properties of very specific wavepackets, each having a particular average energy

and number of superimposed eigenstates [4,5]. Theoretical investigations have provided

straightforward formulae for predicting the times at which fractional [3], integer [2], and

“super” revivals [6] occur, but provide only limited information regarding the evolution

of the wavepacket at times near the revivals. We have experimentally monitored the

temporal evolution of an entire class of radial wavepackets over a continuous range of

binding energies from 210 cm−1 to 10 cm−1 to explore the revival phenomena from a

broader perspective. In addition, we present a time and energy scaling which aids in
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the interpretation of the 3-dimensional wavepacket maps.

A.2 Experimental Details

In the experiment, a 5 ns dye laser promotes Ca atoms in a thermal atomic beam from

the 4s4s ground state to an intermediate 4s4p level. The atoms are then exposed to a 1

ps laser pulse which transfers population from the 4s4p state to a coherent superposition

of 4snd Rydberg levels. Because the 4s4p wavefunction has non-negligible amplitude

only within a few atomic units of the Ca+ ionic core, the wavepacket produced by

the ps laser pulse is initially localized at a small radius. However, as time evolves,

the wavepacket moves radially outward from the ionic core, reflects from the Coulomb

potential at large radius, and returns to the nucleus. The anharmonicity of the Coulomb

potential leads to spreading, or collapse, of the wavepacket and its eventual partial

rephasing at fractional or integer revival times. The dynamical collapse and revival of

the wavepacket is the principal interest of this appendix.

While several experimental methods now exist for viewing the complete motion of

radial wavepackets [1, 8–12], we are most interested in the probability for finding the

wavepacket at its initial location - near the ionic core. The time dependent probability

for finding the electron near the nucleus, i.e. the recurrence strength, is monitored by

partially ionizing the wavepacket with a 1 ps, unipolar HCP [13, 14]. Although HCP

ionization is sensitive to the momentum of the electron, rather than its position, the
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recurrence strength can still be obtained from the measurement [15, 16]. In relatively

low HCP fields, ionization can occur if the electron has high momentum in the direction

of the HCP “kick.” For weak kicks, the electron only has sufficient momentum to ionize

if it is near the nucleus when it is exposed to the HCP [13]. By monitoring the variation

in the HCP ionization yield as a function of delay between the 1 ps laser pulse and the

HCP, we obtain the time dependent recurrence strength.

The experimental apparatus and basic procedure are described in detail in chapter

2. Briefly, the 1 ps laser pulse is generated by frequency doubling the 120 fs, 787

nm output of an amplified Ti:Sapphire laser in a 2.0 cm long potassium dihydrogen

phosphate (KDP) crystal. By tilting the entrance face of the crystal relative to the

787 nm fundamental beam, the frequency of the 1 ps pulse can be tuned to excite

Rydberg wavepackets with average binding energies between 210 cm−1 and 10 cm−1.

The FWHM of the spectral bandwidth of the doubled light is approximately 17 cm−1,

independent of its central frequency. The HCP is generated and calibrated through the

methods introduced in chapter 3. Before interacting with the atoms the HCP passes

through a second GaAs wafer that acts to attenuate non-unipolar components of the

pulse [17].

The ps laser beam and the ps HCP interact with the atoms between two parallel

capacitor plates that are separated by approximately 1.2 cm (see figure 2.9). The ps

beams counter-propagate beneath a 2.5 cm x 0.3 cm slit in the upper plate. Ions that
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are formed through HCP ionization are pushed towards a single shot detector located

immediately above the field plates [18]. Since atoms at different positions beneath the

slit experience different relative delays between the ps laser pulse and the HCP, the

position dependent ionization yield is directly related to the time dependent recurrence

strength for the wavepacket [18]. Recurrence maps are produced by recording the time

dependent recurrence signal as a function of the frequency of the ps laser pulse, i.e. the

wavepacket binding energy.

A.3 Results

A HCP ionization vs. time delay curve for a wavepacket with a binding energy of

E = 122.3 cm−1, kicked by a HCP with an amplitude, FHCP = 5.5 kV/cm, is shown in

figure A.1. Clearly some ionization of the wavepacket occurs independent of its evolv-

ing location and structure. A better measure of the wavepacket recurrence strength is

obtained from the normalized signal variation, SE(τ). SE(τ) is generated by first sub-

tracting the delay-averaged ionization yield from the delay-dependent ionization signal,

and then dividing that difference by the averaged yield. To accurately monitor changes

in the wavepacket probability distribution near the nucleus, it is also important to

maintain the HCP ionization yield at a level that is much less than unity. Over the

range of binding energies studied, the HCP field amplitude, FHCP that produces a few

percent ionization for a given Rydberg eigenstate, n`, scales as n−2, i.e. linearly with
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Figure A.1: HCP ionization probability as a function of delay following the excitation
of a radial wavepacket with average principal quantum number, N = 29.95. The HCP
field amplitude is approximately 5.5 kV/cm.

binding energy. [13] Therefore, FHCP is varied linearly with the frequency of the ps

laser to generate consistent recurrence strength curves for wavepackets with different

binding energies.

Recurrence maps are produced by combining recurrence data at fixed binding en-

ergy, E, into a 2-dimensional array. A typical map is shown as a density plot in figure

A.2 with dark areas representing regions of high recurrence probability. At early times
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and at all energies, strong oscillations in the recurrence strength are evident as the

radial wavepacket moves between the inner and outer turning points of the Coulomb

potential. The recurrence strength reaches a maximum when the wavepacket is closest

to the ionic core. The Kepler period of the wavepacket oscillations increases signifi-

cantly, τK = 2πN 3, as the classically allowed radial region increases with decreasing

binding energy. We define the average principal quantum number, N , in terms of the

wavepacket binding energy N = 1√
2E

. The fundamental frequency of the Kepler mo-

tion of the wavepacket is the energy difference between adjacent Rydberg eigenstates

in the wavepacket, ωK ≈ N−3. After a few periods, the wavepacket disperses and only

minimal amplitude modulations appear in the recurrence map.

At longer times the wavepacket rephases and strong amplitude modulations re-

appear in the recurrence map. These “integer” wavepacket revivals have been studied in

detail and occur at regular intervals separated by the revival period, τrev = 2πN 4/3 [6].

Three different integer revivals are observed for the more tightly bound wavepack-

ets with low values of N . Smaller amplitude recurrence modulations due to partial

rephasing of the packet at “fractional revival” times are apparent at times between the

integer revivals [3, 5]. However, in general these higher frequency oscillations are not

well resolved with the 1 ps pump and probe pulse durations used in this experiment.

The recurrence modulations near the integer revival times have an energy depen-

dence that is strikingly different from that during the initial “primary” Kepler orbits.
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Figure A.2: Map of recurrence strength vs. delay vs. binding energy for radial
wavepackets produced using a laser pulse with a fixed bandwidth of 17 cm−1 as de-
scribed in the text. Dark(light) regions denote high(low) recurrence strength.
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The temporal location of a specific primary recurrence maximum increases in direct

proportion to the Kepler period with decreasing binding energy, i.e. increasing N .

However, the recurrence maxima near each revival time appear to have the opposite

dependence, moving toward shorter times with increasing values of N. The difference

in the energy dependences of the primary and revival recurrences suggest that there

are fundamental distinctions between these two phenomena, in spite of the fact that

the maxima have similar amplitudes and modulation periods.

In an attempt to study the complex, energy dependent revival phenomena in more

detail, we use scaled coordinates for displaying the recurrence maps. These scaled maps

are reminiscent of the recurrence maps generated via Fourier transforming frequency do-

main Stark spectra in scaled energy coordinates [19–21]. We define an energy-dependent

scaled-time coordinate, τ = t/2πN 3 and a scaled-energy coordinate, ε = N−3/γ, where

γ is the FWHM of the excitation laser’s frequency spectrum. The physical significance

of the two coordinates is straightforward. τ counts the number of Kepler periods for a

wavepacket at a particular energy, and 1/ε + 1 is the number of constituent eigenstates

in the wavepacket. The recurrence map of figure A.2 is redisplayed in scaled coordi-

nates in figure A.3. As anticipated, the primary recurrences appear as vertical lines on

the scaled map, with each line centered at an integer value of τ . However, the full and

fractional wavepacket revivals appear along lines that appear to extend radially from

the origin.
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Figure A.3: Recurrence data identical to that shown in Figure A.2 but displayed using
scaled coordinates as described in the text. Primary wavepacket recurrences appear as
vertical lines at integer values of the Kepler period, while integer and fractional revivals
fall along approximately straight lines that pass through the origin. The insets (a) and
(b) provide enlarged views of regions of the map where the recurrence strength in single
lines bifurcates along additional paths. A different greyscale normalization is used in
the insets to improve the visibility of the intermediate strength modulations.
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Radial lines of the observed form, ε = τ/k, k = 1, 2, 3, .., have a simple physical

interpretation. A wavepacket with scaled energy ε has 1/ε + 1 constituent eigenstates.

Since the approximate energy spacing between adjacent eigenstates is N−3, the energy

splitting between the extreme states is ∆ ∼= N−3/ε. Hence, periodic rephasing of the

extreme states occurs over time intervals, T = 2π/∆ ∼= τε. The kth rephasing of the

extreme states occurs when k = τε, i.e. when ε = τ/k.

Apparently the fundamental period associated with revival structure is ετK rather

than τK , and the energy dependence of both fractional and full revivals is marked by

the radial lines in the recurrence map. However, the recurrence strength at different

radial lines varies with position within the map, and depends critically on the details

of the wavepacket. Bifurcations and coalescence of the recurrence lines can be seen

in the insets of figure A.3. It is important to note that while recurrence strength is

not uniformly high along the entire length of each radial line in the map, the strong

recurrences that are observed always appear along (or very near) these lines.

We can simulate the structure found in the scaled maps by numerically constructing

a coherent superposition of Rydberg eigenstates, and then computing the time depen-

dent probability for finding the wavepacket within a small sphere surrounding the ionic

core (see figure A.4). A standard Numerov integration algorithm is used to compute the

stationary radial eigenfunctions. As in the experiment, the simulations assume that the

wavepacket is produced near the ionic core using a transform-limited laser pulse with a
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bandwidth, γ = 17 cm−1. Wavepackets with different scaled-energies are generated by

changing the average frequency in the excitation laser pulse, rather than changing γ.

The results shown in figure A.4 are obtained assuming a sphere radius of R = 9 a.u.,

but the global properties of the map are insensitive to the precise value of R. Because

of the higher temporal resolution available in the simulation, structure associated with

fractional as well as full wavepacket revivals is apparent.

An additional feature of the map scaling is that the scaled energy roughly defines

the highest fractional revival orders (i.e. smallest fraction 1/2, 1/3, 1/4, ... ) that can

be observed. The shortest possible period for a partial revival is ετK . So, for example,

1/3 revivals are the fastest periodic features at ε = 0.33 while features with periods of

τK/5 are expected near ε = 0.2. These periodicities are more apparent in the simulated

results due to the limited experimental resolution described previously.

A.4 Conclusions

In summary, we have investigated the revival structure of radial wavepackets as a

function of time and binding energy using HCP ionization as a probe. We introduce a

set of scaled coordinates that enables us to distinguish differences between recurrences

during primary as opposed to revival orbits. Notably, the energy bandwidth of the

packet rather than the inverse Kepler period plays the dominant role in determining

the energy dependence of the revival structure.
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Figure A.4: Numerical simulation of a recurrence map as described in the text. The
appearance of the map is very similar to the experimental version shown in figure A.3
with the exception that the recurrence strength has been calculated for much longer
time delays at high values of N . Also, fractional revivals are much more clearly seen
due to the arbitrarily high temporal resolution of the numerical simulation.
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Appendix B

Classical Numerical Simulations

B.1 Introduction

An example of the predictive power of classical mechanics was demonstrated by Edmond

Halley in the 16th century. By knowing where a comet was at one instant in time, and

knowing its trajectory, he was able to predict where the comet would be for all future

times, as well as determine where it had been in the past. He accurately predicted the

comet’s return 76 years later to within 2 weeks [1]. For this feat, the comet today bears

his name. Small perturbations to the orbit of the comet by other bodies which Halley

had not considered prevented a more accurate determination. In a similar manner, we

can use classical mechanics to predict the motion of a classical electron to a certain level

of accuracy, while trying to recognize the shortcomings of this method. In this section,
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a method for using classical mechanics to model the interaction between a Rydberg

electron and a set of external fields is presented.

The use of classical techniques to model atomic systems has its advantages and

disadvantages. Classical analyses tend to yield physical intuition about a system and

are generally far easier to implement than quantum mechanical models. However, since

atoms are inherently quantum systems, classical mechanics can at best yield a good

approximation of the true system. Performing a classical analysis of an atomic system

is very straightforward in principle. The equations of motions can be integrated for an

electron subject to an attractive Coulomb force and some set of external fields. Many

details and complexities must be overcome however before obtaining a viable classical

model of an atomic system. The first complication arises from the fact that except

for extremely simple cases, the equations of motion are not integrable in closed form.

It is therefore necessary to model the system with numerical methods. Fortunately,

a large number of algorithms exist in the literature to aid in this process. The vast

majority of these routines are cataloged in Numerical Recipes [2]. Much of the computer

code developed for the simulations presented in this thesis is based on routines from

that text. In addition, some of the classical simulation techniques presented here are

developed from the previous work of T.J. Bensky [3].
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B.2 Numerical Integration

We begin an analysis with Newton’s second law

∑

i

~Fi =
d~p

dt
= M

d2~r

dt
. (B.1)

The sum over i includes all the forces acting on a given particle of mass M . Since

we will consider only the motion of an electron in atomic units, from this point on

M ≡ 1. Equation B.1 is not directly useful in determining ~v(t) or ~r(t). To determine

~v(t) and ~r(t), equation B.1 must be integrated for the particular set of forces which we

are interested in. In general this integration is not possible in closed form and therefore

the position and velocity of the electron are not simple closed form expressions.

Through numerical integration, values of ~v(t) and ~r(t) can be determined through a

recursive approach. Numerical integration proceeds by advancing the state of a system

in small, incremental time steps during which all forces acting on the system can be

considered constant. If the initial position and velocity are known at a time t = t0,

then the first step of the numerical integration process yields ~v(t1) and ~r(t1) where

t1 = t0 + ∆t. Here, ∆t is some small time step. For this approach to be valid, the

forces acting on the electron must not change significantly over ∆t, or at worst must

change in a manner which can be predicted. Once ~v(t1) and ~r(t1) are found, these

values are input as the initial conditions for the next time step. In this way, the time

dependent position and velocity of the electron are eventually determined for all times.



APPENDIX B. CLASSICAL NUMERICAL SIMULATIONS 273

As long as the starting position and velocity are known, as well as all the forces acting

on the electron, ~v(t) and ~r(t) can be determined through numerical integration. After

calculating ~v(t) and ~r(t), other important physical quantities can also be determined.

These include the energy, angular momentum, linear momentum, and Runga-Lenz

vector.

B.3 Electron Orbital Motion

For the analysis of this section, the atomic system is most easily pictured in an astro-

physical manner. Consider the atomic core like the sun and the electron like Halley’s

comet, moving in some highly elliptical, fairly low angular momentum state. An angle

θ is defined as the angular coordinate of the electron’s position such that θ = 0 when

the electron is at its inner turning point. In the absence of external fields, the radial

position as a function of θ is given by

r(θ) =
`2

1 + ecos(θ − θ0)
. (B.2)

The angular momentum is given by ` = r2θ̇ and the eccentricity of the orbit is given

by e =
√
1 + 2E`, where E is the total energy of the electron [4]. A problem arises

however when we desire to predict the time dynamics of the electron. Equation B.2

yields only ~r(θ) and not ~r(t). Therefore, determining the time dependence of ~r and ~v

is more complicated. The angle θ is related to another quantity ψ (called the eccentric
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anomaly) by

cosθ =
cosψ − e
1− ecosψ . (B.3)

Furthermore, a transcendental relationship exists between ψ and t [4],

2πt

τ
= ψ − esinψ . (B.4)

The parameter τ is the orbital period of the electron. Combining equations B.2, B.3,

and B.4 is not possible analytically. However, this combination of equations can be

combined numerically, yielding values for ~r(t) and ~v(t). Section 7.2 is dedicated to

these calculations. Obtaining solutions becomes even less tractable however with the

introduction of external, time dependent electric fields. Therefore, direct numerical

integration of the equations of motion is typically the preferred manner to calculate

orbital dynamics.

B.4 Computational Implementation

For a single electron moving in a Coulomb potential free of any external fields, the

differential equations of motion are given by

d2~r

dt2
= − ~r

r3
. (B.5)

In equation B.5, ~r is the position vector of the electron. Contained in equation B.5

are three non-separable second order differential equations. (One equation for each
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coordinate.) However, in order to apply standard numerical integration techniques, it is

more advantageous to reduce equation B.5 into six, first order differential equations [2].

Doing so yields

drx
dt

= vx , (B.6)

dry
dt

= vy , (B.7)

drz
dt

= vz , (B.8)

dvx
dt

= − rx
r3

, (B.9)

dvy
dt

= − ry
r3

, (B.10)

and

dvz
dt

= − rz
r3

. (B.11)

Note that the Coulomb force has been broken down into components and included in

equations B.9 through B.11. Numerical integration of these six first order differential

equations yields ~r(t) and ~v(t) for all time. Adding an external or time dependent

force to the system involves only adding an additional term to the right hand side of

equations B.9 through B.11 during integration. The relative simplicity by which field

terms can be added is the advantage of this technique, when compared to the direct

solution begun in equations B.2 through B.4.
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B.5 Initial Conditions

Since the numerical integration routine is recursive, it is essential that correct initial

conditions are supplied for ~r(t0) and ~v(t0). Six initial conditions are required to solve

equations B.6 through B.11. Without loss of generality, the simulation can be confined

to a plane (let’s choose x̂y). Following the numerical integration, the results are then

rotated from the x̂y plane into any other orientation appropriate to the situation being

studied. Due to this initial choice of orientation, z(t0) = 0 and vz(t0) = 0. To obtain

the four other initial conditions, an initial orbit angle θ0 is chosen. The initial position

is then given by

rx0
= r(θ0)cosθ0 and ry0 = r(θ0)sinθ0 , (B.12)

where r(θ0) is given by the equation B.2. Since the velocity is simply the derivative of

the position, the initial velocity is given by

vx0
= ṙ(θ0)cosθ0 −

`

r(θ0)sinθ0
(B.13)

vy0 = ṙ(θ0)sinθ0 +
`

r(θ0)cosθ0
, (B.14)

where we have made use of the fact that ` = r(θ0)
2θ̇0. Here, r(θ0) is again given by

equation B.2, and its time derivative, ṙ(θ0) is given by

ṙ(θ0) = ±
√

√

√

√

2

r(θ0)
− 1

n2
− `2

r(θ0)2
. (B.15)

The positive root of ṙ(θ0) is chosen for 0 ≤ θ0 ≤ π, corresponding to motion of the

electron away from the core. Similarly, the negative root of ṙ(θ0) is chosen for π ≤ θ0 ≤
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2π.

If we only wish to observe a single electron’s motion from a single initial location,

then a value of θ0 is arbitrarily chosen, the initial values of ~r(t0) and ~v(t0) are calculated

from equations B.12 through B.14, and the numerical integration is performed. In

most situations however, we are concerned with an ensemble of atoms in a laboratory

environment and not a single atom. Therefore, many initial conditions must be chosen

and the results from each event averaged to obtain physically meaningful values of

observable quantities such as E, `, < r >, < v >, etc.

Some manner for selecting a meaningful ensemble of starting positions is needed.

The problem is that the electron’s motion is not uniform as a function of θ. The

electron moves quickly past the atomic core at its inner turning point, and then much

more slowly as it moves towards its outermost radial position. For a low ` Rydberg

orbit, the electron typically spends more than 90% of the time in the “outer half” of

its orbit [4]. Therefore, choosing starting positions for the numerical integration which

are located uniformly around the orbit will not accurately reproduce the physics of

the system. Instead, the selection of appropriate initial conditions must be done in a

manner which takes into account the time spent in each part of the electron’s orbit.

To properly choose an ensemble of initial conditions, we introduce the concept of

classical probability density. We define dP as the probability that an electron is found

in a small volume element along its orbit. Furthermore, dP is related to a small change
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in time by

dP =
dt

τK
, (B.16)

where, dP is the differential probability that a particle spends a time dt at a given

point in its orbit. τK = 2πn3 is the Kepler period of the orbit. The time differential dt

can be expressed in terms of a small radial differential dr by

dt =
dr

ṙ
. (B.17)

Here ṙ is the velocity of the electron at r+dr and is given in equation B.15. Combining

equations B.15, B.16, and B.17 gives the expression

dP =
dr

2πn3
√

2
r
− 1

n2 − `2

r2

. (B.18)

Equation B.18 gives the differential classical probability of finding a Rydberg electron

with radius between r and r + dr [3]. When choosing the initial positions for an

ensemble of electrons in Rydberg states, it is necessary that the points be weighted

by this probability density function. An effective method for achieving this proper

weighting involves solving Kepler’s equation (equation B.4) for ψ at equally spaced

values of t between 0 and τK . The resulting values of ψ are then used to determine

appropriately spaced values of θ from equation B.3. Values of θ found in this manner

are properly distributed.
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B.6 Initial Orientation

In choosing the initial conditions, the orbit was confined to the x̂y plane. Experi-

mentally however, the atoms are confined to an initial value of m, but not to a single

orientation in a plane. In order to reproduce the dynamics of a real ensemble of atoms,

a series of three rotations is performed on ~r and ~v which rotate the system into a ran-

domly oriented orbit. For most of the simulations performed in this thesis, we initially

choose m = 0 [5]. The rotations are performed in the same technique as the Euler

angle rotations defined in Goldstein [4]. First, the initial position and velocity vectors

are rotated about the ẑ axis by an angle φ, randomly chosen between 0 and 2π. The

major axis of the elliptical orbit is now defined as the ξ̂ axis. Second, a rotation of

π/2 about the ξ̂ axis is performed. The axis normal to the plane of the orbit is now

defined to be ẑ′. Finally, a rotation around the ẑ ′ axis by a random angle between 0

and 2π is performed. This combination of three rotations results in all possible m = 0

orientations. A large number of individual trials must then be performed to create a

statistically meaningful distribution due to the random numbers used in the simulation

to seed the initial conditions.
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B.7 Stepsize

In numerical integration, the position of a particle changes from one time step to another

through the equation

xnew = xold +
dx

dt
∆t . (B.19)

In this recursive method, the old position and velocity are used to determine the new

position, then the old position is replaced by the new value and the process is repeated.

The main assumption in this method is that the forces are constant over the time step

interval ∆t. Determining an optimal value of ∆t is crucial in successfully performing

the numerical integration. If ∆t is too large, fast fluctuations in the applied forces are

averaged out and the approximation to the real system breaks down. If ∆t is too small,

then the time required to perform the integration becomes prohibitively long.

A problem arises when numerically integrating the equations of motion of a Rydberg

orbit. When the electron is near the core, very small steps of ∆t must be taken to

accurately reproduce the very strong and quickly changing Coulombic force near the

atomic core. When the electron is far from the core however, the forces acting on the

system vary slowly, and large ∆t steps are preferred. To satisfy these two somewhat

opposing conditions, an adaptive stepsize is used. In an adaptive stepsize routine,

the size of the next step is determined by the error introduced by the previous step.

Therefore in the case of a Rydberg orbit, small time steps are taken when the electron

is near the atomic core and larger ones are taken during the rest of the orbit.
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B.8 Performing the Integration

In summary, the steps required to perform the numerical integration are as follows.

First, the initial conditions are determined.

1. A random time t in the interval [0, 2πn3] is chosen.

2. Kepler’s equation (B.4) is solved numerically for the eccentric anomaly, ψ.

3. The initial orbit angle, θ0 is computed.

4. Initial values of (x, y, z, vx, vy, vz) are calculated from the initial choices

of electron energy, `, and m.

5. The initial positions are rotated to a randomly oriented orbit.

Next, the integration loop parameters are set. These include the initial ∆t stepsize, the

initial time, and the final time. Then the functional values of the derivatives are set.

These are equations B.6 through B.11, along with any additional terms due to forces

arising from external static fields, HCP fields, etc. This is how the numerical integration

is customized to any particular set of environmental conditions or field geometry. A

fourth order Runga-Kutta routine is chosen for the numerical integration [2]. After the

initial conditions and initial parameters are set, the six parameters (x, y, z, vx, vy, vz)

are advanced recursively from their initial value to their values at the final time by the

Runga-Kutta routine. The exact details of the routine are omitted here, however, they

are described in detail in [2].
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B.9 External Fields

As mentioned before, adding an external field and or a HCP field to the system is done

by adding an additional term to equations B.9 through B.11. For example, if we wanted

to apply a static field along ŷ and Gaussian shaped HCP fields along the x̂ and ẑ axes,

equations B.9 through B.11 would become:

dvx
dt

= − rx
r3

+ FHCPx e
−(t−t0x)2/2σ2

x (B.20)

dvy
dt

= − ry
r3

+ Fstatic (B.21)

dvz
dt

= − rz
r3

+ FHCPz e
−(t−t0z)2/2σ2

z . (B.22)

In equation B.20, t0x is the arrival time of the maximum of the x̂ polarized HCP field

and σ2x is its width. In equation B.22, t0z is the arrival time of the maximum of the ẑ

polarized HCP field and σ2
z is its width. HCP fields and external fields may be added

along any axis independently by simply adding the appropriate terms.

B.10 Conclusions

The basic computing framework of the classical simulations presented in this appendix

are applicable to the modeling of various physical systems. The programs discussed in

this appendix are used to (i) model HCP ionization of a Rydberg eigenstate to aid in

HCP calibration (chapter 3), (ii) model HCP induced ionization of a wavepacket in a
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static field (chapter 4), and (iii) simulate electron - ion recombination dynamics in zero

field (section 7.3). In all cases, the agreement between the classical calculations and

experiment is adequate to gain intuition about the system being simulation. In some

cases the agreement between the classical calculations is even remarkably good. In

addition, the added conceptual insight gained from a classical picture of very complex

systems is quite helpful.
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Appendix C

Quantum Simulations

C.1 Introduction

Lots of insight is gained from classical modeling of atomic systems. However, to legit-

imately claim full understanding of an atomic system requires knowledge of quantum

mechanics. In this appendix, we present details of how the quantum mechanical sim-

ulations presented in chapter 5 are performed. Furthermore, additional simulations of

an atomic system interacting with a time dependent electric field are presented which

demonstrate the simulation techniques. Simulations presented in this appendix are

performed for calcium, although adaptation to any other atomic system with known

quantum defects is trivial.

The main difficulty with quantum calculations of Rydberg atoms is the extremely
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large number of basis states necessary to perform meaningful calculations. Only with

recent advances in computing technology is it possible to address such calculations. If

we assume that the magnetic quantum number m is constant, then there are n − m

angular momentum states for each n state [1]. A typical calculation includes tens of

n states. Transition probabilities must be calculated between all possible initial and

final states within the large basis set at each time step. Computational difficulties are

magnified when the process of direct field ionization needs to be considered [2]. As

n → ∞, the number of basis states becomes infinite. A good deal of work has been

done in dealing with field ionization quantum mechanically and the transition from

bound to continuum states [3], however this added complexity is beyond the scope of

the calculations presented here.

C.2 Time Dependent Perturbation Theory

The goal in most quantum mechanical calculations is to solve the Schrödinger wave

equation for a given Hamiltonian Ĥ. In the most general case, the wave equation can

be written

ih̄
∂

∂t
ψ = Ĥψ . (C.1)

In time dependent perturbation theory, the Hamiltonian has explicit time dependence

Ĥ = Ĥ0 + V̂ (t) , (C.2)
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where Ĥ0 is the unperturbed, time independent Hamiltonian, and V̂ (t) is the time

dependent perturbation. For a system evolving due to the Hamiltonian in equation

C.2, energy is not conserved. Therefore, no stationary states of the system exist for the

Hamiltonian in equation C.2 [1].

We define a state φ
(0)
k to be a time independent eigenstate of the unperturbed

system. An arbitrary solution to the unperturbed wave equation may be written

ψ =
∑

k

ak φ
(0)
k e−iEkt/h̄ , (C.3)

where the coefficients ak are a set of time independent complex state amplitudes. Simi-

larly, if we want to solve the full wave equation with the perturbation given by equation

C.1 we look for solution of the form

ψ =
∑

k

ak(t) φ
(0)
k e−iEkt/h̄ . (C.4)

The only difference between the two arbitrary solutions presented in equations C.3 and

C.4 is the time dependence of the ak terms. We have expressed the wavefunction of the

full Hamiltonian given in equation C.2 in terms of the eigenstates of the unperturbed,

time independent Hamiltonian Ĥ0. Substitution of equations C.4 and C.2 into equation

C.1 yields

ih̄
[

∑

k

d

dt

(

ak(t)
)

φ
(0)
k e−iEkt/h̄ +

∑

k

ak(t)
d

dt

(

φ
(0)
k e−iEkt/h̄

)]

=
∑

k

(

Ĥ0 + V̂ (t)
)

ak(t) φ
(0)
k e−iEkt/h̄ . (C.5)
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Recalling that the unperturbed states satisfy the relation

ih̄
∂

∂t

(

φ
(0)
k e−iEkt/h̄

)

= Ĥ0

(

φ
(0)
k e−iEkt/h̄

)

, (C.6)

equation C.5 reduces to

ih̄
∑

k

φ
(0)
k e−iEkt/h̄

d

dt
ak(t) =

∑

k

ak(t)V̂ (t)φ
(0)
k e−iEkt/h̄ . (C.7)

Multiplying both sides of equation C.7 by φ
(0)∗
j and integrating yields

ih̄
d

dt

(

aj(t)
)

=
∑

k

ak(t) < φ
(0)
j |V̂ (t)|φ(0)k > e−iωjkt , (C.8)

where ωjk is defined as

ωjk =
E

(0)
j − E(0)

k

h̄
. (C.9)

To apply the general perturbative approach given in equation C.8 to the problem of

an atom in a time dependent electric field, the unperturbed eigenstates φ
(0)
k are taken

to be the normal spherical harmonic eigenstates, |n`m >. The perturbation V̂ (t) is

defined to be

V̂ (t) = Fx(t) x + Fy(t) y + Fz(t) z . (C.10)

The three Cartesian field components in equation C.10 can each be independently

varied depending on the configuration of the fields in the experiment. Substituting into

equation C.8 and employing atomic units (h̄ ≡ 1), we have

i
d

dt
aj(t) =

∑

k

ak(t) < nj`jmj|V̂ (t)|nk`kmk > ei(Ej−Ek)t , (C.11)
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The Cartesian components of the perturbation can each be expressed in terms of spher-

ical tensor operators to perform the integration. They are given by

x = r
1√
2
(C1
−1 − C1

1) (C.12)

y = r
1√
2
(C1
−1 + C1

1 ) (C.13)

z = r C1
0 . (C.14)

The reduced spherical tensor operators C `
m are related to the familiar spherical har-

monics Y m
` by

C`
m =

√

4π

2`+ 1
Y m
` . (C.15)

The perturbation matrix element Vjk(t) ≡< nj`jmj|V̂ (t)|nk`kmk > then becomes

Vjk(t) = < nj`j|r|nk`k >
[(

Fx(t) + Fy(t)√
2

)

< `jmj|C1
−1|`kmk >

+
(

Fx(t)− Fy(t)√
2

)

< `jmj|C1
1 |`kmk > +

(

Fz(t)
)

< `jmj|C1
0 |`kmk >

]

.(C.16)

Finally, to determine the state of the system as a function of time, the set of coupled

differential equations given by

i
d

dt
aj(t) =

∑

k

ak(t)Vjk(t)e
i(Ej−Ek)t (C.17)

must be solved by some means.
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C.3 Numerical Integration

Equation C.17 defines a set of coupled, first order differential equations. Due to the size

of the basis set of the atomic system, it is advantageous to apply numerical techniques

at this point to determine the time dependent state distribution [4]. A fourth order

Runga-Kutta adaptive stepsize integration routine is used to perform the numerical

integration. The routine is similar to the one developed for the classical simulations

(see appendix B), however it has been modified to handle complex numbers and a

much larger number of coupled equations. In the classical simulations, six first order

differential equations are solved to completely determine the motion of an electron.

In the quantum mechanical calculations, one first order coupled differential equation

exists to describe the time dependent complex state amplitude of each basis state. In

a typical quantum mechanical simulation, thousands of coupled differential equations

are solved simultaneously.

Initially, an upper and lower bound on n are chosen which define the size of the

basis set for the calculation. The lower bound is labeled nL and the upper bound nH .

For a typical calculation done in this thesis, nL ≈ 10 and nL ≈ 40. We have developed

a method of giving a sequential index i to each allowed |n`m > state in the range

nL ≤ n ≤ nH . In our indexing scheme, first the m value is incremented, then the `,

and finally the n. Therefore, the state n = nL, ` = nL − 1,m = −(nL − 1) corresponds

to i = 0, the state n = nL, ` = nL − 1,m = −(nL − 2) has i = 1, and so on. The index
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for each |n`m > state is given by the relation

i(n, `,m) =
1

6

(

(2n3 − 3n2 + n)− (2n3L − 3n2L + nL)
)

+
1

2

(

n2 − n+ |m|+ 2nm±m2
)

+ ` − |m| . (C.18)

The + sign in equation C.18 is for m < 0, and the − sign is for m > 0. For example, if

nL = 20, then the state |20, 19,−19 >≡ |φ0 >, the state |20, 0, 0 >≡ |φ190 >, and the

state |30, 5,−3 >≡ |φ6438 >. The index i runs from i = 0 to imax, where

imax =
1

6
(2n3H + 3n2H + nH − 2n3L + 3n2L − nL − 6) , (C.19)

and contains one element for every |n`m > state. This indexing method simplifies the

labeling of the basis state vector when designing computer code. Through equation

C.18, the state vector can be written as a single vector with index ranging from i = 0

to i = imax.

To begin a calculation, an initial state vector is chosen. This is the state of the

system at t = 0. Frequently, the initial state is simply a m = 0, nd Rydberg eigenstate.

For example, if an electron is excited directly to a n = 22, ` = 2,m = 0 eigenstate,

then the real amplitude of the |22, 2, 0 > state is set to unity and the real and complex

amplitudes of every other state in the basis set are zero. If the system is instead

excited with a broad bandwidth laser pulse, then several different n states may be

excited simultaneously and a Gaussian distribution of initial real amplitudes is used for

the initial state. A third possibility is the initial excitation of a Stark state. In this case,
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one (or several) states with parabolic quantum number(s) k are initially excited. The

calculations are performed in the spherical harmonic basis, so the initial Stark state(s)

must be rotated from the parabolic basis (|nkm >) into the spherical (|n`m >) basis

to determine an initial state distribution. Techniques for performing such rotations are

discussed in section D.1.3.

After setting the initial state, the value of the electric field along each axis is specified

for all times t. If the electric field is static, then a constant value is used throughout.

Static fields may be applied along any direction by simply specifying the Cartesian

components separately. Time varying electric fields (such as the field of a HCP) are

specified at each value of time in a separate file which is read into the program at

runtime. The precise temporal shape of the pulse may be adjusted to any form by

specifying the pulse shape in the input file. A typical electric field profile used to

simulate a HCP is shown in figure 3.2. The absolute height and temporal width of the

time varying field are scaled to user input values. A subroutine within the numerical

integration returns values for Fx, Fy, and Fz for any given value of time within 0 ≤ t ≤

tmax.

All the time dependence in equation C.16 is contained in the profile of the electric

fields and is outside of the interaction matrix elements. Therefore, it is only necessary to

calculate each matrix element once, instead of at every time step during the numerical

integration routine. Furthermore, due to angular momentum selection rules, a large
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number of the matrix elements are zero. For example, a basis set that contains all

possible |n`m > states from 10 ≤ n ≤ 35, contains 14624 elements. However, out

of almost 214 million possible interaction matrix elements, only 1416635 are nonzero.

These are calculated at the beginning of the simulation and stored in an array to be

accessed at each time step of the numerical integration. Each of the radial matrix

elements < nj`j|r|nk`k > is calculated for calcium by a Numerov numerical integration

[10]. The angular matrix elements are calculated from the Wigner-Eckhart theorem [11]

and are given by

< `′m′|C1
M |`m > = (−1)m′

√

(2`′ + 1)(2`+ 1)











`′ 1 `

0 0 0





















`′ 1 `

−m′ M m











.

(C.20)

Once the initial state is chosen, the matrix elements are calculated, and some initial

value of stepsize is selected, the integration routine proceeds to advance the initial

state through the first time step. The nature of numerical integration assumes that

the perturbation does not change during each time step. In other words, the values

of the components of the electric field are assumed to be constant during each time

step. After the first step, the resulting state distribution is recorded in a file and then

becomes the initial state distribution for the second time step. The size of the next step

is determined adaptively based on the error of the previous step. The adaptive stepsize

technique allows small time steps to be taken when the electric field is changing very

rapidly and much larger steps when the field is effectively constant. The integration
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proceeds in this way until the final time step. After the final step, the final state

distribution is recorded.

As an example of the quantum calculations, the state redistribution due to two

HCP fields interacting with an initial |22, 2, 0 > Rydberg eigenstate is calculated. The

first HCP is polarized along the ẑ axis and the second is polarized along x̂ and follows

the first in time by 1 ps. Each HCP has a FWHM of 0.8 ps. A small (∼10 V/cm)

static electric field persists for the duration of the simulation along each HCP axis

to simulate the slow return to zero offset of the experimentally generated HCPs [5].

The simulation runs for 4 ps. The final |n`m > state vector is integrated along each

of the three quantum numbers to recover final n, `, and m distributions. These final

state distributions are shown in figure C.1. The values of nL and nH are 10 and 35

respectively. The magnetic quantum number m is measured with respect to the ẑ axis.

For larger values of HCP field strength, more of the initial population is transferred

to high angular momentum states. At 4 kV/cm all the n states have been populated

up to nH . Therefore, for HCP fields greater than 4 kV/cm, more n states must be

included in the simulation to prevent artificial “reflection” of population from the edge

of the basis set. Eventually, as the HCP field strength increases further, direct HCP

ionization begins to occur and the simulation is no longer valid in its current form.

Since the full state distribution is recorded at each time step, it is possible to

calculate the time dependent population in each quantum state during HCP interaction
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Figure C.1: Final |n`m > state distributions resulting from the quantum mechanical
simulation of two orthogonally polarized HCP fields interacting with an initial |22, 2, 0 >
Rydberg eigenstate in Ca. The four curves in each graph represent HCP fields with
maximum strengths of 1 kV/cm (black), 2 kV/cm (red), 3 kV/cm (green), and 4 kV/cm
(blue). For the m state distribution, m is measured along the ẑ axis.
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as well as after it. If we look at the n state distribution for the simulation discussed

above, we see that the entire population lies initially in n = 22. As the HCP field

increases, more and more population is transferred to neighboring n states. The rate

of population transfer is proportional to the strength of the HCP field. Figure C.2(a)

shows the time dependent n state population in some selected n values. Note that after

the first HCP field interacts with the system, a little over 10% of the initial population

resides in n = 30. After the second pulse though, the amount of population in each

n state is very similar. Time dependent state distributions are shown in figure C.2(b)

for the ` state character. Population shifts very rapidly between ` states during the

maximum of the first HCP field at approximately t = 0.4 ps. After the second HCP

field is over, more population actually resides in ` = 15 than it does in ` = 2.

If no electric fields are present in either the x̂ or ŷ directions, then m is a good

quantum number and the matrix elements Vjk(t) reduce to

Vjk(t) = < nj`j|r|nk`k >
(

Fz(t)
)

< `jm|C1
0 |`km > . (C.21)

If this simplification can be made then the calculations are greatly reduced as only one

value of m must be considered in the perturbation matrix. In this case, the number of

interaction matrix elements is greatly decreased and many more n states can be con-

sidered in the basis without winding up with an unmanageable number of calculations.

A similar calculation is performed to that shown in figure C.1, however only a single

HCP is applied, polarized along the ẑ axis. The initial state is again |22, 2, 0 >. m is
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Figure C.2: Quantum mechanical simulation of the time evolution of selected n and `
states in the presence of two HCP fields separated in time by 1 ps. The first HCP is
polarized along ẑ and has a maximum value of 4 kV/cm at t = 0.4 ps. The second HCP
is polarized along x̂ and also has a maximum value of 4 kV/cm at a time t = 1.4 ps. The
relative timing of the maxima of the HCP fields is indicated by the orange arrows. (a).
Population in selected n states as a function of time. Shown are n = 20, 21, 22, 23, 24,
and 30. Initially, the population in n = 22 is 1. Very little of the n = 30 state is
populated after the first HCP. By the end of the second HCP however, the amount of
population in n = 30 is roughly the same as the other n states. (b). Population in
selected ` states as a function of time for ` = 0, 1, 2, 3, 4, and 15. The population is
initially all in ` = 2.
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uniquely determined to be zero (when measured along the ẑ axis) for the duration of

the simulation. The simulation runs for 4 ps. The final |n`0 > state vector is integrated

along both n and ` to recover the final distributions of both quantum numbers. Results

from the simulation are shown in figure C.3. n values from 10 ≤ n ≤ 90 are included

in the simulation.

If we look at the n state distribution for a HCP field of maximum strength 8 kV/cm

(the blue curve in the left graph in figure C.2), we can already begin to see the effect of

the boundary reflection. Peaks in the n state probability occur at n = 41 and n = 53.

These features are artifacts which arise from artificially limiting the size of the basis

set. Increasing nH will decrease these features, however if the HCP field is strong

enough to directly ionize the Rydberg electron, then no matter how many bound states

we include in the simulation, boundary reflections are present. Once these reflections

begin to occur, the simulation is no longer valid.

C.4 Ionization

C.4.1 Direct Ionization

Extending the quantum simulations presented above to include the possibility of direct

field ionization involves many computational difficulties. In this situation, a nonzero

probability exists for making transitions to any of an infinite number of continuum
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Figure C.3: Final |n`0 > state distributions resulting from the quantum mechanical
simulation of a HCP field polarized along ẑ interacting with a initial population of
|22, 2, 0 > atoms in Ca. The four curves represent HCP fields with a maximum strength
of 2 kV/cm (black), 4 kV/cm (red), 6 kV/cm (green), and 8 kV/cm (blue).

states. This scenario is sidestepped in the quantum simulations presented here by

defining a very high n state as the effective continuum limit. If any of the initial popu-

lation is contained in states with n ≥ nlimit after any time step, then that population is

removed from the simulation and counted as ionized. In this way, the initial population

is depleted due to “direct ionization”. This limit introduces some artificial reflection of

population back down to lower n values. Any population lying in high n states which

are slightly below nlimit are energetically allowed to make transitions to n states above

nH (the highest n state in the simulation). Since the matrix elements to make these

transitions are artificially absent from the basis set, the population must instead move

back to lower n values. Reflection effects are reduced by increasing the number of n
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values between nlimit and nH but are not completely eliminated.

C.4.2 Autoionization

In the auto-ionizing system (doubly excited Ca) considered in chapter 5), AI typically

occurs in the following manner

4pnd → 4s+ + ε(`± 1) or 4pnd → 3d+ + ε(`± 1) . (C.22)

To simulate the effect of AI in the quantum simulations, population is removed from

each state after each time step according to the calculated AI rate for that state, as

long as both valence electrons are excited. In the simulation, AI is “turned on” at

some time ∆tICE following the HCP interaction. This is the experimental analogy of

performing an inner electron isolated core excitation (ICE) [6].

The AI rates for calcium are calculated from Fermi’s golden rule in the isolated

resonance approximation [7, 8],

Γ = 2π| < f |V |i > |2 . (C.23)

The matrix element V is the combined interaction matrix element between the initial

state and all possible final states [1, 7, 8]. The total AI rate is assumed to be the sum

of the AI rates into the 4s and 3d continua. For ease of notation, we denote the inner

electron as electron 1 and the outer electron as electron 2. V can be written

V =
〈

n′1`
′
1 ε`

′
2 J

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

4p3/2 n2`2 J
〉

, (C.24)
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where we have ignored the spin of electron 2. The scalar quantity r12 is defined to be

the distance between the two electrons. In calcium, the possible values of n′1 and `
′
1 are

4s1/2, 3d3/2, and 3d5/2. In this section, only AI rates for n′1`
′
1 = 4s1/2 are computed.

Similar calculations are performed for the 3d continua. The total AI rates used in the

quantum simulations are a sum of the contributions from each n′1`
′
1.

The 1
r12

operator in equation C.24 can be expanded in terms of spherical harmonics.

Keeping only the dipole term in the expansion yields [8]

V =
〈

4s1/2 ε`
′
2 J

∣

∣

∣

∣

(

r1
r22

)

C
(1)
1 ·C(1)

2

∣

∣

∣

∣

4p3/2 n2`2 J
〉

. (C.25)

The components of the spherical harmonic vectors C
(1)
i are given by equation C.15. The

two radial matrix elements in equation C.25 can be separated and written in terms

of electron 1 and electron 2 respectively. The angular matrix elements are coupled.

Therefore, V can be written

V = < 4s1/2|r1|4p3/2 >
〈

ε`′2

∣

∣

∣

∣

1

r22

∣

∣

∣

∣

n2`2

〉 〈

s1/2 `
′
2 J

∣

∣

∣

∣

C
(1)
1 ·C(1)

2

∣

∣

∣

∣

p3/2 `2 J
〉

. (C.26)

The inner electron radial matrix element is calculated using the method of Lindgard

and Nielsen and yields 1.439a0 [9]. The radial matrix element of the outer electron

is calculated using a Numerov integration technique adapted for continuum wavefunc-

tions [10]. The angular matrix element is separated through decoupling of the angular

momenta of the two electrons [11]. The decoupling involves summing over all possible

values of each of the coupling constants which leads to the same final state. A matrix
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element is calculated for every allowed value of the parameters j, J , and M . Here

j is the `s coupled angular momentum of electron 1, J is the total coupled angular

momentum, and M is the ẑ projection of J . For each value of these three parameters,

the angular matrix element is given by

〈

(s1/2)j
′ `′2 JM

∣

∣

∣

∣

C
(1)
1 ·C(1)

2

∣

∣

∣

∣

(p3/2)j `2 JM
〉

=

(−1)j′+`+J



















J `′2 j

1 j′ `2



















< (s1/2)j
′||C(1)

1 ||(p3/2)j > × < `′2||C
(1)
2 ||`2 > .

(C.27)

The quantity in braces is a Wigner 6-J symbol and the remaining matrix elements are

reduced matrix elements [11]. Since the outer electron’s spin is neglected, the reduced

matrix element for the outer electron is given by

< `′2||C
(1)
2 ||`2 > = (−1)`2











`2 1 `′2

0 0 0











√

(2`2 + 1)(2`′2 + 1) . (C.28)

The spin contribution must be considered when evaluating the reduced angular matrix

element for the inner electron. From Edmonds [11], the first angular matrix element in

equation C.27 is given by

< (s1/2)j
′||C(1)

1 ||(p3/2)j > =

√
3
∑

m,m′,q

(−1)j−m











j 1 j′

−m q m′











< (s1/2)j
′m′|C(1)

1 (q)|(p3/2)jm > .(C.29)
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`n 15 18 21 25 30 35 40

0 50.1 28.9 18.2 10.8 5.76 .721 .0106
1 52.3 30.2 19.0 11.2 6.49 4.08 2.74
2 22.5 13.0 8.17 4.84 2.80 1.76 1.18
3 6.17 3.59 2.27 1.35 .781 .492 .330
4 1.11 .655 .418 .251 .146 .0925 .0621
5 .135 .0825 .0536 .0326 .0192 .0122 .00826
6 .0115 .00742 .00497 .00309 .00185 .00119 8.08e−4

7 7.06e−4 4.90e−4 3.42e−4 2.20e−4 1.35e−4 8.79e−5 6.02e−5

8 3.13e−5 2.42e−5 1.79e−5 1.21e−5 7.64e−5 5.07e−6 3.52e−6

9 1.00e−6 9.01e−7 7.25e−7 5.19e−7 3.43e−7 2.33e−7 1.64e−7

10 2.30e−8 2.56e−8 2.29e−8 1.78e−8 1.24e−8 8.71e−9 6.26e−9

11 3.68e−10 5.52e−10 5.71e−10 4.90e−10 3.66e−10 2.67e−10 1.97e−10

Table C.1: Calculated 4s continua autoionization rates for selected n,` states in calcium
in cm−1.

The index q ranges over all possible ẑ projections of `. In this case, since ` = 1,

q = −1,0, or 1. m is the ẑ projection of the combined angular momentum (j) of the

inner electron.

To calculate the total value of the angular matrix element in equation C.26, matrix

elements must be calculated for all allowed values of J , M , and j. The angular and

radial matrix elements are then combined to determine the total 4s continua AI rate

for each |n, `,m > outer electron state in the quantum simulation. Selected AI rates

are shown in table C.4.2. Rates for ` ≥ 8 are sufficiently small that the lifetime of the

4p3/2 inner excited state is shorter than the average time for autoionization.
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C.4.3 Calculated Survival Probability

After the AI rates and the direct ionization are factored into the quantum simulations, a

more accurate picture of the final state distribution emerges. We perform a simulation

of the amount of ionization (due to both AI and direct ionization) as a function of time

for Ca atoms subjected to a HCP field with low amplitude static negative tail. This

simulation is similar to the calculations performed in chapter 5. AI is “turned on” at

t = 2 ps and the simulation runs for 3 ns (approximately the spontaneous emission

time of the 4p3/2 state). The un-ionized population is shown as a function of time in

figure C.4. The initial Rydberg state is n = 22, ` = 2, m = 0. Similar calculations

are possible with any given combination of field pulses and static fields. For the initial

parameters in this simulation, less than 1% of the initial population remains bound,

regardless of the HCP field strength.

C.5 Rotation of Bases

When time dependent electric fields are applied along more than one axis, determining

the “good” axis of the problem becomes difficult. The “good” axis is defined as the axis

of the resultant field vector. Along this axis, mr is a good quantum number, wheremr is

the projection of the angular momentum along the resultant axis. If the direction of the

resultant vector is constant throughout the entire simulation, then the m distribution
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Figure C.4: Calculated survival probability of a |22, 2, 0 > initial Rydberg state sub-
jected to a single HCP along the ẑ axis of maximum field F . Following the HCP, a
small static field is applied which has magnitude proportional to F to simulate the effect
of the long negative tail on an experimentally generated HCP. Population is removed
from the simulation due to both direct ionization and autoionization as discussed in the
text. HCP fields of F = 1, 2, 3, 4, 5, 6 kV/cm are considered. Note the final population
is greatest for F = 5 kV/cm. For F > 5 kV/cm, direct ionization instead of AI becomes
as the main ionization mechanism.
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along the resultant axis is unchanged. However, if the direction of the resultant field

vector varies during the simulation, the m distribution along the resultant axis will also

change. Also, the m distribution along any axis other than the resultant axis is time

dependent and will change.

In the quantum simulations presented here, we measure only the final state m dis-

tribution. As the “good” axis may have changed drastically during the course of a

quantum simulation, to ensure that we are measuring the m distribution along the cor-

rect (resultant) axis, we simply measure the m distribution along every axis. Typically,

some set of candidates for the good axis of the problem is obvious. For example, if

HCP fields of equal magnitude are applied along both the +x̂ and +ẑ axes, then the

good axis of the problem is 1√
2
(x̂ + ẑ). When static fields are applied as well as HCP

fields, the choice of the good axis is no longer straightforward, however we are able to

at least narrow the choices down to a plane.

We define the axis û as being in the x̂z plane and making an angle θ with the +ẑ

axis. We also define an angular momentum operator L̂u by the relation L̂u|`m >u=

mu|`m >u. The states |`m >u are eigenstates in the û basis with corresponding quan-

tum numbers mu. To project an m state distribution measured along ẑ onto the û axis,

we define an operator L̂θ, given by

L̂θ = cosθL̂z + sinθL̂x

= cosθL̂z +
(

sinθ

2

)(

L̂+ + L̂−

)

, (C.30)
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where the L̂+ and L̂− operators are the typical ladder operators along the ẑ axis as

defined in Landau and Lifshitz [1]. If the operator L̂θ acts on a state |`m > in the ẑ

basis, the result is given by

L̂θ |`m > = (cosθ)m|`m >

+
(

sinθ

2

)(

√

(`−m)(`+m+ 1) |`(m+ 1) >

+
√

(`+m)(`−m+ 1) |`(m− 1) >
)

. (C.31)

A matrix is created of all allowed eigenvalues of L̂θ acting on the states |`m >z. The

matrix is tridiagonal. Its eigenvalues and eigenvectors are determined numerically [4].

The eigenvectors form a new rotation matrix which projects the m distribution of a

state from the ẑ basis to the new û basis. Therefore, if we measure a final state m

distribution only along ẑ, we can rotate this distribution through any angle θ and see

what the m distribution looks like along that axis.

As a test of the m rotation technique, a quantum simulation of a HCP field inter-

acting with a Rydberg state is performed in a similar manner as discussed above. In

this simulation however, the initial state is chosen such that m = 0 when measured

along the x̂ axis. In the ẑ basis, this state has the form

|22, 2, 0 >x =

√

3

8
|22, 2,−2 >z −

1

2
|22, 2, 0 >z +

√

3

8
|22, 2, 2 >z . (C.32)

The HCP field is applied along the x̂ axis. Despite the obvious choice of the preferred

axis of integration (x̂), the simulation is still performed in the ẑ basis. The final state
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Figure C.5: An initial |22, 2, 0 >x state is subject to a single HCP along the x̂ axis
of maximum field F . Following the HCP, a small static field is applied which has
magnitude proportional to F to simulate the effect of the long negative tail on an
experimentally generated HCP. The m distribution along the ẑ axis is shown for HCP
maximum fields of 2 kV/cm (black curve) and 4 kV/cm (grey curve). No population
removal due to AI is performed in this simulation. The simulation runs for 2 ps and
the basis set contains all n such that 10 ≤ n ≤ 35.

m distribution along ẑ is shown in figure C.5. When the final m distribution is rotated

to the x̂ axis, the entire population returns to m = 0. Since the initial population

is entirely m = 0 along the good axis, and the fields are all applied along that axis,

the final state distribution must also be m = 0 along this axis. The fact that the

integration is performed along some other axis (ẑ) which is not the good axis of the

problem leads to a complicated distribution of m values along that axis. However, the

physical symmetry is still preserved throughout the simulation. In figure C.6 the m
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Figure C.6: An initial |22, 2, 0 >x state is subject to a single HCP along the x̂ axis of
maximum field of 4 kV/cm. Following the HCP, a static field of 10 V/cm is applied
along x̂ to simulate the effect of the long negative tail of an experimentally generated
HCP. The m probability distribution is shown in greyscale for m measured along all
axes from +ẑ to −ẑ. Due to the symmetry of the problem, the entire population has
m = 0 along the x̂ axis. The simulation runs for 2 ps and the basis set contains all n
such that 10 ≤ n ≤ 35.
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distribution is shown for all axes in the x̂z plane. The complex distribution of values

seen when m is measured along ẑ collapses when the axis of measurement is changed

from +ẑ to +x̂.

Choosing the correct axis to measure the m distribution is critical to understand-

ing the electron dynamics of a given experiment. Even though the simulation above

indicated a electron distribution containing high m values (see figure C.5), in fact we

have just chosen a poor direction to measure the m distribution. To properly deter-

mine “what the atom thinks” the m distribution is, it is necessary to measure the m

distribution along the good axis of the problem.

C.6 Conclusions

Quantum mechanical simulations are less intuitive and frequently more difficult than

classical simulations. However, nature is inherently quantum mechanical. To properly

understand the dynamics of an atomic system, quantum simulations are needed. The

simulation methods presented in this appendix are fairly straightforward and useful,

even if some approximations have been made for ease of computation and implemen-

tation. The goal of this appendix and the programs generated through the methods

described here is to provide a fully quantum mechanical method to simulate physical

processes. These simulations can be compared with experimental data such as the data

presented in chapter 5.
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Appendix D

The Stark Effect

Before studying the system of an atom in a static field, one must realize that atoms

in externally applied electric fields (also known as a “Stark” fields) have already been

the subject of considerable research [1–4]. Even though the problem is difficult to

solve exactly for arbitrary atoms, if the electric field is relatively weak (below the

field ionization limit) then perturbation theory can be applied to obtain approximate

positions of the energy levels [1]. In this appendix, we apply a perturbative approach

to gain an introductory understanding of the Stark effect.

In the first section of this appendix, an introduction to the Stark problem and to

parabolic coordinates in general is given. This enables the reader to more easily follow

arguments presented in chapters 4 and 5. Then, a treatment of the Stark problem

specifically dealing with non-hydrogenic atoms is presented. Finally, a brief discussion

313
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of how we calculate Stark maps of non-hydrogenic atoms is given.

D.1 Analytic Calculations for Hydrogenlike Atoms

D.1.1 Introduction

The presence of an external static electric field breaks the spherical symmetry of the

Coulomb potential [1]. The lack of spherical symmetry means ` is no longer a good

quantum number and angular momentum is no longer conserved. Eigenstates of the

Stark potential do not have a well defined value of `, nor well defined parity. In this

treatment of the Stark effect, it is assumed without loss of generality that the static

field is applied along the ẑ axis such that ~F = F ẑ. Furthermore, we choose to perform

calculations in the “length” gauge given by V = ~E · ~r. The analysis in this section is

done for the purely hydrogenic case where the Coulomb potential is valid for all r > 0.

The results will be extended to non-hydrogenic atoms through the use of quantum

defect theory in the following section.

The time independent Schrödinger equation for a hydrogen atom in a static field is

given by
(∇2

2
+ E +

Z

r
− Fz

)

ψ = 0. (D.1)

This system may be solved directly through matrix diagonalization, however pertur-

bation theory can also be used to obtain approximate solutions. This is useful if the
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basis set is quite large and therefore the matrix diagonalization is difficult. Although

the system may be treated in spherical coordinates, the symmetry of the problem lends

itself to parabolic coordinates [2]. The coordinate transformations from spherical to

parabolic coordinates are given by

ξ = r + z , η = r − z , and φ = tan−1
(

y

x

)

, (D.2)

and the volume element is dV = 1
4
(ξ + η)dξdηdφ. In parabolic coordinates, the

Schrödinger equation (D.1) becomes

∂

∂ξ

(

ξ
∂ψ

∂ξ

)

+
∂

∂η

(

η
∂ψ

∂η

)

+
(

1

4ξ
+

1

4η

)

∂2ψ

∂φ2
+
[

1

2
E(ξ+η)+Z− 1

4
F (ξ2−η2)

]

ψ = 0. (D.3)

Equation D.3 is separable, having solutions of the form

ψ = u1(ξ)u2(η)e
±imφ. (D.4)

For the rest of this appendix, we define the magnetic quantum number to be positive.

Therefore, m = |m|. This is the reason for the ± in equation D.4. Any time when

negative values of m are to be included, they will be included explicitly as ±m.

Two differential equations result from the separation performed in equation D.4,

∂

∂ξ

(

ξ
∂u1
∂ξ

)

+
(

1

2
Eξ + Z1 −

m2

4ξ
− 1

4
Fξ2

)

u1 = 0 (D.5)

and

∂

∂η

(

η
∂u2
∂η

)

+
(

1

2
Eη + Z2 −

m2

4η
+

1

4
Fη2

)

u2 = 0 . (D.6)
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Z1 and Z2 are the amounts of nuclear charge seen by the electron andm is the projection

of the angular momentum on the ẑ axis [2]. The total core charge Z in equation D.1 is

the sum of the separation constants Z1 and Z2. It is worth noting that the eigenvalues

of equations D.5 and D.6 are Z1 and Z2 respectively, rather than the energy E, as in

equation D.1. Our intention is to expand the eigenvalues in powers of the field F . We

begin with zeroth order perturbation theory, where the field term is ignored altogether

(F = 0).

D.1.2 Zero Field Solution

To solve the second order differential equations D.5 and D.6 for F = 0, four boundary

conditions are needed. We examine the asymptotic behavior of the differential equations

to determine these boundary conditions. A useful quantity ε is defined as ε ≡
√
−2E

for ease of notation. As ξ, η → 0,

u
(0)
1 (ξ) ∼ ξm/2 and u

(0)
2 (η) ∼ ηm/2 . (D.7)

The superscripts on the u1 and u2 eigenfunctions indicate these are zeroth order solu-

tions. Furthermore, as ξ, η →∞,

u
(0)
1 (ξ) ∼ e−ξε/2 and u

(0)
2 (η) ∼ e−ηε/2 . (D.8)

With these boundary conditions, polynomial solutions are sought of the form

u
(0)
1 (ξ) = ξm/2e−ξε/2f1(ξ) and u

(0)
2 (η) = ηm/2e−ηε/2f2(η) . (D.9)
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A change of variables is made for convenience. We define x ≡ εξ, and y ≡ εη. The

resulting second order differential equations

x
d2f1
dx2

+ (m+ 1− x)df1
dx

+
(

Z
(0)
1

ε
− m+ 1

2

)

f1 = 0 (D.10)

and

y
d2f2
dy2

+ (m+ 1− y)df2
dy

+
(

Z
(0)
2

ε
− m+ 1

2

)

f2 = 0 (D.11)

are solved by the associated Laguerre polynomials. The superscripts on the parabolic

separation constants Z1 and Z2 again indicate these are zeroth order perturbation

values. The resulting solutions are given by

f1(x) = Lmn1+m
(x) and f2(y) = Lmn2+m

(y) . (D.12)

Since f1 and f2 must remain finite at large values of ξ and η respectively, the parameters

n1 and n2 must be non-negative integers. Therefore,

n1 =
Z

(0)
1

ε
− m+ 1

2
and n2 =

Z
(0)
2

ε
− m+ 1

2
. (D.13)

Rearranging for Z
(0)
1 and Z

(0)
2 we find

Z
(0)
1 =

(

n1 +
m+ 1

2

)

ε and Z
(0)
2 =

(

n2 +
m+ 1

2

)

ε . (D.14)

Solving for Z = Z
(0)
1 + Z

(0)
2 , we find

Z

ε
= n1 + n2 +m+ 1 . (D.15)
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Equation D.15 can then be solved for the energy E, resulting in

E0 =
−ε2
2

= − Z2

2(n1 + n2 +m+ 1)2
. (D.16)

Since the field free energy levels are well known (En = − Z2

2n2 ), from equation D.16 we

derive a relation between n1, n2, m, and n,

n = n1 + n2 +m+ 1 . (D.17)

The variables n1 and n2 are known as the parabolic quantum numbers and are related

to the amount of charge on the either side of the ẑ axis [1].

To obtain the actual parabolic eigenfunctions u
(0)
1 (ξ) and u

(0)
2 (η) (defined by equa-

tions D.5 and D.6), the normalization conditions

∫ ∞

0
u21(ξ)dξ = 1 and

∫ ∞

0
u22(η)dη = 1 (D.18)

are applied. The resulting normalized parabolic eigenfunctions are

u
(0)
1 (ξ) =

n1!
1

2

(n1 +m)!
3

2

e−εξ/2ξm/2ε(m+1)/2Lmn1+m
(εξ) (D.19)

and

u
(0)
2 (η) =

n2!
1

2

(n2 +m)!
3

2

e−εη/2ηm/2ε(m+1)/2Lmn2+m
(εη) . (D.20)

Unlike the spherical eigenfunctions, the eigenfunctions given in equations D.19 and

D.20 are not symmetric with the plane z = 0. If n1 > n2, a larger part of the charge

distribution lies on the positive side of z, while the reverse is true if n1 < n2 [1]. The

parabolic eigenfunctions are shown in figure D.1 for n = 8, m = 0 [5].
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Figure D.1: Hydrogenic charge distributions of the parabolic eigenstates for n = 8,
m = 0 [5]. The parabolic quantum number k is defined to be n1 − n2. The overall
dipole moments of the distributions are obvious. The nodes of each eigenstate form
families of parabolas.
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D.1.3 Changing Bases

Both the parabolic eigenfunctions and the familiar spherical eigenfunctions form com-

plete, orthonormal bases. Since both sets span the same Hilbert space, it is therefore

possible to perform projections of a state in one space into the other. We define the

variable k as the projection of the electric dipole moment along the ẑ axis. k is given by

the difference between the parabolic quantum numbers n1 and n2. A state |n1, n2,m >

can be written

|n1, n2,m > ≡ |nkm > =
∑

`

a`,k |n`m > . (D.21)

The states |n`m > are the standard spherical angular momentum states and the coeffi-

cients a`,k are the Clebsch-Gordan coefficients < n`m|nkm >. The a`,k coefficients are

most typically given in the form of a Wigner 3J symbol as [6]

< n`m|nkm > = (−1)m
√
2`+ 1











1
2
(n− 1) 1

2
(n− 1) `

1
2
(m+ k) 1

2
(m− k) −m











. (D.22)

A very similar relation to equation D.21 is used to perform the inverse transforma-

tion, if desired. A given |n`m > state can be written as a coherent sum of Stark states

of the form

|n, `,m > =
∑

k

ak,` |nkm > . (D.23)

The matrix elements < nkm|n`m > in equation D.23 are the same as the < n`m|nkm >

matrix elements from equation D.21. Such projections are useful if a given angular

momentum state is excited in zero field, and then subsequently subjected to an electric
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Figure D.2: The combined Coulomb and static field potentials (known as the Stark
potential). The direction of the higher potential is known as the “uphill” or “blue”
part, while the region of lower potential is known as the “downhill” or “red” part. The
zero field Coulomb potential is shown in the light curve for reference.

field. Then an initial spherical state can be expressed in terms of a superposition of

Stark states.

D.1.4 First Order Perturbation Theory

Extending the analysis of the parabolic system to first order in perturbation theory

involves re-introduction of the linear field terms from equations D.5 and D.6. The first

order perturbation to the eigenvalues is given by

Z
(0,1)
1 = Z

(0)
1 + Z

(1)
1 = Z

(0)
1 +

1

4

(

F

ε2

)

< u
(0)
1 |ξ2|u(0)1 > (D.24)
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and

Z
(0,1)
2 = Z

(0)
2 + Z

(1)
2 = Z

(0)
2 −

1

4

(

F

ε2

)

< u
(0)
2 |η2|u(0)2 > , (D.25)

where the field free eigenfunctions u
(0)
1 and u

(0)
2 are given by equations D.19 and D.20

respectively. Calculating the matrix element in equation D.24 yields

< u
(0)
1 |ξ2|u(0)1 > =

∫ ∞

0
ξ2u21(ξ)dξ =

n1!

(n1 +m)!3

∫ ∞

0
εm+1ξm+2e−εξ(Lmn1+m

(εξ))2dξ .

(D.26)

Solving the integral in equation D.26 and combining with equation D.14 results in [1]

Z
(0,1)
1 = ε

(

n1 +
m+ 1

2

)

+
1

4

(

F

ε2

)

(6n21 + 6n1m+m2 + 6n1 + 3m+ 2) . (D.27)

Performing similar calculations for Z
(0,1)
2 results in a similar expression,

Z
(0,1)
2 = ε

(

n2 +
m+ 1

2

)

− 1

4

(

F

ε2

)

(6n22 + 6n2m+m2 + 6n2 + 3m+ 2) . (D.28)

Combining equations D.27 and D.28 and solving for ε, keeping only first order F terms

yields

ε =
Z

n
− 3

2
F
(

n

Z

)2

(n1 − n2) . (D.29)

Therefore, to first order in F , the energy levels are given by

E1 = − 1

2
ε2 = − Z2

2n2
+

3

2

Fn

Z
(n1 − n2) . (D.30)

The parabolic eigenfunctions given by equations D.19 and D.20 are unchanged in first

order perturbation theory. This is the main advantage of solving the Stark problem in
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parabolic coordinates. The energy levels exhibit a linear shift depending on the value of

the parabolic quantum number k. States with higher energies (k > 0 and n1 > n2) are

known as “uphill” or blue states as the states are shifted to higher (bluer) frequencies

with increasing field. Likewise, states with lower energies (k < 0 and n1 < n2) are

known as “downhill” or red states. The potential is shown in figure D.2, illustrating

the uphill and downhill sides.

A constant of interest is the averaged value of the field term, < Fz >. We find that

< Fz > =
3

2
F
(

n

Z

)

(n1 − n2) . (D.31)

Dividing by the field F , we find

< z > =
3

2

n2

Z

(

n1 − n2
n

)

= < r >s Mz . (D.32)

The quantity < z > is the averaged dipole moment induced by the field, Mz is the z

projection of the Runga-Lenz vector, and < r >s is the average radial position of an

ns orbital. The Runga-Lenz vector ~M is a constant of the motion. The ẑ projection

of ~M is also given by < cosθ >s and defines the cosine of the angle that an s orbital

makes with the ẑ axis in a given Stark state [7, 8]. By definition, −1 ≤Mz ≤ 1.

D.1.5 Stark Maps

A plot of all the energy levels for a given n state as a function of both energy and field

is known as a Stark map. An example of a Stark map section for hydrogen is shown
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in figure D.3. All the Stark states with a given n value make up one Stark manifold.

The Stark states in a given manifold with the largest energy shifts (extremal states)

are determined by setting the value of k to

k = ± (n−m− 1) . (D.33)

In equation D.33, the + sign refers to the bluest state, while the − sign refers to the

reddest state of a given n manifold. The width of a manifold is defined as the energy

spacing between the reddest and bluest states. The width is given by

∆Emanifold =
3Fn

Z
(n−m− 1) . (D.34)

For small values of m and large values of n (the typical experimental conditions studied

in this thesis), equation D.34 is approximated by

∆Emanifold ≈
3Fn2

Z
. (D.35)

Also of interest is the energy spacing between individual Stark states within one n

manifold. This spacing is determined by using adjacent values of n1 and n2 in equation

D.30 and is given by ∆EStark = 3Fn/Z.

As the field strength is further increased, states from adjacent Stark manifolds begin

to cross. The crossing occurs at a field Fc when the downward shifted energy of the

reddest state of the (n+1)th manifold and the upward shifted energy of the bluest state

of the nth manifold are equal. To determine Fc, the zero field energy difference of the
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Figure D.3: A Stark map section of hydrogen (m = 0).

two states is set equal to the sum of the two Stark shifts.

En+1 − En = −∆Ered(n+ 1) + ∆Eblue(n) (D.36)

− Z2

2(n+ 1)2
+

Z2

2n2
=

1

Z

(

3

2
Fc(n+ 1)(n−m) +

3

2
Fc(n)(n−m− 1)

)

(D.37)

Z3

2n2

(

1− 1

(1 + 1
n
)2

)

=
3

2
Fc(2n

2 − 2mn−m) (D.38)

In the case where nÀ 1 and m¿ n, equation D.38 can be solved for Fc yielding

Fc ≈
Z3

3n5
. (D.39)
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The field given in equation D.39 is known as the Inglis - Teller limit. For field values

greater than this limit, adjacent n manifolds cross. The value of the Inglis - Teller limit

in equation D.39 only strictly applies in the case of hydrogenlike atoms [9].

D.1.6 Higher Order Effects

For increasing field strengths, the effects of higher order perturbation terms must be

considered. Introducing the second order perturbative term to equation D.24 yields

Z
(0,1,2)
1 = Z

(0)
1 +

F

4

1

ε2
< u

(0)
1 |ξ2|u(0)1 > +

(

F

4

)2
∑

n′

1
6=n1

|(ξ2)n1n′

1
|2

Z
(0)
1 (n1)− Z(0)

1 (n′1)
. (D.40)

All non-diagonal matrix elements of the ξ2 matrix vanish if n′1 > n1+2 or n′1 < n1− 2.

The remaining nonzero elements are given by

(ξ2)n1,n1−1 = − 2

ε2
(2n1 +m)

√

n1(n1 +m) (D.41)

(ξ2)n1,n1−2 =
1

ε2

√

n1(n1 − 1)(n1 +m)(n1 +m− 1) . (D.42)

The denominator in equation D.40 can be simplified as

Z
(0)
1 (n1)− Z(0)

1 (n′1) = ε(n1 − n′1) . (D.43)

Evaluation of only the second order term in equation D.40 yields

Z
(2)
1 =

1

32

F 2

ε5
(m+ 2n1 + 1)[8m2 + 34(2mn1 + 2n21 +m+ 2n1) + 36] . (D.44)

An expression for Z
(2)
2 is similarly derived. Combining results for the first 2 orders



APPENDIX D. THE STARK EFFECT 327

for Z, we obtain

Z = (Z
(0)
1 + Z

(0)
2 ) + (Z

(1)
1 + Z

(1)
2 ) + (Z

(2)
1 + Z

(2)
2 ) (D.45)

Z = εn +
3

2

(

Fn

ε2

)

(n1−n2) −
1

16

(

F 2n

ε5

)

[17n2 +51(n1−n2)2− 9m2+19] . (D.46)

Equation D.46 results in a value of the hydrogenic Stark energy levels correct to second

order in the field,

E2 = − 1

2
ε2 = − Z2

2n2
+

3

2

Fn

Z
(n1−n2) −

1

16
F 2
(

n

Z

)4

[17n2−3(n1−n2)2−9m2+19] .

(D.47)

Unlike the linear Stark shift, the quadratic shift depends explicitly on the magnitude of

the magnetic quantum number m. Furthermore, in second order the parabolic eigen-

states are no longer the good eigenstates of the problem. The quadratic shift is always

negative and always lowers the energy of the Stark states. In the experiments pre-

sented in this thesis, the effect of the quadratic Stark shift is neglected, although some

effects are discussed in [10]. At field strengths in which second order perturbation tech-

niques become necessary, other strong field effects such as direct field ionization may

also occur. This effect is an integral part of the experiment presented in chapter 4. A

description of direct field ionization is therefore presented in the analysis there.
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D.2 Non-Hydrogenic Atoms

D.2.1 Introduction

A derivation of the hydrogenic energy levels in the presence of an external electric field

was presented in section D.1. In this section, the previous analysis is extended to non-

hydrogenic atoms. A brief discussion of quantum defects is presented, followed by a

description of the method used to generate non-hydrogenic Stark maps. Finally, some

examples of calculated Stark maps are presented for non-hydrogenic atoms.

D.2.2 Quantum Defects

The analysis of the Stark effect in non-hydrogenic atoms depends heavily on quantum

defect theory [2, 9, 11–13]. To gain an understanding of the role quantum defects have

in the Stark problem, a cursory treatment of quantum defect theory is presented here.

We start with the field free radial Schrödinger equation in spherical coordinates for an

electron in a Coulomb potential, given by

∂2χ

∂r2
+ 2

[

E +
Z

r
− `(`+ 1)

2r2

]

χ = 0 . (D.48)

A parameter ν is defined by E = − 1
2ν2 , where E is the total energy of the electron.

For negative values of E (bound electrons) the most general solution to equation D.48

is given by [9]

χ(`, r, ν) ∝ f(`, ν, r)cos(πδ`) − g(`, ν, r)sin(πδ`) . (D.49)
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The functions f(`, ν, r) and g(`, ν, r) are individual orthonormal solutions to equation

D.48 which must satisfy appropriate boundary conditions. By examining the behavior

of f(`, ν, r) and g(`, ν, r) as r → 0 and r → ∞ these boundary conditions can be

determined. As r → 0, it is required that

f(`, ν, r) → r`+1 and g(`, ν, r) → r−` , (D.50)

and when r →∞,

f(`, ν, r) → u(`, ν, r)sin(πν)− v(`, ν, r)eiπν (D.51)

g(`, ν, r) → − u(`, ν, r)cos(πν) + v(`, ν, r)eiπ(ν+1/2) . (D.52)

The functions u(`, ν, r) and v(`, ν, r) are given by [9]

u(`, ν, r) ≡ (−1)`
√
ν
1

π

(

2r

ν

)ν

er/ν
√

Γ(ν − `)Γ(ν + `+ 1) (D.53)

v(`, ν, r) ≡ (−1)`
√
ν
(

ν

2r

)ν

e−r/ν
1

√

Γ(ν − `)Γ(ν + `+ 1)
. (D.54)

In the case of a hydrogenic atom, it is necessary that χ(`, r, ν) be finite at r = 0.

Therefore, δ` must be an integer due to the behavior of the function g(`, ν, r) in equation

D.49. Furthermore, the coefficient of u(`, ν, r) must vanish as r → ∞. This requires

that sin(πν) = 0, or that ν be an integer. This is the typical quantization condition

for hydrogenlike atoms [1]. In non-hydrogenic atoms however, the requirement that

χ(`, r, ν) be finite as r → 0 is relaxed due to the non-Coulombic behavior of the potential

near r = 0. The remaining boundary condition, that the wavefunction not explode as
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r →∞ is satisfied if sin[π(ν + δ`)] = 0. Therefore, ν + δ` must take on integer values.

The quantity δ` is known as the quantum defect.

The field free energy of a given n, ` state in a non-hydrogenic atom is given by

E = − 1

2(n− δ`)2
. (D.55)

Table D.2.2 shows quantum defects for the first four ` values of calcium [14]. In practice,

quantum defects vary as a function of both n and `. In most cases, the variation as a

function of n is small and quantum defect values are simply quoted for each value of

`. This is the case for the s, p, and ` > 2 series in calcium. However the presence of a

perturbing state shifts the quantum defects of the d states strongly as a function of n.

In general for a given ` state, the larger the size of the atomic core, the larger the value

of the quantum defects. Also, the smaller the ` value for a given n state, the larger the

quantum defect. In both cases, smaller quantum defects indicate less overlap with the

atomic core.

Low ` states of non-hydrogenic atoms in zero field are not degenerate with the rest

of the ` manifold due to their nonzero quantum defects. In a weak field, high ` states

with δ` ≈ 0 fan out just like hydrogenic states and form a Stark manifold. However,

states with non-negligible quantum defects are not affected by the weak static field to

first order. In this case, the energy difference between the low ` states and high ` states

of a given manifold is large when compared to the spacing between individual Stark
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n δs δp δd δf

15 2.34 1.88 0.819 .085
16 2.34 1.88 0.862 .085
17 2.34 1.88 0.901 .085
18 2.34 1.88 0.939 .085
19 2.34 1.88 0.975 .085
20 2.34 1.88 1.007 .085
21 2.34 1.88 1.036 .085
22 2.34 1.88 1.059 .085
23 2.34 1.88 1.082 .085
24 2.34 1.88 1.110 .085
25 2.35 1.88 1.119 .085
26 2.35 1.88 1.135 .085
27 2.35 1.88 1.150 .085
28 2.35 1.88 1.168 .085
29 2.35 1.88 1.177 .085
30 2.35 1.88 1.175 .085
31 2.35 1.88 1.186 .085
32 2.35 1.88 1.192 .085
33 2.35 1.88 1.199 .085
34 2.35 1.88 1.197 .085
35 2.35 1.88 1.210 .085

Table D.1: Experimentally obtained values for the quantum defects in calcium [14].

states. The first order correction to the energy level positions is given by

∆Elow` ∝
| < low`state|Fz|high`state > |2

Elow` − Ehigh`

. (D.56)

In the weak field case, the zero field energy difference in the denominator is many times

larger than the spacing between adjacent states in the hydrogenic portion of the Stark

manifold (| < Fz > |2). Due to the large factor in the denominator, the energy shift

of the low ` states in weak fields is almost zero. However, as F increases, the states in

the high ` manifold spread out. Once the extremal state in the hydrogenic portion of
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the Stark manifold reaches the zero field energy of a low ` state, then the numerator

in equation D.56 becomes much larger due to the increased interaction between the

states. The energies of the low ` states then shift from their zero field values. In effect,

each low ` states is repelled by the rest of the Stark manifold.

It is useful to determine the field at which a given low ` state encounters the high

`, hydrogenic states of the rest of the Stark manifold. To calculate this field value, the

zero field energy of the low ` state is set equal to the energy of the closest hydrogenic

n state in the linear Stark approximation, yielding

− 1

2(n− δ`)2
= − 1

2n2
+

3

2
F0n(1− n−m) , 0 ≤ δ` ≤ 0.5, (D.57)

− 1

2[(n− 1)− δ`]2
= − 1

2n2
+

3

2
F0n(n−m− 1) , 0.5 ≤ δ` ≤ 1.0. (D.58)

In equations D.57 and D.58, n is the principle quantum number of the closest hydrogenic

manifold above the low ` state being considered and δ` is given mod(1) such that

0 ≤ δ` ≤ 1. If nÀ 1, then equation D.57 or D.58 can be solved for F0 yielding

F0 =
2δ`
3n5

. (D.59)

At static field values greater than F0, all the ` states are mixed together in the Stark

manifold and ` is no longer a good quantum number for any value of `.

At even higher values of F , near the Inglis - Teller limit, states from adjacent man-

ifolds begin to interact. Unlike the hydrogenic case however, states from neighboring

manifolds never cross. Instead, they experience “avoided crossings”. Due to the pres-
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ence of the atomic core, the reddest and bluest states do not lie completely on opposite

sides of the atom. Classically, each state samples the side of the atom which is forbidden

in the hydrogenic case [7]. The Kepler orbits do not close, and red states eventually

become blue states, and vice versa.

D.2.3 Calculated Stark Maps

The full Hamiltonian for non-hydrogenic atoms in an electric field is not separable

in parabolic coordinates. Neither `, nor k is a good quantum number when F is

above the Inglis - Teller limit. To properly determine the atomic energy levels, a

perturbation matrix must be diagonalized [15] which contains all the states in every

manifold. For computational reasons, the perturbation matrix is typically limited to

all the manifolds within a given area of interest. Furthermore, since the parabolic

eigenstates are no longer the eigenstates of the system, the advantage of separating

the problem in parabolic coordinates is removed. Therefore, we return to the spherical

|n`m > basis to perform the integration.

The elements of the perturbation matrix are determined from

< n′`′m′|Ĥ|n`m > = δn′nδ`′`δm′mEn` + < n′`′m′|~F · ~z|n`m > . (D.60)

Equation D.60 can be separated into

< n′`′m′|Ĥ|n`m > = − 1

2(n− δ`)2
+ F < n′`′|r|n` >< `′m′|cos(θ)|`m > . (D.61)
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The radial matrix elements < n′`′|r|n` > are no longer trivial in the non-hydrogenic

case. They are calculated numerically using a Numerov routine similar to the method

of Zimmerman [16]. The angular matrix elements < `′m′|cos(θ)|`m > = <

`′m′|C1
0 |`m > are unchanged from the hydrogenic case however and are given by [17]

< `′m′|C1
0 |`m > = (−1)m′

√

(2`′ + 1)(2`+ 1)











`′ 1 `

0 0 0





















`′ 1 `

−m′ 0 m











.

(D.62)

If we define the static field to be in the ẑ direction, then only dipole transitions (∆` =

±1, ∆m = 0) are possible. Therefore, equation D.62 reduces to

< (`+1)m|C1
0 |`m > = (−1)m

√

(2`+ 3)(2`+ 1)











`+ 1 1 `

0 0 0





















`+ 1 1 `

−m 0 m











,

(D.63)

< (`+ 1)m|C1
0 |`m > =

√

√

√

√

(`+ 1)2 −m2

(2`+ 3)(2`+ 1)
. (D.64)

To create a non-hydrogenic Stark map, first all allowed matrix elements are calcu-

lated, then a Jacobian matrix diagonalization is performed for a given value of static

field F [18]. The eigenvalues of the perturbation matrix are determined in the diag-

onalization routine. These are the eigenenergies of the system. In principle the diag-

onalization is straightforward, however if a Stark map is desired which covers a large

number of n manifolds, diagonalization of a 1000 by 1000 element matrix may be re-

quired. Furthermore, to create the Stark map, the diagonalization must be performed

for many values of F over the region of interest. The computational requirements
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Figure D.4: A Stark map section of calcium (m = 0). All |n`0 > states are included
for 20 ≤ n ≤ 38.

quickly become large. The resulting energy levels are only accurate in the region where

direct field ionization does not occur.

Figure D.4 shows a section of a Stark map for calcium with m = 0. To reproduce

the level structure for the range of energies in figure D.4 up to a field of F = 500

V/cm, it is necessary to include n values from 20 ≤ n ≤ 38. When more states are

included, the position of the energy levels at F = 500 V/cm shifts by less than 0.1
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Figure D.5: Smaller region of the m = 0 Stark map of calcium that shows avoided level
crossings.
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Figure D.6: Smaller region of the m = 4 Stark map of calcium. Due to the negligible
quantum defects for ` > 3 in calcium, the Stark map is essentially hydrogenic and no
avoided crossings are seen.
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cm−1. The perturbation matrix for 20 ≤ n ≤ 38 contains 551 states. In figure D.5,

a smaller portion of the m = 0 Stark map is shown so that the avoided crossings can

be seen in greater detail. For a given value of m, the allowed values of ` vary from

m ≤ ` ≤ n − 1. As the value of m is increased, low ` states are forbidden. Therefore,

for m ≥ 3, the Stark map appears essentially hydrogenic. Figure D.6 shows the same

region of the Stark map as shown in figure D.5, but for m = 4 instead of m = 0. Note

that all the avoided crossings have vanished. Classically this results from the fact that

states with higher m values never come close enough to the atomic core to sample the

small r deviation from the Coulombic potential. The behavior of these orbits therefore

is entirely hydrogenic. This effect is explored experimentally in chapter 4. In that

experiment, it is found that increasing the m value leads to hydrogenic behavior in a

non-hydrogenic system.

It is possible to gain more information from the perturbation matrix generated by

equation D.60 than just energy level positions. While the eigenvalues of the perturba-

tion matrix determine the energy levels, the eigenvectors can be used to project out

a given ` state character from the Stark map. Two examples of calculated Stark map

sections with the oscillator strengths taken into account are shown in figures D.7 and

D.8 for calcium with m = 0 and m = 4 respectively. Note the simple, hydrogenic

nature of the m = 4 Ca Stark map compared to the much more complicated structure

of the m = 0 Ca map. In figure D.7, the d state character is projected out to simulate
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Figure D.7: A section of the m = 0 Stark map of calcium where the oscillator strengths
have been included. The manifold is initially excited by populating the ` = 2 (d)
state, as is done in the experiments presented in chapter 5 and in [10]. Included in the
calculation are states with 24 ≤ n ≤ 30.
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Figure D.8: A section of the m = 4 Stark map of calcium where the oscillator strengths
have been included. Each of the ` states is populated equally. The behavior is essentially
hydrogenic. Again, states with states with 24 ≤ n ≤ 30 have been included in the
calculation.
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photoexcitation into the Stark Rydberg states from a p state. In figure D.8, all the

high ` states are projected equally.

D.2.4 Conclusions

Even though the problem of a non-hydrogenic atom in an external electric field is not

solvable in closed form, approximate positions of the energy levels and the associated

oscillator strengths can be predicted through numerical and perturbative methods.

Once the values of the quantum defects are known for a given atom, the analysis

presented in this section can be applied to determine the energy levels and oscillator

strengths. These techniques are applicable for electric fields weaker than the field

ionization limit. Knowing the level positions and excitation probabilities is useful for

understanding the dynamics of an atomic system. Care must be taken when trying

to extend the techniques presented here out of their range of validity. As the field

increases, other factors such as field ionization quickly become important [2].
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