Spatial Polarization Profile in an Optically Pumped Alkali Vapor

Ben Andrew Olsen, Brian Patton*, Yuan-Yu Jau, Will Happer

Department of Physics, Princeton University *Now at the Department of Physics, UC Berkeley

May 19, 2009

DAMOP 2009 University of Virginia

Applications of hyperpolarized materials Hyperpolarized alkali salts

Applications of hyperpolarized substances

Rat brain image borrowed from Swanson et al., Magnetic Resonance in Medicine 38(5), 695

Ben Andrew Olsen

Applications of hyperpolarized materials H<mark>yperpolarized alkali salts</mark>

¹³³Cs NMR enhancement in solid CsH

- $\geq \sim 8 \times$ enhancement of ¹³³Cs NMR signal in solid CsH [Ishikawa, et al., PRL 98, 183004 (2007)]
- Modest enhancement of ¹³³Cs NMR signal in solid CsCl, ¹H NMR signal in CsH [DAMOP (2008)]
- Enhancement is not repeatable—identically prepared cells give wildly different results
- We want to understand interactions and dynamics of the optically pumped alkali vapor
 - Spatial dependence
 - Pump frequency dependence
 - Pump power, magnetic field, buffer gas pressure/species, time...

Cesium energy levels Optical pumping Spin diffusion

Alkali metal atom energy levels

Solution A single-electron atom with nuclear spin I and electronic spin J = L + S in an external magnetic field B is described by the Hamiltonian:

$$\mathcal{H}_{L,J} = E_{L,J} + g_{L,J}\mu_B \mathbf{J} \cdot \mathbf{B} + \mathcal{A}_{L,J}\mathbf{I} \cdot \mathbf{J} + g_I \mu_B \mathbf{I} \cdot \mathbf{B} + \mathcal{H}_{QP}$$

- $\geq E_{L,J}, g_{L,J}, \mathcal{A}_{L,J}$ are the term energy, g-factor, and hyperfine coupling constant for a given level
- The nuclear Zeeman and quadrupole terms are small, so let's ignore them

Cesium energy levels Optical pumping Spin diffusion

Energy levels in 133 Cs at 2.7 T

Cesium energy level: **Optical pumping** Spin diffusion

Optical pumping and spectroscopy in 133 Cs at 2.7 T

Ben Andrew Olsen

Cesium energy levels **Optical pumping** Spin diffusion

Absorption due to alkali vapor

On resonance, the relative population \mathcal{P} of a hyperfine level is related to the transmitted intensity in a cell of length H by:

$$\mathcal{P} = -\ln\left(\frac{I}{I_0}\right) \left(\frac{1}{\sigma_{\rm abs} \,[{\rm Cs}] \, H}\right)$$
$$= \alpha \ln I + \beta \,.$$

We can use this simple relation to infer \mathcal{P} for each ground state sublevel with $m_J = -1/2$ from an absorption spectrum.

Cesium energy levels Optical pumping Spin diffusion

Simplified spin diffusion model

If we treat the pumped sublevel as independent from all the other sublevels, the relative polarization \mathcal{P} obeys the diffusion equation:

$$\frac{\partial \mathcal{P}}{\partial t} + \mathcal{D}\nabla^2 \mathcal{P} = -\Gamma_{\rm op} \mathcal{P} \,,$$

Where Γ_{op} is the pumping rate and \mathcal{D} is the diffusion coefficient for Cs in N₂ gas. At steady state, with $f = 1 - \mathcal{P}$, we have

$$\mathcal{D}\nabla^2 f + \Gamma_{\rm op}(1-f) = 0$$

In an infinite cylinder with f = 0 at the walls (r = R), we have

$$\mathcal{P}(r) = 1 - f(r) = \frac{I_0(r\sqrt{\Gamma_{\rm op}}/\overline{\mathcal{D}})}{I_0(R\sqrt{\Gamma_{\rm op}}/\overline{\mathcal{D}})},$$

where I_0 is a modified Bessel function.

Cesium energy level: Optical pumping **Spin diffusion**

Numerical simulation of spin diffusion

- Solution Initialize a grid of 50×50 points, representing the region $(0 < r < R, \phi = 0, 0 < z < H)$, with $h_r = R/50, h_z = H/50$
- Assign each point a new value based on the old values of its neighbors:

$$f_{i,j} = \frac{h_r^2(f_{i,j-1} + f_{i,j+1}) + h_z^2(1 + R/2ih_r)f_{i+1,j} + h_z^2(1 - R/2ih_r)f_{i-1,j} + h_r^2h_z^2\Gamma_{\text{op}}/\mathcal{D}}{2h_r^2 + 2h_z^2 + h_r^2h_z^2\Gamma_{\text{op}}/\mathcal{D}}$$

- Enforce boundary conditions: f = 0 for z = 0, z = H, r = R, and $\partial f / \partial r = 0$ for r = 0
- Keep iterating until the values on the grid don't change much

Cesium energy level: Optical pumping Spin diffusion

Simulated polarization along a diameter

Cesium energy levels Optical pumping **Spin diffusion**

Simulated polarization profile (averaged along the vertical)

$$\Gamma_{\rm op} = 50 \ {\rm s}^{-1}, \ {\rm OD} = 0, R = 0.5 \ {\rm in}$$

Cesium energy levels Optical pumping **Spin diffusion**

Simulated polarization profile (averaged along the vertical)

$$\Gamma_{\rm op} = 50 \ {\rm s}^{-1}, H = 2 \ {\rm in}, R = 0.5 \ {\rm in}$$

Cesium energy levels Optical pumping **Spin diffusion**

Simulated polarization profile (averaged along the vertical)

OD = 1, H = 2 in, R = 0.5 in (experimental conditions)

<mark>Experimental setup</mark> Experimental procedur

Experimental setup

Experimental setup Experimental procedur

Experimental procedure

- Scan the probe laser both with the pumping light off and with the pumping light on
 - \gg The pumping light (D2) is tuned to depopulate a single sublevel
 - The probe (D1) measures the population of each sublevel in the $m_S = -1/2$ multiplet.
- \bigcirc Acquire a spectrum pair at many positions in the cell, moving in multiples of 0.5 mm, starting at one cell wall and ending at the other
 - Mechanical translation stage moves beam horizontally
 - Second translation stage moves detection optics

Measured polarization profile Pump laser detuning

Polarization profile for an allowed transition (10 Torr N_2 , 0.7 mW)

Ben Andrew Olsen

Measured polarization profile: Pump laser detuning

Polarization profile for the conjugate transition

Ben Andrew Olsen

<mark>Measured polarization profile</mark>. Pump laser detuning

Polarization profile for a forbidden transition

Ben Andrew Olsen

<mark>Measured polarization profile</mark>. Pump laser detuning

Polarization profile for the conjugate transition

Ben Andrew Olsen

Measured polarization profile Pump laser detuning

Polarization profiles for all 4 transitions (10 Torr N_2 , 0.7 mW)

Measured polarization profile Pump laser detuning

Polarization profiles for all 4 transitions (Vacuum, 0.7 mW)

APS physics

Measured polarization profile: Pump laser detuning

Paraffin-coated cell (10 Torr N₂, 0.7 mW)

Ben Andrew Olsen

Measured polarization profile Pump laser detuning

Populations as functions of pump frequency

Ben Andrew Olsen

Conclusion

Conclusion

- Simulated spin diffusion in finite vapor cells
- \geqslant Measured cesium vapor absorption spectra at 2.7 T
 - Individual sublevel populations obey a diffusion equation with complete depolarization at the cell walls (except with no buffer gas or with paraffin coating)
 - Pumping rates for detuned transitions may tell us about spin exchange in the vapor
- Cells with no buffer gas and with paraffin coatings exhibit strange behavior

- Thanks to M Souza for excellent glassblowing, and to the Romalis Group at Princeton for helpful discussion.
- Thanks to D Budker and M Balabas for paraffin-coated cells
- This work was funded by the Air Force Office of Scientific Research

Conclusion

Vapor Cells

Conclusion

Some more Data

Ben Andrew Olsen