

Brian Saam Department of Physics

Workshop on Physics & Applications of Polarized Noble Gases University of Virginia, 19 May 2009

Filling the Polarization Bucket

$$\lim_{t o\infty} P_{
m Xe}(t) = \langle P_{
m Rb}
angle \left(rac{\gamma_{
m se}}{\gamma_{
m se} + \Gamma}
ight)$$

$$\gamma_{\rm se} = [{\rm Rb}] \langle \sigma_{\rm se} v \rangle$$

- > To maximize P_{Xe} , want $\gamma_{se} >> \Gamma$ AND $< P_{Rb} > \approx 1$.
- $\succ \gamma_{se}$ limited by available laser light.
- > Goal: understand and minimize Γ .

Longitudinal Spin Relaxation in Noble Gases

> Prior to work on dimers: Gas phase T_1 typically a few tens of minutes for ¹²⁹Xe; assumed dominated by wall interactions!

Early Studies of Intrinsic ¹²⁹Xe Relaxation

E.R. Hunt and H.Y. Carr, Phys. Rev. 130, 2302 (1963).

> Assumes binary collisions only (transient dimers).

> Lowest density studied is [Xe] = 50 amagats.

 $\succ \Gamma_{\text{bulk}} \approx 0.019 \text{ h/amagat} (T_1 \approx 52 \text{ h for 1 atm Xe})$

Transient vs. Persistent Dimers

- Form/break up in 3-body collisions.
 - > Last for lifetime $\tau_p \approx 1$ ns (until next collision).
 - > Γ_t is independent of [Xe] (for fixed gas composition).

Transient Dimers

> binary collisions of duration $\tau_t \approx 1 \text{ ps.}$

 $_{\text{intrinsic}} = \Gamma_{t} + \Gamma$

- $\succ \Gamma_t \propto [Xe].$
- Γ_t⁻¹ ≈ 52 h•amagat: Hunt and Carr (1963); Moudrakovski, et al. (2001).

Theory of Persistent-Dimer Relaxation*

Mean-squared spin-rotation interaction energy.

- Power spectrum $J(\omega)$ for field fluctuations
 - $\tau_{\rm p}$ ~ 10⁻⁹ seconds for [Xe] = 1 amagat.
 - $\omega/2\pi$ = 11.8 MHz for B_0 = 1 T.

• Can often assume $\Omega^2 \tau_p^2 \ll 1$ (fast-fluctuation limit).

 \bigcirc Fraction of atoms bound in molecules, assumes [Xe₂] << [Xe].

>Key point for SEOP regime, where $\Omega^2 \tau_p^2 << 1$: [Xe] $\propto \frac{1}{\tau_p} \implies \Gamma_p$ is independent of [Xe]; looks like wall relaxation!

*See: B. Chann, et al., Phys. Rev. Lett. 88, 113201 (2002).

Chemical Equilibrium Coefficient

$$\mathcal{K} \equiv \frac{\left[Xe_2 \right]}{\left[Xe \right] \left[Xe \right]}$$

Low-field (2 mT) Results*

$$\Gamma_{\rm p} = \left(\frac{4\kappa \langle c_{\rm K}^2 N^2 \rangle}{3\hbar^2}\right) [{\rm Xe}]\tau_{\rm p} = \left(\frac{4\kappa \langle c_{\rm K}^2 N^2 \rangle}{3\hbar^2}\right) \left(\frac{1}{k_{\rm Xe}}\right) \left(\frac{1}{1 + r_B([{\rm B}]/[{\rm Xe}])}\right)$$

 $\Gamma_{\rm vdW}^{\rm Xe}$ = pure-Xe rate

 $\frac{1}{\dots} = k_{\rm xe} [{\rm Xe}] + k_{\rm B} [{\rm B}] + \cdots$

FIG. 1. Xe spin-relaxation rate as a function of composition, for various buffer gases, at a fixed Xe density of 0.15 amagat. Inset: Relaxation rate for [Ar]/[Xe] = 1.75 as a function of Xe density.

*B. Chann, *et al.*, *Phys. Rev. Lett.* **88**, 113201 (2002).

With:

$$au_{
m p}$$

$$r_{\rm B} \equiv k_{\rm B} / k_{\rm Xe}$$

- Need constant Γ_{wall} (asymptote).
- No observed [Xe] dependence for fixed gas composition (inset).
- $\Gamma_{\rm vdW}^{\rm Xe}$, $\Gamma_{\rm wall}$, $r_{\rm B}$ extracted from fits.
- $\Gamma_{vdW}^{\chi_e} \approx 0.25 \text{ h}^{-1}$, ten times faster than binary collisions at 1 atm!

High-field Experiments: Theory

$$\Gamma_{\rm p} = \left(\frac{2}{3} \frac{\left\langle c_{\rm K}^2 N^2 \right\rangle}{\hbar^2}\right) \left(\frac{\tau_{\rm p}}{1 + \Omega^2 \tau_{\rm p}^2}\right) \left(2\mathcal{K}[{\rm Xe}]\right)$$

Magnetic-field decoupling term important for large Ω , small $\tau_{\rm p}$.

$$\left(\frac{2}{3}\frac{\left\langle c_{K}^{2}N^{2}\right\rangle}{\hbar^{2}}\right)+\left(\frac{2}{15}\frac{\mu_{\mathrm{B}}^{2}B_{0}^{2}}{\hbar^{6}}\left\langle c_{K}^{2}\Theta_{\perp}^{2}\right\rangle\right)$$

Additional term due to chemicalshift anisotropy (CSA) interaction has dependence on B_0^2 .

$$M^{\rm sr}$$
 + $M^{\rm csa}$

High-Field Experiment: NMR Probe & Cell

Field strengths B_0 :

- 1.5 T (17.7 MHz)
- 4.7 T (55.3 MHz)
- 8.0 T (94.2 MHz)
- 14.1 T (166 MHz)

- > 6.7 cm diam spherical "measurement" cell.
- > Silicone-coated.
- Contains no Rb (HP gas transferred in).
- Long and robust wall relaxation times.

¹²⁹Xe Persistent-Dimer Relaxation: Results*

$$\Gamma_{\rm p} = \left(M^{\rm sr} + M^{\rm csa}\right) \left(\frac{\tau_{\rm p}}{1 + \Omega^2 \tau_{\rm p}^2}\right) \left(2\mathcal{K}[{\rm Xe}]\right)$$

$$\Gamma_{\rm p} = 2\mathcal{K} \left(M^{\rm sr} + M^{\rm csa} \right) \left(\frac{\alpha k_{\alpha} [\rm G]^2}{k_{\alpha}^2 [\rm G]^2 + \Omega^2} \right)$$

ζ μ	- /
Total gas density:	$[G] = [Xe] + [N_2]$
Xe concentration (FIXED): $\alpha \equiv [Xe]/[G]$
Breakup coefficient:	$\tau_{\rm p}^{-1} = k_{\alpha}[{\rm G}]$

- High density: Γ_p independent of density.
- Low density: magnetic-field supression of Γ_p.
- F_p decreases for decreasing [Xe] at fixed total gas density [G].

*B.N. Berry-Pusey, et al., Phys. Rev. A 74, 063408 (2006); B.C. Anger, et al., Phys. Rev. A 78, 043406 (2008).

100-Hour Gas-Phase *T*₁ for ¹²⁹Xe

- > Inferred wall relaxation time: T₁ (wall) = 175 h!!
- Obeys the Driehuys Axiom concerning HP xenon.

Quadratic Dependence on Applied Field

> Data consistent with CSA interaction strength M^{csa} proportional to B_0^2 .

- > Intercept is proportional to SR interaction strength $M^{\rm sr}$.
- > Characteristic crossover field $B_0 \approx 16$ T.

So what about [Xe] = 1 amagat; B_0 = 30 G?

Cell	[Xe]	<i>Т</i> ₁ 293 К	<i>Т</i> ₁ 373 К	T ₁ (wall) 293 K	<i>T</i> ₁ (wall) 373 K
105B	1.5(1)	2.40(5)	3.66(11)	5.8(8)	8.7(1.1)
113A	≈1.5	1.30(4)	2.45(5)	1.9(1)	4.0(2)
113 B	1.1(1)	2.57(15)	4.53(13)	6.6(1.3)	14.5(3.0)
139	0.7(1)	3.40(22)	5.75(23)	16(7)	35(18)

Table II taken from: B.C. Anger, et al., Phys. Rev. A 78, 043406 (2008).

> We've measured T_1 = 5.75 h in a large 12 cm diam spherical borosilicateglass cell (DMDCS-coated) at 30 G, 100°C. (Still limited by wall relaxation!)

U

Improvement to Flow-through ¹²⁹Xe Polarizer*?

- > Long narrow cell (\approx 1 m long × 4 cm diam).
- ▷ [Xe] ≤ 1 amagat; use spectrally narrowed diode-laser array.
- Counterpropagation of gas and laser light.

Cryogenic (LN₂) freeze out, separation, and storage of xenon ($T_1 \approx 2.5$ h @ 77 K).

*See talk B4.00002, tomorrow 10:42 am.

> Goal: gas-phase storage cell (no cryogenics) with 3× storage time of frozen Xe having $T_1 \approx 10$ h. (Preliminary patent application filed.)

Summary

We have thoroughly (exhaustively) characterized *intrinsic* gas-phase T_1 -relaxation of ¹²⁹Xe due to persistent Xe₂ dimers—an important limit to production, accumulation, and storage of HP ¹²⁹Xe.

- > Competes (and gets confused) with wall relaxation in many cases, because of density-independence of $\Gamma_{\rm p}$.
- Possibility of cryogen-free accumulation and storage with 2-3× longer storage times; significant improvement for state-of-the-art method in polarizing ¹²⁹Xe.

Hyperpolarized Gas Research Group

<u>Faculty</u> Brian Saam David Ailion Gernot Laicher

<u>Graduate Students</u> Ben Anger (postdoc at Leiden) Geoff Schrank (graduating Summer 2009) Eric Sorte Zayd Ma

Undergraduates Brittany Berry-Pusey (grad. at UCLA) Kimberly Butler (UU med. school) Laurel Hales Allison Schoeck Oliver Jeong (HS student)

Thanks to M.S. Conradi for numerous helpful discussions.

Room-Temperature Wall-Relaxation Rate vs. B₀

Simple Model for Surface Relaxation of Gases

$$\Gamma_{\rm wall} = \eta \left(\frac{S}{V}\right) \overline{v}$$

 $1/\Gamma_{wall}$ typically ranges from 10 to 100 min for $^{129}\rm{Xe}$ in carefully prepared glass vessels.

 $\eta \propto$ surface relaxivity

For ballistic collisions with a uniformly relaxing surface, $\Gamma_{\rm wall}$ is independent of gas density [Xe].