Gas-phase spin relaxation of 129Xe

$T_1 = 100$ hours!

Workshop on Physics & Applications of Polarized Noble Gases
University of Virginia, 19 May 2009
Filling the Polarization Bucket

To maximize P_{Xe}, we want $\gamma_{se} >> \Gamma$ AND $\langle P_{Rb} \rangle \approx 1$.

- γ_{se} limited by available laser light.
- Goal: understand and minimize Γ.

\[
\lim_{t \to \infty} P_{Xe}(t) = \langle P_{Rb} \rangle \left(\frac{\gamma_{se}}{\gamma_{se} + \Gamma} \right)
\]

\[
\gamma_{se} = [Rb] \langle \sigma_{se} v \rangle
\]
Longitudinal Spin Relaxation in Noble Gases

\[\Gamma = \Gamma_{\text{wall}} + \Gamma_{\text{gradient}} + \Gamma_{\text{intrinsic}} = \frac{1}{T_1} \]

\[\Gamma_{\text{gradient}} = D \left| \nabla \perp B \right|^2 \frac{1}{B_0^2} \]

\[1/\Gamma_{\text{wall}} = 0.1 \text{ – } 1 \text{ h typically @ 30 G.} \]

Density independent!

Negligible in our experiments.

Prior to work on dimers: Gas phase \(T_1 \) typically a few tens of minutes for \(^{129}\text{Xe} \); assumed dominated by wall interactions!

Spin-rotation interaction:

\[C_k(R) \text{ N} \cdot \text{K} \]

Occurs during binary collision AND during the lifetime of a molecule.
Early Studies of Intrinsic 129Xe Relaxation

Γ ∝ [Xe]

Assumes binary collisions only (transient dimers).

Lowest density studied is [Xe] = 50 amagats.

$\Gamma_{bulk} \approx 0.019$ h/amagat ($T_1 \approx 52$ h for 1 atm Xe)
Transient vs. Persistent Dimers

\[\Gamma_{\text{intrinsic}} = \Gamma_t + \Gamma_p \]

Transient Dimers
- Binary collisions of duration \(\tau_t \approx 1 \text{ ps} \).
- \(\Gamma_t \propto [\text{Xe}] \).
- \(\Gamma_t^{-1} \approx 52 \text{ h\amagat} \): Hunt and Carr (1963); Moudrakovski, et al. (2001).

Persistent Dimers
- Form/break up in 3-body collisions.
- Last for lifetime \(\tau_p \approx 1 \text{ ns} \) (until next collision).
- \(\Gamma_t \) is independent of [Xe] (for fixed gas composition).
Mean-squared spin-rotation interaction energy.

Power spectrum $J(\omega)$ for field fluctuations
- $\tau_p \sim 10^{-9}$ seconds for $[\text{Xe}] = 1$ amagat.
- $\omega/2\pi = 11.8$ MHz for $B_0 = 1$ T.
- Can often assume $\Omega^2 \tau_p^2 << 1$ (fast-fluctuation limit).

Fraction of atoms bound in molecules, assumes $[\text{Xe}_2] \ll [\text{Xe}]$.

Key point for SEOP regime, where $\Omega^2 \tau_p^2 << 1$:

$$[\text{Xe}] \propto \frac{1}{\tau_p} \quad \Rightarrow \quad \Gamma_p \text{ is independent of } [\text{Xe}]; \text{ looks like wall relaxation!}$$

Low-field (2 mT) Results*

\[
\Gamma_p = \left(\frac{4K \langle c_K^2 N^2 \rangle}{3\hbar^2} \right) [\text{Xe}] \tau_p = \left(\frac{4K \langle c_K^2 N^2 \rangle}{3\hbar^2} \right) \left(\frac{1}{k_{Xe}} \right) \left(\frac{1}{1 + r_B ([B]/[Xe])} \right)
\]

\(\Gamma_{vdW}^\text{Xe} = \) pure-Xe rate \hspace{1cm} \text{Correction for 2nd gas}

\[
\frac{1}{\tau_p} = k_{Xe} [\text{Xe}] + k_B [B] + \cdots
\]

With:

- Need constant \(\Gamma_{wall} \) (asymptote).
- No observed \([\text{Xe}]\) dependence for fixed gas composition (inset).
- \(\Gamma_{vdW}^\text{Xe}, \Gamma_{wall}, r_B \) extracted from fits.
- \(\Gamma_{vdW}^\text{Xe} \approx 0.25 \text{ h}^{-1}, \) ten times faster than binary collisions at 1 atm!

High-field Experiments: Theory

\[\Gamma_p = \left(\frac{2}{3} \frac{\langle c_K^2 N^2 \rangle}{\hbar^2} \right) \left(\frac{\tau_p}{1 + \Omega^2 \tau_p^2} \right) \left(2K[Xe] \right) \]

Magnetic-field decoupling term important for large \(\Omega \), small \(\tau_p \).

Additional term due to chemical-shift anisotropy (CSA) interaction has dependence on \(B_0^2 \).

\[M^{sr} + M^{csa} \]

\[\Gamma_p = \left(M^{sr} + M^{csa} \right) \left(\frac{\tau_p}{1 + \Omega^2 \tau_p^2} \right) \left(2K[Xe] \right) \]
High-Field Experiment: NMR Probe & Cell

Field strengths B_0:
- 1.5 T (17.7 MHz)
- 4.7 T (55.3 MHz)
- 8.0 T (94.2 MHz)
- 14.1 T (166 MHz)

- 6.7 cm diam spherical “measurement” cell.
- Silicone-coated.
- Contains no Rb (HP gas transferred in).
- Long and robust wall relaxation times.
$\Gamma_p = \left(M^{\text{sr}} + M^{\text{csa}} \right) \left(\frac{\tau_p}{1 + \Omega^2 \tau_p^2} \right) (2\kappa[Xe])$

reparam.

$\Gamma_p = 2\kappa \left(M^{\text{sr}} + M^{\text{csa}} \right) \left(\frac{\alpha k_{\alpha}[G]^2}{k_{\alpha}^2[G]^2 + \Omega^2} \right)$

Total gas density: $[G] = [Xe] + [N_2]$

Xe concentration (FIXED): $\alpha \equiv [Xe]/[G]$

Breakup coefficient: $\tau_p^{-1} = k_{\alpha}[G]$

- High density: Γ_p independent of density.
- Low density: magnetic-field supression of Γ_p.
- Γ_p decreases for decreasing $[Xe]$ at fixed total gas density $[G]$.

100-Hour Gas-Phase T_1 for ^{129}Xe

- Inferred wall relaxation time: $T_1 \text{ (wall)} = 175 \text{ h!!}$
- Obeys the Driehuys Axiom concerning HP xenon.
Quadratic Dependence on Applied Field

\[\Gamma_p = 2K(M^\text{sr} + M^\text{csa}) \left(\frac{\alpha k_\alpha [G]^2}{k_\alpha^2 [G]^2 + \Omega^2} \right) \]

Combined interaction strength of SR and CSA

- Data consistent with CSA interaction strength \(M^\text{csa} \) proportional to \(B_0^2 \).
- Intercept is proportional to SR interaction strength \(M^\text{sr} \).
- Characteristic crossover field \(B_0 \approx 16 \) T.
So what about \([\text{Xe}] = 1 \text{ amagat}; B_0 = 30 \text{ G}\)?

<table>
<thead>
<tr>
<th>Cell</th>
<th>([\text{Xe}])</th>
<th>(T_1) 293 K</th>
<th>(T_1) 373 K</th>
<th>(T_1) (wall) 293 K</th>
<th>(T_1) (wall) 373 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>105B</td>
<td>1.5(1)</td>
<td>2.40(5)</td>
<td>3.66(11)</td>
<td>5.8(8)</td>
<td>8.7(1.1)</td>
</tr>
<tr>
<td>113A</td>
<td>(\approx 1.5)</td>
<td>1.30(4)</td>
<td>2.45(5)</td>
<td>1.9(1)</td>
<td>4.0(2)</td>
</tr>
<tr>
<td>113B</td>
<td>1.1(1)</td>
<td>2.57(15)</td>
<td>4.53(13)</td>
<td>6.6(1.3)</td>
<td>14.5(3.0)</td>
</tr>
<tr>
<td>139</td>
<td>0.7(1)</td>
<td>3.40(22)</td>
<td>(5.75(23))</td>
<td>16(7)</td>
<td>35(18)</td>
</tr>
</tbody>
</table>

- We’ve measured \(T_1 = 5.75 \text{ h}\) in a large 12 cm diam spherical borosilicate-glass cell (DMDCS-coated) at 30 G, 100°C. (Still limited by wall relaxation!)
Improvement to Flow-through 129Xe Polarizer*?

- Long narrow cell (≈ 1 m long \times 4 cm diam).
- $[\text{Xe}] \leq 1$ amagat; use spectrally narrowed diode-laser array.
- Counterpropagation of gas and laser light.
- Cryogenic (LN$_2$) freeze out, separation, and storage of xenon ($T_1 \approx 2.5$ h @ 77 K).

Goal: gas-phase storage cell (no cryogenics) with 3× storage time of frozen Xe having $T_1 \approx 10$ h. (Preliminary patent application filed.)

*See talk B4.00002, tomorrow 10:42 am.
We have thoroughly (exhaustively) characterized intrinsic gas-phase T_1-relaxation of 129Xe due to persistent Xe$_2$ dimers—an important limit to production, accumulation, and storage of HP 129Xe.

$\Gamma_i = \frac{[\text{Xe}]}{56.1 \text{ h}} + \frac{1}{4.59 \text{ h}} [1 + (3.65 \times 10^{-3})B_0^2] \left(1 + r \frac{[B]}{[\text{Xe}]}\right)^{-1}$

- Transient-dimer contribution (binary collisions).
- Persistent-dimer contribution (van der Waals molecules).

- Competes (and gets confused) with wall relaxation in many cases, because of density-independence of Γ_p.

- Possibility of cryogen-free accumulation and storage with 2-3× longer storage times; significant improvement for state-of-the-art method in polarizing 129Xe.
Hyperpolarized Gas Research Group

Faculty
Brian Saam
David Ailion
Gernot Laicher

Graduate Students
Ben Anger (postdoc at Leiden)
Geoff Schrank (graduating Summer 2009)
Eric Sorte
Zayd Ma

Undergraduates
Brittany Berry-Pusey (grad. at UCLA)
Kimberly Butler (UU med. school)
Laurel Hales
Allison Schoeck
Oliver Jeong (HS student)

Thanks to M.S. Conradi for numerous helpful discussions.
Room-Temperature Wall-Relaxation Rate vs. B_0

- Fast-fluctuation limit.
- Intrinsic relaxation rate Γ_i subtracted out.
- Lorentzian fit yields correlation time for wall interaction of ≈ 4 ns.
Simple Model for Surface Relaxation of Gases

Container of 129Xe with uniformly relaxing stable surface

For ballistic collisions with a uniformly relaxing surface, Γ_{wall} is independent of gas density $[\text{Xe}]$.

$\eta \propto$ surface relaxivity

$\Gamma_{\text{wall}} = \eta \left(\frac{S}{V} \right) \bar{v}$

1/Γ_{wall} typically ranges from 10 to 100 min for 129Xe in carefully prepared glass vessels.