

Physics Challenges for Spin-Exchange Optical Pumping of He-3

Thad Walker
Brian Lancor
Robert Wyllie
University of Wisconsin-Madison

Collaborators: T. Gentile, E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, B. Hersman, B. Chann

The Spherical Cow Model of SEOP

From Wikipedia:

Spherical cow is a metaphor for highly simplified scientific models of reality.

T.W. and W. Happer, Rev. Mod. Phys. 69, 629 (1997). Note: assumptions clearly stated.

Hyperpolarized Nuclei

Optical Pumping

Efficiency-2 photons/2 atoms=100%

Light absorption rate = ΓP_{Rb}

Rb-Rb Spin-Exchange

Weak spin-axis coupling important relaxation mechanism

PRL 80, 5512 (1998) PRL 85, 4237 (2000)

Light Propagation

Quality of "dark" state essential to pumping optically thick vapors (~100 O.D.) Wave-front velocity $R/n\sigma=2.4$ m/s Happer/Tam '77

Spin-Exchange w/ Noble Gases

Molecular Formation

Spin-Exchange: $\alpha I \cdot S$

Spin-Relaxation: $\gamma N \cdot S$

Alkali-Noble Gas Molecules

s-wave: $\alpha I \cdot S$ (Fermi contact hyperfine)

p-wave: $\gamma N \cdot S$ (Spin-orbit+Coriolis)

Spin-Exchange Efficiency

$$\eta = \frac{\sigma_{SE}}{\sigma_{SE} + \sigma_{SR}}$$

1/50 for RbHe, 1/3 for KHe

Rb-He pumping is SLOW

Hybrid Spin-Exchange

Idea: use Rb as spin-transfer agent to K

Hybrid Spin-Exchange Efficiency

Showing Off

Very fast (2.5 hrs), high polarization (76%) w/ only 12 W pumping power

Summary

Spent photons to get

100's hours @ room temp
T. Gentile & others

$$rac{dP_{He}[\mathrm{He}]}{dt} = \eta \phi$$

A More Realistic Cow

X-factor

Is there a fundamental limit?

Or should we find better

walls?

Excess photon demand
Imperfect Circular Dichroism
Excited-state nuclear spin
non-conservation
Hybrid polarization puzzle
Neutron-induced relaxation

The X-factor

Relaxation rate method spin-up & spin-down Slope 9.1×10⁻²⁰ cm³/s

Repolarization and rate balance average 6.8×10⁻²⁰ cm³/s

X-Factor S/V Dependence

PRL **96**, 083003 (2006)

$$P_{He} = \frac{P_{Rb}}{1+X}$$

$$X = X_0 + \chi \frac{S}{V}$$

$$\chi$$
 random

Is the "X-Factor" limited by fundamentals?

Anisotropic Spin-Exchange

 $H = \alpha \mathbf{S} \cdot \mathbf{K} + \beta (3\mathbf{S} \cdot \mathbf{R} \mathbf{R} \cdot \mathbf{K} - \mathbf{S} \cdot \mathbf{K})$ Independent of cell β Polarizes opposite to α $X = 3k_{\beta} / 2k_{SE}$ Walter et al. estimates β small

PRA 48, 3642 (1998)

New Theory Input

PHYSICAL REVIEW A 78, 060703 R 2008

Tscherbul (ITAMP)
new ab-initio calculations
of KHe

 η = 2.5 old estimates 6.5

Need method to measure anistropic spin-exchange

Efficiency of Spin-Exchange

Photon efficiency Polarization Rate
$$\eta_{\gamma} = \frac{[^3{\rm He}]VdP_{\rm He}/dt}{\Delta\phi}$$
 Photon absorption rate

Hybrid Efficiency Measurements

Spin-Exchange eff.

Photon eff.

5% photon efficiency great, but still less than expected

Leaky Dark State

If fully polarized atoms still absorb light at a small rate, equilibrium Rb polarization<1

Light absorption rate increases by factor

$$\Upsilon = 1 + \frac{R}{\Gamma} \left(1 - P_{\infty}^2 \right)$$

Optically thick vapor requires $\frac{R}{\Gamma} \gg 1$

$$\frac{R}{\Gamma} = 100 \ P_{\infty} = 0.95 \ \Upsilon = 11$$

Small optical pumping imperfections are expensive!

Why is $P_{inf} < 1$?

Fine-structure mixing in Rb-He collisions?

Pascale (PRA 28, 632 (1983)) potential curves modified to account for spin-orbit splitting

Landau-Zener estimate of Pinf

$$R_2 = [\text{He}] \frac{8\pi R^2 \hbar \varepsilon^2}{\left| \frac{d\Delta V}{dR} \right|} \exp \left(\frac{-V_g(R)}{kT} \right)$$

$$P_{\infty} = \frac{P_{1} \times R_{1} + P_{2} \times R_{2}}{R_{1} + R_{2}}$$

Dichroism Measurements

Brian Lancor, Bob Wyllie B4.9

Broad-band pumping

Spectral hole quickly reduces optical pumping rate at front of cell, thus reducing Rb polarization.

Light in the line wings contributes weakly to pumping rate but strongly to imperfect dichroism

Excited-state Nuclear Spin Relaxation

 $t=1.2 \text{ ns } @ 75 \text{ Torr } N_2$

Effects on SEOP

Impure pumping problem

Rb pumping only 90% w/ broadband laser

Fit assumes Rb laser directly pumps K at 0.3% rate

Increases for narrow band pumping

Neutron-induced Rb relaxation

E. Babcock et al B4.6

Stable species:

$$Rb^+, Rb_2^+, N$$

$$N+Rb+X \rightarrow NRb+X$$

 $NRb+N_2 + X \rightarrow RbN_3 + X$

Summary

To make our SEOP cow as productive as a good Wisconsin dairy cow, we've got some work ahead of us!