


General Rotating Black Holes & Their Microscopics

Recent efforts: w/ Finn Larsen 1106.3341 & 1112.4856
w/ Gary Gibbons 1201.0601

[Earlier work: w/ Donam Youm ’94-'96:multi-charged rotating asympt.Mink. BH’s
w/ Finn Larsen '97-'99,’10: greybody factors; special(BPS) microsc.
w/ Chong, LU & Pope '06-'08: (AdS) rotating black hole solutions
w/ Chow, LU & Pope '09: special (Kerr/CFT) microsc. |

Highlight: progress to extract from geometry (mesoscopic
approach) the underlying conformal symmetry &

promoting it to two-dimensional conformal field theory

9

governing microscopic structure of four and five dimensional
asymptotically flat general rotating charged black holes



Main issue in Black Hole Microscopics how to relate

Thermodynamic (Bekenstein) Entropy =%a Area, .,
to
Statistical Entropy = |logNi

[by identifying number N. of -micrcoscopic degrees of
freedom]

In String Theory such a connection via:

AdS/CFT (Gravity/Field Theory) correspondence

[ A string theory on a specific Curved Space-Time (in D-dimensions)
related to specific Field Theory (in (D-1)- dimensions) on its boundary]

Maldacena’97



Microscopics of black holes in string theory,
in particular relation to 2d-dim CFT (via AdS;/CFT,
correspondence ) extensively explored over past 10-15 years

Shown in specific/special cases (AdS/CFT):

- BPS (supersymmetric) limit (m—> 0) [M=Q]

Strominger&Vafa'96
- near-BPS limit (m << 1) .. .Maldacena&Strominger’97
- near-BPS multi-charged rotating black holes w/Larsen’98

Recently:
- (near-)extreme rotating black holes (m — 1| <<1)
Kerr/CFT correspondence Guica,Hartman,Song, Strominger 0809.4266...

- extreme AdS charged rotating black holes in diverse dim.
..... w/Chow,LU & Pope arXiv:0812.2918



Another approach: internal structure of black holes
via probes such as scalar wave equation
in the black hole background (greybody factors)

If certain terms in the wave equation omitted -
SL(2,R)? symmetry & radial solution hypergeometric functions

Omission justified for special backgrounds:

- near-BPS limit (m<<1) Maldacena-Strominger’97
- near-extreme Kerr limit (m - | <<1) w/Larsen’97
- low-energy probes (w<<1) Das-Mathur’96..
Recently:

-super-radiant limit ( w-nQ<<1).

D=4 Kerr Bredberg,Hartman,Song&Strominger 0907.3477

D=4,5 multi-charged rotating w/Larsen 0908.1136



On the other hand for general black hole backgrounds there is
NO SL(2,R)? symmetry

This would seem to doom a CFT interpret. of the general BH's

Recent proposal dubbed “hidden conformal symmetry”
Castro, Maloney &Strominger 1004.0096

asserts conformal symmetry suggested by
certain terms of the massless wave equation is there,

just that it is spontaneously broken...
pursued by many researchers...



In this talk a different perspective:

Program to quantify " conventional wisdom” that general (asymptotically

flat) black holes might have microscopic explanation In terms of 2D CFT
w/Larsen ‘97-'99

But such black holes typically specific heat ¢, < 0
due to the coupling between the internal structure
of the black hole and modes that escape to infinity

Should focus on the black hole “by itself” - one must necessarily
enclose the black hole in a box, thus creating an equilibrium system.

[Must be taken into account in any precise discussion of black
microscopics.]

|. Quantified geometry of a black hole in a box:
w/Larsen 1106.3341 & 1112.4856

ll. Sources supporting this geometry (as a scaling limit of certain BH’s) &
“"Deconstructing” origin of conformal symmetry:  w/Gibbons 1201.0601



Summary

Employing mesoscopic approach to deduce microscopics from classical
geometry for general asymptotically Minkowski black holes in D=5 [& D=4]
w/Larsen 1106.3341,1212.485¢

Main technical results:

|. Construct the explicit geometry

whose wave equation exhibits SL(2,R)? symmetry

[geometrical counterpart to the omission of terms violating SL(2,R)? in the
wave equation.]

- “subtracted geometry” by ONLY removing certain terms in an
overall warp factor of the original metric

—> Physical interpretation — enclosure of the ""black hole in a box”
(subtracted asymptotic Minkowski space-time)

—> asymptotic metric of Lifshitz-type (time & radial coordinate scale
differently]

- Properties of subtraction:
- preserves conformal invariance & consistent with separation of variables
- same thermodynamic potentials and entropy as the full geometry!




Il. Further Geometric/Microscopic Interpretation:

lifting the subtracted geometry from D=5 to D=6
- locally AdS;x S°® geometry, w/global identification
Ss fibered over BTZ black hole

- SL(2,R)? conformal symmetry promoted to Virasoro by
standard techniques of AdS,/CFT, a la Brown-Henneaux
-> quantitative match of microscopic entropy

Ill. ""Deconstruction” of Subtracted Geometry:
w/Gibbons 1201.06018
—>Full solution (with sources) of subtracted solution
as a scaling limit of another black hole
(reminiscent of near-supersymmetric limit)

> Further insights into geometric origin of SL(2,R)%/Z,x SO(4)

[Analogous analysis carried out also for general D=4 BH's]



For the case study choose: most general black holes of D=5
N=4 (or N=8) un-gauged supergravity, actually its generating solution

N=4 (N=8) supersymmetric ungauged SG in D=5 can be obtained
as a toroidal reduction of Heterotic String (Type A String)

on TU0D) (D=5). Former D=5, N=4 SG, w/ global symmetry O(5,21) xO(1,1).
The relevant subsector for generating solutions can also be viewed
as D=5 N=2 SG coupled to three vector super-multiplets:

— n 1 I (0 e
e 'L=R— LX P(F) + ), ler| € F,, Fi, A}

Gravity with two scalar fields & three U(1)-gauge fields
[special case: when U(1) gauge fields identified> Maxwell-Einstein Theory in D=5]



Such three charge rotating solutions were obtained by employing solutior
generating techniques c.f., Ehlers,... Gibbons, Sen

a) Reduce D=5 stationary solution-
Kerr BH (with mass m and two angular momenta |, and |,)
to D=3 ontand one angular direction

b) D=3 Largrangian has O(3,3) symmetry

c) Acting with an O(1, 1)° subgroup of O(3, 3) transformations ont
the dimensionally reduced solution to generate
generate new solutions with three parameters 0.

d) Upon lifting back to D =5, arrive at spinning solutions
with two angular momenta & three charges parameterised by the
three o,

w/Youm hep-th/9603100



D=5 Kerr Solution:
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Scalar and gauge fields:
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Solution specified by three charges, mass, two angular momenta:

Q(l” = 2mcoshd, sinhd, Q({Z) = 2meoshd,,sinhd,,, @ = 2mceoshd,sinhd,,

M = 2m(oosh26 1 = cosh?d,, + cosh®s, ) — 3m

= m? + Q)2 + Ym? + Q) + \m? + Q2
Jp = 4m(llcosh6,1cosh6,2cosh6 — l;sinhé,;sinhé,,sinhd, ),
Jo = 4m(lzcoshd.; coshd.zcoshd. — [1sinhd, sinhd.2sinhd,. ).

Special cases: all d, equal Reissner-Nordstrom BH in D=5
m->0 9, 2> w/ Q finite Supersymmetric (BPS) limit

(3 =082 +4m(m—-1{-13) =0 Extreme -Kerr limit



We shall employ a bit more compact form w/ a warp factor A
(as U(1) fibration over 4d base): w/Chong,Lii&Pope: hep-th/06006213

Metric: dsg _ —A_Q/BG(dt 4 A)Q + Aé/gds?l :

0
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] T+
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U:’yX—ZL'Y y = a®cos® 0 + b*sin? 6
’ 1

r=r7r°,

0= -—5—5 ap — b
Z =ab(X +Y) @ 0
_ (bo — az))
G=(z+y)lz+y—n), Ergosphere G=0 YT
A= plle [(a.2 + b% — y)do — abdx] — plls (abdo — ydy)

rT+y— W r+y 3
II,. = H coshd; , 1l = H sinh é;
i=1 i=1



Sources:

two scalars: X; = H ' (HiHyH3)Y? i=1,2,3 Wi X XX5=1
: 2m
three gauge potentials: A! = inh &, cosh 6,dt
gauge p (:c+y)Hl{Sm 1 cosh 0, |
+ sinhé; cosh §, cosh d3labdx + (y — a* — b°)do]
+ coshé; sinh §, sinh d3(abdo — ydx)} (

AZA3 via cyclic permutations



Thermodynamics - Suggestive of weakly interacting 2-dim CFT

w/ left-” &
Not only entropy: SL
S= 5.+ Sk

Also (inverse) Hawking temperature:

—(8L + Br) .

l‘\)lb—‘

By =

right-moving” excitations [noted already w/Youm’96]
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Two angular velocities:
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Shown, all independent of the warp factor Ao ! w/ Larsen’11



Subtracted geometry obtained by changing warp factor A, —-> A
such that the scalar wave eq. preserves precise SL(2,R)?

Wave eq. written for a metric with an implicit warp factor A:

\/l__gaﬂ(ﬁg"”am 0

Equation separable: & ~ e~ witimr(e+¥)+imr(o=v) n(x) {(y)

2
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_ _ Tt ¥
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\§ Adjust A to cancel > SL(2,R)? restored!

S3 Laplacian eigenvalues
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A0=1—[(:7:+y-|—usinh25i) > A=p (x4 y)(I0Z —10Z) + plIZ]

-1 3 3
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Remarks:

Subtracted geometry does not satisfy Einstein’s equation -
Subtraction that results in exact conformal symmetry €=>

black hole in a box, which has to be supported by sources
(return to them later)

Asymptotic geometry of a Lifshitz-type w/ a deficit angle

8
ds? = — (g) dt? + 12dR? + R%d2

)
)

—> black hole in an =~ asymptotically conical box”



Lift to auxiliary 6-dimensions:

1

dsz = A(=da + B)? + A~1/3ds?
L
1
= A(;da +B)? — AIG(dt + A)? + ds3

wvhere the KK-field along « is

1 111,
B=— |p((a®+b* —y)I; — abll,)do + pu(yIl, — ablly)dx — 2 — 112

dt
A

Massless 6D fields independent of a satisfy precisely the same wave
equation as massless 5D fields.
2



Geometry factorizes: locally AdS; x S3,
globally S3 fibered over BTZ black hole

-> conformal symmetry promoted to Virasoro algebra
& quantitative (standard) microscopic calculation (AdS;/CFT,)
a la Brown-Hennaux

[long spinning string interpretation]



w/Gibbons 1201.0601
Sources supporting subtracted geometry is obtained as a scaling limit of

a black-hole w/ two large charges (denoted w/ ""tiilde” variables and two
equal (large) charges §, =4§,=4 )

e — 0

2 sinh? 0 = Q = 2me Y3([12 — [19)Y2%, sinh® 45 = 2 —'SH?

“Untilded” variables are those of the subtracted geometry metric
w/ three charges 9,,0,,05, and subtracted warp factor

A = (2m)? (z +y)(II — IT2) + 2mI1}
Fully determined sources:

=

-
Scalars: X; =X:=X." =

ro

m

a xr—+1y
Gauge potentials: A' = A" = —
9ep 2m

dt - yll. do — ylIl, dy

g_ (2m)'ILIL . IL.. . . g g, Il R
A’ = 2 —19)A dt A ebdy - (y — a* — b°)de| A(abdo ydy)




Comments:

a) Scaling limit (resulting in subtracted geometry) is
reminiscent of near-BPS limit, but with
two (equal) charges - « & thirdone 2> 0

b) Infinite charges can be gauged away (by rescaling the scalars).
However, the asymptotic metric is of Lifshitz type
(" 'softer” than AdS)

c) In retrospect the lift to D=6 as AdS;x S® expected (due to
BPS-like nature of the scaling limit)

d) Subtracted geometry can also be obtained as a Harrison
transformation (with an infinite boost) on the original solution
[explicitly shown on a static solution]



Further Remarks:

Rotating Asymptotically Minkowski BH’s in D=4,
parameterized by mass, angular momentum and (four-)charges

Subtracted geometry prescription works in D=4 for general (four-) charge
rotating black hole! w/Larsen 1112.4856

Metric written in terms of a warp factor; termodyn. again indep. of warp factor
Allows for restoration of SL(2,R)?in the wave eq.
Lift to D=>5: locally AdS; x S?; globally S? fibered over BTZ

-- quantitative microscopics again a la Brown-Henneaux

-- FULL solution with subtracted geometry obtained as a scaling limit on
a black hole with three (large) charges, again reminiscent of near-BPS
black hole! w/Gibbons 1201.0601



General AdS Black Holes?

Not 2D CFT €<—-> more than two horizons

Intriguingly, the product of areas associated with all
horizons quantized w/Gibbons&Pope 1011.008 (PRL)

All known D=5 solutions written with warp factors -
possible subtracted geometry that points to underlying (higher dim)
conformal symmetry

- FURTHER STUDY



