General Rotating Black Holes & Their Microscopics

Recent efforts: w/ Finn Larsen 1106.3341 & 1112.4856 w/ Gary Gibbons 1201.0601

[Earlier work: w/ Donam Youm '94-'96:multi-charged rotating asympt.Mink. BH's w/ Finn Larsen '97-'99,'10: greybody factors; special(BPS) microsc. w/ Chong, Lü & Pope '06-'08: (AdS) rotating black hole solutions w/ Chow, Lü & Pope '09: special (Kerr/CFT) microsc.

Highlight: progress to extract from geometry (mesoscopic approach) the underlying conformal symmetry & promoting it to two-dimensional conformal field theory \rightarrow

governing microscopic structure of four and five dimensional asymptotically flat general rotating charged black holes

Main issue in **Black Hole Microscopics** how to relate

Thermodynamic (Bekenstein) Entropy =¹/₄ Area_{horizon} to Statistical Entropy = logNi

[by identifying number N_i of -micrcoscopic degrees of freedom]

In String Theory such a connection via:

AdS/CFT (Gravity/Field Theory) correspondence

[A string theory on a specific Curved Space-Time (in D-dimensions) related to specific Field Theory (in (D-1)- dimensions) on its boundary]

Maldacena'97

- Microscopics of black holes in string theory, in particular relation to 2d-dim CFT (via AdS_3/CFT_2 correspondence) extensively explored over past 10-15 years
- Shown in specific/special cases (AdS/CFT):
- BPS (supersymmetric) limit ($m \rightarrow 0$) [M=Q]

Strominger&Vafa'96

- near-BPS limit (m << 1)

....Maldacena&Strominger'97

- near-BPS multi-charged rotating black holes

w/Larsen'98

Recently:

- (near-)extreme rotating black holes (m I <<1) Kerr/CFT correspondence Guica,Hartman,Song,Strominger 0809.4266...
- extreme AdS charged rotating black holes in diverse dim.

.... w/Chow,Lü & Pope arXiv:0812.2918

Another approach: internal structure of black holes via probes such as scalar wave equation in the black hole background (greybody factors)

If certain terms in the wave equation omitted \rightarrow SL(2,R)² symmetry & radial solution hypergeometric functions

Omission justified for special backgrounds:

- near-BPS limit (m<<1)
- near-extreme Kerr limit (m l <<1)
- Maldacena-Strominger'97 w/Larsen'97 Das-Mathur'96..
- low-energy probes ($\omega <<1$)

- Recently: -super-radiant limit (ω -n Ω <<1).
 - D=4 Kerr Bredberg,Hartman,Song&Strominger 0907.3477 D=4,5 multi-charged rotating w/Larsen 0908.1136

On the other hand for general black hole backgrounds there is NO SL(2,R)² symmetry

This would seem to doom a CFT interpret. of the general BH's

Recent proposal dubbed "hidden conformal symmetry" Castro, Maloney & Strominger 1004.0096

asserts conformal symmetry suggested by certain terms of the massless wave equation is there, just that it is spontaneously broken... pursued by many researchers...

In this talk a different perspective:

Program to quantify ``conventional wisdom" that general (asymptotically flat) black holes might have microscopic explanation In terms of 2D CFT w/Larsen '97-'99

But such black holes typically specific heat $c_p < 0$ due to the coupling between the internal structure of the black hole and modes that escape to infinity

Should focus on the black hole "by itself" \rightarrow one must necessarily enclose the black hole in a box, thus creating an equilibrium system.

[Must be taken into account in any precise discussion of black microscopics.]

I. Quantified geometry of a black hole in a box:

w/Larsen 1106.3341 & 1112.4856

II. Sources supporting this geometry (as a scaling limit of certain BH's) & ``Deconstructing" origin of conformal symmetry: w/Gibbons 1201.0601

Summary

Employing mesoscopic approach to deduce microscopics from classical geometry for general asymptotically Minkowski black holes in D=5 [& D=4] w/Larsen 1106.3341,1212.4856

Main technical results:

I. Construct the explicit geometry whose wave equation exhibits $SL(2,R)^2$ symmetry [geometrical counterpart to the omission of terms violating $SL(2,R)^2$ in the wave equation.]

→ "subtracted geometry" by ONLY removing certain terms in an overall warp factor of the original metric

 → Physical interpretation – enclosure of the ``black hole in a box" (subtracted asymptotic Minkowski space-time)
 → asymptotic metric of Lifshitz-type (time & radial coordinate scale differently]

→ Properties of subtraction:

- preserves conformal invariance & consistent with separation of variables

- same thermodynamic potentials and entropy as the full geometry!

I. Further Geometric/Microscopic Interpretation:

→ locally AdS₃x S³ geometry, w/global identification
 S³ fibered over BTZ black hole

- → SL(2,R)² conformal symmetry promoted to Virasoro by standard techniques of AdS₃/CFT₂ à la Brown-Henneaux
 → quantitative match of microscopic entropy
- **III.** ``Deconstruction'' of Subtracted Geometry:

w/Gibbons 1201.06018

→Full solution (with sources) of subtracted solution

 as a scaling limit of another black hole
 (reminiscent of near-supersymmetric limit)
 →Further insights into geometric origin of SL(2,R)²/Z₂ x SO(4)

[Analogous analysis carried out also for general D=4 BH's]

For the case study choose: most general black holes of D=5 N=4 (or N=8) un-gauged supergravity, actually its generating solution

N=4 (N=8) supersymmetric ungauged SG in D=5 can be obtained as a toroidal reduction of Heterotic String (Type IIA String) on $T^{(10-D)}$ (D=5). Former D=5, N=4 SG, w/ global symmetry O(5,21) xO(1,1). The relevant subsector for generating solutions can also be viewed as D=5 N=2 SG coupled to three vector super-multiplets:

$$e^{-1}\mathcal{L} = R - \frac{1}{2}\delta\vec{\varphi}^2 - \frac{1}{4}\sum_{i=1}^3 X_i^{-2} (F^i)^2 + \frac{1}{24}|\epsilon_{ijk}| \epsilon^{\mu\nu\rho\sigma\lambda}F^i_{\mu\nu}F^j_{\rho\sigma}A^k_{\lambda}$$
$$X_1 = e^{-\frac{1}{\sqrt{6}}\varphi_1 - \frac{1}{\sqrt{2}}\varphi_2}, \qquad X_2 = e^{-\frac{1}{\sqrt{6}}\varphi_1 + \frac{1}{\sqrt{2}}\varphi_2}, \qquad X_3 = e^{\frac{2}{\sqrt{6}}\varphi_1}.$$

Gravity with two scalar fields & three U(1)-gauge fields [special case: when U(1) gauge fields identified \rightarrow Maxwell-Einstein Theory in D=5] Such three charge rotating solutions were obtained by employing solution generating techniques c.f., Ehlers,... Gibbons, Sen

a) Reduce D=5 stationary solution Kerr BH (with mass m and two angular momenta I₁ and I₂)
 to D=3 on t and one angular direction

b) D=3 Largrangian has O(3,3) symmetry

- c) Acting with an O(1, 1)³ subgroup of O(3, 3) transformations on t the dimensionally reduced solution to generate generate new solutions with three parameters δ_i
- d) Upon lifting back to D = 5, arrive at spinning solutions with two angular momenta & three charges parameterised by the three δ_i

w/Youm hep-th/9603100

D=5 Kerr Solution:

$$\begin{split} ds^2 &= -\frac{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta - 2m}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} dt^2 + \frac{r^2 (r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta)}{(r^2 + l_1^2)(r^2 + l_2^2) - 2mr^2} dr^2 \\ &+ (r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta) d\theta^2 + \frac{4m l_1 l_2 \sin^2\theta \cos^2\theta}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} d\phi d\psi \\ &+ \frac{\sin^2\theta}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} [(r^2 + l_1^2)(r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta) + 2m l_1^2 \sin^2\theta] d\phi^2 \\ &+ \frac{\cos^2\theta}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} [(r^2 + l_2^2)(r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta) + 2m l_2^2 \cos^2\theta] d\psi^2 \\ &- \frac{4m l_1 \sin^2\theta}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} dt d\phi - \frac{4m l_2 \cos^2\theta}{r^2 + l_1^2 \cos^2\theta + l_2^2 \sin^2\theta} dt d\psi. \end{split}$$

m-mass; I₁₂=two angular momenta

Myers&Perry'86

$$\begin{array}{l} \mbox{Metric:} \\ ds_{E}^{2} = \bar{\Delta}^{\frac{1}{3}} \left[-\frac{(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta - 2m)}{\bar{\Delta}} dt^{2} \\ & + \frac{r^{2}}{(r^{2} + l_{1}^{2})(r^{2} + l_{2}^{2}) - 2mr^{2}} dr^{2} + d\theta^{2} + \frac{4m\cos^{2}\theta\sin^{2}\theta}{\bar{\Delta}} [l_{1}l_{2}\{(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) \\ & - 2m(\sinh^{2}\delta_{e_{1}} \sinh^{2}\delta_{e_{2}} + \sinh^{2}\delta_{e_{3}} \sinh^{2}\delta_{e_{1}} + \sinh^{2}\delta_{e_{3}} \sinh^{2}\delta_{e_{2}})\} + 2m\{(l_{1}^{2} + l_{2}^{2}) \\ & \times \cosh\delta_{e_{1}} \cosh\delta_{e_{2}} \cosh\delta_{e_{3}} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{2}} - 2l_{1}l_{2} \sinh^{2}\delta_{e_{1}} \sinh^{2}\delta_{e_{2}} \sinh^{2}\delta_{e_{1}}\}] d\phi d\psi \\ & - \frac{4m\sin^{2}\theta}{\bar{\Delta}} [(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(l_{1} \cosh\delta_{e_{1}} \cosh\delta_{e_{2}} \cosh\delta_{e_{2}} - l_{2} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{2}}] d\phi dt \\ & + 2ml_{2} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{1}}] d\phi dt - \frac{4m\cos^{2}\theta}{\bar{\Delta}} [(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) \\ & \times (l_{2} \cosh\delta_{e_{1}} \cosh\delta_{e_{2}} \cosh\delta_{e_{2}} - l_{1} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{1}}) + 2ml_{1} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{1}}] d\psi dt \\ & + \frac{\sin^{2}\theta}{\bar{\Delta}} [(r^{2} + 2m \sinh^{2}\delta_{e} + l_{1}^{2})(r^{2} + 2m \sinh^{2}\delta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + 2m \sinh^{2}\delta_{e_{2}} \\ & + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) + 2msi^{2}\theta \{(l_{1}^{2} \cosh^{2}\delta_{m} - l_{2}^{2} \sinh^{2}\delta_{m})(r^{2} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) \\ & + 4ml_{1} l_{2} \cosh\delta_{e_{1}} \cosh\delta_{e_{2}} \cosh\delta_{e_{1}} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{2}} \sinh\delta_{e_{1}} \sinh\delta_{e_{2}} \sinh\delta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + 2m \sinh^{2}\delta_{e_{2}} \\ & + \frac{\cos^{2}\theta}{\bar{\Delta}} [(r^{2} + 2m \sinh^{2}\delta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + 2m \sinh^{2}\delta_{e_{2}} \\ & + \frac{\cos^{2}\theta}{\bar{\Delta}} [(r^{2} + 2m \sinh^{2}\delta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + 2m \sinh^{2}\delta_{e_{2}} \\ & + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta + 2m \cos^{2}\theta \{(l_{2}^{2} \cosh^{2}\delta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta)(r^{2} + 2m \sinh^{2}\delta_{e_{2}} \\ & + l_{1}^{2} (\cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) + 2m \cos^{2}\theta \{(l_{2}^{2} \cosh^{2}\delta_{e_{1}} + l_{1}^{2} \sin^{2}\theta_{e_{1}} + l_{1}^{2} \cos^{2}\theta + l_{2}^{2} \sin^{2}\theta) \\ & + 4ml_{1}$$

where

$$\begin{split} \bar{\Delta} &\equiv (r^2 + 2m \mathrm{sinh}^2 \delta_{e1} + l_1^2 \mathrm{cos}^2 \theta + l_2^2 \mathrm{sin}^2 \theta) (r^2 + 2m \mathrm{sinh}^2 \delta_{e2} + l_1^2 \mathrm{cos}^2 \theta + l_2^2 \mathrm{sin}^2 \theta) \\ &\times (r^2 + 2m \mathrm{sinh}^2 \delta_e + l_1^2 \mathrm{cos}^2 \theta + l_2^2 \mathrm{sin}^2 \theta), \end{split}$$

ł

Scalar and gauge fields:

$$\begin{split} g_{11} &= \frac{r^2 + 2m \sinh^2 \delta_{e1} + l_1^2 \cos^2 \theta + l_2^2 \sin^2 \theta}{r^2 + 2m \sinh^2 \delta_{e2} + l_1^2 \cos^2 \theta + l_2^2 \sin^2 \theta +$$

. 1

Solution specified by three charges, mass, two angular momenta:

$$\begin{split} Q_1^{(1)} &= 2m \mathrm{cosh} \delta_{e_1} \mathrm{sinh} \delta_{e_1}, \quad Q_1^{(2)} &= 2m \mathrm{cosh} \delta_{e_2} \mathrm{sinh} \delta_{e_2}, \quad Q = 2m \mathrm{cosh} \delta_{e} \mathrm{sinh} \delta_{e}, \\ M &= 2m (\mathrm{cosh}^2 \delta_{e_1} + \mathrm{cosh}^2 \delta_{e_2} + \mathrm{cosh}^2 \delta_{e}) - 3m \\ &= \sqrt{m^2 + (Q_1^{(1)})^2} + \sqrt{m^2 + (Q_1^{(2)})^2} + \sqrt{m^2 + Q^2}, \\ J_{\phi} &= 4m (l_1 \mathrm{cosh} \delta_{e_1} \mathrm{cosh} \delta_{e_2} \mathrm{cosh} \delta_{e} - l_2 \mathrm{sinh} \delta_{e_1} \mathrm{sinh} \delta_{e_2} \mathrm{sinh} \delta_{e}), \\ J_{\psi} &= 4m (l_2 \mathrm{cosh} \delta_{e_1} \mathrm{cosh} \delta_{e_2} \mathrm{cosh} \delta_{e} - l_1 \mathrm{sinh} \delta_{e_2} \mathrm{sinh} \delta_{e}). \end{split}$$

Special cases: all δ_1 equalReissner-Nordström BH in D=5 $m \rightarrow 0$ $\delta_i \rightarrow \infty$ w/Q_i finiteSupersymmetric (BPS) limit $(l_1^2 - l_2^2)^2 + 4m(m - l_1^2 - l_2^2) = 0$ Extreme -Kerr limit

We shall employ a bit more compact form w/ a warp factor Δ_o (as U(1) fibration over 4d base): w/Chong,Lü&Pope: hep-th/06006213

$$\begin{array}{ll} \text{Metric:} & ds_5^2 = -\Delta_0^{-2/3} G(dt + \mathcal{A})^2 + \Delta_0^{1/3} ds_4^2 \ , \\ & ds_4^2 = \frac{dx^2}{4X} + \frac{dy^2}{4Y} + \frac{U}{G} (d\chi - \frac{Z}{U} d\sigma)^2 + \frac{XY}{U} d\sigma^2 \\ \Delta_0 = (x + y)^3 H_1 H_2 H_3 & H_i = 1 + \frac{\mu \sinh^2 \delta_i}{x + y} \ , \ (i = 1, 2, 3) \\ X = (x + a^2)(x + b^2) - \mu x \ , & \text{Horizon X=0} \\ Y = -(a^2 - y)(b^2 - y) \ , & x = r^2 \ , \\ U = yX - xY \ , & y = a^2 \cos^2 \theta + b^2 \sin^2 \theta \\ Z = ab(X + Y) & \sigma = \frac{1}{a^2 - b^2} (a\phi - b\psi) \\ G = (x + y)(x + y - \mu) \ , & \text{Ergosphere G=0} \\ \mathcal{A} = \frac{\mu \Pi_c}{x + y - \mu} [(a^2 + b^2 - y)d\sigma - abd\chi] - \frac{\mu \Pi_s}{x + y} (abd\sigma - yd\chi) \\ \Pi_c = \prod_{i=1}^3 \cosh \delta_i \ , \ \Pi_s = \prod_{i=1}^3 \sinh \delta_i \end{array}$$

Sources:

two scalars: $X_{i} = H_{i}^{-1} (H_{1}H_{2}H_{3})^{1/3} \quad i=1,2,3 \text{ w/ } X_{1}X_{2}X_{3}=1$ three gauge potentials: $A^{1} = \frac{2m}{(x+y)H_{1}} \{\sinh \delta_{1} \cosh \delta_{1} dt$ $+ \quad \sinh \delta_{1} \cosh \delta_{2} \cosh \delta_{3} [abd\chi + (y-a^{2}-b^{2})d\sigma]$ $+ \quad \cosh \delta_{1} \sinh \delta_{2} \sinh \delta_{3} (abd\sigma - yd\chi)\} \qquad ($

A^{2,}A³ via cyclic permutations

Thermodynamics - Suggestive of weakly interacting 2-dim CFT w/``left-" & ``right-moving" excitations [noted already w/Youm'96]

Not only entropy:

$$S_{L} = 2\pi \sqrt{\frac{1}{4}\mu^{3}(\prod_{i} \cosh \delta_{i} + \prod_{i} \sinh \delta_{i})^{2} - J_{L}^{2}}$$

$$S = S_{L} + S_{R} \cdot = \pi \mu(\prod_{i} \cosh \delta_{i} + \prod_{i} \sinh \delta_{i})\sqrt{\mu - (l_{1} - l_{2})^{2}} \cdot S_{R} = 2\pi \sqrt{\frac{1}{4}\mu^{3}(\prod_{i} \cosh \delta_{i} - \prod_{i} \sinh \delta_{i})^{2} - J_{R}^{2}}$$

$$S_{R} = 2\pi \sqrt{\frac{1}{4}\mu^{3}(\prod_{i} \cosh \delta_{i} - \prod_{i} \sinh \delta_{i})^{2} - J_{R}^{2}}$$

$$= \pi \mu(\prod_{i} \cosh \delta_{i} - \prod_{i} \sinh \delta_{i})\sqrt{\mu - (l_{1} + l_{2})^{2}} \cdot S_{R} = \frac{2\pi}{\kappa_{+}} + \frac{2\pi}{\kappa_{-}} = \frac{2\pi\mu^{2}}{\sqrt{\mu^{2} - l^{2}}} \left(\prod_{i} \cosh \delta_{i} + \prod_{i} \sinh \delta_{i}\right) \cdot S_{L} = \frac{2\pi}{\kappa_{+}} - \frac{2\pi}{\kappa_{-}} = 2\pi \mu \left(\prod_{i} \cosh \delta_{i} - \prod_{i} \sinh \delta_{i}\right) \cdot S_{L}$$

Two angular velocities:

$$\beta_H \Omega_L = \frac{2\pi (l_1 - l_2)}{\sqrt{\mu - (l_1 - l_2)^2}}$$
$$\beta_H \Omega_R = \frac{2\pi (l_1 + l_2)}{\sqrt{\mu - (l_1 + l_2)^2}}$$

Shown, all independent of the warp factor $\Delta o !$ w/ Larsen'11

Subtracted geometry obtained by changing warp factor $\Delta_o \rightarrow \Delta$ such that the scalar wave eq. preserves precise SL(2,R)²

Wave eq. written for a metric with an implicit warp factor Δ :

$$\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\Phi) = 0$$

Equation separable: $\Phi \sim e^{-i\omega t + im_R(\phi + \psi) + im_L(\phi - \psi)} \eta(\mathbf{x}) \zeta(\mathbf{y})$

$$\Delta_0 = \prod_{i=1}^3 (x+y+\mu\sinh^2\delta_i) \quad \Rightarrow \quad \Delta = \mu^2 \left[(x+y)(\Pi_c^2 - \Pi_s^2) + \mu\Pi_s^2 \right]$$
$$\Pi_c \equiv \prod_{i=1}^3 \cosh\delta_i , \quad \Pi_s \equiv \prod_{i=1}^3 \sinh\delta_i$$

Remarks:

Subtracted geometry does not satisfy Einstein's equation \rightarrow

Subtraction that results in exact conformal symmetry $\leftarrow \rightarrow$

black hole in a box, which has to be supported by sources (return to them later)

Asymptotic geometry of a Lifshitz-type w/ a deficit angle

$$ds_5^2 = -\left(rac{R}{R_0}
ight)^8 \, dt^2 + 12 dR^2 + R^2 d\Omega_3^2$$

→ black hole in an `` asymptotically conical box"

Lift to auxiliary 6-dimensions:

$$ds_6^2 = \Delta (\frac{1}{\mu} d\alpha + \mathcal{B})^2 + \Delta^{-1/3} ds_5^2$$
$$= \Delta (\frac{1}{\mu} d\alpha + \mathcal{B})^2 - \Delta^{-1} G (dt + \mathcal{A})^2 + ds_4^2$$

where the KK-field along α is

$$\mathcal{B} = \frac{1}{\Delta} \left[\mu ((a^2 + b^2 - y)\Pi_s - ab\Pi_c)d\sigma + \mu (y\Pi_c - ab\Pi_s)d\chi - \frac{\Pi_s\Pi_c}{\Pi_c^2 - \Pi_s^2}dt \right]$$

Massless 6D fields independent of α satisfy precisely the same wave equation as massless 5D fields.

Geometry factorizes: locally AdS₃ x S³, globally S³ fibered over BTZ black hole

→ conformal symmetry promoted to Virasoro algebra
 & quantitative (standard) microscopic calculation (AdS₃/CFT₂)
 à la Brown-Hennaux

[long spinning string interpretation]

w/Gibbons 1201.0601

Sources supporting subtracted geometry is obtained as a scaling limit of a black-hole w/ two large charges (denoted w/ ``tiilde" variables and two equal (large) charges $\tilde{\delta}_1 = \tilde{\delta}_2 \equiv \tilde{\delta}$):

$$\begin{split} \epsilon &\to 0 \quad \tilde{x} = x\epsilon, \quad \tilde{t} = t\epsilon^{-1}, \quad \tilde{y} = y\epsilon, \quad \tilde{\sigma} = \sigma\epsilon^{-1/2}, \quad \tilde{\chi} = \chi\epsilon^{-1/2}, \\ \tilde{m} = m\epsilon, \quad \tilde{a}^2 = a^2\epsilon, \quad \tilde{b}^2 = b^2\epsilon, \\ 2\tilde{m}\sinh^2\tilde{\delta} \equiv Q = 2m\epsilon^{-1/2}(\Pi_c^2 - \Pi_s^2)^{1/2}, \quad \sinh^2\tilde{\delta}_3 = \frac{\Pi_s^2}{\Pi_c^2 - \Pi_s^2} \end{split}$$

``Untilded" variables are those of the subtracted geometry metric w/ three charges $\delta_1, \delta_{,2}\delta_3$, and subtracted warp factor

$$\Delta = (2m)^2 \left[(x+y)(\Pi_c^2 - \Pi_s^2) + 2m\Pi_s^2 \right]$$

Fully determined sources: Scalars: $X_1 = X_2 = X_3^{-\frac{1}{2}} = \frac{\Delta^{\frac{1}{3}}}{2m}$ Gauge potentials: $A^1 = A^2 = -\frac{x+y}{2m} dt + y \Pi_c d\sigma - y \Pi_s d\chi$ $A^3 = \frac{(2m)^4 \Pi_s \Pi_c}{(\Pi^2 - \Pi^2) \Delta} dt + \frac{\Pi_s}{\Delta} [ab \, d\chi + (y - a^2 - b^2) d\sigma] + \frac{\Pi_c}{\Delta} (ab \, d\sigma - y \, d\chi)$

Comments:

- a) Scaling limit (resulting in subtracted geometry) is reminiscent of near-BPS limit, but with two (equal) charges $\rightarrow \infty$ & third one $\rightarrow 0$
- b) Infinite charges can be gauged away (by rescaling the scalars). However, the asymptotic metric is of Lifshitz type (``softer" than AdS)
- c) In retrospect the lift to D=6 as AdS₃ x S³ expected (due to BPS-like nature of the scaling limit)
- d) Subtracted geometry can also be obtained as a Harrison transformation (with an infinite boost) on the original solution [explicitly shown on a static solution]

Further Remarks:

- Rotating Asymptotically Minkowski BH's in D=4, parameterized by mass, angular momentum and (four-)charges
- Subtracted geometry prescription works in D=4 for general (four-) charge rotating black hole! w/Larsen 1112.4856
- Metric written in terms of a warp factor; termodyn. again indep. of warp factor
- Allows for restoration of $SL(2,R)^2$ in the wave eq.
- Lift to D=5: locally $AdS_3 \times S^2$; globally S^2 fibered over BTZ
- -- quantitative microscopics again à la Brown-Henneaux

-- FULL solution with subtracted geometry obtained as a scaling limit on a black hole with three (large) charges, again reminiscent of near-BPS black hole! w/Gibbons 1201.0601 General AdS Black Holes?

Not 2D CFT $\leftarrow \rightarrow$ more than two horizons

Intriguingly, the product of areas associated with all horizons quantized w/Gibbons&Pope 1011.008 (PRL)

All known D=5 solutions written with warp factors \rightarrow possible subtracted geometry that points to underlying (higher dim) conformal symmetry

→ FURTHER STUDY