1 Introduction

This technical note represents an attempt to document how the target polar-
ization analysis was performed for Hall C experiment E93-026, also known as
Gen01.

The analysis was performed at UVa by Paul McKee, with help and input
from the rest of the Gen0O1 collaboration. All of the files and programs described
in this document can be found on the computer blur.phys.virginia.edu, to
which major collaboration members have access through the target account.
Other details about the polarized target, including a link to this document, are
located on the same machine at http://blur.phys.virginia.edu/gen.

1.1 Computer Programs Used

Most of the scripts used in this analysis are written in the Python programming
language. It is similar to Perl in its capabilities, but is easier to learn and is
significantly easier to read. Some of the smaller script tasks are handled by awk,
a line-by-line text file processor that uses a C-style language. The tcsh shell is
used for shell scripts. Finally, the program that extracts NMR signals from the
event files and performs the fits and signal integration is written in C, mostly
for speed reasons. This code calls routines in the GNU Scientific Library (GSL)
for curve fitting and matrix algebra. GSL is similar in scope to the Fortran
language SLATEC library.

Plots are made by one of two programs. The graph program from the
GNU plotutils package takes data on standard input as z-y pairs, and produces
publication-quality output in many formats. For plots generated by scripts,
such as details of the signal fitting, topdrawer is used. Typically a program
will store its output in a file, and then topdrawer is set to process that file into
an X window or postscript file.

2 Technique of Polarization Determination

This section describes the programs used to perform the analysis and the details
of their use. The base directory for all analysis code is /exp/gen/target/anal/.

The basic approach taken to accomplish this analysis is to create a separate
directory for each of the physics quantities necessary for calculation of the target
polarization. In each directory are the various scripts and programs necessary
to calculate that quantity, as well as a master data file. This file has the same
name as the directory in which it sits, with a “.dat” extension. The file is in
text format, with two or more fields of fixed width. The first field is always the
unix timestamp, a 32-bit integer representing the number of seconds since 1970.
The following field or fields contains the value of the physics quantity at that
time.

Many times a given physics variable depends on others, which means that
several scripts may need access to each quantity. In order to reduce code dupli-

cation and avoid bugs, a library of Python routines, resources/target . py, was
developed to provide access to these quantities. For example, to find the target
position at a given time, a subroutine called get_pos() can be called, with the
argument being the timestamp of interest. The return value indicates either
the position of the target at that time, or an error. This avoids the situation
in which multiple scripts would each have their own code to read and parse the
position.dat file; should the format of that file change, only the get_pos()
routine in the python library needs to be changed.

Many of the subdirectories have a file named commands that contains shell
commands used to do various parts of the analysis. Many of these files are
also heavily commented, describing the steps taken and the decisions made. It
should be possible to execute each of the commands files with source commands
in the tesh shell.

2.1 Manually Entered Information

Although a great deal of information about the target was logged automati-
cally by a suite of DAQ programs, some important events were only recorded
manually, in the paper logbook and/or the electronic HCLog.

At the end of the experiment, a page-by-page search was made of the more
than 500 pages of paper logbook entries, and any relevant information en-
tered into a file, logbook.txt, in a format easily parsed by computer pro-
grams. A script, log2web, puts the information in this file into a web page,
target_history.html, so that humans may also easily read it.

There was not a similar effort made to extract important information from
the HCLog because of the enormous number of entries. However, any relevant
information discovered in the HCLog was added to logbook.txt so that the
discovery would not be lost.

The files discussed in this section are located in the logbook/ directory. A
copy of target_history.html is also maintained on the Gen0Ol Target Web-
page, http://blur.phys.virginia.edu/gen.

2.2 EPICS Data

A computer in the counting house, jeffylab, ran an EPICS archiver program
that captured a number of EPICS variables at 2 second intervals. The size of
the archive files required that they be erased from one experiment to another,
so relevant data was copied from jeffylab to the target analysis directory for
further processing.

The perl script pmm_dump . pl extracts a variable from the archive into a text
file containing two fields: the UNIX timestamp and the value of the variable at
that time. It does this for three time periods:

e 29-Jul-2001 18:00:00 to 18-Sep-2001 00:00:00 (Q? = 0.5)
e 22-0ct-2001 00:00:00 to 21-Dec-2001 06:00:00 (Q* = 1.0)

e 19-Jan-2002 00:00:00 to 05-Mar-2002 00:00:00 (RSS)

The shell script get_all_epics calls pmm_dump.pl for each variable that
might be of use in target analysis. The variables extracted are: CFI6711C (mass
flow of liquid helium into Hall C), EV9177 (warm return valve), EV9178R (cold re-
turn valve), EV9180 (target JT valve), ibeml (beam current monitor #1), ibcm2
(beam current monitor #2), LL91101 (buffer dewar level), LL91110 (liquid ni-
trogen level), LL91111 (magnet liquid helium level), LL91112 (tail liquid helium
level), LL91113 (separator liquid helium level), PI91104 (buffer dewar pres-
sure), PI91112 (magnet can pressure), PI91125 (separator pressure), PI91131
(isolation vacuum pressure, vacuum side of valve), P191132 (isolation vacuum
pressure, pump side of valve), PI91135 (warm return pressure), P191140 (re-
frigerator pump line pressure), PI91145 (mechanical pumpset input pressure),
ptencoder (target table encoder value), ptpol (reported online target polar-
ization), ptpos (target position code), ptrunnum (current run number [zero for
no run in progress]), SV91110 (liquid nitrogen precool valve), SV91115 (magnet
boiloff vent to atmosphere valve), SV91148 (main pumps vent to atmosphere
valve), TD9178 (buffer dewar return temperature), and TD9180 (buffer dewar
supply temperature).

A copy of the cryogenic control panel is included in Figure 1.

The files discussed in this section are in the epics/ directory, but the scripts
must be run on jeffylab, since that is where the EPICS archive is located.

2.3 Run Times

There are several means of determining the start and stop times of the runs taken
during the experiment. The HCLog has entries for most runs, the EPICS archive
logged the ptrunnum variable, various online lists of runs were maintained, etc.
For target analysis, the most important issue is that the times used to average
multiple polarization measurements be the same as those used in the analysis of
the scattering data. For example, if a run lasted 30 minutes, but only the first
15 minutes of it were able to be analyzed due to a file corruption, then the target
analysis should only average those 15 minutes of polarization measurements.

After discussion with the collaboration, two methods of determining the
start and stop times emerged as the best choices.

The first method is to look for the time indicated on the INFO:GO line in the

time is in UTC (previously known as GMT), so a conversion is made to Eastern
Standard Time (EST), and then a correction made, if necessary, to Daylight
Savings Time (EDT) !. This time is then the start of the run as analyzed by
the syncfilter program. The length of the run is determined by dividing
the number of helicity buckets listed in the syncfilter.47777 files by 30, and
adding that number of seconds to the start time. This method is implemented
by a python script called run_times_sync, which must be run on ifarmli in

IThis correction is hard coded only for fall 2001 and spring 2002. Use of these scripts in
other analyses would require an update of this correction

WLV

Ser) WnijgH

aisd g

v v
~ .

aping s.J3sn

jsca.B

|8na7 MO 10} BUie Ad,

sBEy WnjiaH

04d Ul ild Il 4uregeHIE

4o M

Jenag Jayng 005

2.0)53Y 1587

aneg 18R

joogey 15e]

pag 13y [eo2leyD

S0[UDY JUSBWNASU|

4
IRy uLe Ay

Addng 2nT

s|o4juon 10Bie] pazilejod No°©

X m@
guea |z g m e Cmman |
@ SHHEAS v? A wagUeaH FoalA
& & oinens
4 I =
| il [V 02lend
4 < Pt
L/ CEN I
anfef WINAY WM gy png

Addng wnilaH A5t

uwInay pjog

Figure 1: Copy of the cryogenic control program’s main screen.

order to access the appropriate directories. Output is in three fields — the run
number and the unix timestamps of the run start and stop — and is saved in the
file run_times_sync.dat.

The second method to determine the run start and stop times is to examine

the first EPICS event of the run. These occur every 6 seconds under normal
conditions; the start of the run is then taken as 3 seconds before this time.

section, a line that begins Time of run = gives the run length in seconds.
This is added to the run start to get the run stop time.

This method is implemented by a python script run_times_epics, which
also must be run on ifarmll. Output is saved, in the format described above,
in run_times_epics.dat.

Each time a new pass is made through the scattering data, the name of the
new directory holding the results must be added to the lists at the beginning of
run_times_sync and run_times_epics.

The run_times_sync.dat and run_times_epics.dat files are then copied
to UVa, and combined as detailed in the commands file, with the results stored
in run_times.dat. If both methods return a result for a given run, the value
from run_times_sync is given precedence.

A histogram of the lengths of all runs is presented in Figure 2.

The files discussed in this section are copied in the run/ directory.

2.4 Liquid Helium Level

Knowledge of the liquid helium (LHe) level in the tail is important because the
presence or absence of LHe affects the dilution factor significantly. In addition,
if the LHe level dropped below beam hight during a polarized target run, the
polarization would drop precipitously and possible damage to the material would
occur.

The EPICS archive is the primary source of information on the LHe level in
the tail. However, the archive does have a few holes in it. To get around these,
the tail level stored in the target event files was used.

These two sources of data are combined, bad readings filtered out, and the
results sorted chronologically by a shell script called determine_level.

During run 42742 the LHe level dropped below beam height. By examining
the LHe readings in the archive and comparing them to polarization measure-
ments taken during that run, it was determined that at least part of the raster
pattern extends above the surface of the liquid for levels below 48%, see Fig-
ure 3. A level of 50% or more is therefore required for runs with rastered
beam. This limit is defined as the variable TAIL_DRY in the python library
resources/target.py.

The files discussed in this section are located in the 1he/ directory.

GenO1 Runs
100 [T T T T T T T T

| T
4000 6000 8000
Length (sec)

O L |
0 2000

Figure 2: Lengths (in seconds) of Gen0Ol runs. Red is all runs, green is only
Q? = 0.5 runs, magenta is only (> = 1.0 runs.

Run 42742

| L | s =SS ~
2600 2800 3000 3200
Seconds into Run

Figure 3: Liquid Helium level (red) and target polarization (green) for run
42742.

Date Source Unit Top Hole Bot Carb MT
29Jul01 | HCLog 37009 | count | 81600 | 2000 | 39700 | 70700 | 1728
29Jul01 | Log I-36 count | 81600 | 2000 | 39700 | 70700 | 1728
1Aug01 | Log I-48 count | 81660 | 2000 | 39700 | 70700 | 1728

12Aug01 | EPICS count | 81660 | 2000 | 39700 | 70700 | 1728
18Aug01 | EPICS inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000
10Sep01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000
150c¢t01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000

5Nov01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000

7Nov0l | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000
19Nov01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000
29Nov01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000

1Dec01 | Log I1-291 inch | 3.120 | 3.913 | 1.432 | 2.666 | 3.878
4Dec01 | HCLog 44175 | inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
6Dec01 | TMC inch | 3.220 | 0.032 | 1.532 | 2.766 | 0.000
10Dec01 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
7Jan02 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
15Jan02 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
20Jan02 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
28Jan02 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
7Feb02 | TMC inch | 3.160 | 3.953 | 1.472 | 2.706 | 3.918
15Feb02 | HCLog 47704 | inch | 3.200 | 0.013 | 1.512 | 2.746 | 3.958
19Feb02 | TMC inch | 3.200 | 0.013 | 1.512 | 2.746 | 3.958
28Feb02 | TMC inch | 3.200 | 0.013 | 1.512 | 2.746 | 3.958

Table 1: History of encoder values for each target position. “Log Y-zz” indi-
cates that the values were obtained from Target Logbook Y, page zz. “TMC”
indicates that the values were obtained from an archived copy of the Target
Motion Control program.

2.5 Target Position

The position of the target insert was controlled by a compressed air motor that
moved a table on which the insert and the microwave components were mounted.
An optical shaft encoder was attached to this motor to allow a computer to read
the position of the table, and thus determine which of the several targets were in
the beam. In the beginning of the experiment, this encoder read in raw counts,
from 0 to 100,000. At around 10:00 on 16 Aug 2001, the readout unit of the
encoder was given a scale factor so that the encoder value represented inches of
travel of the target table. The values then ranged from 0” to 3.978”. The table,
however, was capable of moving more than 4”, so the encoder would wrap from
3.978” back to 0” at some point along its motion. Table 1 lists the history of
which encoder values represented which insert positions.

There are several sources of information on what target position was in the

beam at a given time. The target encoder value was stored as the EPICS
variable ptencoder, the position was stored as the EPICS variable ptpos, the
HCLog lists target position in the run start entries, the target operators were
instructed to write changes to the position in the paper loghook, the messages
from the target control computer included position information that was logged
to disk, and the NMR channel used to measure the polarization can be used to
indicate some of the target positions (top or bottom).
Unfortunately, flaws were discovered with all of these methods:

e In the beginning of the experiment, the position control program did not
write the encoder value and target position to EPICS variables.

e The EPICS archive frequently missed recording updates to ptencoder and
ptpos.

e The HCLog entries depended on the EPICS variables to determine po-
sition information, and even then were often not updated by the shift
workers before beginning new runs.

e The target operators occasionally forgot to write a position change in the
paper logbook.

e The control computer messages were not logged to disk until well into the
experiment (07 Nov 2001).

e The NMR channel only indicated on which cell measurements were being
made - occasionally the bottom target would be monitored while running
beam on the carbon target, or other similar situations would occur.

Despite this rather unfortunate list of problems, by combining the sources
and doing a great deal of manual checking, accurate information can be ob-
tained.

For the period from the beginning of the experiment until 07 Nov 2001
08:16, target encoder values from the paper loghook were typed into a file
log_info.dat, which is then converted into log_pos.dat by a short awk script
in commands. After the above date, the control computer logs were parsed for
messages indicating target movement by an awk script in commands and saved
as pdp_encoder.dat. These encoder values are then interpreted into target
positions by the python script decode_encoder and saved to pdp_pos.dat.
Corrections to pdp_pos.dat are then applied by an awk script in commands,
the data combined with log_pos.dat, and the results stored in position.dat.
The corrections to pdp_pos.dat were determined from comparisons with NMR
channel information, by looking at anneal times, and from inspections of the
paper logbook and EPICS archive.

Since this process is rather involved and prone to possible errors, a cross-
check was developed. The target event files were scanned by giving the file
gqmeter.control to the control awk script, which produces an output file
(gmeter.dat) that lists time and Q Meter number for each event. This file

1 .

9.98x10° 9.99x10°

Figure 4: Corrected position information (red lines) plotted against position
determined from runs using one @ Meter almost exclusively (blue circles). The
z-axis indicates the UNIX timestamp, with each tick mark representing just
over one day. The y-axis values correspond to Top, Bottom, Carbon, Empty,
N/A, and 10mm Hole, respectively, starting at y = 1.

is then used by the python script count_gmeter, which groups the data to-
gether by run. If one Q Meter (either the top or bottom) was used over 4 times
more than the other, then the target was probably in that position during the
run, and the result is saved to the file qmeter_pos.dat. By plotting the con-
tents of position.dat and gmeter_pos.dat, any disagreements between the
two files should become apparent. Figure 4 is an example of such a plot.

The files discussed in this section are in the position/ directory, with the
exception of the control script, which is in the bin/ directory.

2.6 Insert and Material Changes

Before the experiment, four identical target inserts were prepared, labeled “In-
sert A” through “Insert D.” Also, several bottles of target material were pre-
pared, each with a unique name that usually indicated details of the material’s
creation as well as the person that created it.

A “target load” refers to one or more bottles poured into a single cell of a
target insert. The term “stick” refers to a specific insert filled with zero to two
target loads. Gen used four insert/target load combinations, denoted Stick 1
through Stick 4.

The loghook summary file, logbook/logbook. txt is the authoritative source
of information on insert changes. This information is used in the code that tracks
accumulated charge, below. It is also used in making various anneal plots in the
anneal/ directory.

2.7 Target Anneals

The cumulative effect of radiation damage in the target material is a gradual
reduction in the maximum achievable polarization. The cause of this reduction
is the production of radicals in the material that allow the nuclear spins to relax
back to an unpolarized state. During a target anneal, the temperature of the
material is raised to allow these radicals to recombine back into nonmagnetic
molecules.

Knowledge of when target anneals occurred is necessary for various studies
of target material performance. An example would be a plot of polarization
vs. accumulated charge since last anneal. Such a plot can indicate fatigue of
the material that could be solved by installing a new batch. Understanding of
material performance can also highlight which preparation techniques produce
the best material.

The logbook/logbook.txt file is the authoritative source of information on
when anneals occurred. Changes of the target insert also count as anneals, since
long term storage in liquid nitrogen has effects similar to an anneal.

Figure 5 shows all anneals performed during the experiment.

2.8 Beam Current

In order to make a proper average of the polarization measurements for a given
run, the values must be weighted by the charge accumulated since the previous
measurement. In order to calculate the deposited charge, the beam current
must first be determined.

BCM1 died about 50 days into the experiment. A comparison of the two
BCM readings for the first 50 days was made (see beml_vs_bcm2.commands)
which resulted in the decision to use BCM2 for the current readings for the
entire experiment. A second study looked at the non-zero values returned by
the BCMs when there was no beam. By making a histogram of all current
readings for the entire experiment, a large spike is seen below 18 nA. Because
of this, any BCM2 reading below 20 nA is taken as a no-beam measurement,
while any value above 20 nA is taken as an accurate current measurement.

The EPICS archive supplies current measurements from the BCMs every two
seconds, which is more than adequate for use in performing charge-weighted
polarization averages. There were a few times during the experiment when
the archiver did not seem to be working, and thus there are holes in the data
for those times. There are three such holes that are longer than 2 hours. For
them, the BCM reading was extracted from the target event file, which provides
measurements about every 13 seconds (see commands for how this was done).

Gen0O1l Anneal History

120 T T T T T T
o
110 © —
o ©
g 100 - @ 7
o © © o o o
& 90 :
5 i - 7
5 o o o
$ 80F o o Oo o o m
[oN
B o
& 70F .
O O
60 o _
50 ‘ | ‘ | ‘ | ‘ | ‘
0 20 40 60 80 100

Time (min)

Figure 5: History of all anneals performed during the experiment. Values on the
z-axis have a small random value added to help indicate the number of anneals
at a given time/temperature combination.

The EPICS archive and event file data were combined, and the 20 nA cutoff
applied, by the determine_current awk script to create the current.dat file.
The files discussed in this section are located in the current/ directory.

2.9 Beam Charge

The python script accumulate_charge calculates total charge since the be-
ginning of the experiment for each of the five target positions. In addition,
for the top and bottom polarizable targets, it calculates the charge since the
last anneal or insert change. This requires information on beam current (from
current/current.dat), target position (position/position.dat), and anneal
and insert changes (logbook/logbook.txt). The python library described in
Section 2 provides this access.

The accumulated charge is written to a file, charge.dat, for each of the
timestamps of the NMR measurements. Having the charge known at exactly
the same time as a polarization measurement makes the process of performing
weighted polarization averages much more easy.

2.10 Magnetic Field

The NMR and microwave system are designed to drive the polarization through
the DNP process only for a narrow range of magnetic fields. Thus the magnet
was set to a standard field value, 5.003 T, any time the target was being polar-
ized. The frequency at which the deuteron NMR signal occurred provides the
most accurate determination of magnetic field, but this technique is obviously
only useful while polarizing.

After 14-Aug-2001 18:54:18, the daq system recorded the current in the
magnet coils. It should therefore be straightforward to apply a current-to-
field ratio to determine the field strength. Unfortunately, small drifts in the
calibration of the magnet power supply meant that the magnet current required
to place the deuteron NMR signal at a given frequency varied over the course
of the experiment. A typical current-to-field ratio is 15.408 A/T. The amount
of the drift was less than 0.100 A around the typical setting of 77.085 A.

To create the field.dat file, a three categories are used:

1. For times before 14-Aug-2001 18:54:18 there is no magnet current infor-
mation. If the polarization is above 5% in magnitude, the field is declared
to be 5.003 T, if not, 0.000 T.

2. After this time, for currents above 77.000 A, the field is declared to be
5.003 T.

3. If the current is below 77.000 A, the field is the current times 15.408 A/T.

This policy is implemented in the commands file, which uses field.control
as input to the control program to extract information from the event files for
the second and third case, above.

The files discussed in this section are located in the field/ directory.

2.11 NMR Signal Analysis

Polarization of a spin species in the target is determined up to a scale factor
by calculating the area under that species’” NMR resonance signal. The scale
factor, or calibration constant, is determined by putting the target into a known
state, called thermal equilibrium, in which the polarization can be calculated
from the temperature of the material and the applied magnetic field.

The C program polcalc is used to measure the area of an NMR signal.
By default, it uses information found in the target event file, but an “override
file” can also be specified, which allows the user to supply values that should
replace the data in the event file for a specified range of timestamps. Typical
uses of an override file include the use of a different baseline than the one used
online, insertion of an offline calibration constant in place of the online one, and
flagging known bad signals so that they may be cut.

The output of polcalcis very flexible, and can include the area, polarization,
coefficients of the fit, the signal at several stages of the analysis, and even a
TopDrawer-compatible summary of all analysis steps.

2.12 TE Calibrations

Analysis of the TE calibrations is a more manual process than many other
aspects of the target analysis. The summary file of the paper loghbook was
used to identify when TE calibrations were made, resulting in a total of 110
measurements for entire experiment.

Inherent in the TE process is the acquisition of very small NMR signals,
on the order of 0.07% polarization — a factor of several hundred smaller than
the enhanced signals measured during production running. Because of this, the
NMR signal analysis is very sensitive to stray noise included in the measurement,
and the fit obtained from each signal must be examined by a human to classify
it as good or containing an unacceptable amount of noise. This was a lengthy
process and resulted in a total of 2095 good signals, with from 12 to 36 signals
in a given TE measurement.

In addition to inspection of the signals, all baseline signals taken up to four
hours before or after the TE were compared with each signal, and the baseline
giving the best results chosen.

For each TE, the results of the baseline selection, the elimination of bad
signals and any other relevant data not contained in the event file are put into
an override file so that polcalc can use them when determining the signal areas.

After this step, the TE measurements were put into relevant groups so that
they could be averaged. There is a group for each target position of each stick
used in the experiment, as well as groups to hold TE measurements that were
deemed bad. Some of the reasons to discard TE measurements include:

e Noisy Signals (Stick 1, Top & Bottom)
e Under-irradiated material (Early Stick 3 Bottom)
e Material fell out of cups (Late Stick 3 Top & Bottom)

Groups are defined in a text file in the following format. The first line
lists the beginning and ending timestamps for which the group is relevant. The
second line is either cal_const_topor cal_const_bottom, indicating the target
position of the group. The third line is a title to use in plots. Each line after that
specifies a TE to include in the group. There are 5 required fields, separated by
spaces: 1) the name of the override file to use (the TE name), the 2) starting
and 3) ending timestamps of the TE, 4) the event filename, 5) the baseline file
name. A blank line terminates the definition of the group, after which the file
may end, or another group may be defined.

The python script group_te takes one or more group definition files as input,
and then performs many steps:

e polcalcis called to calculate signal areas for each signal of each TE, using
the override file created during inspection of the TE, described above.

e The signal areas are piped into te_calc, an awk script that calculates a
calibration constant from the area, field, and temperature information.

All TEs, Chronological Order

OO ‘ T T T ‘ T T T T ‘ T T T T ‘ T T
—-2.5— —
50— = —
B - i
i Bgf“ﬁi F e = . ogs i
7.5 = = - —
YL i
=

i =R]
— EE —
—-10.0 I I]
—12.5 —
L 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 i

0 20 40 60 80 100

Figure 6: Offline calibration constants calculated from all TE measurements.
Constants not used (and the reasons why) are: red X (noisy signals), yellow
crosshairs (material not thermalized), magenta pluses (material fell out of cup),
blue circles (material fell out of cup).

Optionally, a plot is made of each signal in the TE.

The calibration constants from each TE in the group are averaged.

e A summary file, group_avg.dat, is created indicating the average and
error of each group.

A TopDrawer file, all_te.top, is made showing the members of each
group plotted along with the average of that group.

An override file, offline_cc.override, is made for use in calculating
polarizations of enhanced signals.

Figure 6 shows the calculated calibration constants from all TE measure-
ments. The caption indicates those measurements deemed bad.
The files discussed in this section can be found in the te/ directory.

2.13 Polarization Measurements

Calculation of the polarization from the NMR signals acquired during the ex-
periment is relatively straightforward. The polcalc program is run on every
event file, using the offline_cc.override file discussed above, and the output
saved to a file. In order to facilitate large scans through all the data, an awk
script called control is used. This script takes as input a text file that spec-
ifies the event file, the baseline file, the file in which to place the output, and
finally additional commands to pass to polcalc, usually specifying the data to
be output and the override file to use.

The pol.control file specifies a pass through each event file/baseline file
combination (some event files require use of more than one baseline file depend-
ing on when the target operators decided to create new files). The output is
stored in a file called pol.all.

One of the event files has a portion that contains all zeros due to a problem
with the target daq computer during data taking. The problem started at
26aug01 22:06:41 and continued until 27aug01 13:47:55. To get around this
problem, online polarization values are used, and then scaled by the ratio of
offline to online calibration constant.

The recovered data and the data from the pol.all file are then combined,
signals with errors eliminated, the surviving signals sorted chronologically, and
the results stored in a file pol.dat. Details of this step and the recovery of the
online data can be found in the commands file. The result is 376,445 polarization
measurements.

The files discussed in this section are located in the pol/ directory.

2.14 Error on Polarization

There are several ways to determine the accuracy of the polarization measure-
ments performed in the experiment. Because the size of the enhanced signals is
so large, there is very little error made in measuring and integrating enhanced
signals. TE calibrations present a much greater challenge because TE signals
are hundreds of times smaller, because errors in temperature measurement affect
the predicted TE polarization, and because an error in calculating the calibra-
tion constant has a systematic impact on the determination of all enhanced
signals using that constant.

A useful tool to investigate possible errors in the temperature and area mea-
surements is the Curie Plot, in which the area of the TE signals is plotted against
the inverse of the temperature?. If there are no gross errors in the temperature
or area measurement, a linear fit to the points should intersect the origin.

For sticks 1, 3 and 4, almost all TE measurements were made in a very
narrow range of temperatures around 1.5 K. With stick 2, however, a study was
made 3laug01 to 02sep01 in which TE measurements were made over a range

2This is a small-angle approximation to the tanh function, since T appears in the denom-
inator of the argument of the tanh function in the TE polarization equations. The actual
equation is dependent on the spin of the species being measured.

of temperatures from 1.4 K to 1.9 K. This gives enough lever arm to perform
a meaningful fit to the data. As can be seen in Figures 7 and 8, the fit comes
remarkably close to intersecting the origin in both top and bottom targets.

As can be seen in the Curie plots, there is scatter in the values of the cali-
bration constants, and the degree of this scatter represents a statistical error in
determination of the constants. By normalizing each group and taking the error
on its average, an error on the polarization measurement is obtained. Figure 9
shows each group, plotted with its error and Table 2 lists the final error by stick
and target cup. The details of this calculation are located in the commands file.

Group Name Error
Stick 2 Top 2.74 %
Stick 2 Bottom | 3.49 %
Stick 3 Top 3.30 %
Stick 3 Bottom | 4.61 %
Stick 4 Top 490 %
Stick 4 Bottom | 5.24 %

Table 2: Final absolute errors for each target cell used in production running.

The files discussed in this section are located in the error/ directory.

2.15 Polarizations by Run

The final step of target analysis is to use the offline polarization measurements
to produce average polarizations for each run. This task is performed by the
python script average_runs. It draws on most of the quantities discussed so far:
the target position, the start and stop times of the run, the magnetic field value,
the liquid helium level measurements taken during the run, the accumulated
charge, and the polarization. It outputs a file, target_pol.dat, that contains
a summary of all information known about each run. The fields of this file, and
their meanings, are:

1. Run number

2. Timestamp of the start of the run
Date of the start of the run

Time of the start of the run
Timestamp of the end of the run

Date of the end of the run

NS Ut W

Time of the end of the run

Stick 2 Top Target
0.002 ‘ ‘

0.000

—0.002

—0.004

—-0.006

TE Area (au)

—0.008

-0.010

70012 1 1 1 E=3
0.0 0.2 0.4 0.6 0.8

Inverse Temperature (K™)

Figure 7: Curie plot for Stick 2, Top Target

Stick 2 Bottom Target
0.000 T T

—0.002

—0.004

—-0.006

TE Area (au)

—-0.008

—0.010

70012 1 1 1 1 1 1 1
0.0 0.1 02 03 04 05 06 0.7 0.8

Inverse Temperature (K™)

Figure 8: Curie plot for Stick 2, Bottom Target

Normalized TE Constants

I T I T I T I T T

0.8l]

| . | . | . |

L L |
0 20 40 60 80 100
TE Number

Figure 9: All TE measurements, normalized to the average of their groups. Solid
lines indicate error on each group. Plus=Stick 1 Top, Asterisk=Stick 1 Bottom,
Circle=Stick 2 Top, X=Stick 2 Bottom, Triangle=Stick 3 Top, Diamond=Stick 3
Bottom, Puff=Stick 4 Top, Crosshair=Stick 4 Bottom.

8. A code indicating the liquid helium level trend during the run. Possible
values are:

e W: the average LHe level was above 50% and fewer than 4% of the
measurements were below 50%. This indicates a trustworthy wet
run.

e D: the average LHe level was below 50% and fewer than 4% of the
measurements were above 50%. This indicates a trustworthy dry run.

e w: the average LHe level was above 50%, but more than 4% of the
measurements were below 50%. This could be a run during which
the tail inadvertently ran dry.

e d: the average LHe level was below 50%, but more than 4% of the
measurements were above 50%. This could be a dry run during which
the tail was filled.

9. Target field in tesla
10. Target position:

Top polarizable cell
° Bottom polarizable cell
[]

Carbon target

Empty target

10mm hole target

11. Charge (in C) on this target position at the beginning of the run
12. Charge (in C) added to this target position during this run

13. Charge-weighted average polarization, in %

14. Absolute error on average polarization

As a crosscheck, a plot was made for each run with the online, offline and
average polarizations plotted. By scanning through each of the runs, possi-
ble errors in the offline calculations or the averaging could be spotted. The
python script check_runs performed this task, producing the TopDrawer file
check_runs.top.

Finally, runs were averaged for each “segment” of the experiment, where a
segment could be all the data for a particular stick, for a given Q? point, or for
the entire experiment. The segments are defined in resources/segments.dat,
and are used by the python script pol_averages. The output is the aver-
ages (and the total charge comprising them) for positive polarizations, neg-
ative polarizations and all polarizations in each segment, stored in the file
pol_averages.dat. A second file, pol_averages.graph, used in conjunction
with the graph commands in the commands file, produces plots of each run’s
polarization and the average polarization of each segment. The plots for each
Q? point are included as Figures 10 and 11.

All files discussed in this section are located in the runpol/ directory.

3 Target Models

While running on Stick 3, a precipitous drop in scattering rate was observed
starting at around run 42430. The effect was much more pronounced for the
bottom cell, with the rate falling by almost 25% (see HCLog 43620 for further
information).

Upon removing the insert, both top and bottom cells were obviously radia-
tion damaged, in a pattern consistent with an anomalous rotation of the insert
in a counter-clockwise direction about a vertical axis (HCLog 43671 contains a
picture of the damaged insert).

Q®*=0.5 Offline Polarizations

- T
[

T 40r ()
) 9 g0 o
E i . .3 °

m g IS g %%

. 8 g 3

& 20 4 . LN %é L

& 8 ¢ ER °° H 8

I

o S

[}

e oL 3
¥

a

o]

e i
]

N

S .,
E o °8 o
O

(a9} | | | |

400 600 800 10

L | L | L |
00 1200 1400 1600

Run Number — 40000

Figure 10: Average polarizations for top (red) and bottom (blue) targets for
Q? = 0.5 runs.

Q®=1.0 Offline Polarizations
/: T
[®]
T 40r .
(O]
3
m
S 20 .
i
el
S .
© 4l |
e
g E
e .8 8
5 —20— .
N
g
8
(@]
ny I

| L | L | L L | L | L | L
18002000 2200240026002800 30003200
Run Number — 40000

Figure 11: Average polarizations for top (red) and bottom (blue) targets for
Q? = 1.0 runs.

The size of the damage pattern on the cup wall indicated a large rotation
angle, large enough to significantly affect the dilution factor. In order to de-
termine the rotation angle and address the impact on the dilution factor, two
models of the target were made.

3.1 PovRay Visual Model

The first model was made in a 3D rendering program called PovRay. This
program uses a text file of simple commands that describe fundamental geo-
metrical shapes such as cones and rectangles to define a scene. A camera may
be placed anywhere inside the world created by the file, as may any number of
light sources.

A file target.pov was used to define the insert ladder, target cups, mi-
crowave horns, 4K shield, beam, and raster volume in the PovRay language.
From this file a number of scenes can be rendered, by uncommenting various
lines at the top of the file. A makefile takes care of invoking the povray program
with the proper arguments, and converting the output to JPG format. This is
all done by typing make target.jpg.

By adjusting the positions and angles of objects in the target. jpg file, the
scene created was made to match a photograph of the damaged target cup.
A rotation of 15 degrees produced the best agreement between the 3D model
and the photograph. This provides only crude indication of the correct angle,
however. To get a more precise value, it is necessary to consider how the rotated
insert appeared to the beam.

When Stick 3 was first installed, it appeared that the target had been trans-
lated 4mm to beam right. To correct this, the target was moved 4mm after a
few days of Stick 3 running. In actuality the target was rotated, which moved
the upstream face of the target to beam right and the downstream face to beam
left. The upstream face sits inside a 0.125 inch thick aluminum plate, so it is
the hole in this plate that shows up in scattering rate vs. raster position plots.
From HCLog 41278 we see that the 10mm Hole target is off by 4mm. Using
precise values from the CAD drawing of the insert ladder, this yields a rotation
angle of 15.82 degrees, in excellent agreement with the 3D model. If there is a
+1mm error in the raster ADC calibration, this translates to a 3.8 degree error
in the angle.

The files used to make the 3D model are located in the visuals/ directory.

3.2 Geant 4 Materials Model

With an accurate calculation of the rotation angle, verified by a more crude
agreement between the 3D model and photographs of the insert, the impact on
the dilution factor may be examined.

To calculate the dilution factor, the average length of each type of material
traversed by the beam must be determined. To perform this task, a C++
program was written using the Geant 4 libraries. This program allows the
user to specify the position and rotation of the target, the raster radius to use

and the number of samples to generate. It populates the raster radius with
the requested number of sample points in a uniform way (using the “golden
section,” ¢), and then passes an imaginary beam through the target for each of
the raster positions. As the beam traverses the target, its path is broken down
according to which materials are intersected. Counters are maintained for each
material, allowing average path lengths to be computed once all raster positions
have been processed.

Because this program allows the position of all elements of the target to be
specified, it is not limited to the case of a rotated target. This allows average
path lengths to be calculated for all four sticks used in the experiment. Tables 3
through 5 summarize the results for all materials within the HMS acceptance.

The files discussed in this section are located on jlablil. The base di-
rectory is /home/pmm3w/geant4/. The source code to the program is located
in pmm/. To compile the program, simply type gmake. The executable is
bin/Linux-g++/exampleNO1.

Material Length

4K Shield 1.179
Drift Space 36.677
Tail Window 0.208
LHe 11.535
Cup Window 0.051
Cup Contents | 29.201

Table 3: Average lengths for all materials in Stick 1 and Stick 2. The entry
for Cup Contents refers to the combined length of ammonia and LHe within
the target cup. The length of ammonia is (Cup Contents)xpf, where pf is the
packing fraction. The length of LHe within the cup is (Cup Contents)x (1 —pf).

Material 11.94° | 15.82° | 19.70°

4K Shield 1.874 | 1.874 1.874
Drift Space 52.860 | 52.860 | 52.860
Tail Window 0.213 | 0.213 | 0.213

LHe 10.931 | 11.010 | 11.045
Cup Window 0.048 | 0.047 | 0.046
Cup Wall 0.573 | 0.637 | 0.687

Cup Contents | 28.384 | 28.243 | 28.159

Table 4: Average lengths for all Stick 3 materials for the minimum, central and
maximum rotation angles.

Material Length

4K Shield 1.822
Drift Space 49.927
Tail Window 0.208
LHe 11.535
Cup Window 0.051
Cup Contents | 29.201

Table 5: Average lengths for all materials in Stick 4.

