Ultra High Energy Cosmic Rays

The Pierre Auger Observatory

Paolo Privitera

Cosmic Rays are always with us

A particle detector: the Spark Chamber (courtesy Universty of Birmingham)

Rate of cosmic rays at ground $\approx 1 / \mathrm{cm}^{2} /$ minute
Typical cosmic ray energy 1 GeV

Ultra High Energy Cosmic Rays

Amazing energies?

Ultra High Energy Cosmic Ray
$10^{20} \mathrm{eV}=16$ Joule !!!

Sicilian cannolo:

300 Cal = 1.2 MJoule !!!

Energy/mass $=10^{7} \mathrm{~J} / \mathrm{kg}$
Energy/size $=10^{4} \mathrm{~J} / \mathrm{cm}^{2}$

UHECR allow to explore "pizza-pizza" interactions (underlying events, minimum bias events) way above LHC energy.

NOTE: too few events to study Higgs, supersimmetry, etc.

Air pizza

Measurement of the p-p cross section, a fundamental quantity in particle physics

UHECR vs LHC

UHECR and Cosmology

Wavelength [cm]

Penzias and Wilson discovery of Cosmic Microwave Background (1965)

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen
Cornell Eniversity, Ithaca, New York
(heceived 1 April 1966)
This note predicts that above 10^{20} ev the primary spectrum will steepen abruptly, and the exporiments in preparation will at last observe it to have a cosmologically meaningful termination.

The Greisen-Zatsepin-Kusmin "cutoff"

A definite prediction: strong suppression of the flux

The Greisen-Zatsepin-Kusmin "cut-off"

$$
\begin{aligned}
& S=m_{p}^{2}+2 E_{p} \varepsilon_{\gamma}(1-\beta \cos \theta) \rightarrow m_{p}^{2}+4 E_{\rho} \varepsilon_{\gamma} \\
& \geq\left(m_{P}+m_{\pi}\right)^{2} \text { AT THRESHOLD } \\
& E_{P} \geq \frac{m_{\pi}\left(m_{\pi}+2 m_{P}\right)}{4 \varepsilon_{\gamma R} \simeq 10^{-3} \mathrm{eV}} \simeq 7 \cdot 10^{19} \mathrm{eV}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2} \\
& 1 \mathrm{pc}=3.26 \text { light years } \approx 10^{18} \mathrm{~cm}
\end{aligned}
$$

Astronomical distances

The Milky Way

Distance Sun to center of Milky way 8 kpc

The Solar neighborhood

Distance earth to Alpha Centauri 1.3 pc

Local group of galaxies

The Greisen-Zatsepin-Kusmin "cut-off"

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{p}}{ }^{\prime}=\Delta \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\pi} \\
& \frac{\Delta \mathbf{E}_{p}}{\mathbf{E}_{\mathrm{p}}}=\frac{\mathbb{E}_{\pi}}{\mathbf{E}_{\mathrm{p}}} \\
& \text { boost } \\
& \text { at threshold } \\
& \begin{array}{l}
\mathrm{OO} \\
\mathrm{E}_{\mathrm{p}} \mathbf{m}_{\pi} /\left(\mathrm{m}_{\mathrm{p}}+\mathbf{m}_{\pi}\right)
\end{array} \\
& \frac{\Delta \mathbf{E}_{\mathbf{p}}}{\mathbf{E}_{\mathbf{p}}} \sim \frac{\mathbf{m}_{\pi}}{\mathbf{m}_{\mathrm{p}}+\mathbf{m}_{\pi}} \sim 15 \%
\end{aligned}
$$

Proton energy at the source

Local supercluster

Can we find their origin?

* Arrival direction

$$
\vartheta \sim \frac{d}{r_{g}} \quad r_{g} \sim \frac{E}{Z e B}
$$

$$
\vartheta_{d} \simeq 0,5^{0} \cdot Z \cdot\left(\frac{E}{10^{2} e_{V} V}\right)^{-1} \cdot\left(\frac{d}{1 M_{p c}}\right) \cdot\left(\frac{B}{10^{-9} G}\right)
$$

Ex: proton from tie galactic center

$$
\begin{aligned}
& E=3 \cdot 10^{20} \mathrm{eV}, d=8,5 \mathrm{Kpc}, \quad B=2 \mu \mathrm{G} \\
& V \sim 3^{\circ}
\end{aligned}
$$

- Galactic magnetic fields:

A $10^{20} \mathrm{eV}$ proton is almost not deflected in the galactic magnetic field ($\mu \mathrm{G}$

Can we find their origin?

$$
\begin{aligned}
\sigma_{v}(d) & \simeq \sqrt{N} v_{\lambda} \simeq \sqrt{\frac{d}{\lambda}} \cdot \frac{\lambda}{r_{g}} \simeq \sqrt{d} \sqrt{\lambda} \frac{1}{r_{g}} \\
& \simeq 0,8^{\circ} \cdot Z \cdot\left(\frac{E}{10^{20} \mathrm{e}}\right)^{-1} \cdot\left(\frac{d}{10 H_{p c}}\right)^{\frac{1}{2}} \cdot\left(\frac{\lambda}{1 H_{p c}}\right)^{\frac{1}{2}} \cdot\left(\frac{B}{10^{-9 G}}\right) \\
E_{x:} p, d & =50 M_{p c} \\
\lambda=1 M_{p c}, B & =1 \mathrm{mG}
\end{aligned}
$$

- Inter-Galactic magnetic fields:

A $10^{20} \mathrm{eV}$ proton is almost not deflected in the inter-galactic magnetic field (nG)

$1 \mathrm{EeV}=10^{18} \mathrm{eV}$

10^{20} eV accelerator?

Fermi's Globatron

American Physical
Society 1954
$510^{15} \mathrm{eV}$

Enrico Fermi
 (1901 Rome - 1954 Chicago)

Chain reaction, the first atomic pile, theory of beta decay, Fermions, Fermilab,

On the Origin of the Cosmic Radiation

Enrico Fermi
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received January 3, 1949)

A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated and accelerated primarily in the interstellar space of the galaxy by collisions against moving magmetic fields. One of the features of the theory is that it yields naturally an inverse power law for the spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straightforward way the heavy nuclei observed in the primary radiation.

Gravity assist

Cassini

SATURN ORBIT INSERTION

Dee 4 1948 Saturday!
Theory of cosmic rays
a) Energy enquired in collisions ageaninat essunie magútic fields

Now relativistre case

$$
M V^{2}
$$

$M=$ muses of particle $V=$ velocity of moving field
(Proof Lend on collision gives every gain

$$
\frac{M}{2}(v+2 V)^{2}-\frac{M v^{2}}{2}=\frac{M}{2}\left(4 v V+4 V^{2}\right)=
$$

$$
=M\left(2 v V+2 V^{2}\right) \quad \text { Poof }-\frac{v+V}{2 \sigma}
$$

Running after collision $\left(y^{2}\right.$ ob $\left.=\frac{v-V}{2 v}\right)$ gives every) poser $)$
average gain order
$M V^{2}$
Relativistic: order

Fermi's notebook
University of Chicago Library Special Collections

Frequency of collisions \approx relative velocity

$$
\beta=\frac{\text { Velocity of } B \text { field cloud }}{c}
$$

138 Notations
abruption mean free path
Dboyptim time
Scattering meaner free path feathering $"$ "tim er z

Trine-energy relationsly

$$
\begin{aligned}
& w=M c^{2} e^{\frac{t}{\tau} \beta^{2}} \quad \beta=\frac{V}{c} \approx 10^{-4} \\
& t=\frac{\tau}{\beta^{2}} \log \frac{\omega}{M c^{2}}
\end{aligned}
$$

Prise. distribution in age

$$
\begin{aligned}
& e^{-\frac{t}{T}} \frac{d t}{T}=\text { prob of age } t \\
&=-d e^{-\frac{t}{T}} \\
& e^{-\frac{t}{T}}=\left(\frac{M c^{2}}{w^{T}}\right)^{\frac{\tau}{T \beta^{2}}} \\
& \text { prob }=\frac{\tau\left(M c^{2}\right)^{\tau} T \beta^{2}}{T \beta^{2}} \frac{d w^{T}}{w^{1+\frac{\tau}{T \beta^{2}}}} \mathrm{PoV}
\end{aligned}
$$

$$
e^{-\frac{t}{T}}=\left(\frac{M c^{2}}{\omega}\right)^{\frac{\tau}{T \beta^{2}}}
$$

Follows

$$
1+\frac{\tau}{T \beta^{2}}=2.9 \quad \frac{\tau}{T \rho^{2}}=1.9<
$$

Fermi's notebook
University of Chicago Library Special Collections

The measured spectral index gives information on absorption and scattering

Hence

$$
\begin{aligned}
& \tau=1.9 \beta^{2} T=1.9 \times 10^{-8} \times 3 \times 10^{15}=6 \times 10^{7} \\
& \lambda=2 \text { light years! }
\end{aligned}
$$

Why are there no electrons?
Radiation loss is per second

$$
\begin{aligned}
& \frac{2}{3} \frac{e^{2}}{c^{3}} A^{2} \frac{1-\sin ^{2} \varepsilon \frac{v^{2}}{c^{2}}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3}}= \\
& \text { since for } \\
&= \frac{2}{3} \frac{e^{2}}{c^{3}} \frac{c^{4}}{R^{2}} \frac{w^{4}}{m^{4} c^{8}}{ }^{2} \\
& \text { sin } \varepsilon=1 \\
& y= \frac{2}{3} \frac{e^{2}}{o^{4} w^{4}} \frac{H^{2} e^{2}}{m^{4} c^{7}} \frac{2}{w^{2}}=\frac{2}{3} \frac{e^{4} H^{2}}{m^{4} c^{7}} w^{2}
\end{aligned}
$$

since for magnetic
tuergy is gained at rate

$$
\frac{\beta^{2} w}{\tau}=10^{-16} w
$$

Hence limiting every

$$
\begin{aligned}
& \frac{e^{4} H^{7}}{\mathrm{~m}^{4} \mathrm{C}^{7}} \omega \approx 10^{-16} \text { argue } H=10^{-5}
\end{aligned}
$$

Fermi's notebook

University of Chicago Library Special Collections

Relativistic calculation

Hence ofter N coltizims

$$
w=M c^{2} e
$$

Hecember 51948 Sunday!
Pelascation time of Affoen sseillations:

$$
\begin{aligned}
& H_{x}=k \quad \vec{v}=\left(\begin{array}{ll}
v & 0
\end{array}\right) \\
& H_{z}=H=\text { coust } \quad K \otimes H
\end{aligned}
$$

$$
E+\frac{1}{c} V \times H=0
$$

$\nabla \times E= \begin{cases}-\frac{H}{c} \frac{\partial v}{\partial z}=-\frac{1}{c} \frac{\partial K}{\partial t} E=\left(0 E_{0} 0\right)=\frac{v}{c} H \\ 0 & 0\end{cases}$

$$
\nabla \times H=\left\{\begin{array}{l}
0 \\
\frac{\partial k}{\partial z}=\frac{1}{c} \frac{\partial E}{\partial t}+4 \pi j_{y} \\
0
\end{array}\right.
$$

$$
F=J \times H=\left\{\begin{array}{l}
J H=\frac{H}{4 \pi}\left(\frac{\partial K}{\partial z}-\frac{1}{c} \frac{\partial E}{\partial t}\right)=\frac{H}{4 \pi}\left(\frac{\partial K}{\partial z}-\frac{H \dot{v}}{c^{2}}\right)_{i \rho 0} \\
0 \\
J K(\text { lipheroveres })
\end{array}\right.
$$

$$
\left.\frac{\partial k}{\partial t}=H \frac{\partial v}{\partial z} \quad \rho \theta\left(\rho+\frac{H^{2}}{4 \pi c^{2}}\right) \dot{v}=\frac{H}{4 \pi} \frac{\partial K}{\partial z} \right\rvert\, J=\frac{1}{4 \pi}\left(\frac{\partial k}{\partial z}-\frac{H \dot{v}}{c^{2}}\right)
$$

$\rho \ddot{v}=\frac{H^{2}}{4 \pi} \frac{\partial^{2} v}{\partial z^{2}} \quad$ velonty of trop napligbley $\quad H \frac{\operatorname{arp}}{H} \dot{v}$ $k=$ couduativity ($J=k E$)

Fermi's notebook
University of Chicago Library Special Collections

Fermi's time capsule

Opened June 2, 2011

The time capsule contained these items:

- University of Chicago directory.
- University of Chicago announcements, May 25, 1948.
- Architect's sketch of the Research Institutes building.
- Booklet titled "The New Frontier of Industry - Atomic Research."
- Booklet titled "The Institute for Nuclear Studies, The Institute for the Study of Metals, The Institute of Radiobiology and Biophysics."
- Road map, train and airline timetables.
- List of postdoctoral fellows, Institute of Radiobiology and Biophysics, 1948-1949.
Also found with the time capsule was a 1927 buffalo nickel.

Magnetic Clouds

Fermi acceleration (1 ${ }^{\text {st }}$ order)

The cosmic ray moves back and forth between shocked and unshocked medium

Shocks!

Shock produced by object moving faster than sound in the medium

Shock acceleration of cosmic rays by the sun

Coronal mass ejection: billions of tons of matter at millions of km / hour

SOHO (SOlar and Heliospheric Observatory) spacecraft

Shock acceleration in SNR

Popular model for high energy cosmic rays (up to $10^{15} \mathrm{eV}$)

$\beta \approx 0.01 \quad$ SNR expands for ≈ 1000 years

TeV Gamma Rays from SNR

Distance from earth 1 kpc Shell radius $=10 \mathrm{pc}$

High-energy particle acceleration in the shell of a supernova remnant

HESS in Namibia

Atmospheric Cherenkov Telescope

10^{20} eV accelerator?

Astrophysical shocks

Active galactic nuclei produce jets with internal shocks and huge shocks at the end (hot spots)

$$
z=0.1745
$$

FR-II

Active Galactic Nuclei

Proton vs heavy nuclei

$E \sim z \beta B R$ ر

For the same magnetic field strength and accelerating region size, nuclei can reach energy Z times larger than a proton (example: $Z=26$ for Iron) but......

Nuclei loose rapidly their energy through photodisintegration processes. Iron still ok.

$$
\vartheta_{d} \simeq 0,50 \cdot Z^{\hbar} \cdot\left(\frac{E}{10^{2} \mathrm{e} V}\right)^{-1} \cdot\left(\frac{d}{1 M_{p c}}\right) \cdot\left(\frac{B}{10^{-9} \mathrm{G}}\right)
$$

If UHECR are heavy nuclei, their directions will be scrambled and they will not point back to the source!

Physics (well) beyond the SM?

A few articles titles.....

- Microscopic black hole detection in UHECR
- Lorentz invariance violation
- Instant preheating mechanism and UHECR.
- Flipped Cryptons and the UHECRs.
- Super-heavy X particle decay
- Strongly interacting neutrinos
- Electroweak instantons as a solution
- Quantum-gravity phenomenology
- Superheavy dark matter........
- Long-lived neutralino
- Cosmic Rays and Large Extra Dimensions
- UHECR from relic topological defects.
- Are UHECR a signal for supersymmetry?.

Cosmic

TOPOLNO

Fopo-logical DEFECT

Symmetry Breaking phase TRANSITIONS IN EARLY UNIVERSE

$E_{x}: \mathcal{L}(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V_{T}(\phi)$

- $T \rightarrow 0 \quad V_{0}=\frac{1}{4} \lambda\left(\left.\phi\right|^{2}-n^{2}\right)^{2}$
- $T>T_{c} \vee \sim T^{2} \phi^{2}$
$T_{c} \sim m_{\text {GUT }} \sim 10^{25} \mathrm{er}$
$T>T_{c}$: VAcuum symmetric udo er phase potions
T<Tc: A given vacuum state do longer invariant $\begin{aligned} \text { UNDER PHASE ROTATIONS } & \rightarrow \text { "SPONTA NEXUS" } \\ \langle\phi\rangle=\pi(T) & \text { SYM M. BREAKING }\end{aligned}$ $\langle\phi\rangle=\tau(T) e^{i \alpha}$

In an early Universe phase transition, we expect that phases in widely separated regions WIll be un grrelated

take a closed curve ina plane of physical space moving around I the field Φ can change Its phase. Once back to the starting POINT $\quad \alpha(1)=\alpha(0)+m 2 \pi$ IF $m \neq 0 \Rightarrow$ THERE IS A REGION IN THE INTERIOR OF I WHERE $\langle\phi\rangle=0$

$V_{T=0} \neq \varnothing$! There is energy (MAss) TRAPPED IN THERE $m_{x} \sim n \sim T_{c}$

intersection region $\sim 1 / \eta$, the pitase becomes undefined and the energy contained in the overlapping region is released in tire form of X particles
(nnumizers
oscillates editing gravitational RADIATION TIL RADIUS $\sim \frac{1}{m}$
and then collapses

SUPER GNDUCTING. STRING LOOPS. CARRY PERSISTENT ELECTRIC CURRENTS (CHARGED HAGS, FERMIONS) SHRINKING THE CURRENT BECOMES $>$ ICAIT. AND CHARGED (ARRIERS ARE EJECTED

X-particle decay cascade

Particles at the end of the cascade:
predominantly photons
Neutrinos
Few protons
No nuclei

UHECR photons signature for New Physics

Schematic MSSM "jct" for an initial squark with a virtuality $Q \simeq M_{X}$. The full circles indicate decays of massive particles, in distinction to fragmentation vertices. The two vertical dashed lines separate different epochs of the evolution of the cascade: at virtuality $Q>m_{\text {susy }}$, all MSSM particles can be producod in fragmentation processes. Particles with mass of order $m_{\text {susy }}$ decay at the first vertical line. For $m_{\text {Susy }}<Q<1 \mathrm{GeV}$ light. $Q C D$ degrees of freodom still contribute to the perturbative evolution of the cascade. At the second vertical line, all partons hadronize, and unstable hadrons and leptons decay. (from M. Drocs, e-print hep-ph/0210142)

The UHECR 3-piece puzzle

1) The Greisen -Zatsepin-Kusmin cutoff: end to the cosmic-ray spectrum?

Pion photoproduction (on CMB radiation) $\mathbf{p}+\gamma_{2.7 \mathrm{~K}} \rightarrow \mathbf{N}+\boldsymbol{\pi}$ for $\mathbf{E}_{\mathbf{p}}>5 \mathbf{1 0}^{19} \mathbf{e V}$

Kenneth Greisen
Cornell University, Ithaca, New York
(Keceived 1 April 1966)

This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the exporiments in preparation will at last observe it to have a cosmologically meaningful termination.

3) The UHECR composition: protons? Heavier nuclei (deviation in magnetic fields)
2) The UHECR sources: COSMIC Close-by astrophysical accelerators? <100 Mpc due to GZK. New Physics?

Only by understanding all of the three pieces we will unveil the true nature of UHECRs

Electromagnetic Showers

$$
\mathrm{X}_{0}(\mathrm{~Pb})=6.4 \mathrm{~g} / \mathrm{cm}^{2}=0.56 \mathrm{~cm}
$$

After \approx one X_{0} (radiation length) the electromagnetic particle (photon or $\mathrm{e}^{ \pm}$) interacts
X_{0} in cm or (multiplying length by density of absorber) in $\mathrm{g} / \mathrm{cm}^{2}$

Examples:

$$
\begin{aligned}
& X_{0}(\mathrm{~Pb})=6.4 \mathrm{~g} / \mathrm{cm}^{2}=0.56 \mathrm{~cm} \\
& \mathrm{X}_{0}(\mathrm{air})=37 \mathrm{~g} / \mathrm{cm}^{2}=300 \mathrm{~m}! \\
& X_{0}(\mathrm{air})=37 \mathrm{~g} / \mathrm{cm}^{2}=300 \mathrm{~m}!
\end{aligned}
$$

Heitler model of shower development

Assume that each time energy is divided equally between the two particles produced in the interaction

The shower will stop growing when the particle energy goes below a critical energy E_{c} (when energy loss by ionization overcome photon production by Bremmstrahlung)
$\mathrm{N}(\mathrm{t})$

$$
24
$$

$8 \quad 16$
2^{t}
The energy per particle after t radiation length is $E=E_{0} / 2^{t}$
The maximum of the shower $t_{\max }$ is reached when the particles' energy is $=$ to E_{c}

$$
\begin{aligned}
\mathrm{E}_{\mathrm{c}} & =\mathrm{E}_{0} / 2^{\mathrm{t}_{\text {max }}} \\
\mathrm{t}_{\max } & =\log _{2}\left(\mathrm{E}_{0} / \mathrm{E}_{\mathrm{c}}\right)
\end{aligned}
$$

$$
N_{\max }=2^{t_{\text {max }}}=E_{0} / E_{c}
$$

shower max increases logarithmically with E
n. of particles at the max is proportional to E

Shower development

Fundamental for particle physics calorimetry: imagine if $\mathrm{t}_{\max }$ would increase linearly with energy

Atmosphere as a "calorimeter"

shower size N_{e}

Hadronic Showers

At ground mainly $\mathrm{e}^{ \pm}$and photons, muons, neutrinos

- Shower particles mainly $\mathrm{e}^{ \pm}$and photons
($\pi^{ \pm}$interacts or decay, $\pi^{0}->\gamma \gamma$)
$\cdot \approx 90 \%$ of the primary cosmic ray energy is converted to ionization energy
$\bullet \approx 10^{11}$ particles in a $10^{19} \mathrm{eV}$ shower!

Let's detect UHECR showers!

