

BCVSPIN July 2011: Francois Le Diberder University Paris VII CNRS/IN2P3/LAL

# Standard Model Fit Results

- Standard Fit Results
- $-\chi^2_{min} = 16.7$
- 13 degrees of freedom

fitter

- $Prob(\chi^2_{min}, 13) = 0.21$
- Complete Fit Results
- $\chi^2_{\rm min} = 17.6$
- 14 degrees of freedom
- $Prob(\chi^2_{min}, 14) = 0.23$
- Probabilities by pseudo Monte Carlo experiments
- Rb • Improvement in the p- $\Delta \alpha_{had}^{(5)}(M_z^2)$ value of the complete fit
- new result reduces the tension with the direct Higgs boson searches





Time to time one stumbles on a nice discovery, like a new animal species (left X(3872) resonance)

**Figure 1:** The  $J/\psi\pi^+\pi^-$  invariant mass distribution (left) and  $K^+\pi^-$  invariant mass distribution (right) for  $B^0 \to J/\psi\pi^+\pi^-K^+\pi^-$  from Belle. In the  $K^+\pi^-$  distribution only events in X(3872) region are used. The full line shows the fit projection, the dashed blue line represents background, the dashed-dotted shows non-resonant decays with X(3872) signal and the dotted curve shows resonance decays with X(3872) signal.

#### Similarly, the recent discovery of a large Gibbon colony in Vietnam does not change our understanding of the world (although it is very nice news)



# THE TRUTH IS OUT THERE



We know, for sure, that the Standard Model cannot be the end of the Story

We need a reliable compass to find our way towards the new world



Not to mention Dark Energy...

Searching for new phenomena at the LHC Implies dealing with several issues:

1) Underlying event
 2) Pile-up events
 3) Standard Model backgrounds

## **Underlying event**

*My personal contribution to Quantum Field Theory*  Proton in the LHC at 7 TeV CoM Is a Quantum Mechanics Frozen Pizza



# Pizza Pizza collisions



**A typical Pizza-Pizza collision** 

A rare pizza-pizza collision where a "hard" scattering took place

A Pizza-Pizza collision with an example of new physics



#### Example of interesting process

#### Next-to-Next-to-Next... QCD

Underlying event (pizza-pizza)





The interesting (**"hard"**) process is driven by the probability (PDF) that such and such parton (i.e.quarks or gluon) is carrying a fraction x of the proton, when the pizza-pizza collision occurs.

> A very-very long story, with quite numerous dedicated experiments, amongst which the two of DESY did fantastic.

**Pile-up events** 





Galaxy collisions are not that frequent....

Bunch bunch collisions are in the ten-MegaHerz range at LHC...



Relative beam sizes around IP1 (Atlas) in collision

The probability P for a given proton to experience a collision in a bunch-bunch crossing is the ratio of two surfaces

1) The effective surface  $\sigma$  occupied by one proton of one beam (call it the target beam)

divided by

2) the effective surface of the colliding beams  $S_{beam} = \pi R_{beam}^2$  muliplied by

3) N : the number of protons in the (target) beam







So-called pile-up events, superimposed onto the interesting events

The event rate N for a physics process with cross-section  $\sigma$  is proprotional to the collider <u>Luminosity L</u>:



L is the effective area<sup>-1</sup> of the beam, times N, times N (again), times k, times f

# 1380 bunches with 50 ns spacing



# LHC accelerator complex



The LHC needs most of the CERN accelerators...

A few cm long groove in a SPS vacuum chamber after the impact of ~1% of a nominal LHC beam (2 MJ) during an 'incident' **Standard Model events** 

Ignoring factorization scale and renormalization scale subtleties...

$$\sigma_{[ij \to X]} = \int \mathrm{d}x_i f_i(x_i) \int \mathrm{d}x_j f_j(x_j) \ \hat{\sigma}_{[ij \to X]}$$

$$\xrightarrow{\text{Parton Density Function (PDF)}}_{See also lecture-2 of N. Okada}$$
For a given X invariant mass  $m_X^2 = x_i x_j S$  one gets:
$$\frac{\mathrm{d}\sigma_{[ij \to X]}}{\mathrm{d}m_X^2} = \frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}m_X^2} \ \hat{\sigma}_{[ij \to X]}(m_X^2)$$

Where the so-called "parton luminosity function" is:

$$\frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}m_X^2} = \frac{1}{S} \int_{m_X^2/S}^1 \frac{\mathrm{d}x_i}{x_i} f_i(x_i) f_j(x_j = m_X^2/(x_iS))$$

Just need to know the Dirac delta function to get it



Rapidity

$$y \equiv \frac{1}{2} \ln[\frac{E + Pz}{E - Pz}]$$
$$\eta \equiv y_{m \ll E} = -\ln \tan(\theta/2)$$

Interesting because :

- Distributions of events are rather flat in terms of rapidity
- The difference between two rapidities

$$y_1 - y_2 = \Delta y_{12}$$

is z-Lorentz invariant : LHC(lab) $\simeq$ CoM(colliding parton)

Easy to demonstrate, please do it.

### An example of a cross section : quark pair production

(The differential form is more interesting than the integrated one)

$$\frac{\mathrm{d}^3 \sigma_{[ij \to q\bar{q}]}}{\mathrm{d}\mathrm{P}_{\mathrm{T}}^2 \mathrm{d}y \mathrm{d}\bar{y}} = \frac{1}{32\pi} \frac{x_i f(x_i) x_j f(x_j) \Sigma_{ij} (y - \bar{y}, \mathrm{P}_{\mathrm{T}}^2)}{\left((m_q^2 + \mathrm{P}_{\mathrm{T}}^2)(1 + \cosh(y - \bar{y}))\right)^2}$$

- y = rapidity of quark
- $\overline{y}$  = rapidity of antiquark
- P<sub>T</sub>= transverse momentum of quark/antiquark (*the same value in LHC(lab*) *and CoM*)



### An example of a cross section : quark pair production



### An example of a cross section : quark pair production

$$\frac{d^{3}\sigma_{[ij \to q\bar{q}]}}{dP_{T}^{2}dyd\bar{y}} = \frac{1}{32\pi} \frac{x_{i}f(x_{i})x_{j}f(x_{j})\Sigma_{ij}(y-\bar{y},P_{T}^{2})}{\left((m_{q}^{2}+P_{T}^{2})(1+\cosh(y-\bar{y}))\right)^{2}}$$

$$\frac{d^{3}\sigma_{[ij \to q\bar{q}]}}{dP_{T}^{2}dyd\bar{y}} = \frac{1}{32\pi m_{q}^{4}} \frac{r^{2}}{(1+c)^{2}} (x_{i}f(x_{i})x_{j}f(x_{j}))\Sigma_{ij}$$

$$\Sigma_{gg} = \frac{1}{24} \frac{8c-1}{1+c} (c+2r(1-r)) \qquad c \equiv \cosh(y-\bar{y})$$

$$\Sigma_{q\bar{q}} = \frac{4}{9} (c+r) \qquad r \equiv m_{q}^{2}/(m_{q}^{2}+P_{T}^{2})$$

Quite challenging (for me) : do not try it home!




# LHC : Early searches for new phenomena

The great adventure started

Part II

**BCVSPIN July 2011: Francois Le Diberder University Paris VII CNRS/IN2P3/LAL** 











All of which will manifest through the decays into Standard Model particles







#### The analyses themselves needs lot of thinking. The most clever wins (usually). Creativity is welcome!

A detailed account was given for the most important of all : the Higgs search in the previous lectures of R. Hirosky.





#### About 3000 people, working/competing together in teams of 10 to 100



## Et miss

If neutrinos are present in the final state, they will not be detected, but they can be inferred from a lack of balance of the transverse(\*) momentum.

$$\vec{\mathrm{Pt}}_{\mathrm{miss}} = -\sum_{jets} \vec{\mathrm{Pt}}_{jets}$$

 $\mathrm{Et}_{miss} = \|\vec{\mathrm{Pt}}_{\mathrm{miss}}\|$ 

(Or any weakly interacting particle, like some in SuSy (etc.))

Etmiss is a neutrino's smoking gun.

If one assumes that an event contains a W decay, and if one has a detected lepton, then one can compute  $Pz_{miss}$ :

$$m_W^2 = \left(E_l + \sqrt{\mathrm{Et}_{miss}^2 + \mathrm{Pz}_{miss}^2}\right)^2 - \left((\vec{\mathrm{Pt}}_l + \vec{\mathrm{Pt}}_{miss})^2 + (\mathrm{Pz}_l + \mathrm{Pz}_{miss})^2\right)$$

(\*) Only the transverse momentum is considered, since the underlying event takes off a large fraction of the momentum z-component of the two colliding protons



Ht



#### **Systematics**



Reflect uncertainties on the detector responses, the backgrounds, and ... the signal itself. Such uncertainties can shatter the analysis power.

It is a tough and very technical subject, rather boring, but extremely important in practice

## W' duplicate of the Standard Model W



**Copy cat of W production** 



#### No anomaly is observed, thus one sets limits...

From the data (cf. previous plot) one can compute the probability for a given  $m_{W'}$  hypothesis that there was a given number of signal events, on average.

 $\mathcal{P}(N_{ ext{events}}; m_{W'})$ 

Then, one looks for the number

 $N_{\rm events}[95\% CL]$ 

A matter of convention, nothing to understand ... and CL means Confidence Level

For which

$$\mathcal{P}(N_{\text{events}}[95\% CL]; m_{W'}) = 0.05$$

Dividing by the Luminosity, one obtains the limit on the cross-section for a given mass hypothesis  $\sigma[95\% CL] = N_{\rm events}[95\% CL]/\mathcal{L}$ 







Update from last week : 2.1 TeV (and 2.3 TeV from CMS) Similarly a search for a heavy copy-cat of the Z yields : 1.8 TeV (1.9 TeV CMS) The ships are moving very fast, beware!

4<sup>th</sup> generation top, pair production

4<sup>th</sup> Generation of the Standard Model (cf. Lectures of P.Q. Hung)





Kinematics : event should be compatible with a  $t' \bar{t}'$  pair production both decaying into bW, one of the W's leptonically, the other hadronically













In practice, one does a kinematics fit to obtain :  $m_{\rm fit} \equiv m_{t'} = m_{\bar{t}'}$ 

Another handle to fight against The backgrounds is  $\rm\,H_{T}$ 



The bulk of the background is coming from misreconstructed  $t\bar{t}$  pairs


## Top of 4<sup>th</sup> Generation must be heavier than 450 GeV



If it exists, and if it decays mostly through bW





Mini Black Hole production

Can decay in multi-leptons final state: none seen...

Web420,com











## Is the sea empty ?!?!

Next report in one Month at LP 2011, in Mumbai. Stay tune ! Things are moving fast..



