Department of Physics

Introduction to Dark Energy

Douglas Singleton California State University, Fresno

2011 BCVSPIN

Advanced Study Institute in Particle Physics and Cosmology (Hue, Vietnam 25-30 July 2011)

Outline of Lecture

- Description of Dark Energy
- General Relativity and Dark Energy
- Evidence for Dark Energy
- Some Models for Dark Energy
- Summary

Expansion of universe

- Expanding Universe discovered by Hubble in 1929. Hubble's Law v=H₀d (presently H₀ ~ 70 km/(sec-Mpc) ~2.3 x 10⁻¹⁸ sec⁻¹).
- Gave rise to the hot Big Bang model expanding Universe with matter, radiation and maybe spatial curvature (k=0, ±1).
- Ordinary matter/radiation is gravitationally attractive -> expansion rate should slow down (decelerate).

- In 1998 two groups^{*} set out the measure this deceleration rate using type la Supernova as standard candles. The expansion rate was accelerating!!
- The Universe appears to be filled with some field/fluid/stuff which gives gravitational repulsion. This "stuff" is generically called *dark energy*.
- Dark energy appears to be very homogeneously distributed and appears to interact only via gravity.

*S.J. Perlmutter et al., Astroph. J. **517**, 565 (1999) and A.G. Riess et al., Astron. J. **116**, 1009 (1998).

Right: Crab Nebula the remnants of the supernova in 1054

- To give gravitational repulsion dark energy should have negative pressure. Compressing a metal rod is positive pressure; stretching a metal rod is negative pressure/tension
- Example: a cylinder of gas with <u>equation of state</u> (EoS) P=wp, and p assumed fixed. Energy increase due to volume increase is ΔE=p(ΔV)=Work=-P(ΔV)=-wp(ΔV). Thus need w=-1or if p>0 need P<0.

- In an expanding Universe most densities decrease with the size/scale factor of the Universe a(t).
- For matter $\rho_{\text{matter}} \sim a^{-3}$ (decrease in volume).
- For radiation $\rho_{radiation} \sim a^{-4}$ (decrease in volume + redshift).
- Vacuum energy (i.e. a cosmological constant) has ρ_{vacuum} ~ const.
- Data give ρ_{vacuum} ~ (10⁻¹² GeV)⁴ ~10⁻⁴⁸ (GeV)⁴ ~ 10⁹ eV/m³ ~ 10⁻⁸ erg/cm³

- The above ρ_{vacuum} poses two problems: (i) The small size compared to (naïve) QFT predictions (ii) The coincidence problems.
- Summing over the zero modes (i.e. $\frac{1}{2}$ h ω for QM SHO) in QFT fields expansion

$$\rho_{vacuum} \propto \int_{0}^{M} \sqrt{k^2 + m^2} k^2 dk$$

- One must cut-off at some mass scale M since the integral diverges as k⁴
- M=10¹⁹ GeV (Planck scale) → ρ_{vacuum} ~ (10¹⁹ GeV)⁴ ~ 10⁷⁶ (GeV)⁴ ~ 10¹¹² erg/cm³
 M=200-300 MeV (QCD scale) one finds ρ_{vacuum} ~ 10⁻³ (GeV)⁴
- "Only" off by 123 orders of magnitude (or 44 for QCD scale).

 The coincidence problem different densities have different evolutions with respect to *a(t)*. We "happen" to live near the time when vacuum and matter densities are roughly equal. (See graph below Log(density) vs. Log (Temperature)

- A final oddity "unusual" dark energy makes up most of the Universe.
- The Copernican principle pushed to the extreme.

• Cosmological phenomenon like dark energy require general relativity (GR).

 Hubble's observations + Copernican ideas applied to space (not space-time) implies the Friedmann-Robertson-Walker (FRW) metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} d\Omega \right]$$

Note: Slightly different than conventional form a(t)=R(t)/R₀ (dimensionless scale factor); r= R₀ r_{FRW} (dimensionful distance); κ=k/(R₀)² (with k=0, -1, +1)*

*"An Introduction to General Relativity: Spacetime and Geometry" by Sean Carroll

Assume a fluid source for T_{µν}

$$T_{\mu\nu} = (\rho + P)U_{\mu}U_{\nu} + Pg_{\mu\nu}$$

- U^μ = (1,0,0,0) is 4-velocity of fluid in co-moving frame (rest frame of fluid).
- Conservation of energy using covariant derivative $\Delta_{\mu}T^{\mu}_{0}=0$ gives

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a} = -3(1+w)H$$

• Equation of State (EoS) parameter is w=P/p and H=å/a is Hubble Parameter

• If we assume w=const. the EoS can be integrated as

$$ho \propto a^{-3(1+w)}$$

- Assuming energy condition (Null Dominant) for a stable vacuum \rightarrow $|w| \leq 1$.
- For dust, P(dust)=0; w=0; ρ(dust) ~a⁻³
- For radiation, P(rad)=ρ(rad)/3 ; w=1/3 ; ρ(rad) ~a⁻⁴
- For vacuum energy/ Λ , P(Λ)=- $\rho(\Lambda)$; w=-1; $\rho(\Lambda) \sim a^0$
- The coincidence problem $\rho(\Lambda)/\rho(dust) \sim a^3$. Today this ratio is of order 1

Two Friedmann equations coming from GR field equations

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2} \qquad \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) = -\frac{4\pi G}{3}\rho(1 + 3w)$$

- 1st equation → Newtonian energy conservation in 1/r potential; 2nd equation Newtonian F=ma for 1/r² force field.
- 2nd equation implies deceleration unless w<-1/3. Dark energy must have an EoS with w<-1/3
- Observation of Cosmic Microwave background anisotropy indicate κ~0 (spatially flat Universe)

- Now some standard definitions
- <u>Density parameter</u> Ω = 8πGρ/3H² = ρ/ρ_{crit} from 1st Friedmann equation this tells us if Universe is open (Ω<1, κ<0) ; flat (Ω=1, κ=0); closed (Ω>1, κ>0). CMB anisotropy indicates spatially flat.
- <u>Deceleration parameter</u> $q = -a\ddot{a}/\dot{a}^2$

 Deceleration parameter can be used to write 2nd Friedmann equation for a multi-component source (last equation assumes Ω_{matter} + Ω_{DE} =1)

$$q = -\frac{\ddot{a}}{aH^2} = \sum_{i} \frac{4\pi G\rho_i}{3H^2} (1+3w_i) = \frac{1+3w_{DE}\Omega_{DE}}{2}$$

To get acceleration (q<0) one needs w_{DE} < -1/(3[1- Ω_{matter}]) i.e. w_{DE} < -1/3 for Ω_{matter} =0; w_{DE} < -1/2 for Ω_{matter} =1/3;

 Evidence for dark energy first came from observation of type la supernova

 White dwarfs accreting mass from a companion star until they are pushed over the Chandrasekhar limit.

 Very bright and very similar. They make good "standard candles".

 Two groups* measured SN Ia brightness (light flux) versus time from present (redshift z).

$$Flux = \frac{\ell}{4\pi (d_L)^2} \qquad z = \frac{\lambda_{observed} - \lambda_{emit}}{\lambda_{emit}} = \frac{a_{observed}}{a_{emit}} - 1$$

- Absolute brightness = ℓ and d_L is luminosity distance. Note $\omega_o / \omega_e = a_e / a_o$
- For an expanding FRW metric d_L is

$$d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

with

$$H(z) = H_0 \left[\Omega_{0m} (1+z)^3 + \Omega_{0DE} (1+z)^{3(1+w)} \right]^{1/2}$$

*S.J. Perlmutter et al., Astroph. J. **517**, 565 (1999) and A.G. Riess et al., Astron. J. **116**, 1009 (1998).

 Some sample plots of d_L versus z for various splits between matter and dark energy

Actual data from Super Nova Legacy Survey* μ_B =5 log(d_L/ 10 pc)

* P. Astier et al. (SNLS) Astron. Astrophys. J. Supp. **180**, 330 (2006)

 Study of the cosmic microwave background anisotropy (WMAP, Boomerang, Maxima) indicates k~0 or Ω_{matter} + Ω_{DE} ~1.

• SN data is "orthogonal" to CMB measurements which picks out a spot in the (Ω_{matter} , Ω_{DE}) plane

 Baryon acoustic oscillations (BAO) and large scale structure give an independent indications that Ω_m~0.3

• Overall conclusion: A spatially flat Universe (k~0) with $\Omega_m = \Omega_{baryon} + \Omega_{dark-matter} \sim 0.3$ and $\Omega_{DE} \sim 0.7$

- To address coincidence, hierarchy (too fine-tuned and too small Λ) alternative models have been proposed.
- Quintessence models* postulate a spatially homogeneous scalar field $L = \frac{1}{2}\dot{\phi}^2 V(\phi)$
- Tuning the potential (e.g. V~1/φ^a) can give a quintessence field which tracks the dominate energy density (radiation or matter)

*I. Zlatev, L. Wang, and P Steinhardt, PRL **82**, 896 (1999). Named after the pervasive fifth element of Greek science/philosophy.

 Higher dimensional models such as DDG* which have 5D actions like

Action =
$$(M_5)^3 \int_{bulk} R_5 + (m_4)^2 \int_{brane} R_4 + \int_{brane} L_{matter}$$

• These models produce a Hubble parameter

$$H = \sqrt{\frac{8\pi G\rho_m}{3} + \frac{1}{l_c^2}} + \frac{1}{l_c}$$

At late times H→2/ℓ_c → a(t)~exp(2/ℓ_c) i.e.
 de Sitter type accelerated expansion

*C. Deffayet, G. Dvali, G. Gabadadze, PRD **65**, 044023 (2002); C. Deffayet et al. PRD **66**, 024019 (2002)

- Chaplygin gas model* assumes an EoS $P_c = -A/\rho_c$
- Solving energy conservation dE=-PdV → d(ρ_ca³)=-P_c d(a³) gives

$$\rho_c = \sqrt{A + \frac{B}{a^6}}$$

- At early times (a<<1) Chaplygin gas behaves like dust (~a⁻³); at late times (a>>1) it behaves like vacuum energy (ρ_c=-P_c =VA).
- Chaplygin gas models can be obtained from field theory models (quintessence and k-essence models)
- * A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B **511**, 265 (2001)

- Some analysis* of SN Ia data indicate one could have w<-1 which violates the Weak Energy Condition.
- This led Caldwell to propose phantom energy**

$$L = -\frac{1}{2}\dot{\phi}^2 - V(\phi) \qquad \rho = -\frac{1}{2}\dot{\phi}^2 + V(\phi) \qquad P = -\frac{1}{2}\dot{\phi}^2 - V(\phi)$$

- We find w=P/ ρ <-1 if \rightarrow 0<V and d ϕ /dt<(2V)^{1/2}
- Such a theory should have an unstable vacuum but strange observations may require strange theories.

* R. Caldwell Phys. Lett. B 545, 23 (2002); R. Knop, et al. astro-ph/0309368
** After the Star Wars Episode I movie "Phantom Menace"

Conclusions

- Observations of type Ia Supernova indicate that the expansion rate of the universe is accelerating.
- Other observations indicate that Universe is approximately spatially flat
- The cause of this accelerated expansion → dark energy a fluid/field with large negative pressure.
- This mysterious dark energy makes up ~70% of the stuff in the Universe.
- The remaining ~ 30% is split between "ordinary" matter (~5%) and dark matter (25%)
- The nature of dark energy is one of the biggest puzzles current physics.

3-Geometry=Destiny

 In a Universe were Λ=0 (i.e. no vacuum energy) the destiny of the Universe is fixed by the density parameter Ω_m (here S(t) =a(t); time in units of (H₀)⁻¹

