Reactor Neutrino Experiments

Yifang Wang Institute of High Energy Physics Hue, 2011 BCVSPIN

Outline

- History
- Fundamentals
- Current experiments
- Future prospects

- Reines's proposal: use nuclear bombs to detect neutrinos
- Fermi suggested to replace bombs by reactors

Reines experiments

Savannah River experiment

- Anti-coincidence detector to veto cosmic backgrounds
- Detector:
 - A/B: 200 1 CdCl2
 - I/II/III: 1400 1 LS
 - 110 PMT
- 12 m overburden

Direct observation of neutrinos 95 noble prize

Savannah River experiment -----"Observation of neutrino oscillation"

 ³He neutron detectors immersed in 268 kg D₂O tank placed 11.2m m from reactor :

$$\overline{\nu}_e + d < \stackrel{n+n+e^+}{n+p+\overline{\nu}_e} (\operatorname{cc} d)$$

• Neutron signal:

 $n+^{3}He \rightarrow p + ^{3}H + 764 \text{ keV}$

- Single/double neutron rate → ccd/ncd
- Observed R = $r^{exp}_{ccd/ncd}/r^{theo}_{ccd/ncd}$ = 0.40 ± 0.22

11 Meters to Reactor Center Ve Liquid Scintillator 54 cm Anticoincidence Ten ³He Proportiona Counters 122 cm Lead 166 cm D20-Cadmium Sheet (0.1 cm) 7.6cm -10.8cm +30cm

F. Reines et al., PRL 45(1980) 1307

ILL : first debate

- 377 I Liquid scintillator detector placed at 8.7m from reactor
- Neutrons: by 4 ³He planes in between LS cells(τ =150 μ s)
- Techniques used until now: shielding, veto, background, on/off comparison, efficiency, spectrum, stability, etc.
- Source: P. Vogel PRC19(1979)2259
- N_{exp}/N_{theo} = 0.89±
 0.04(stat.)±
 0.14(syst.)

F. Boehm et al., PLB97(1980)310 H.Kwon et al., PRD24(1981)1097

Bugey : a new claim

- Modules made of 98 SS cells, each of 0.85 m long, 8.5 cm × 8.5 cm in cross section, filled with PC based liquid scintillator doped with 0.15% ⁶Li, and viewed by two PMTs at both ends
- Neutron signal (τ = 30 μ s): n+⁶Li \rightarrow ⁴He+³H+4.8MeV E_{vis}= 0.53 MeV + PSD Q_{delayed}/Q_{total}
- Compare neutrino rate at 14 and 18 m from reactors

J.F. Cavaignac et al, Phys. Lett. B 148(1984)387

0.9

0.8

 3σ effect

E(e+) (Mev)

Negative results again by F. Boehm: Goesgen

- Nearly the same Detector as ILL
- Baseline: 37.9, 45.9, 64.7
- Good agreement with expectation: rate and spectrum

Distance (m) Ratio Statistical	Individual	Common (correlated)
error	systematic	systematic error
	error	
37.9 1.030 ±0.019	±0.015	±0.064
45.9 1.056 ±0.018	±0.015	±0.064
64.7 0.987 ±0.037	±0.030	±0.064

V. Zacek et al., PLB164(1985)193

A new era: Atmospheric neutrino anomaly

- Atmospheric neutrino results stimulate new experiments
- San Onofre → Palo Verde (early 90's → 00's)
 - From Goesgen
 - Difficult stories (California Gnatcatcher)
- Chooz (early 90's)
 - From Bugey+Russians
 - a successful story
- New techniques: larger detector, Gd-LS, HEP software & analysis method ...

Each experiment will be introduced shortly

- 32 mwe shielding
- 12 ton, Gd loaded, scintillating target
- 3 reactors: 11.6 GW
- Baselines 890 m and 750 m
- Expected rate of ~20 evts/day
- Efficiency : $\sim 10\%$
- Background : corr. ~15/day

uncorr. ~ 7/day

Palo Verde

Palo Verde

Chooz

- 5 ton, Gd loaded scintillator
- 300 mwe shielding
- Baselines 1115 m and 998 m
- Expected signal ~25 evts/day
- •Efficiency : 70%
- •Background : corr. 1/day uncorr. 0.5/day

1000t scintillators

- Shielding:
- 3000 MWE/3m Water
- 180 km baseline
- Signal: ~0.5/day Eff. ~40%
- BK:
- corr.: ~0.001/day uncorr. ~0.01/day

KamLAND

Neutrino reactors near by Kamioka

Reactor Experiment: comparing observed/expected neutrinos:

Precision of past experiments:

- Reactor power : ~1%
- v spectrum : ~0.3%
- Fission rate : ~ 2%
- Backgrounds : ~1-3%
- Target mass : ~1-2%
- Efficiency : ~2-3%

Fundamentals of reactor neutrino experiments

- Source: expectation and uncertainties
- Neutrino detection
- Backgrounds

How Neutrinos are produced in reactors ?

The most likely fission products have a total of 98 protons and 136 neutrons, hence on average there are 6 n which will decay to 6p, producing 6 neutrinos

Neutrino flux of a commercial reactor with 3 GW_{thermal} : 6×10^{20} / s/

Reactor Neutrino Flux at a Glance

Using PWR (Pressurized Water Reactor) as examples in the following.

Neutrino flux: ILL model and beyond

The method:

- Obtain the Fission rates of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Use measured β spectrum of ²³⁵U, ²³⁹Pu, ²⁴¹Pu
 K. Schreckenbach et al., PLB160(1985)325
 A.A. Hahn et al., PLB218(1989)365
- Use calculated β spectrum of ²³⁸U
 P. Vogel et al., PRC 24(1981)1543
- Convert β spectra to v spectra
 - P. Vogel et al., PRC 76(2007) 025504
 - Inclusive A/Z Corrections
- A fitted empirical spectrum:

e (-0.8747-0.2171E-0.0888E2)

- Recent development: → + ~3%
 - Sum up of 800 isotopes and 10000 branches and taking into account off-equilibrium effects, using MURE/BESTIOLE

T.A. Mueller et al., arXiv[hep-ex] 1101.2663

Detector

- Liquid scintillators is almost exclusively used
 - Being both the target and detector
 - Proton rich material
 - Good energy resolution
 - Easy handling for large volume
 - Relatively Cheap
- LS is often doped to reduce neutron capture time and to increase γ energy → to reduce backgrounds
 → technique challenges: stability and transparency
- Large size: ~ 100 kg → 1000 t → ?

10-40 keV 1.8 MeV: Threshold

Cross sections on target

At tree level, for
$$\overline{V}_e + p = e^+ + n$$

$$\sigma_{\text{tot}}^{(0)} = \frac{2\pi^2/m_e^5}{f_{\text{p.s.}}^R \tau_n} E_e^{(0)} p_e^{(0)} = \frac{G_F^2 \cos^2 \theta_C}{\pi} (1 + \Delta_{\text{inner}}^R) (f^2 + 3g^2) E_e^{(0)} p_e^{(0)},$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \simeq 1 + v_e a(E_\nu)\cos\theta\,,$$

$$a^{(0)} = \frac{f^2 - g^2}{f^2 + 3g^2} \simeq -0.10,$$

Higher order corrections can be found in

P. Vogel et al., PRD60(1999)053003 Strumia-Vissani et al., PLB564(2003)42

Observed neutrino spectrum

Measured reactor neutrino spectrum

In agreement with prediction, No oscillation ! But ...

New analysis: a deficit ?

- New neutrino flux
- New cross section(neutron life time, ...)

G. Mention et al., arXiv [hep-ex]: 1101.2755 Th. Lasserre, talk at NeuTel 11

Backgrounds: Uncorrelated

- Three types: $\gamma \gamma$, γ -neutron, neutron-neutron
- γ's mainly from
 - ²³⁸U, ²³²Th, ⁴⁰K decays
 - ²²²Rn & ⁸⁵Kr in air
- n mainly from
 - cosmic-ray induced spallation process
 - $-(\alpha n)$ interaction
 - Spontaneous fission
 - Evaporation
- How to deal with these backgrounds:
 - Shielding
 - Clean environment \rightarrow challenge for detector construction
 - Measurement
 - Vary time correlation window
 - Swap time correlation components

Backgrounds: Correlated

- Chained decays
 - $-^{214}\text{Bi} \rightarrow ^{214}\text{Po}(164 \ \mu \ s) \rightarrow ^{210}\text{Pb}(E_{\alpha}=7.7/6.9 \text{ MeV})$
 - In ²²²Rn chain : ²¹⁰Po \rightarrow ²⁰⁶Pb(E_a=5.3 MeV)
 - → ¹³C(α,n)¹⁶O
- Cosmic-ray induced n In shielding materials

Y.F. Wang et al., PRD64(2001)013012

M.G. Marino et al, NIM A582(2007)611

Cosmic-ray induced n-emitting isotopes in LS

⁸He (τ = 171.7 msec): β^- + n ⁹Li (τ = 257.2 msec): β^- + n

T. Hagner et al., Astroparticle Physics 14(2000)33

Experiments under construction

- Measuring θ_{13}
- Evolution of ideas
- Experiments under construction
 - Double Chooz
 - Reno
 - Daya Bay

Neutrino oscillation: PMNS matrix

If Mass eigenstates ≠ Weak eigenstates → Neutrino oscillation Oscillation probability :

P(v 1 − > v 2) $\propto sin^2(1.27\Delta m^2 L/E)$ Atmospheric crossing : CP 与 solar β $\mathbf{V} = \begin{pmatrix} \mathbf{i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{c_{23}} & \mathbf{s_{23}} \\ \mathbf{0} & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} \begin{pmatrix} \mathbf{i}^{13} & \mathbf{0} & \mathbf{s_{13}} \\ \mathbf{c_{13}} & \mathbf{0} & \mathbf{s_{13}} \\ \mathbf{0} & \mathbf{e^{-i\delta}} & \mathbf{0} \\ -\mathbf{s_{13}} & \mathbf{0} & \mathbf{c_{12}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{12}} & \mathbf{s_{12}} & \mathbf{0} \\ -\mathbf{s_{12}} & \mathbf{c_{12}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{e^{i\rho}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{e^{i\sigma}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$ EXO Homestake Super-K Daya Bay Genius Gallex K2K **Double Chooz CUORE SNO** Minos NOVA NEMO... KamLAND **T2K**

A total of 6 parameters: $2 \Delta m^2$, 3 angles, 1 phases + 2 Majorana phases

Current Knowledge of θ_{13}

Direct search PRD 62, 072002

M.C. Gonzalez-Garcia et al., JHEP1004:056,2010

G.L.Fogli et al., J.Phys.Conf.Ser.203:012103

- No good reason(symmetry) for $sin^22\theta_{13}=0$
- Even if $\sin^2 2\theta_{13} = 0$ at tree level, $\sin^2 2\theta_{13}$ will not vanish at low energies with radiative corrections
- Theoretical models predict $\sin^2 2\theta_{13} \sim 0.1-10 \%$

T2K Indication

- 6 v $_{\rm e}$ events, 1.5± 0.3 bkg expected. (1.43× 10²⁰ POT)
 - θ_{13} non-zero probability 99.3% (2.5 σ significance)

MINOS

Results on appearance of electron-neutrinos with 8.2x10²⁰ POT

For $\delta_{CP} = 0$ the allowed values of $2\sin^2(2\theta_{13})\sin^2(\theta_{23})$ at 90% CL are:

0 to 0.12 (normal) central value: 0.04 0 to 0.19 (inverted) central value: 0.08

Expected background events: 49.5 ± 2.8 (syst) ± 7.0 (stat)

Observed events in FD data: 62

 1.7σ excess above background

24 June 2011

MINOS 2011 Highlights

Why at reactors

- Clean signal, no cross talk with δ and matter effects
- Relatively cheap compare to accelerator based experiments

First idea: Kr2Det

- Krasnoyarsk underground reactor
- Near-far cancellation

L.A. Mikaelyan et al., hep-ex/9908047 V. Martemyanov et al., hep-ex/0211070

PMT type EMI 9350 Diameter - 8 inches

Proposed sites/experiments

Site	Power	Baseline	Detector	Overburden	Sensitivi
(proposal)	(GW)	Near/Far (m)	Near/Far(t)	Near/Far (MWE)	ty
Angra(Brazil)	4.1	300/1500	50/500	200/1700	0.005
Braidwood (US)	6.5	270/1800	50/50	450/450	0.01
Double Chooz (France)	8.4	400/1050	10/10	115/300	0.03
Daya Bay (China)	11.6	350/1800	2*20+2*20/4 *20	250/1200	0.01
Diablo Canyon (US)	6.4	400/1800	25/50	100/700	0.01
Kashiwazaki (Japan)	24.3	350/1300	8.5/8.5	300/300	0.02
Krasnoyarsk (Russia)	3.2	115/1000	46/46	600/600	0.03
Reno(Korea)	17.3	150/1500	20/20	230/675	0.02

Race to measure θ_{13}

P. Huber, M. Lindner, T. Schwetz, W. Winter JHEP 0911:044,2009, arXiv:0907.1896,

Only three survived

- How they all get here ?
- Coincidence ? all other designs disappeared

Double Chooz detector

Outer Veto (Plastic scint.)

- Identification of cosmic-ray $\boldsymbol{\mu}$

Inner Veto (90m³ Liquid scint.&78 PMTs)

- Detection of cosmic-ray μ and fast neutrons
- Steel vessel & PMT support structure

 Buffer (110m³ Mineral oil & 390 PMT's)
 Reduction of fast neutron and environmental γ from outside

Acrylic vessel

 γ-catcher(22.3m³ Liquid scintillator)
 Measurement of γ's from n-capture by Gd in target volume

v-target

(10.3m³ Gd loaded (1g/l) liquid scint.)
Target for neutrino signals

Construction @ DC far lab.

Buffer PMT installed

PMT ID: 10" x 390PMTs

(Hamamatsu R7081 MOD (low-BG for DC)) IV: 8" x 78PMTs (Hamamatsu R1408)

Target and γ-catcher acrylic vessels installed

RENO

15

, 2005.01.28 14:52

Schematic View of Reno

RENO & sensitivity

- 354 10" Inner PMTs : 14% surface coverage
- 67 10" Outer PMTs

	Inner Diameter (cm)	Inner Height (cm)	Filled with	Mass (tons)
Target Vessel	280	320	Gd(0.1%) + LS	16.5
Gamma catcher	400	440	LS	30.0
Buffer tank	540	580	Mineral oil	64.4
Veto tank	840	880	water	352.6

Daya Bay reactor neutrino experiment

- Second largest reactor complex: 5 reactor cores operational, 1 more this year, 17.4 GW in total
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds
- Challenges: how to reach 1% ?
 - design + good conditions

How to reach 0.5% precision ?

- Increase statistics:
 - Powerful nuclear reactors(1 GW_{th}: 6 x 10²⁰ v_{e}/s)
 - Larger target mass
- Reduce systematic uncertainties:
 - Reactor-related:
 - Optimize baseline for the best sensitivity
 - Near and far detectors to minimize reactor-related errors
 - Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive programs for the detector calibration
 - Interchange near and far detectors (optional)
 - Background-related
 - Go deep to reduce cosmic-induced backgrounds
 - Enough active and passive shielding

The plan to reach the precision

- Near-Far relative mea. to cancel correlated syst. err.
 - 2 near + 1 far
- Multiple modules per site to reduce uncorrelated syst. err. and cross check each other
 - 2 at each near site and 4 at far site
- Multiple muon veto detectors at each site to reach highest possible eff. for reducing syst. err. due to backgrounds

Central Detector modules

- Three zones modular structure:
 - I. target: Gd-loaded scintillator
 II. γ-catcher: normal scintillator
 III. Buffer shielding: oil
- 192 8"PMT/module

Target: 20 t, 1.6m γ-catcher: 20t, 45cm Buffer: 40t, 45cm

Water Buffer & VETO

- 2.5 m water buffer to shield backgrounds from neutrons and γ's from lab walls
- Cosmic-muon VETO Requirement:
 - Inefficiency < 0.5%</p>
 - known to <0.25%</p>
- Solution: multiple detectors
 - cross check each other to control uncertainties
- Design:
 - 4 layers of RPC at TOP +
 - 2 layers of water detector

Calibration and Monitoring

- Source calibration: energy scale, resolutions, ...
 - Deployment system
 - Automatic: quick but limited space points
 - Manual: slow but everywhere
 - Choices of sources: energy(0.5-8 MeV), activity(<1KHz), γ/n ,...
 - Cleanness
- Calibration with physics events:
 - Neutron capture
 - Cosmic-rays
- LED calibration: PMT gain, liquid transparency, ...
- Environmental monitoring: temp., voltage, radon, …
- Mass calibration and high precision flow meters
- Material certification

Background related error

	Daya Bay Near	Ling Ao Near	Far Hall
Baseline (m)	363	481 from Ling Ao	1985 from Daya Bay
		526 from Ling Ao II	1615 from Ling Ao's
Overburden (m)	98	112	350
Radioactivity (Hz)	<50	<50	<50
Muon rate (Hz)	36	22	1.2
Antineutrino Signal (events/day)	930	760	90
Accidental Background/Signal (%)	< 0.2	< 0.2	< 0.1
Fast neutron Background/Signal (%)	0.1	0.1	0.1
⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2

Sensitivity to Sin²20 ₁₃

Prototype

- Motivation
 - Validate the design principle
 - Test technical details of tanks
 - Test Gd-LS
 - Test calibration procedure and Pu-C source
- Achievements
 - Energy response & MC Comparison
 - Reconstruction algorithm
 - Neutron response & Pu-C source
 - Effects of reflectors

Civil construction

水池

1[#]实验厅

避难室

电子学间

水净化室

黄河勘测规划设计有限公司

AD assembly

Top reflector

AD Dry-run

- Complete test of assembled ADs with final electronics, trigger and DAQ
- Results show that:
 - Both ADs are fully functional
 - Their response to LED & cosmicrays agrees with MC expectations
 - Two ADs are identical
 - Electronics, trigger, DAQ and offline software are all tested

Gd-Loaded LS production at Daya Bay

- Chemical procedures
- Procurement of high quality materials & Purification of PPO/Gdcl3/TMHA
- Gd-compound production & Gd-LS production

Gd-LS production Equipment tested at IHEP, used at Dayabay

AD filling

- Requirement: precision mass, equal liquid level and tem., chemical compatibility, ...
- Equipment designed, manufactured and fully tested at UW, Madison, re-assembled at Daya Bay Hall 5
- Two ADs have been successfully filled

AD and muon detector installation

RPC installation

Near site water filling will start in a few days, Data taking in a few weeks, full data taking next summer

Daya Bay collaboration

Antarctica

Zhongshan Univ., Hong Kong Univ. Chinese Hong Kong Univ., Taiwan Univ., Chiao Tung Univ., National United Univ.

Univ. of Illinois-Urbana-Champaign,

~ 200 collaborators

Future prospects

Neutrino mass hierarchy

- Three unknowns in neutrino oscillation:
 - 1. delta-CP phase
 - 2. theta13 value
 - 3. mass hierarchy

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.6	7.3 - 8.1	7.1 - 8.3
$ \Delta m^2_{32} [10^{-3} {\rm eV}^2]$	2.4	2.1 - 2.7	2.0 - 2.8
$\sin^2 \theta_{12}$	0.32	0.28 - 0.37	0.26 - 0.40
$\sin^2 \theta_{23}$	0.50	0.38 - 0.63	0.34 - 0.67
$\sin^2 \theta_{13}$	0.007	≤ 0.033	≤ 0.050

Measuring Mass Hierarchy

- Long baseline accelerator neutrinos
 - Through Matter effects
 - Project-X/LBNE in Fermilab/BNL ?
- Atmospheric neutrinos
 - Very weak signal, need huge detector
- Reactor neutrinos
 - Method: distortion of energy spectrum PR
 - Enhance signature: Transform reactor neutrino L/E spectrum to frequency regime using Fourier formalism
 - need Sin²(2θ 13) > 0.02
 - Need to know $\Delta M^2_{_{23}}$

S.T. Petcov et al., PLB533 (2002)94;S.Choubey et al., PRD68(2003)113006

J. Learned, PRD 78(2008)071302

Features of Mass Hierarchy

A different Fourier formalism:

$$FST(\omega) = \int_{t_{min}}^{t_{max}} F(t) \sin(\omega t) dt$$
$$FCT(\omega) = \int_{t_{min}}^{t_{max}} F(t) \cos(\omega t) dt$$

- Clear distinctive features:
 - FCT:
 - NH: peak before valley
 - IH: valley before peak
 - FST:
 - NH: prominent peak
 - H: prominent valley
- Better than power spectrum
- No pre-condition of Δm^2_{23}

L. Zhan et al., PRD78(2008)111103

Quantify Features of FCT and FST

• To quantify the symmetry breaking, we define:

$$RL = \frac{RV - LV}{RV + LV}, \ PV = \frac{P - V}{P + V}$$

- RV/LV: amplitude of the right/left valley in FCT
- P/V: amplitude of the peak/valley in FST
- For asymmetric P_{ee}
 - NH: RL>0 and PV>0
 - IH: RL<0 and PV<0</p>

Two clusters of RL and PV values show the sensitivity of mass hierarchy determination

Baseline: 46-72 km Sin²(2 θ_{13}): 0.005-0.05 Others from global fit

L. Zhan et al., PRD78:111103,2008

In reality

L. Zhan, et. al., Phys.Rev.D79:073007,2009

A possible Future Neutrino Experiment for mass hierarchy

Detector: 10-50kt liquid scintillator
Energy reso.: 2-3%
Scientific goal
Mass hierarchy

- Precision meas. of mixing matrix elements
- ➡ Supernovae
- ➡ Geo-neutrino
- Atmospheric neutrinos
- ➡ Sterile neutrinos
- ➡ Exotic searches

A possible location

Detector concept

- Neutrino target: ~20kt LS, LAB based 30m(D)× 30m(H)
- Oil buffer: 6kt
- Water buffer: 10kt
- PMT: 15000 20"

Technical challenges

- Requirements:
 - Large detector: >10 kt LS
 - Energy resolution: 2%/√ E → 2500 p.e./MeV
- Ongoing R&D:
 - Low cost, high QE "PMT"
 - New type of PMT

20" UBA/SBA photocathode PMT is also a possibility

Now:

1kt

- − Highly transparent LS: 15m → >25m
 - Understand better the scintillation mechanism
 - Find out traces which absorb light, remove it from the production

A new type of PMT: high photon detection eff.

- > Top: transmitted photocathode
- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP to replace Dynodes no blocking of photons
 - ~ × 2 improvement

Reactor neutrinos are powerful

- A powerful man-made source
 - If not too far, more powerful than solar, atmospheric, and accelerator neutrinos
- A well understood source $(2\% \rightarrow \sim 0.1\%)$
 - Better than solar(~5-10%), atmospheric(~10%), and accelerator(~5-10% → 2-3% ??) neutrinos
- Adjustable baseline
 - Of course, accelerator can do it also, but
- A free neutrino factory

If we can spend (0.1-0.5)B\$ for each B/C/superB factories to understand U_{CKM} (~ 1-2 elements for each factory), why not a super-reactor neutrino experiment(~ 3 elements) to understand U_{PMNS} ?

For sure it is not the end of story

Rome, Cimitero Acattolico

Many problems for you to solve

- A bright future for you
- you are (never) not too late