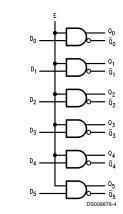
FAIRCHILD

100324 Low Power Hex TTL-to-ECL Translator

General Description

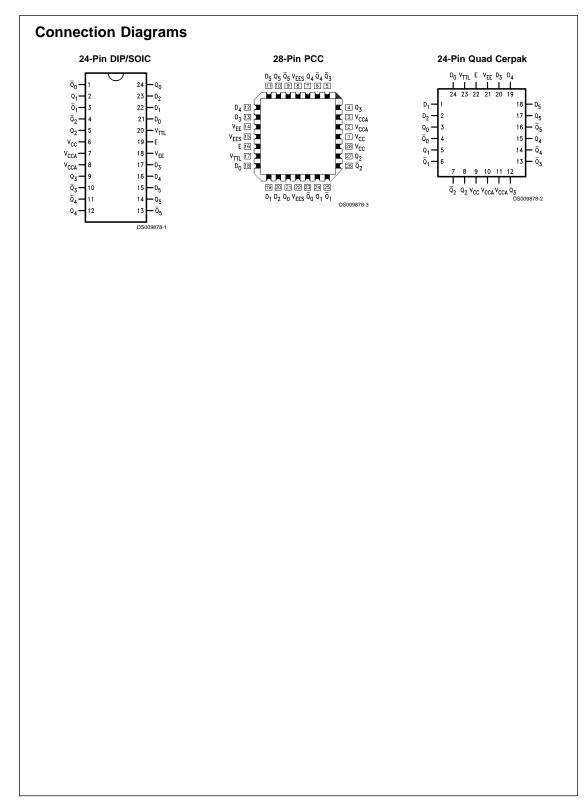
The 100324 is a hex translator, designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. The output levels are voltage compensated over the full –4.2V to –5.7V range.

When the circuit is used in the differential mode, the 100324, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The $V_{\rm EE}$ and $V_{\rm TTL}$ power may be applied in either order.


The 100324 is pin and function compatible with the 100124 with similar AC performance, but features power dissipation roughly half of the 100124 to ease system cooling requirements.

Features

- Pin/function compatible with 100124
- Meets 100124 AC specifications
- 50% power reduction of the 100124
- Differential outputs
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Available to MIL-STD-883
- Available to industrial grade temperature range


March 1998

Ordering Code: Logic Diagram

Pin Names	Description
D ₀ -D ₅	Data Inputs
E	Enable Input
Q ₀ -Q ₅	Data Outputs
$\begin{array}{c} Q_0 - Q_5 \\ \overline{Q}_0 - \overline{Q}_5 \end{array}$	Complementary
	Data Outputs

© 1998 Fairchild Semiconductor Corporation DS009878

Absolute Maximum Ratings (Note 1)

Above which the useful life may be imp	aired.
Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
Plastic	+150°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
V_{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V
Input Voltage (DC)	-0.5V to +6.0V
Output Current (DC Output HIGH)	–50 mA
ESD (Note 2)	≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Military	-55°C to +125°C
Supply Voltage (V _{EE})	-5.7V to -4.2V
Note 1: Absolute maximum ratings are those vice may be damaged or have its useful life under these conditions is not implied.	

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to +85°C, $V_{TTL} = +4.5V$ to +5.5V

Symbol	Parameter	Min	Тур	Max	Units	Condi	tions
V _{он}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with
V _{OL}	Output LOW Voltage	-1830	-1705	-1620		or V _{IL (Min)}	50Ω to -2.0V
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH(Min)}$	Loading with
V _{OLC}	Output LOW Voltage			-1610		or V _{IL (Max)}	50Ω to -2.0V
VIH	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH	
						Signal for All Inputs	5
VIL	Input LOW Voltage	0		0.8	V	Guaranteed LOW	
						Signal for All Inputs	5
V _{CD}	Input Clamp Diode Voltage	-1.2			V	I _{IN} = -18 mA	
IIH	Input HIGH Current					$V_{IN} = +2.4V,$	
	Data			20	μA	All Other Inputs VIN	I = GND
	Enable			120			
	Input HIGH Current			1.0	mA	V _{IN} = +5.5V,	
	Breakdown Test, All Inputs					All Other Inputs = 0	GND
I	Input LOW Current					V _{IN} = +0.4V,	
	Data	-0.9			mA	All Other Inputs VIN	I = VIH
	Enable	-5.4					
I _{EE}	V _{EE} Power Supply Current	-70	-45	-22	mA	All Inputs V _{IN} = +4.	0V
ITTL	V _{TTL} Power Supply Current		25	38	mA	All Inputs V _{IN} = GN	ID

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electric Characteristics

 $V_{\rm EE}$ = -4.2V to -5.7V, $V_{\rm CC}$ = $V_{\rm CCA}$ = GND, $V_{\rm TTL}$ = +4.5V to +5.5V

Symbol	Parameter	T _c =	$T_{C} = 0^{\circ}C$		T _C = +25°C		+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max]	
t _{PLH}	Propagation Delay	0.50	3.00	0.50	2.90	0.50	3.00	ns	
t _{PHL}	Data and Enable to Output								Figures 1, 2
t _{TLH}	Transition Time	0.45	1.80	0.45	1.80	0.45	1.80	ns	
t _{THL}	20% to 80%, 80% to 20%								

Symbol	Parameter	T _c =	T _c = 0°C		T _C = +25°C		T _c = +85°C		Conditions
		Min	Max	Min	Max	Min	Max	1	
t _{PLH}	Propagation Delay	0.50	2.80	0.50	2.70	0.50	2.80	ns	
t _{PHL}	Data and Enable to Output								Figures 1, 2
t _{TLH}	Transition Time	0.45	1.70	0.45	1.70	0.45	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%								
t _{oshl}	Maximum Skew Common Edge								PCC Only
	Output-to-Output Variation		0.95		0.95		0.95	ns	(Note 4)
	Data to Output Path								
t _{oslH}	Maximum Skew Common Edge								PCC Only
	Output-to-Output Variation		0.70		0.70		0.70	ns	(Note 4)
	Data to Output Path								
t _{ost}	Maximum Skew Opposite Edge								PCC Only
	Output-to-Output Variation		1.60		1.60		1.60	ns	(Note 4)
	Data to Output Path								
t _{PS}	Maximum Skew								PCC Only
	Pin (Signal) Transition Variation		1.20		1.20		1.20	ns	(Note 4)
	Data to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (t_{OSHL}), or LOW to HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

PCC DC Electrical Characteristics (Note 5)

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -40°C to +85°C, V_{TTL} = +4.5V to +5.5V

Symbol	Parameter	T _c =	–40°C	T _C = 0°C	to +85°C	Units	Cond	itions
		Min	Max	Min	Max			
V _{он}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH (Max)}	Loading with
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620		or V _{IL (Min)}	50Ω to −2.0V
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$	Loading with
V _{OLC}	Output LOW Voltage		-1565		-1610		or V _{IL (Max)}	50Ω to −2.0V
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Guaranteed HIG	iΗ
							Signal for All Inp	outs
VIL	Input LOW Voltage	0	0.8	0	0.8	V	Guaranteed LO	N
							Signal for All Inp	outs
V _{CD}	Input Clamp Diode Voltage	-1.2		-1.2		V	I _{IN} = -18 mA	
I _{IH}	Input HIGH Current						$V_{IN} = +2.4V,$	
	Data		20		20	μA	All Other Inputs	V _{IN} = GND
	Enable		120		120			
	Input HIGH Current		1.0		1.0	mA	V _{IN} = +5.5V,	
	Breakdown Test, All Inputs						All Other Inputs	= GND
I _{IL}	Input LOW Current						$V_{IN} = +0.4V,$	
	Data	-0.9		-0.9		mA	All Other Inputs	$V_{IN} = V_{IH}$
	Enable	-5.4		-5.4				
I _{EE}	V _{EE} Power Supply Current	-70	-22	-70	-22	mA	All Inputs V _{IN} =	+4.0V
ITTL	V _{TTL} Power Supply Current		38		38	mA	All Inputs V _{IN} =	GND

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

 $V_{FF} = -4.2V$ to -5.7V. $V_{CC} = V_{CCA} = GND$. $V_{TT} = +4.5V$ to +5.5V

Symbol	Parameter	$T_{C} = -40^{\circ}C$		T _C = +25°C		T _c =	+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1, 2
t _{PHL}	Data and Enable to Output								
t _{TLH}	Transition Times	0.35	1.80	0.45	1.70	0.45	1.70	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%								

Military Version

DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55^{\circ}C$ to +125°C, $V_{TTL} = +4.5V$ to +5.5V

Symbol	Parameter	Min	Max	Units	т _с	Condit	ions	Notes
V _{OH}	OH Output HIGH Voltage		-870	mV	0°C to +125°C	V _{IN} = V _{IH} (Max) or V _{IL} (Min)	Loading with 50Ω to -2.0V	(Notes 6, 7, 8)
		-1085	-870	mV	–55°C	-		
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C			
		-1830	-1555	mV	–55°C	-		
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C	V _{IN} = V _{IH} (Max) or V _{IL} (Min)	Loading with 50Ω to -2.0V	(Notes 6, 7, 8)
		-1085		mV	–55°C	-		
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	-		
			-1555	mV	–55°C			
V _{IH}	Input HIGH Voltage	2.0	5.0	V	–55°C to +125°C	Over V _{TTL} , V _{EE} , T _C	Range	(Notes 6, 7, 8, 9)
V _{IL}	Input LOW Voltage	0.0	0.8	V	–55°C to +125°C	Over V_{TTL} , V_{EE} , T_C Range		(Notes 6, 7, 8, 9)
I _{IH}	Input HIGH Current		20	μA	–55°C to +125°C	V _{IN} = +2.7V V _{IN} = +7.0V		(Notes 6, 7, 8)
	Breakdown Test		100	μA	-55°C to +125°C			1
I _{IL}	Input LOW Current							
	Data	-0.9		mA	–55°C to +125°C	$V_{IN} = +0.4V$		(Notes 6, 7, 8)
	Enable	-5.4						
V _{FCD}	Input Clamp		-1.2	V	–55°C to +125°C	I _{IN} = -18 mA		(Notes 6, 7, 8)
	Diode Voltage							
I _{EE}	V _{EE} Power	-70	-22	mA	–55°C to +125°C	All Inputs V _{IN} = +4.0)V	(Notes 6, 7, 8)
	Supply Current							
ITTL	V _{TTL} Power		38	mA	–55°C to +125°C	All Inputs V _{IN} = GNI	2	(Notes 6, 7, 8)
	Supply Current							

Note 6: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 7: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 8: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 9: Guaranteed by applying specified input condition and testing $V_{OH}\!/\!V_{OL}$.

AC Electrical Characteristics

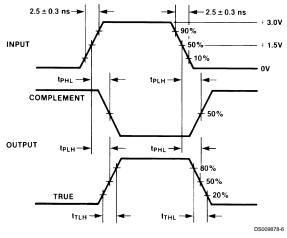
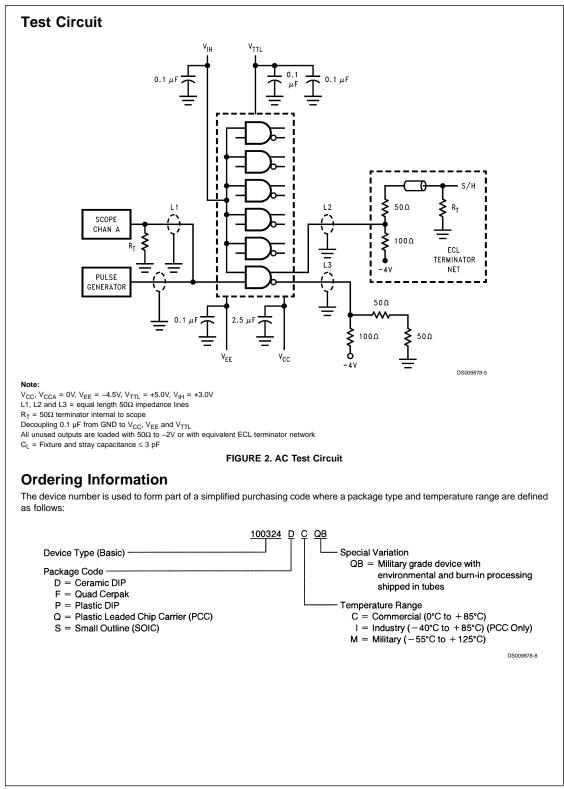
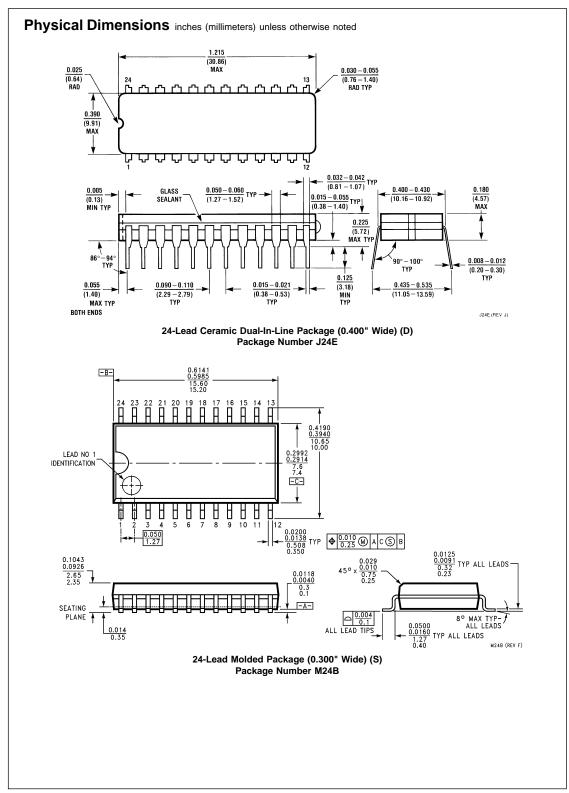
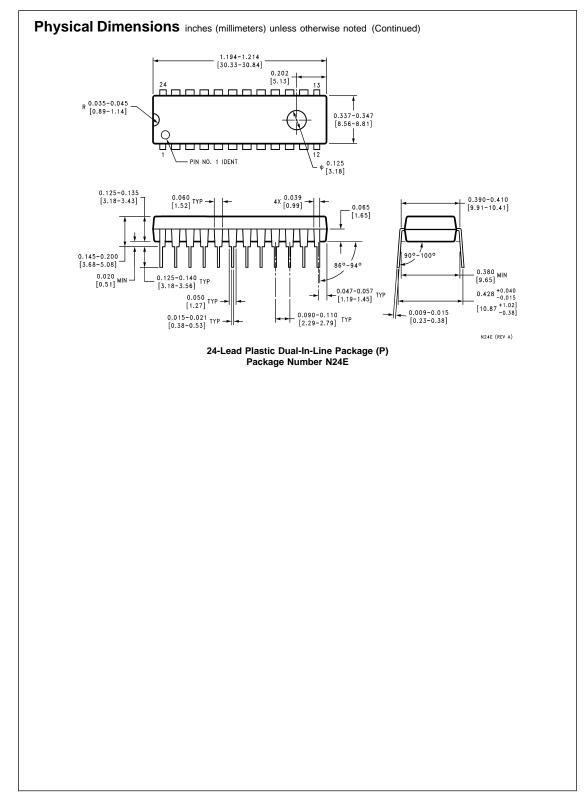
Symbol	Parameter	T _C =	T _C = -55°C		T _C = +25°C		T _C = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.50	3.00	0.50	2.90	0.30	3.30	ns		(Notes 10, 11, 12)
t _{PHL}	Data and Enable to Output								Figures 1, 2	
t _{TLH}	Transition Time	0.35	1.80	0.45	1.80	0.45	1.80	ns		(Note 13)
t _{THL}	20% to 80%, 80% to 20%									
Note 10:	F100K 300 Series cold temperature	testing is p	erformed b	by tempera	ature soaki	ng (to gua	rantee jun	tion tempe	erature equals -55°	C), then testing immedi
	power-up. This provides "cold start	" choos whi	ch can ha	considere	h a woret i	ase condi	tion at cold	d temperati	ires	

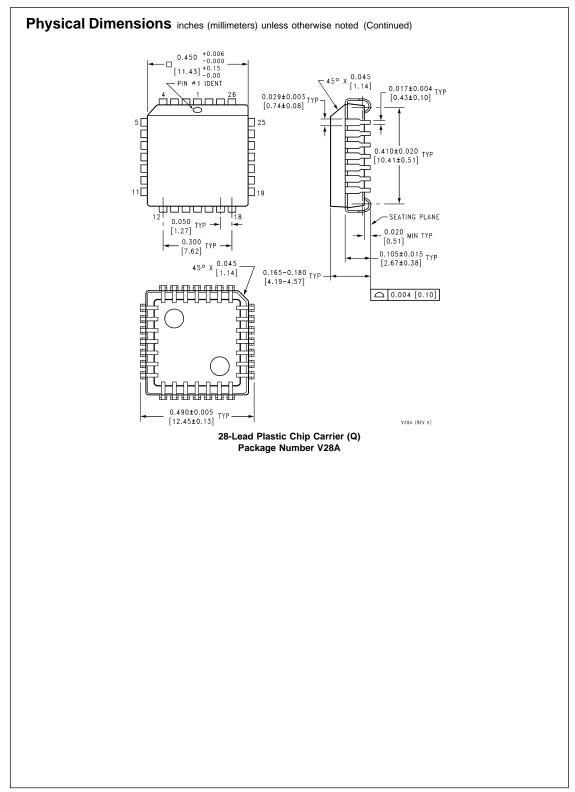
lethod 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and –55°C temperatures

AC Electrical Characteristics (Continued)

Note 13: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Switching Waveform


FIGURE 1. Propagation Delay and Transition Times

