
L2�eta Design Report

A replacement and upgrade path for D� Level 2 processor cards

Bob Hirosky

University of Virginia

Drew Baden

University of Maryland

Philippe Cros, Bernard Lavigne, Pierre Petro�

Laboratoire de l'Acc�el�erateur Lin�eaire

version 2.0.0

July 21, 2001

The most recent version of this note may be found at the L2�eta website:

http://galileo.phys.virginia.edu/�rjh2j/l2beta

Contents

1 Introduction 2

2 Motivation 2

3 The L2�eta Strategy 4

4 Hardware Overview 6

4.1 L2�eta SBC . 6

4.2 L2�eta 9U Adapter . 6

5 System Requirements 7

5.1 Processing Power . 7

5.2 Linux/RT Unix Operating System . 8

5.3 VME, TSI, MBus Devices . 8

5.3.1 Hardware Requirements . 9

5.3.2 Functional Requirements . 9

5.4 VME Interface . 11

5.4.1 Registers . 11

5.4.2 Description of Operation . 11

5.5 Mechanical and Electrical . 12

1

6 Software 13

6.1 Operating system, compiler, build environment . 13

6.2 Device Driver Software . 13

7 Firmware 14

7.1 PLX 9656 general con�guration . 14

7.2 Add-on Bus Firmware . 15

7.3 MBus I/O and Arbitration Firmware . 18

7.4 DMA Firmware Functions . 18

7.4.1 Description of DMA operation . 19

7.5 PIO Firmware Functions . 21

7.5.1 Con�guration . 21

7.5.2 PCI Transactions . 21

7.5.3 Magic Bus Transactions . 23

7.5.4 DMA vs. PIO Priorities . 25

7.6 TSI Firmware Functions . 25

7.6.1 Description of Operation . 25

7.6.2 D� Trigger Signals . 26

7.6.3 Communication with Global Level 2 . 26

7.6.4 Monitoring of Magic Bus Status Lines . 26

7.6.5 Summary of new i/o functionality . 27

7.7 VME and Scaler Firmware . 30

7.8 Spy and Con�guration Channels . 30

8 Future Upgrade Paths 30

9 Acknowledgements 30

10 Document History 31

1 Introduction

This document details a more contemporary model for the construction of the Level 2 processor

cards. The new cards will be fully compatible with the present system components, including the

L2Alpha processors. Additionally, this design provides a path to upgrade Level 2 with increased

processing power and greater data throughput. The new design o�ers a minimum of engineering

e�ort, and, through use of standard industrial processor cards and modern FPGAs, will provide a

more
exible, upgradable, and more easily commissioned system.

2 Motivation

There are a number reasons motivating this new design of the Level 2 processor cards:

1. to quickly provide trigger processors to supplement shortfalls in available alpha boards;

2. to develop a source of processors for long term maintenance of the trigger;

2

3. to provide processing performance improvements during Run II for nodes that may su�er in

performance at peak luminosities or for subsystems demanding more complex trigger process-

ing;

4. and to develop a platform campatible with future enhancements for the higher luminosity

running of Run IIb.

Any modernization or upgrade path using a monolithic processor card model would require

an engineering e�ort equally large as the original L2Alpha e�orts, if a more modern, but similar

approach were pursued. Any such implementation would obviously su�er the fate of rapid obso-

lescence1 as all modern computing devices. Furthermore, the prototyping and veri�cation of the

design would prove diÆcult (especially when considering faster clock speeds in more modern CPUs),

expensive (in terms of engineering and prototyping), and taxing of manpower resources.

While the 500MHz Alpha CPUs were superior in performance at the genesis of the project they

no longer dominate the alternatives and are now surpassed by the latest processors. Our current

processor boards as implemented cannot bene�t from this march of technology.

At highest luminosities, the current system may be limited by CPU performance as more chan-

nels cross thresholds for clustering or �tting. Anticipating little room to improve the CPU eÆciency

of our trigger algorithms, there are several possibilities for dealing with data requiring with greater

CPU performance than the L2Alphas can provide:

� Increase seed thresholds. For example, in the Calorimeter Electron and Jet Preprocessors [4],

seed thresholds are �xed in hardware at Level 1, but higher software thresholds could be

imposed in the processor code. The e�ect of this would be to reduce eÆciency, especially for

lower PT objects.

� Increase the Level 1 trigger threshold or prescale. Again eÆciencies are signi�cantly lowered.

� Remove functionality from the algorithm. This further taxes the Level 3 trigger by decreasing

background rejection at Level 2. The resulting functionality loss may combine with input

bandwidth limitations to Level 3 to force raising thresholds at Level 1 or Level 2, also lowering

eÆciency.

� Add more Worker CPUs. It is possible to add additional workers to the Level 2 crates.

In the case of certain detector preprocessors, the algorithm may be parallelized in a fairly

straightforward manner by splitting the detector into distinct regions. This is a viable solution

in certain cases and some contingency for extra parallelism has been built into the number of

processor boards manufactured. However, this approach is ultimately limited as an upgrade

path for Level 2, because of the �nite numbers of processor boards available and also due to

space limitations in the Level 2 crates.

Not all processing can bene�t in direct proportion to the amount of parallelization in the

hardware. This is the case where an algorithm must correlate information across an event. The

Level 2 global worker may be duplicated so that each worker processes separate events or a single

event's processing may be partially parallelized between workers. The advantages in the former

1In fact, given the rapid evolution of computer electronics, it would be diÆcult to complete a prototyping to

production cycle without �nding that various components have gone obsolete prior to �nal assembly.

3

case are limited by the need to report trigger decisions in the order in which events arrive (\worst

of `n' performance," see Fig. 1) and in the latter case by Amdahl's law [5]. In such cases direct

gains in single CPU processing power are the most e�ective means to improve performance2.

Figure 1: Timing results for a scenario with two Global Level 2 workers handling alternating events

compared to a single worker system (from Level 2 Global TDR [5]). Since this is an N = 2

serializing farm, a full factor of 2 gain is not attainable.

Comment on new uses for increased CPU. For example n-1,n,n+1 detangling of events - Kt,

moving cone processing, etc.

3 The L2�eta Strategy

In order to buttress the long term performance and reliability of the D� Level 2 trigger, we

propose a processor system compatible with future performance upgrades and allowing for long term

replacement of system components. Rather than attempt a redesign of the entire processor board,

we instead prefer to implement a system using a more modular approach, taking full advantage

of industry-standard components and upgrade paths. We follow the same conceptual design for

the function of the board in our Level 2 system (moreover we require both hardware and software

compatibility between both Alphas and �etas). However, this implementation replaces the CPU

and assorted computer peripheral functions with a commercially produced single board computer

(SBC). This SBC will reside on a 6U CPCI card providing access to a 64-bit, 33MHz PCI bus via

its rear edge connectors. Such cards are readily available \o� the shelf" from numerous vendors

(SBS-BIT3, VMIC, Concurrent Technology, etc., ...). The remaining functionality of the board

2Using another example taken from the Calorimeter Preprocessor, in the case of Level 2 jet clustering, greater

CPU resources would allow for running a seedless (movable window) algorithm within the Level 2 time budget. This

would o�er the bene�t of higher eÆciency for low ET jets even at lower luminosities and is a desirable feature for

multi-jet triggers.

4

will be implemented in a large FPGA and Universe II vme interface mounted on a 6U to 9U VME

adapter card as shown in Fig. 2. The adapter card will contain all D�-speci�c hardware for Magic

6U board
Compact PCI

9U board
64 bit

<2MHz
VME

FPGA

E
C

L
D

ri
ve

rs

The proportions of the boards are respected

128 bits
~20 MHz
MBus

32 bits
66 MHz (max)
Local bus64 bits

33 MHz
PCI

6U board with compact PCI moved to the 9U front panel

J1

J2

J3

J5

J4

PLX
9656

UII

D
ri

ve
rs

D
ri

ve
rsClk(s)/

roms

Figure 2: Physical model for the L2�eta processor card. Connectors J1 and J2 provide the 64-bit

CPCI conecton to the CPU. The functions available on J3-J5 may be assigned arbitrarily by each

board manufacturer.

Bus and trigger framework connections. The SBC, in the adapter, will sit will have its front panel

at the face of the crate, This implementation o�ers several clear advantages:

� The modular design, incorporating existing CPU cards, greatly reduces the engineering, de-

bugging, and prototyping needed.

� The modular design provides a clear path for CPU performance upgrades by simple swapping

of SBC cards.

� Compatibility allows for a phased-in replacement of the Alphas.

� A single slot design frees space in the trigger crates and allows greater
exibility for future

SBC selections.

� Higher or lower performance CPUs may be selected. For example, lower performance, less

expensive CPUs may be used in Administrator-type processor cards, while more powerful

CPUs can be used where physics algorithms are run.

� The use of a much smaller number of components to implement the D�-speci�c functions

of the board greatly reduces the parts count, increasing reliability and ease of hardware

debugging.

The last point above is of particular importance. The current implementation of the processor

boards is composed of over 170 individual ICs mounted on a board composed of 10 printed circuit

layers with approximately 9000 through-hole connections (vias) [7]. By contrast the custom-built

components of the above implementation can be constructed with approximately 30 ICs (most of

which are simple bu�ers or logic converters) on a vastly simpli�ed circuit board layout. This is a

5

direct result of using a manufactured CPU and VME interface module and greater integration of

functions into a more modern FPGA 3.

4 Hardware Overview

The L2�etas will be composed of two separate devices: a commercial single board computer with

a 64-bit CPCI interface and a custom 6U-to-9U adapter card. Each components are described in

the following sections.

4.1 L2�eta SBC

Initially, we plan to use the MIC-3385 cPCI SBC [9] as our processor in the L2�etas. This board

(and others in its class) can accept dual Pentium CPUs (up to 933MHz). Although we plan to

initially order the cards with a single CPU installed, adding a second processor is very interesting

as a inexpensive means to increase processing power. Competing manufacturers with very similar

products include Diversi�ed Technology Inc. [10], and Teknor [11]. We fully expect that additional

manufacturers will be shipping boards with essentially the same features by the time the L2�etas

go into production. Thus we have little worry of facing a single vendor situation for CPUs.

All CPCI boards mentioned above support a hard drive, CDROM,
oppy, etc. through an

EIDE controller accessed via manufacturer-speci�c pins on coenctors J3-J5. Our 9U adapter will

have to intercept these signals and route them via a header to a hard drive mounted on the card.

All cards provide integrated ethernet conections.

All of the CPCI cards are supported under Linux. And the KAI C++ compiler is readily

available for this platform and OS. After inspecting PowerPC options in the CPCI SBC market,

we have found that the software tools we require to implement the system in a straightforward way

are not readily available for these choices. Furthermore, we expect the Pentuim
avor of Linux to

more closely parallel our current Alpha version, thus reducing e�orts in completing our necessary

operating system modi�cations.

Table 1 compares the performance of various CPUs available today on CPCI SBCs to the Alpha

PC164 benchmarks. The integer performance of the CPUs is of primary importance for most of

the operations in D�'s trigger. Each modern CPU compares quite favorably in this category.

4.2 L2�eta 9U Adapter

The 9U card will both adapt the 6U SBC card to the 9U crate form factor and provide hardware

for all custom I/O required of the processor cards. This includes all Magic Bus I/O, an interface

to user-de�ned J2 lines, the VME interface and outputs to trigger scalers.

Details of the 9U adapter card are shown in Fig 2. All functions on this card will be implemented

in a single FPGA plus assorted logic converters and drivers. The FPGA of choice is the Xilinx

XCV405E [13]. This device is particularly suited to our application, because of its large amount of

available Block RAM. 70KB of RAM (in addition to > 10K logic cells) is available to implement

3Note: The only other cards in the Level 2 system that communicate via the MBus are the Magic Bus Transceiver

(data broadcast) [8] cards. These cards already implement their primary MBus functions in a single FPGA. The

addition of an interface with added programmability to the processor cards would also allow for future
exibility in

the utilization of this bus.

6

���
������	�

���
���
����

����	
���	��

�
��	�

��
	

��
���
��
	�

���
��
	

�����
����

��� ��

����!
����!
����

��� ��

� ��"�	��
��	
!#"�����$

!##"�����$%

�����

�������
&

��'(��	��)
� �

��)�	����)
�
��*�

���

���(

���+(����")
,

-�
�� ��
.��((&

�)��
�,�!

���
�".����
�),�

�)��

�������"�

��/

��� ��

�)��"�������"�

)�	��
01#

���(��	

�)��
����

��� ��

��
�
-�
'� ��

Figure 3: Advantech MIC3385 CompactPCI processor block diagram.

CPU Type Specint95 Specfp95

Alpha 500MHz � 15 � 21

Pentium III 800MHz � 38 � 29

Pentium III 850MHz � 41 � 35

Pentium III 933MHz � 45 � 39

Pentium III 1000MHz � 48 � 41

Table 1: Performance comparisons [12] for several modern CPUs available on mass produced VME

single board computers. The current Level 2 Alpha CPU is shown at the top of this table. The

integer performance of the CPUs is of primary importance for most of the operations in D�'s

trigger.

data FIFOs and Mapper (address translation counter) tables, thus greatly reducing the complexity

of the 9U PCB. The replacment of various Alpha hardware components by the Xilinx 504E is

further discussed in section 5.3.1.

5 System Requirements

This section summarizes the performance features and speci�cations of the L2Alpha processors and

describes how the L2�etas will satisify these requirements.

5.1 Processing Power

At the heart of the L2Alphas is a 500MHz COMPAQ 21164 CPU supported by a PC164-style

motherboard. The 21164 provides:

7

� 2 integer and 2
oating pipes (64-bits wide)

� 96 kB on-chip L2 cache (enough for event data + 12K (8 byte) instructions of non-looping

code execution (These characteristics seem to allow operation of the system with the (4MB)

L3 cache disabled.)

� execution of proposed L2 algoritms in under 50 �s/event

Performace benchmarks: Specint95 15, Specfp95 21

As shown in Table 1 the 850MHz PIII compares very well to the ALPHA 21164 in terms of

performance. It should also be noted that the PIII contains a larger on-die cache (256KB versus

96KB, this Level 2 cache runs at the clock rate of the CPU). The Pentium instruction set is

more complex than the ALPHA (RISC processor) set. It contains command sets for backwards

compatibility with less modern generations of Intel processors and numerous, complex instructions

dedicated to multimedia applications. Instruction sizes can range up to a maximum of about 16

bytes in size [6], however from reference [6], typical integer and branching instructions should be

on the order of 8 bytes or less. Conservatively, with a 4KB event in its cache, the PIII should be

able to hold approximately 32K instructions.

The PIII SBCs typically do not have L3 cache, however D� already expects to run with the

L3 cache disabled in the Alphas and it should be noted that the new PIII boads o�er signi�cantly

faster RAM access than the alphas. The local RAM bus on the PIII's run at 100 to 133MHz at 64

bits width. This speed is comparable to the PC164 L3 cache (although at half the data width).

5.2 Linux/RT Unix Operating System

Various versions of Linux are already in use on the Concurrent card and other PIII-based SBC

models. The needs of the experiment require two modi�cations to standard Linux to provide real

time behaviour and to allow direct mapping of physical memory within user programs. In order to

provide real time behavior, a special interrupt handler must be implemented to sit below the Linux

Kernal and to service interrupts, such as new event interupts, in a timely manner.

Intel Linux o�ers the added advantage of the KAI compiler. The L2�etas will in fact be more

easily integrated into the D� software environment than the Alphas. Intel Linux is fully supported

at D� and KAI is the compiler choice.

5.3 VME, TSI, MBus Devices

The Alphas contain four seperate PCI devices to accomadate our special I/O needs: the UII VME

interface; the TSI which handles a variety of MBus and J2 signals and data output to the trigger

framework through a front panel ECL connection; and two Magic Bus data interfaces: A PIO FPGA

and a CPLD responsible for initiating DMA transfers from FIFOs receiving MBus broadcasts.

The UII interface hardware will be identicle on the L2�etas. The remaining device functionality

will be contained in the Xilinx FPGA and the PLX 9656. The functionality of the devices will be

simpli�ed from their Alpha counterparts, because they will not require �rmware blocks to implement

PCI compliant devices. Situating the functions in a single device, using a single programming tool

reduces support and development overhead.

8

5.3.1 Hardware Requirements

The Alphas contain 128 bits � 4K of data FIFOs plus an address FIFO of the same length for

MBus broadcast addresses. Broadcast addresses are restricted to the 10-bit MBus address range,

[0:1023]. The Mapper contains address translation (MBus to PCI) information for each broadcast

address. Its registers are incremented as the FIFO's are drained and at any given time provides

the PCI target location for data at the head of the FIFO. The Mapper registers may be read to

determine how many words were written to each broadcast address. The nominal data storage

requirements for these devices is:

Data FIFO: 128 bits � 4K = 64KB

Address FIFO: 10 bits � 4K = 5KB

Mapper: 32 bits � 1K = 4KB

Total: 73KB.

This results in a 3KB shortage of memory compared to the 70KB available in the Xilinx

XCV504E. Xilinx produces their model XCV812E with twice the block RAM in the same package

at the increased price of � $1100 compared to � $500 for the XCV405E. However, there are a

number of other solutions to the shortfall.

Rather than dedicating a large number of logic elements to �ll the 3KB shortfall, it is possible

to FIFO only address changes. In this case we would dedicate 1 bit � 4K to create an address

change
ag FIFO (or 129th data bit). The remaining 7 bits � 2K of block RAM could be used to

construct a reduced address FIFO of 10 bits � 1K.

Alternate solutions4 include reducing the depth of the data FIFO capacity to 3.75 KB. This

would require the addition of an explicit `hold o�' mechanism in the DMA protocal to prevent

FIFO over
ows. The D� MBT cards are compatible with such a mechanism. This is accomplished

by use of the DDONE handshake line on the MBus backplane.

Finally, given the limits on numbers of broadcast sources and strict ordering of source broad-

casts within the D� crates, is plausible to use a set of registers instead of an address FIFO. The

implications of such an approach on �rmware complexity and higher level software has yet to be

explored.

5.3.2 Functional Requirements

Various requirements must be met by the MBus devices:

� The 9U board is required to send data to memory in the SBC at a rate of around 80-100MB/s.

4All solutions consider the allowable con�gurations of block RAM elements in the XCV405E. Block RAM elements

may be con�gured in the following width and depth combinations [13]:

Width Depth

1 4096

2 2048

4 1024

8 512

16 256

9

There are three possible bottlenecks to explore for this requirement: the FPGA/FIFO's, the

PCI interface, the PCI controller. All of these devices are capible of delivering data at the full

64-bit PCI bus bandwith of 264MB/s. The PCI controller is fully capible of delivering data

throughput at the PCI limit and the bandwidth of the memory bus far exceeds PCI. (Note:

The Alpha PCI controller has only delivered � 80 � 120MB/s of DMA throughput despite

its 64-bit width, because its bu�ers frequently �ll while sending data to memory.) Clocking

the Xilinx at suÆcient speeds to deliver this bandwith poses no diÆculty.

Following are some conservative e�ective bandwidth estimates. The relevant numbers for

DMA performace in D� can be thought of as follows: The maximum size for a data source

is about 320 bytes (Data sources transmit sequentialy to to build an event of up to 4KB

in size). Assuming about 300 ns of startup time for a DMA transaction due to Add-on bus

arbitration, it would take 2.9�s to put a source's data into memory (an e�ective bandwidth

of 110MB/s). Additional overhead is incurred if a PIO transaction interrupts the DMA. The

timescale for such interruptions is on the order of the event processing time. Assuming that

the PIII's are twice as fast the Alphas, we might expect an average processing time (very

roughly) on the order of 20�s/event. With three worker cards in a crate, a message might be

sent to the Administrator roughly every 6�s. Therefore it is unlikely that the DMA from an

individual source would be interrupted more than once before it completes (the rate would

be lower for Administrator to Worker messages5).

� Programmed I/O precedence over DMA. It must be possible for the DMA to be preempted

under two conditions:

1. FIFO's are being read out and the receiving board needs to send a PIO transaction

to the Magic Bus. This would be accomplished by programing the PCI latency times

in the PLX 9656. In accordance with PCI protocal, a bus master must reliqush bus

ownership after its PCI latency times expires, if its GRANT has been removed by the

PCI controller. This would be the case if a PIO transaction were pending from the

CPU. The latency time is fully adjustable in by setting the appropriate register in the

PLX 9656. This is a important matter, because latency in reporting a �nished event

is charged directly against the time budget for a Worker Processor. We would set the

latency timer to allow no more than 2-3 �s of delay.

2. The second condition could occur if the FIFOs are being read out and the Administrator

Processor initiates a PIO transaction over the Magic bus. In this case the PLX can

be caused to halt DMA from the add-on bus side and to re-arbitrate the PCI bus to

complete the incoming PIO transaction. After this transaction, the DMA transfer would

be reinitiated.

� DMA destinations must be con�gurable by the CPU for all MBus broadcast addresses. The

full functionality of the DMA Mapper as used in the Alphas can be implimented inside the

Xilinx, maintaining the required functionality. The PLX fully supports writing data to targets

with a large range of local addresses on the add-on bus.

5Interrupts due to VME transactions would happen at a much lower rate. Their PCI budget would be charged

against the PCI bus bandwidth remaining after broadcast DMA.

10

� It must be possible to interrupt the PCI bus in accordance with events on the local bus

(FIFOs empty, new event, etc). The PLX explicitly supports generation of interrupts from

the add-on bus.

� Magic Bus PIO must be able to support a number of data modes: Master/Write, Mas-

ter/Read, Slave/Write, Slave/Read. In our design this is a matter for �rmware only, bi-

directional drivers are provided to send or receive MBus data.

� Fast MBus arbitration (�15ns). This is consistent with realizable gate delay times in the

Xilinx FPGA.

5.4 VME Interface

Tundr's Universe II chip provides the VME interface to the L2�eta Processors. The Universe

chip supports up to 64 bit PCI and VME transfers including DMA transfers. The Universe II

databook [2] should be referred to for the use of the chip.

The UII us de�ned as device 0 on the secondary PCI bus of the L2�eta card. This is accom-

plished by connecting PCI AD(16) to the UII's IDSEL input. The Universe II chip is connected to

all 7 levels of VME interrupts. Following CPCI and PCI-PCI bridge recommendations, the UII's

LINT(0) line is routed to PCI INTA (comment this should go through the FPGA for future MSI!).

A VME controlled interrupt will be used to reset the Worker processors in the event that they are

stuck in a processing loop. The Alphas are also con�gured such that a VME RESET will also reset

the alpha processor CPUs. This function is enabled by making use of the PRST# line on the J2

CPCI connector (pin C17). This is an open collector line that causes a system reset when it is

pulled low. This line is driven by UII LRST*.

5.4.1 Registers

PCI Con�guration Registers for the Universe II are accessed by asserting its IDSEL line (AD16)

during a con�guration read or write. The PCI con�guration registers 0x10 (and 0x14) de�ne the

base address for the Universe's 4Kbyte register space. These registers are accessed to determine

the base address of the UII.

The Universe's 4Kbyte register space has 3 logical sections. The lowest 256 bytes of the register

map to the PCI con�guration space. The upper bytes map to the VME Con�guration and Status

Registers. The middle part of the space contains the Universe Device Speci�c Registers (UDSR).

(The addresses de�ned by 0x10 and 0x14 both point to the same set of registers, but one does it in

memory space and one in I/O space. Which is which depends on a power-up con�guration. This

choice has no impact on our device drive software.)

5.4.2 Description of Operation

This section gives an overview of the operation modes of the Universe chip. The Universe II user

manual should be referenced for a detailed description. The Universe supports read and write

transactions originating from the VME or PCI side. It supports eight separate VME slave windows

for VME target behavior and eight separate PCI slave windows the VME master behavior. For

transactions originating on the VME side, the Universe acts a VME slave. If the VME address

falls inside the address range de�ned for one of the 8 VME slave images, the Universe becomes

11

Supply Voltage

Device 12V 5V 3.3V -5.2V -12V Total Watts

L2Alpha 2A 20A 10A 1.25 A 1A 176W

L2�eta SBC 5.2A 2A .0025 A 32.6W

L2�eta 9U �10W

Hard Drive 0.5A 2.5W

Power usage for L2�eta processor �45W

Table 2: Approximate power consumption per processor component.

the PCI bus master and initiates the appropriate transaction on the PCI bus. To see if the VME

slave image is being addressed, the upper 16 bits of the 32 bit VME address are compared to base

and bound addresses for that slave image. This means the slave image window will be at least 64

Kbytes wide, and can be up to 4 GBytes wide. (Note that slave images 0 and 4 use the upper 20

bits and thus have a 4 KByte resolution.) The corresponding 32-bit PCI address asserted combines

the VME address with the address in a translation o�set register. The lower 16 bits of the VME

address are used for the lower 16 bits. The upper 16 bits are derived from a twos complement

addition of the upper 16 VME bits with the 16 bits of the translation o�set register. There are also

control bits for each image that further de�ne the transaction (address modi�ers, data and address

width, etc.). The transaction can be coupled in which case the PCI transaction must �nish for the

Universe to respond to the VME side; or it is posted for a write, or prefetched for a read in which

case an intermediate FIFO is used and the Universe can acknowledge on the VME side before the

PCI transaction occurs. The Universe acts in much the same way if the transaction originates on

the PCI side. Again there are 8 PCI target images whose registers de�ne address windows and

translation o�sets. These images also have 64 KByte resolution with the exception of images 0

and 4 which have 4 KByte resolution. However, the PCI side does not support prefetched reads.

Furthermore, if the PCI window is de�ned to be in PCI I/O space, posted writes are not allowed

either, and all transactions are coupled.

DMA transfers can be initiated from either the VME or the PCI side.

UII POWER UP OPTIONS- follow settings in comercial VME boards?

5.5 Mechanical and Electrical

While the L2Alphas require two VME slots, the L2�etas are single slot devices. This will free two

to four slots in each Level 2 processor crate for other uses. Figure 2 shows the assembly of the

L2�eta processors. The SBC will sit inline with the 9U adapter card. A cutout in the 9U card will

be reinforced with aluminum bars to guide the SBC and to sti�en the adapter. The rail assembly

is shown in Fig. 4. IDE signals provided on the P4 connectorof the SBC will be routed to a hard

drive header on the adapter card.

Table 2 provides a rough estimate of the power requirements on the L2�eta as compared the

L2Alpha. The power and heat dissipation requirements are signi�cantly reduced in the L2�etas.

Power is suppled to the 9U card via the P0, P1, and P2 backplane connectors of the D�VME

Crate [15]. Table 3 lists the available power pins on the backplane and those that are used to

supply the L2�eta cards.

12

Figure 4: Mechanical assembly of CDF 6U to 9U adapter card showing placement of the mounting

rails.

6 Software

In order to minimize the demand on the experiment's resources to bring the L2�etas to completion

it is vital that this project tread as lightly as possible on other trigger groups' projects. We have

planned at the onset that the L2�etas are to be both hardware and software compatible with the

Alphas. Hardware compatibility will largely be a product of proper �rmware design. By software

compatibility we are refering to high level software. It should be possible to recompile online code

with little or no changes to run on the L2�etas. This compatibility will be enforced by the hardware

interface layer, or device driver software.

6.1 Operating system, compiler, build environment

The L2�eta processors will run Linux Redhat Version 7.x.x, using Kernel version 2.4.x. The OS

version will remain �xed inde�nitely for the duration of Run II, unless there are compelling reasons

to upgrade. We will use the KAI compiler and all code will be built using the standard D� software

environment.

6.2 Device Driver Software

The coding tasks for this project can be displayed as in Fig 5. The device driver code will require

a rewrite of the hardware interface layer to communicate with the PCI bridge. The user interfaces

13

5V connections

P1 A32, B31, B32, C32

P0 A1, B1, C1, C2, D1, E1

P2 B1, B13, B32

3.3V connections

P1 D12, D14, D16, D18, D20, D22, D24, D26, D28, D30

12V connections

P1 C31

-12V connections

P1 A31

-5V connections

P0 A4, A5

Table 3: Power supply pins on D�VME Crate backplane. Pins shown in bold are used to power

the L2�eta processor cards.

for the device drivers will be unchanged from the present system. This is necessary for source code

compatibility.

The basic structure of the device drive code is to start with a generic PCI device and to build

speci�c functionality into classes derived from this device. All hardware interface functions are

hidden in this lowest level base class.

The UII driver will require the least amount of change, since this device is replicated on the

SBC. In fact, the current device drive code is expected to function \as is" provided the PCI base

classes it depends on are replicated for the PIII boards.

The remaining device driver code will have to be completly redesigned, since three former

PCI devices will now live inside one FPGA. Di�erent functions of this FPGA will be treated as

pseudo-PCI devices to maintain a software interface compatible with the Alphas.

7 Firmware

The �rmware will be composed in loosely coupled blocks similar to those shown in Fig 5. The

most complex blocks will be the add-on bus interface and the MBus I/O block. A more detailed

summary of the �rmware blocks and FPGA resources required is shown in Fig. 6.

The necessary L2�eta functions can be implimented using 337 I/O pins. This includes \utility

pins" allocated for con�guration settings and logic analyzer `spy' channels for assistance in �rmware

debugging. An additional 66 I/O pins are available for additional functionality we may wish to add

at a later time. The inclusion of the MBus data FIFOs in the FPGA has resulted in a great

economy of I/O pins required.

7.1 PLX 9656 general con�guration

The PLX 9656 provides a set of local con�guration registers mapped to PCI Memory and I/O space

and to a local bus address range. Additionaly it provides four PCI memory windows for direct data

14

PLX9656

E
C
L

Secondary PCI BUS

J1

UII PIO DMA TSI

pcidev

API

Hardware
Interface

Tundra

UIIB

J2

J3

PCI Front End
64bit Master/Target

Add-on Bus

MDus
AD/DA

VME
node

FIFOs
MBus

A/D + Control

Bridge
device

Scaler
node

Add-on
Bus Interface

Figure 5: Block diagram of L2�eta software and �rmware components.

transfers between PCI and local bus addresses. The general con�guration for these windows is

shown in Table 4.

The Control & Monitor Window provides access to all con�guration, control, and status registers

necessaryfor comunication with the trigger system. This window is divided into four logical sections

as shown in Table 5. The I/O Control window located at o�set 0x0 is used to enable the DMA and

PIO functions and to determine their operating modes.

7.2 Add-on Bus Firmware

In order to minimize development time and to maximize chances of success for the L2�etas, our

pilosophy has been to use commerical devices where custom devices can be replaced, to simplify

the electrical design of the boards as much as possible, and to push as much of functionality as

possible into �rmware to reduce hardware prototype cycles.

Altough we have sought to develop a system that is implemented in �rmware to as large an

extent as possible, we have choosen to use a hardware PCI interface rather than to complicate our

�rmware project with a PCI implementation. We plan to take full advanage of the PLX's features

to simplify the �rmware design.

15

Window # Title Size

0 Control & Monitor 64KB

1 PIO Window A 1MB

2 PIO Window B 1MB

3 Reserved

Table 4: PLX PCI memory window usage.

Control & Monitor Window

O�set Function

0x0 I/O Control

0x10-0x1C PIO Con�guration

0x100-0x148 TSI Registers

0x1000-0x2000 Mapper Registers

Table 5: PLX PCI memory window 0 de�nition.

I/O Control Register

Bits Access Function

0 R/W enable DMA

1 R/W broadcast lockout

2 W clear �fo

7:3 R 0x0 (unde�ned)

8 R/W enable PIO Target

9 R/W PIO write to FIFO

31:10 R 0X0 (unde�ned)

Table 6: I/O control register de�nition

16

TTL

2

PECL

PLX ADDON

P1

P2

Xilinx XCV504E
373 (of 404)
i/o pins used

VME Block

C
onfig/Spy

B
lock

M
B

A
rb

.B
lo

ck

L
B

us
B

lock
Scaler
B

lock

M
B

A
D

/D
A

B
lo

ck MBAD[0:31] + AD_DIR[1]

MB_PECL

MB TTL

89

15

32

34

T
SI

M
B

us
B

lo
ck

27

14

162

MBDA[0:127] + DA_DIR[1]

P3

Figure 6: Overview of �rmware blocks. I/O pin requirements are shown with each block.

Perhaps the most interesting feature of the PLX9656 is its ability to become a Master on both

the PCI and add-on buses and to fully control DMA transactions (Figure 7 gives a brief overview).

Thus we may simplify the DMA block of the �rmware to a protocal that provides data words at

the PLX's request. This removes all need for the Xilinx to directly support PCI timing, because

the PLX completely decouples the two buses. The PLX can run its add-on bus faster than PCI (up

to 66MHz) to ensure that its internal bu�ers do not run out of data while feeding the PCI bus.

The PLX also o�ers a local bus protocal with seperate address and data lines. Using this

interface all transactions can be thought of as one step responses based on address decodes. This

is conceptually easier to deal with than protocals that multiplex address and data lines where

addresses and data states must be considered in the protocal.

A possible approach to the Add-on bus �rmware is the following:

� Provide add-on bus targets for PIO and Mapper registers, PIO writes (MBus master), PIO

reads (MBus Master), and TSI (equivalent) writes/reads. Each of these Target would be

speci�ed by di�erent local address.

� Provide add-on bus masters for PIO writes (MBus Slave) and PIO reads (MBus Slave).

� Provide an add-on bus master for interrupt generation. (Note: Pending local bus requests

have higher priority than ongoing DMA, therefore the PLX protocal conveniently allows a

mechanism for the local bus to halt DMA as needed.)

� Provide an add-on bus Master to set up DMA registers in the PLX and initiate the transfer.

17

� Provide an Add-on bus target to feed data to the PLX's DMA engine.

It is likely that several (or all) of the Add-on masters would be combined into one module to

reduce complexity of the Add-on bus operations.

Figure 7: Diagram of PLX 9656 DMA control.

7.3 MBus I/O and Arbitration Firmware

The MBus arbitration �rmware block will implement the MBus arbitration logic. This essentially

amounts to a series of combinatorial logic elements switching at speeds on the order of the (few ns)

gate delays of the Xilinx.

The MBus I/O �rmware (Fig. 8) is responsible for controling the MBus Data and Address

drivers and the (internal) Data FIFOs. It must respond to a requests from the PLX to send or

fetch data (PIO Master), it must request that the PLX fetch or receive data (PIO Target), and it

must provide data to the PLX for DMA transfers (FIFO readout). The latter function must also

provide a halt mechanism (perhaps a local bus abort) to end the DMA when the FIFOs have cleared

and to send an interrupt to the PCI bus. A simple mechanism for generating an interrupt would

be to write to a properly con�gured mailbox register in the PLX. The PLX may be con�gured

to send an interrupt upon completing DMA, however, this may be less straightforward, since the

DMA begins before the ultimate size of the data is known. An add-on bus master may be used to

con�gure the DMA registers in the 9656 before beginning to transfer data from a source.

7.4 DMA Firmware Functions

The Magic Bus (MBUS) DMA interface provides a direct path for MBUS data to be placed into

main memory. The lowest 1024 MBUS addresses (0:1023) are reserved for DMA broadcasts. A

4KB Translation Bu�er (Mapper) is used to map each DMA address to a 32-bit memory address.

In order to con�gure the Translation Bu�er, the CPU must write the main memory address for

each DMA channel into the TB. The TB bu�er holds 1024 addresses which are accessed by the

CPU by writing to the FPGA base memory address + 4(times) DMA number. The DMA number

is 0 to 1023 and directly corresponds to the corresponding MBUS address. The PCI address is 4

times that since we are accessing 32 bits of data and a PCI memory transaction addresses at the

byte level. For example, for base memory address 0x02000000 the TB bu�ers would be addressed

18

MBUS AD/DA + FIFO block (internal to FPGA)

DA_DIR

AD_DIR

AD[32]

(WCLK, WEN)x2

(RCLK,REN,OE)x2

(EF,FF)x2

DA[128] P3

MB DMA AD[10]

Data/Address
FifosDMA Control

MBAD

MBDA

MBus
Arbitration

MBAD 32+1

MBDA 128+1

A/D
Interface

External Drivers

Figure 8: MBus I/O �rmware blocks.

by writing to 0x02000000, 0x02000004, 0x02000008, 0x0200000C, etc. The data written to the TB

is the (PCI) memory address to which data will be sent.

7.4.1 Description of DMA operation

The MBT boards send their data to the processor boards over the Magic Bus by addressing one of

the DMA channels in the 32-bit Magic Bus Address space. The DMA addresses are reserved to be

the lowest 1024 addresses in MBUS address space. These correspond to MBUS Address bits 31:10

being set to zero.

Each MBT board will be assigned its DMA channel(s) to use during initialization. When any

of the 1024 DMA addresses are asserted on the MBUS, the processor board will clock the 128 bits

of MBUS data and lowest 10 bits of the MBUS address into a 4K deep FIFO. The �eta board

responds with DDONE*, ending that MBUS transaction 9. An Alpha or �eta can receive data into

its FIFOs independent of any action on the part of the rest of the DMA engine. If the FIFO �lls

up, no error is given, and subsequent data sent to the Alpha will be lost, although in practice this

should never be a problem. Another approach would be to have the processor withhold DDONE*

when its FIFO's are full. This would be necessary if event storage requirements exceeded 64KB or

if smaller FIFOs were used.

When the FIFO EMPTY
ag goes false, the initiate a data to main memory by enabling one

of the DMA engines in the PLX. This requires setting of both the local bus address to draw the

data and the PCI address for the DMA target followed by a `go' command. The Translation Bu�er

19

Address
decode

MBAD(31:0)

MB_WR

DSTROBE

WCLK

MBDATA(127:0)/MBAD(9:0)

FIFOs

DDONE

Figure 9: Broadcast address decode logic.

contains the starting 32-bit PCI address. The PLX arbitrates to gain control of both the local bus

and the PCI bus and starts sending data as soon as it can. The DMA engine always performs

a 64-bit data transfer, and always sends at least two consecutive data words (= 1 MBus word)

following one address.

While data providing data to the local bus, the address for the next data in the FIFO is

compared with the previous address. If the address is the same, the data is sent as part of the same

PCI burst transaction corresponding to the initial address that was sent. Otherwise the DMA is

halted and the PCI target address is reset.

While the data is being sent, the PCI address in the Translation Bu�er is incremented to point

to the next PCI address for that DMA channel. The PCI address is incremented by 16 bytes

for each MBWORD sent since each MBWORD is 16 bytes long6. When all the data is received

for a given event, the Translation Bu�er can be read to �nd the ending PCI address written into

the Translation Bu�er. The di�erence between the initial and �nal address in the Translation

Bu�er indicates the number of bytes that were transferred. The Translation Bu�er must then be

recon�gured to setup the addresses for the next event.

By turning o� the appropriate bit in the I/O Control Register (Table 6), the DMA engine will

not automatically try to send data from the FIFO to main memory. In that case the FIFOs would

still receive data and eventually �ll up, unless the Broadcast Lock-out bit is also set, disabling the

FIFO fro receiving data from the MBus.

The PCI latency timers in the PLX and PCI-PCI bridge should both be con�gured to allow for

a halt in DMA after 1-2ms if a pending request exists on the main PCI bus. This is necessary to

limit latency times for PIO output transactions from the CPU.

Aditional comments:

� Discussion of the DMA �rmware model suggests an `address change' �fo as a means to �t

all DMA functions into the limits of our Xilinx XCV405E fpga. For an initial design of the

�rmware, it may be easier to bring the system up while using a standard address FIFO and

6It should also be noted that only a 16-bit Adder is used to increment the PCI address bits (18:3) in the TB. As

a result the upper 13 address bits are unchanged. That means that for a given event, each DMA channel cannot

write past a 512 KByte boundary. Therefore the starting address used to con�gure the TB should not be too close

to that boundary. This limitation could easily be removed on the betas, however we should take care to preserve

compatibility with the Alpha processor online code.

20

con�guring the DDONE logic to halt the DMA from the MBTs when the FIFO's �ll. Given

the speed of DMA transfers through the PLX chip, the performance penalty for this should

be minimal.

� PIO precedence over DMA must be implemented. The case of PIO output transactions is

described above. PIO input transactions are discussed in the next section.

7.5 PIO Firmware Functions

The Magic Bus Programmed I/O chip (MAGICFPGA) is a bridge between the PCI and Magic

Buses allowing reads or writes from one address space to the other. The PCI-MBUS transaction

can originate from either side and can be either a read or a write. This allows the CPU to directly

access the Magic Bus memory space or for a board on the Magic Bus to write or read into PCI

memory space. The FPGA supports up to 64-bit PCI data transfers but only 32-bit addressing,

and accesses all 128 bits of MBUS data.

7.5.1 Con�guration

The MAGICFPGA is con�gured by writing to the appropriate con�guration registers according to

the PCI speci�cation. The MAGICFPGA responds to con�guration reads and writes when IDSEL

21 is driven. The MAGICFPGA asks for 3 separate 16-bit (64K) memory address spaces. The �rst

is for on chip registers that hold the PCI to MBUS translation address, as well as the MBUS address

space reserved for the chip. The other two address spaces are PCI addresses de�ning Window A

and Window B (PCI windows mapped to a MBus address window). Table 2 lists the values of the

PCI con�guration space. Bits indicated by X must be written to con�gure the device. The last 3

bits of address 04h should be written as 110 to enable memory reads/writes to the device as well

as PCI bus mastership.

In principle, the PCI memory addresses should be set by the plug-n-play PCI protocol. In that

case user software would simply read these con�guration registers to know what PCI addresses

to use for that device. However, the con�guration registers can be changed at any time by user

software. In that case the software should be careful to not con�gure the device with a PCI address

con
icting with another device on the board.

The base memory address at con�guration address 10h de�nes the base memory address for the

Magic Bus con�guration or setup space. These setup registers are not in PCI con�guration space,

but are accessed through a normal PCI memory transaction. These registers hold the mapping

from PCI to MBUS address space and vice versa. Table 3 describes the memory location of each

of the registers. The address is the address given in the table, plus the base memory address as

de�ned in the PCI con�guration register 10h. These registers must be con�gured by user code for

proper function of the MAGICFPGA with the Magic Bus.

PCI con�guration registers 14h and 18h must be con�gured with the PCI address for Window

A and Window B. These windows are described below.

The registers used to setup PIO transactions are listed in Table 7

7.5.2 PCI Transactions

Addressing in PCI memory address space is accomplished by using the lines AD(31:2) to address a

DWORD (4 bytes). The MAGICFPGA must convert this addressing scheme to the MBUS address,

21

PIO Con�guration Registers

O�set Access Function

0x10 R/W PCI Translation Base

0x14 R/W MBUS Upper Memory Address

0x18 R/W MBUS Lower Memory Address

0x1C R/W BUS Translation Base

Table 7: PIO Con�guration registers. O�set values are relative to the PCI Memory base for PLX

window 0.

where the MBUS address lines (31:0) address a single 128 bit MBWORD (16 bytes). When the

CPU initiates a read or write to the MBUS, it can choose one of two PCI address windows to

address the MAGICFPGA. These are called Window A and Window B. Each of them is a 64K

space in PCI memory address space and their base PCI address is set in the PCI con�guration

register as described below. Both windows still access the same MBUS address space which is �xed

by the PCI Translation Base. The purpose of having separate windows is described in detail below.

The upper 16 bits of the PCI Translation Base gives the upper 16 bits for converting a PCI address

to a MBUS address. Since 16 bits are used for the translation, that means only 64K of contiguous

MBUS address space can be addressed. In order to address a MBUS address that is not within 64K

of the PCI Translation Base address, the PCI Translation Base register would have to be updated

before attempting to read/write to that MBUS address. Figure 10 illustrates how a PCI address

is converted to a MBUS address.

P C I ad d ress (b y te ad d ress)

T ran sla tio n B ase

3 1 2 0 1 9 0

3 1 1 6 0

M B A d d ress(1 2 8 -b it ad d ress)

3 1 1 6 1 5 0

4

Figure 10: PCI address to MBUS translation

PCI to MBUS mapping a concrete example:

Assume the following con�guration for the MBUS PIO registers: Base address of PIO setup

registers: 1090000 Base address of Window A 1100000 PCI Translation Base 100000 (register o�set

0x0 from 1090000)

Then a PIO write to Window A at PCI address 1100000 will generate a MBus cycle with address

100000. A PIO write to Window A at PCI address 1100010 generates a MBus cycle with address

100001. The reader should be reminded that the PCI bus is addressed by bytes and the MBus is

addressed by MBus (16-byte) words.

When the PCI side initiates a read or a write to the MBUS, the FPGA will try to gain control

of the MBUS and then perform the transaction. The PCI and MBUS transactions are coupled so

22

that the PCI transaction doesnt end until the MBUS transaction is �nished. If the FPGA cannot

gain control of the MBUS within 16 PCI cycles, it will assert STOP on the PCI bus. This will

signal the 21172 (PCI controller) to retry the transaction, so no software retry will be necessary.

If the FPGA is simultaneously addressed from both the MBUS and PCI sides, the transaction

originating on the MBUS will take precedence and the PCI transaction will fail.

In the beta �rmware an appropriate timeout should be included, so that the PCI bus can be

released if no target responds to the read/write request. An error register should also be added to

re
ect the state of the last read/write transaction on the MBus master.

The two PCI windows on the MAGICFPGA are accessed separately by two di�erent PCI

addresses. However, their purpose is not to address separate MBUS addresses but to allow for two

di�erent types of PCI transactions. PCI transactions can occur as 32-bit or 64-bit, can be burst or

non-burst, and can be from sparse or dense memory space. Having the two windows allows some

exibility in having di�erent types of transactions.

The basic di�erence in the two windows is that Window A is used for PCI data transactions

of less than 128 bits, while Window B always requires a PCI transfer of 128 bits. In either case,

the Magic Bus transaction is a full 128 bits, but all data bits written may not all be meaningful

for Window A. The distinction between Window A and Window B is related to the distinction

between PCI sparse memory space and PCI dense memory space.

When writing to Window A, the MBUS transaction starts when the last PCI data transfer

occurs. (The last data transfer is indicated by the PCI protocol.) The data can be just 32 bits or

up to 128 bits in a burst transaction, although the burst should not go past 128 bits. Window A

should be mapped in the PC164s PCI sparse memory space which is de�ned to be in the physical

address range 80.0000.0000 to 85.7FFF.FFFF. See the PC 164 TRM for details of the address

space.

Window B only initiates a MBUS transaction after a 128 bit transfer has occurred, which can

be done via a burst of four 32-bit transfers or a burst of two 64-bit transfers. Window B should be

mapped to the dense memory space that is de�ned to be in the physical address range 86.0000.0000

to 86.FFFF.FFFF. The actual implementation of this in the Alpha �rmware is easily described.

Window B initiates a 128-bit transfer whenever the upper 32-bits of a MBus word are written. For

example, if Window B sits at PCI memory address 0x1200000, the a transaction begins when there

is a PCI write to address 0x120000C, 0x120001C, 0x120002c, etc When the write to 0x120000C

occurs, the MBus word written corresponds to the data at registers: 0x1200000-0x120000C.

A read into either Window A or Window B will trigger a 128-bit read on the Magic Bus. The

Alpha FPGA can in theory support a burst read of up to 128 bits using either 32 or 64 bit transfers.

In practice, the initial PIO �rmware supports only 32-bit non-burst mode transactions, so PCI four

writes/reads are necessary to transfer a single 128-bit word.

7.5.3 Magic Bus Transactions

A transaction originates from the MBUS side when an address asserted on the MBUS falls between

the MBUS Upper Memory Address and the MBUS Lower Memory Address. These addresses must

be con�gured in a register on the FPGA as described below. This causes the FPGA to ask for

control of the PCI bus and it will remain in that state until control is given. After receiving

control, it initiates a 64-bit PCI transaction and will perform two 64-bit reads/writes in a PCI

burst transaction. The FPGA will not end the MBUS transaction with the DDONE* signal until

23

the PCI transaction is �nished.

The MBUS Upper Address and MBUS Lower Address de�ne the window in MBUS address

space for which the Alpha board will respond to a MBUS address. Only the upper 16 bits are used

for the comparison so the smallest window de�ned is 64K. The MBUS Translation Base de�nes the

base PCI address used for converting a MBUS address to a PCI address. In this case the upper 12

bits (31:20) de�ne the base PCI address. Therefore only 1 MByte of contiguous PCI memory space

can be addressed. Figure 11 illustrates how a Magic Bus address is converted to a PCI address.

M B address

Translation B ase

31

31 20 19 0

PC I A ddress

31 20 19 0

0

4

16 15

0

Figure 11: MBUS address to PCI translation

MBus to PCI mapping a concrete example:

Assume the following con�guration for the MBUS PIO registers: CIA Memory base: 40000000

(This setup is speci�c to the Alpha PCI controller. Its function is to map PCI addresses to

physical memory addresses. In our case any access to PCI addresses between 0x40000000 and

0x40000000+128MB will directly access the onboard RAM.) MBus upper address: 0x110000 (reg-

ister o�set 0x4 from 0x1090000) MBus lower address: 0x100000 (register o�set 0x8 from 0x1090000)

MBus Translation Base: 0x41000000 (register o�set 0xC from 0x1090000)

Then a PIO transaction at MBus address 100000 will generate a PCI cycle on the MBus target

at PCI address 0x41000000. A PIO transaction at MBus address 100001 generates a PCI cycle

with address 41000010.

As stated above, ALPHA �rmware PIO transactions are fully coupled transactions. Therefore,

the PCI bus is held during the full MBus cycle. From the PCI bus the transactions may be described

as follows.

MBus write cycle (I: Initiating processor, T: Target Processor)

1. I: PCI controller sends data to PIO device, PCI bus is held awaiting TRDY*

2. I: PIO device gains control of MBUS

3. I: PIO device sends address/data to MBUS

4. T: PIO device latches data

5. T: PIO device gains control of Targets PCI bus and transfers data (4x32 bits or 2x64bits)

6. T: PIO device sends DDONE* and releases PCI BUS

24

7. I: PIO device sends TRDY*, PCI controller releases PCI bus

MBus read cycle (I: Initiating processor, T: Target Processor)

1. I: PCI controller initiates read transaction from PIO device

2. I: PIO device gains control of MBUS

3. I: PIO device sends address to MBUS and waits for data

4. T: PIO device gains control of PCI bus, initiates a read transaction (4x32 bits)

5. T: PIO device places data on MBUS, sends DDONE and releases PCI bus

6. I: PIO latches data and returns a 32 bit work to the PCI controller

Comment: MBUS read transactions are initiated when reading addresses that are 128-bit

aligned. Therefore to read a 128-bit word into the CPU the transaction could be done in two

parts (four parts if 32-bit reads are used): 1) read a 64-bit word, aligned with a 128-bit boundary,

from the PIO device - this initiates a MBUS read. 2) read the 2nd 64-bit word from the PIO device

- this read need not initiate a transfer, because the data are already in PIO device's bu�er.

In the beta design, it is entirely possible to allow posted (or burst) writes in Magic Bus PIO

with additions to the �rmware. This should be considered for a later stage in the project.

7.5.4 DMA vs. PIO Priorities

We require that PIO take precedence over DMA. The strict requirement is that delays for PIO

transactions should not be large due to waiting for DMA transactions to �nish. DMA must halt in

response to a request for the PCI bus by the PCI controller. As mentioned in the previous section,

this is accomplished with PCI latency timers. Additionally, the PIO target �rmware must have the

ability to halt DMA in order to �nish a pending transaction. This may be accomplished on the

betas by use of control lines on the local bus of the PLX9656.

7.6 TSI Firmware Functions

The TSI interface fully implemented in the Xilinx FPGA. This interface only functions as a PCI

slave and is used to receive and send information to the rest of the trigger system. This includes

the D� trigger signals from the P2 backplane, as well as direct communication with the Trigger

Control Computer (TCC) through a front panel connector. It is also used for monitoring the status

lines of the Magic Bus.

7.6.1 Description of Operation

Because the device is a PCI slave, the only PCI operations are reads and writes to registers within

the FPGA. Once the device has been con�gured with its base PCI memory address, one reads or

writes to speci�c registers using the base address+local address. This device only supports 32 bit

PCI transactions. The device has one of its pins connected to the PCI interrupt PAL at pin 9.

25

I/O TSI Conection ID J2 PIN Administator Function Worker Function

in Ext Test Interrupt A24 SCL Init Interrupt Worker Interrupt

in L2 Answer Ready A23 L2 Answer Ready VME Busy

in VBD Done C25 VBD DONE MBUS Busy

out VBD Start Request A21 VBD Start Test Out

out J2 Test Output 0 C21 Worker 1 Interrupt

out J2 Test Output 1 C22 Worker 2 Interrupt

out J2 Test Output 2 C24 Worker 3 Interrupt

out J2 Test Output 3 C32 Worker 4 Interrupt

Table 8: J2 Trigger Connections.

7.6.2 D� Trigger Signals

The TSIFPGA is connected to 37 CDF trigger signals on the P2 backplane, however the D�
avor

of the L2Alphas uses only a small subset of the P2 connections as shown in Table 7.6.2.

7.6.3 Communication with Global Level 2

The communication with the trigger framework is through a 68-pin front panel connector. We send

32 signals of di�erential ECL, connected on board to 32 TTL signals connected to the TSIFPGA.

The value of all 32 bits can be read/written from a single PCI register.

7.6.4 Monitoring of Magic Bus Status Lines

The TSIFPGA also monitors the Magic Bus status lines. These are the MOD DONE(18:0),

EV LOADED(4:0), and MB AP FIFO EMPTY lines. Reading the appropriate register directly

reads the value of these signals from the backplane. The empty status of the on board DMA

FIFO is also read from this register. Writing to another register will drive the START LOAD,

BUFFER(1:0), MBRESET, and AP FIFO EMPTY lines. This AP FIFO EMPTY line is con-

nected to an open collector driver. The other 4 lines are connected to a transceiver. Only one of

the Alpha boards in each crate will be the Magic Bus crate master and drive these lines. Writing a

1 to the CRATE MAS DIR bit will appropriately set the transceiver direction to drive these lines

on the backplane. The other boards should then have a 0 written to that register bit, in which case

the value of these lines can only be read. (see Alpha schematic, sheet 40). The TSI may also be

software enabled to generate an interrupt under either of two conditions:

1. New event Interrupt: (MOD DONE MASK is satis�ed) .AND. (LOCAL FIFO EMPTY

.OR. AP FIFO EMPTY) .AND. (Interrupt 1 enabled) 2. SCL Initialize: (SCL Initialize line on J2

pulled high) .AND. (Interrupt 2 enabled)

TSI Memory Registers The memory location of the TSIFPGA registers and the signals accessed

by each bit are shown in Table 6. Each register bit is listed as an input or an output. Input bits

monitor that status of bus signals. Output bits drive bus signals. For each output bit an internal

register is written to control drives on the bus line. Reading back a register bit that drives an

output provides the REGISTER value and not the bus level directly (see Fig. 12).

26

FPGA

Driver

O

I

R/W

R

Figure 12: Crate master driver logic. Driving and monitoring of output lines. Two FPGA registers

bits are used in these cases, one to drive the bus and one to monitor the bus. In some cases the

output driver may only be enabled if a CRATE MASTER BIT is set on the board.

Address Access Bits Description Connection/ I/O: Level

o�set Comment

Broadcast Status Register

0x10C R 18:0 MOD DONE(18:0) J3 C41-B45 I: TTL

see Fig. 13

19 FIFO EF Local �fo empty internal

20 AP FIFO EMPTY J3 B40 I: TTL

24:21 EV LOADED(3:0) J3 A46-D46 I: TTL

25 MBRESET J3 B38 I: TTL

26 Bu�er(0) J3 B41 I: TTL

27 Bu�er(1) J3 A41 I: TTL

31:24 0x0

Table 9: TSI functions register map: Register 0x0C.

Registers for the TSI functions are shown in tables 9-13. The register addresses represent o�sets

from the PCI memory base address for the TSI register set.

Interrupt control Logic:

At present no module in the D� L2 trigger drive the lines Bu�er(1:0). These are fully available

for future uses as the trigger evolves.

7.6.5 Summary of new i/o functionality

In addition to replicating all of the Alpha's functionality, the L2�eta processor will provide the

following added I/O features:

� feature 1

27

Address Access Bits Description Connection/ I/O: Level

o�set Comment

Crate Master Register

0x110 R/W 0:1 (unde�ned)

R/W 2 CRATE MASTER local control line

R/W 3 (TSI)DONE OUT J3 D45 O: TTL64

Bits (7:4) only

driven when

Crate Master is set

R/W 4 BUFFER(0) J3 B41 O: TTL64

R/W 5 BUFFER(1) J3 A41 O: TTL64

R/W 6 START LOAD* J3 C40 O: TTL64

R/W 7 MBRESET J3 B38 O: TTL64

R/W 8 (unde�ned)

R/W 9 VBD START REQ J2 A21 O: TTL

R/W 15:10 (unde�nd)

R 16 VBD DONE J2 C25 I: TTL

R 17 0x0 (unde�ned)

R 18 L2 ANSWER READY J2 A23 I: TTL

R 31:19 0x0 (unde�ned)

Scaler Register

0x114 R/W 31:0 TSI OUT(31:0) 32 ECL out lines O: ECL

Table 10: TSI functions register map: Registers 0x10 and 0x14.

28

Address Access Bits Description Connection/ I/O: Level

o�set Comment

Internal Control Register

0x130 R/W 18:0 MOD DONE MASK(18:0)

R/W 19 Select 0: AP FIFO EMPTY

FIFO EMPTY FLAG 1: Local FIFO EF

R/W 20 New Event 0: Disabled

Interrupt Enable 1: Enabled

R/W 21 Internal Test 0: Disabled

Interrupt Enable 1: Enabled

R/W 22 External (SCL) 0: Disabled

Interrupt Enable 1: Enabled

R/W 29:23 (unde�ned)

R/W 30 Primary 0: Disabled

Interrupt Enable 1: Enabled

R/W 31 Secondary 0: Disabled

Interrupt Enable 1: Enabled

Table 11: TSI functions register map: Register 0x30.

Internal Request Register

Address Access Bits Description Connection/ I/O: Level

o�set Comment

0x134 R 0 Internal Interrupt Test INT Req.

Request & Internal Test INT Enable

R 1 Exernal Interrupt External Interrupt Req.

Request & External Int. Enable

R 2 New Event Interrupt (MOD DONE &

Request MOD DONE MASK)

& FIFO EMPTY FLAG

& NEW EVT INT ENABLE

R 7:3 0x0 (unde�ned)

R 8 External (SCL) J2 A24 I: TTL

Interrupt Req.

R 29:9 0x0 (unde�ned)

R 30 INT 1 0: Deasserted

1: Asserted

R 31 INT 2 0: Deasserted

1: Asserted

Table 12: TSI functions register map: Register 0x34.

29

Address Access Bits Description Connection/ I/O: Level

o�set Comment

Internal Test Register

0x13C R/W 0 Test Int. Req 1 = Request

R/W 4:1 J2 Crate Mas. J2 O: TTL

Output(3:0) C32, C24, C22, C31

31:5 (unde�ned)

User Output Register

0x140 R/W 7:0 Additional J2 J2 A(15:12) A(10:9) O: TTL

Outputs A(7:6)

User Input Register

0x144 R 7:0 Additional J2 J2 A29,A25,A22 I: TTL

Inputs C(11:7)

Geographic Address Register

0x148 R 4:0 GA(4:0) J1 I: TTL

D10,11,12,13,15,17

R 5 GAP J1 D9 I: TTL

R 31:6 0x0 (unde�ned)

Table 13: TSI functions register map: Registers 0x3C-48.

7.7 VME and Scaler Firmware

The VME and scaler �rmware block is NOT required to provide any VME functionality. It will

provide the access to User J2 lines and VME GEO lines as does the TSI device in the Alphas. The

scalar block will simply drive front panel ECL drivers.

7.8 Spy and Con�guration Channels

Sixteen channels (I/Os) are reserved to drive a header or additional front panel connector for

the purpose of examining signals internal to the FPGA. Signals would be selected by �rmware

settings and used for debugging purposes. Other pins are provided to connect status LEDs and a

con�guration switch to control �rmware functions. More I/O pins may be added to this block if

desired.

8 Future Upgrade Paths

9 Acknowledgements

We greatfully acknowledge the keen eye and assistance of Jim Linnemann in our pursuit of the

better �eta.

30

10 Document History

version 2.0.0

First version of CPCI TDR. Separate schedule/management sections, signi�cant additions to �rmware

sections. From this version on the document gravitates towards a detailed technical manual as op-

posed to an overall review. version 1.4

Update schedule: move forward date to order SBCs for prototypes (VMIC has 60 day lead time),

adjust prototype production schedule to Orsay's shop schedule; minor cost updates; typo �xes.

References

[1] Nucl.Instr.Meth.A269:51,1988.

[2] Tundra Semiconductor Corp., www.tundra.com.

[3] AlphaPC164 Technical Reference Manual,

http://ftp.digital.com/pub/Digital/info/semiconductor/literature/archives.html

[4] Level-2 Calorimeter Preprocessor Technical Design Report,

[5] Technical Design Report for the Level 2 Global Processor,

D�Note #3402.

[6] Intel Architecture Software Developer's Manual,

ftp://download.intel.com/design/mobile/MANUALS/24319101.PDF

[7] http://umwnt1.physics.lsa.umich.edu/alpha/schematics.htm

[8] D� MBT pages: http://macdrew.physics.umd.edu/dzero/trigger/mbt.html

[9] http://www.Advantech-nc.com

[10] http://www.dtims.com

[11] http://www.teknor.com

http://galileo.phys.virginia.edu/

~rjh2j/l2beta/beta_docs/PCI/pmc_draft.pdf

[12] Information on Spec measurements can be fount at www.specbench.org

[13] Xilinx XCV405E, www.xilinx.com, goto VIRTEX-EM products.

[14] http://www2.plxtech.com

[15] For full crate speci�cations see: http://

31

PIN A B C D E
1 GND GND GND GND GND
2 MBDATA(0) MBDATA(1) MBDATA(2) MBDATA(3) MBDATA(4)
3 MBDATA(5) MBDATA(6) MBDATA(7) MBDATA(8) MBDATA(9)
4 MBDATA(10) MBDATA(11) MBDATA(12) MBDATA(13) MBDATA(14)
5 MBDATA(15) MBDATA(16) MBDATA(17) MBDATA(18) MBDATA(19)
6 MBDATA(20) MBDATA(21) GND MBDATA(22) MBDATA(23)
7 MBDATA(24) MBDATA(25) MBDATA(26) MBDATA(27) MBDATA(28)
8 MBDATA(29) MBDATA(30) MBDATA(31) MBDATA(32) MBDATA(33)
9 MBDATA(34) MBDATA(35) MBDATA(36) MBDATA(37) MBDATA(38)
10 MBDATA(39) MBDATA(40) MBDATA(41) MBDATA(42) MBDATA(43)
11 MBDATA(44) MBDATA(45) GND MBDATA(46) MBDATA(47)
12 MBDATA(48) MBDATA(49) MBDATA(50) MBDATA(51) MBDATA(52)
13 MBDATA(53) MBDATA(54) MBDATA(55) MBDATA(56) MBDATA(57)
14 MBDATA(58) MBDATA(59) MBDATA(60) MBDATA(61) MBDATA(62)
15 MBDATA(63) MBDATA(64) MBDATA(65) MBDATA(66) MBDATA(67)
16 MBDATA(68) MBDATA(69) GND MBDATA(70) MBDATA(71)
17 MBDATA(72) MBDATA(73) MBDATA(74) MBDATA(75) MBDATA(76)
18 MBDATA(77) MBDATA(78) MBDATA(79) MBDATA(80) MBDATA(81)
19 MBDATA(82) MBDATA(83) MBDATA(84) MBDATA(85) MBDATA(86)
20 MBDATA(87) MBDATA(88) MBDATA(89) MBDATA(90) MBDATA(91)
21 MBDATA(92) MBDATA(93) GND MBDATA(94) MBDATA(95)
22 MBDATA(96) MBDATA(97) MBDATA(98) MBDATA(99) MBDATA(100)
23 MBDATA(101) MBDATA(102) MBDATA(103) MBDATA(104) MBDATA(105)
24 MBDATA(106) MBDATA(107) MBDATA(108) MBDATA(109) MBDATA(110)
25 MBDATA(111) MBDATA(112) MBDATA(113) MBDATA(114) MBDATA(115
26 MBDATA(116) MBDATA(117) GND MBDATA(118) MBDATA(119)
27 MBDATA(120) MBDATA(121) MBDATA(122) MBDATA(123) MBDATA(124)
28 MBDATA(125) MBDATA(126) MBDATA(127) MBAD(0) MBAD(1)
29 MBAD(2) MBAD(3) MBAD(4) MBAD(5) MBAD(6)
30 MBAD(7) MBAD(8) MBAD(9) MBAD(10) MBAD(11)
31 MBAD(12) MBAD(13) GND MBAD(14) MBAD(15)
32 MBAD(16) MBAD(17) MBAD(18) MBAD(19) MBAD(20)
33 MBAD(21) MBAD(22) MBAD(23) MBAD(24) MBAD(25)
34
35
36
37 MBAD(26) MBAD(27) MBAD(28) MBAD(29) MBAD(30)
38 MBAD(31) MBRESET RD/WR* DSTROBE* DDONE*
39 Reserved BOSS GND BOSSREQ BOSSGROUT
40 Reserved AP_FIFO_EMTY START_LOAD* Reserved BOSSGRIN
41 BUFFER(1) BUFFER(0) MOD_DONE(0) MOD_DONE(1) MOD_DONE(2)
42 MOD_DONE(3) MOD_DONE(4) MOD_DONE(5) MOD_DONE(6) MOD_DONE(7)
43 MOD_DONE(8) MOD_DONE(9) MOD_DONE(10) MOD_DONE(11) MOD_DONE(12)
44 MOD_DONE(13) MOD_DONE(14) GND MOD_DONE(15) MOD_DONE(16)
45 MOD_DONE(17) MOD_DONE(18) Reserved DONE_OUT Reserved
46 EV_LOADED(0) EV_LOADED(1) EV_LOADED(2) EV_LOADED(3) Reserved
47 GND GND GND GND GND

PIN A B C D E

Figure 13: MagicBus connections.

32

Test Interrupt Request

Test Interrupt Enable

Mod Done Mask

Mod Done(18:0)

Fifo Empty Flag

Primary Interrupt Enable

 INT_1

 Internal Interrupt Request

 New Evt.
 Interrupt
 Request

either AP_FIFO_EMPTY
or local FIFO_EF

Figure 14: Interrupt 1 logic

External (SCL)
Interrupt Request

External Interrupt
Enable

Secondary Interrupt Enable

 INT_2

 External Interrupt Request

Figure 15: Interrupt 2 logic

33

