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The most current version of this note may be found at the L2βeta web site: 

http://galileo.phys.virginia.edu/~rjh2j/l2beta#specs 
 

This document is intended to serve as transitional source of information from the 
L2Alpha hardware specifications and descriptions.  L2βeta TDR versions 2.0 and 
above will replace this document as the primary description for all facets of the 
L2βeta implementation. 

1 General Description 
This document describes the functions of the 4 custom PCI1 devices implemented on the 
L2 Alpha processors. These devices are a Tundra Universe II VME interface, a Magic 
Bus to PCI DMA interface, a Magic Bus to PCI programmed I/O (PIO) interface, and a 
Trigger Supervisor interface (TSI). This document is intended to be a guide to the 
designs for L2βeta hardware and firmware.  The ALPHA’s functions and physical 
connections should be described in sufficient detail to replicate its functionality. 
Comments relevant to the L2βeta design are included in each section. 
 
This document assumes that the reader has some basic familiarity with Magic Bus 
specifications, the Tundra Universe chip, and the PCI specification.  Parts of this 
document borrow from the L2 Alpha Technical Document of S. Miller and Zhihui 
Huang. 
 

2 VME Interface 
Tundra’s Universe II chip provides the VME interface to the Level 2 Processors. The 
Universe chip supports up to 64 bit PCI and VME transfers including DMA transfers. 
The Universe II databook2 should be referred to for the use of the chip. On the Level 2 
Alpha boards the Universe II chip is connected to all 7 levels of VME interrupts.  
Interrupt line LINT(0) of the Universe chip is connected to pin 31 of the Alpha board’s 
interrupt PAL. This PAL register corresponds to bit 2 of ISA address 804. See page 4-15 
of the PC 164 TRM3 for details. (The details are specific to the L2Alpha architecture 
only.) 

                                                 
1 The 3 custom PCI devices implemented in FPGAs on the L2 ALPHA board may not be 
fully PCI compliant. This is especially true in the area of error handling.  
2 Available at http://galileo.phys.virginia.edu/~rjh2j/l2beta/#alpha_docs. 
3 ibid. 
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Following CPCI and PCI-PCI bridge recommendations4, the UII’s LINT(0) line would be 
routed to PCI INTA or INTB on the L2βeta.  (We choose INTA by convention on the 
L2βeta.) A VME controlled interrupt will be used to reset the Worker processors in the 
event that they are stuck in a processing loop.  The Alphas are also configured such that a 
VME RESET will also reset the alpha processor CPUs.  Is it possible to retain this 
functionality on the βetas by making use of the PRST# line on the P2 CPCI connector 
(pin C17).  This is an open collector line that causes a system reset when it is pulled low.  
This line should be driven by the UII_LRST* line with appropriate interface logic.  (see 
Alpha schematics, sheet 16) 
 

2.1 Register Configuration 
 
PCI Configuration Registers for the Universe II are accessed on the Alpha by asserting 
its IDSEL line (IDSEL 16 on the L2 Alphas) during a configuration read or write.  The 
PCI configuration registers 0x10 (and 0x14 ) define the base address for the Universe’s 
4Kbyte register space.  In the L2βeta processors these registers will be accessed to 
determine the base address of the UII, exactly as in the Alphas.  The UII’s IDSEL line 
will be connected to PCI AD(16), making it device 0 on the subordinate PCI bus4. 
 
The Universe’s 4Kbyte register space has 3 logical sections. The lowest 256 bytes of the 
register map to the PCI configuration space. The upper bytes map to the VME 
Configuration and Status Registers. The middle part of the space contains the Universe 
Device Specific Registers (UDSR).  (The addresses defined by 0x10 and 0x14 both point 
to the same set of registers, but one does it in memory space and one in I/O space. Which 
is which depends on a power-up configuration. This choice has no impact on our device 
drive software.)   

2.2 Description of Operation 
This section gives an overview of the operation modes of the Universe chip. The 
Universe II user manual should be referenced for a detailed description.  The Universe 
supports read and write transactions originating from the VME or PCI side. It supports 
eight separate VME slave windows for VME target behavior and eight separate PCI slave 
windows the VME master behavior.  For transactions originating on the VME side, the 
Universe acts a VME slave.  If the VME address falls inside the address range defined for 
one of the 8 VME slave images, the Universe becomes the PCI bus master and initiates 
the appropriate transaction on the PCI bus.  To see if the VME slave image is being 
addressed, the upper 16 bits of the 32 bit VME address are compared to base and bound 
addresses for that slave image. This means the slave image window will be at least 64 
Kbytes wide, and can be up to 4 GBytes wide. (Note that slave images 0 and 4 use the 
upper 20 bits and thus have a 4 KByte resolution.)  The corresponding 32-bit PCI address 
asserted combines the VME address with the address in a translation offset register. The 
lower 16 bits of the VME address are used for the lower 16 bits. The upper 16 bits are 

                                                 
4 See, for example, PCI system architecture / Mindshare, Inc.; by Anderson & Shanley. 
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derived from a two’s complement addition of the upper 16 VME bits with the 16 bits of 
the translation offset register.   There are also control bits for each image that further 
define the transaction (address modifiers, data and address width, etc.).  The transaction 
can be coupled in which case the PCI transaction must finish for the Universe to respond 
to the VME side; or it is posted for a write, or prefetched for a read in which case an 
intermediate FIFO is used and the Universe can acknowledge on the VME side before the 
PCI transaction occurs.  The Universe acts in much the same way if the transaction 
originates on the PCI side. Again there are 8 PCI target images whose registers define 
address windows and translation offsets. These images also have 64 KByte resolution 
with the exception of images 0 and 4 which have 4 KByte resolution. However, the PCI 
side does not support prefetched reads. Furthermore, if the PCI window is defined to be 
in PCI I/O space, posted writes are not allowed either, and all transactions are coupled.  
 
DMA transfers can be initiated from either the VME or the PCI side. 
 

2.3 UII Power up options 
The Universe II may be configured at power up to take on certain default settings.  On the 
L2βeta boards it should be possible to use default settings for all power up options, since 
these device configurations may be fully initialized in the device driver code. 

2.4 Summary of UII issues for L2βeta 
o Freedom to use fully default power-up configuration?  
o UII interrupt line connects to INTA (and FPGA on beta). 
o UII IDSEL connects to AD(16). 
o Implement VME reset to CPU reset through PRST# on CPCI connector. 

3 Magic Bus DMA Interface 
The Magic Bus (MBUS) DMA interface provides a direct path for MBUS data to be 
placed into main memory.  On the Alpha processors the PCI device is actually 
implemented in two separate programmable chips. A Xilinx XC4006E-2PQ160c is a (32 
bit) PCI target (slave) that is accessed to write to the MBUS to PCI address translation 
buffers (Mapper). These buffers are a set of four 2Kx8bit static RAM chips (only half of 
this memory, 4 KB, is used). A Cypress CY7C372-125JC CPLD is used as the PCI 
master to write the data from the input FIFO to main memory.   

3.1 Configuration of system 
The Alpha’s FPGA is configured by writing to the appropriate configuration registers 
according to the PCI specification.  The FPGA responds to configuration reads and writes 
when IDSEL 20 is driven. The CPLD is not configured.  Table 1 lists the values of the 
PCI configuration space.  In order to set up the DMA engine as a PCI master, bit 2 for 
address 0x04 must be set to 1.  Bit 1 must be set to 1 to enable writes to the Translation 
Buffer. Simply writing 7 to address 0x04 will accomplish both of those. At start up the 
device will be configured with the enable bits set.  To turn off the DMA engine, a 
configuration write can turn off bit 2 for address 0x04.  Equivalent beta functionality will 
require coding of a control register in its firmware. 
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Table 1 

31                                       1615                                     
0 

Address (hex) Description 

 0x0CDF 0x0DEA 00h Device ID  Vendor ID 
 0000 0100 0000 0000 0000 0000 1000 

0XXX 
04h Status Command 

 0x0601 0x3748 08h Class 
Code 

Revision 
ID 

 0xXXXX 0x0000 10h Base Address Register 
 0x0000 0x01XX 3Ch  ??  Interrupt 
 0x0000 0x0000 All others 14h-

38h 
Undefined Addresses 

 

In order to configure the Translation Buffer, the CPU must write the main memory 
address for each DMA channel into the TB. The TB buffer holds 1024 addresses which 
are accessed by the CPU by writing to the FPGA base memory address + 4(times) DMA 
number.  The DMA number is 0 to 1023 and directly corresponds to the corresponding 
MBUS address. The PCI address is 4 times that since we are accessing 32 bits of data and 
a PCI memory transaction addresses at the byte level. For example, for base memory 
address 0x02000000 the TB buffers would be addressed by writing to 0x02000000, 
0x02000004, 0x02000008, 0x0200000C etc…  The data written to the TB is the (pci) 
memory address to which data will be sent. The main memory address used must map to 
a part of the main memory’s DMA address space. The location and size of the window is 
set by the FLASHROM firmware by writing to the appropriate register in the 21172-CA 
chip. For the EB164 there is a 1 MB DMA window starting at PCI address 0x100000. 
The location and size of the window are defined in the eb164.h file and the executed code 
is in eb164_io.c.  DØ defines a new DMA window beginning at PCI memory address 
0x40000000 mapping to all physical memory in its L2ALPHA device driver code. 

3.2 Description of DMA operation on the Alpha boards 
 
The MBT boards send their data to the processor boards over the Magic Bus by 
addressing one of the DMA channels in the 32-bit Magic Bus Address space. The DMA 
addresses are reserved to be the lowest 1024 addresses in MBUS address space. These 
correspond to MBUS Address bits 31:10 being set to zero. 
 
Each MBT board will be assigned its DMA channel(s) to use during initialization. When 
any of the 1024 DMA addresses are asserted on the MBUS, the processor board will 
clock the 128 bits of MBUS data and lowest 10 bits of the MBUS address into a 4K deep 
FIFO. The Alpha board responds with DDONE*, ending that MBUS transaction5 (Figure 
1). The Alpha can receive data into its FIFOs independent of any action on the part of the 
rest of the DMA engine.  If the FIFO fills up, no error is given, and subsequent data sent 
                                                 
5 See the DØ MBus document for timing diagrams, 
http://galileo.phys.virginia.edu/~rjh2j/l2beta#specs. 
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to the Alpha will be lost, although in practice this should never be a problem.  Another 
approach would be to have the processor withhold DDONE* when its FIFO’s are full.  
This would be necessary if event storage requirements exceeded 64KB or if smaller 
FIFOs were used. 

 

Figure 1: Input logic for broadcast data 

Address
decode

MBAD(31:0)

MB_WR

DSTROBE

WCLK

MBDATA(127:0)/MBAD(9:0)

FIFOs

DDONE

 
 
The CPLD controls the Read Clock for the data and address FIFOs.  As soon as the FIFO 
EMPTY flag goes false, the CPLD will start sending data to main memory.  The CPLD 
initially arbitrates to gain control of the PCI bus and starts sending data as soon as it can.  
The 10 bits of the DMA channel are used to address the 4 SRAM chips of the Translation 
Buffer (TB). The Translation Buffer asserts the corresponding 32-bit PCI address on the 
PCI bus.  On the next PCI clock, the lower 64 MBUS data bits are asserted on the PCI 
bus, with the upper 64 bits sent on the following PCI clock.  The DMA engine always 
performs a 64-bit data transfer, and always sends at least two consecutive data words 
following one address.   
 
While sending the data, the address for the next data in the FIFO is compared with the 
previous address. If the address is the same, the data is sent as part of the same PCI burst 
transaction corresponding to the initial address that was sent.  
 
The Alpha’s 21172-CA chip (which manages PCI access to main memory and the CPU) 
has a buffer that holds eight 64-bit words. When the buffer fills, the 21172 asserts a 
STOP signal on the PCI bus. The DMA engine responds to the signal by ending the burst 
transaction and releasing the PCI bus.  The DMA engine then re-arbitrates for the PCI 
bus to continue the transaction.  The DMA transaction also halts if the FIFO becomes 
empty. 
 
While the data is being sent, the PCI address in the Translation Buffer is incremented to 
point to the next PCI address for that DMA channel. The PCI address is incremented by 



 6

16 bytes for each MBWORD sent since each MBWORD is 16 bytes long.  It should also 
be noted that only a 16-bit Adder is used to increment the PCI address bits (18:3) in the 
TB.  As a result the upper 13 address bits are unchanged. That means that for a given 
event, each DMA channel cannot write past a 512 KByte boundary. Therefore the 
starting address used to configure the TB should not be too close to that boundary.  This 
limitation could easily be removed on the βetas, however we should take care to preserve 
compatibility with the Alpha processor online code. 
 
When all the data is received for a given event, the Translation Buffer can be read to find 
the ending PCI address written into the Translation Buffer.  The difference between the 
initial and final address in the Translation Buffer indicates the number of bytes that were 
transferred.  The Translation Buffer must then be reconfigured to setup the addresses for 
the next event.   
 
By turning off the appropriate bit in PCI configuration space, the DMA engine will not 
automatically try to send data from the FIFO to main memory. In that case the FIFOs 
would still receive data and eventually fill up.  The βeta firmware must also contain a 
mechanism for disabling DMA.   
 
The PCI latency timers in the PLX and PCI-PCI bridge should both be configured to 
allow for a halt in DMA after 1-2µs if a pending request exists on the main PCI bus. This 
is necessary to limit latency times for PIO output transactions from the CPU. 
 
There is an opportunity for a number of enhancements in the beta processor for MBus 
arbitration.  For example: 

o Inputs to the FIFOs could be software enabled/disabled 
o Reporting of DDONE could be software enabled/disabled.  In this case, only an 

administrator card could be configured to return DDONE for the crate of 
processors. 

3. 3 Summary of DMA issues for L2βeta 
 
o Discussion of the DMA firmware model in the L2beta TDR suggests an ‘address 

change’ fifo as a means to fit all DMA functions into the limits of our Xilinx 
XCV405E fpga.  For an initial design of the firmware, it may be easier to bring 
the system up while using a standard address FIFO and configuring the DDONE 
logic to halt the DMA from the MBTs when the FIFO’s fill.  Depending on the 
speed of DMA transfers through the PLX chip, the performance penalty for this 
may be minimal. 

o PIO precedence over DMA must be implemented.  The case of PIO output 
transactions is described above.  PIO input transactions are discussed in the next 
section. 

4 Magic Bus Programmed I/O 
The Magic Bus Programmed I/O chip (MAGICFPGA) is a bridge between the PCI and 
Magic Buses allowing reads or writes from one address space to the other.  The PCI-
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MBUS transaction can originate from either side and can be either a read or a write.  This 
allows the CPU to directly access the Magic Bus memory space or for a board on the 
Magic Bus to write or read into PCI memory space.  The FPGA supports up to 64 bit PCI 
data transfers but only 32 bit addressing, and accesses all 128 bits of MBUS data. This 
device is implemented in a Xilinx XC4036EX-2-PG411C.  

Configuration 
The MAGICFPGA is configured by writing to the appropriate configuration registers 
according to the PCI specification.  The MAGICFPGA responds to configuration reads 
and writes when IDSEL 21 is driven.  The MAGICFPGA asks for 3 separate 16-bit (64K) 
memory address spaces. The first is for on chip registers that hold the PCI to MBUS 
translation address, as well as the MBUS address space reserved for the chip.  The other 
two address spaces are PCI addresses defining Window A and Window B (PCI windows 
mapped to a MBus address window).  Table 2 lists the values of the PCI configuration 
space. Bits indicated by “X” must be written to configure the device. The last 3 bits of 
address 04h should be written as 110 to enable memory reads/writes to the device as well 
as PCI bus mastership.    
 
In principle, the PCI memory addresses should be set by the plug-n-play PCI protocol. In 
that case user software would simply read these configuration registers to know what PCI 
addresses to use for that device. However, the configuration registers can be changed at 
any time by user software. In that case the software should be careful to not configure the 
device with a PCI address conflicting with another device on the board.   
 

Table 2 

31                                       1615                                     
0 

Address 
(hex) 

            Description 

 0x2CDF 0x2DEA 00h Device ID  Vendor ID 
 0000 0100 0000 0000 0000 0000 1000 

0XXX 
04h Status Command 

 0x0701 0x3748 08h Class 
Code 

Revision ID 

 0xXXXX   0x0000 10h 
 0xXXXX  (Window 
A) 

0x0000   14h 

 0xXXXX  (Window 
B) 

0x0000 18h 

Base Address Registers 
 

 0x0000 0x01XX 3Ch  Interrupt 
 0x0000 0x0000 All others  Undefined Addresses 
  

 
The base memory address at configuration address 10h defines the base memory address 
for the Magic Bus configuration or “setup” space. These setup registers are not in PCI 
configuration space, but are accessed through a normal PCI memory transaction. These 
registers hold the mapping from PCI to MBUS address space and vice versa. Table 3 
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describes the memory location of each of the registers. The address is the address given 
in the table, plus the base memory address as defined in the PCI configuration register 
10h. These registers must be configured by user code for proper function of the 
MAGICFPGA with the Magic Bus.  

Table 3 

Register Description Address (hex) 
PCI Translation Base 00h 
MBUS Upper Memory Address 04h 
MBUS Lower Memory Address 08h 
MBUS Translation Base 0Ch 
MBUS Mask  (not used) 10h 

 
PCI configuration registers 14h and 18h must be configured with the PCI address for 
Window A and Window B.  These windows are described below. 

PCI Transactions 
Addressing in PCI memory address space is accomplished by using  the lines AD(31:2) 
to address a DWORD (4 bytes).  The MAGICFPGA must convert this addressing scheme 
to the MBUS address, where the MBUS address lines (31:0)  address a single 128 bit 
MBWORD (16 bytes).  When the CPU initiates a read or write to the MBUS, it can 
choose one of two PCI address windows to address the MAGICFPGA. These are called 
Window A and Window B. Each of them is a 64K space in PCI memory address space 
and their base PCI address is set in the PCI configuration register as described below.  
Both windows still access the same MBUS address space which is fixed by the PCI 
Translation Base. The purpose of having separate windows is described in detail below.   
The upper 16 bits of the PCI Translation Base gives the upper 16 bits for converting a 
PCI address to a MBUS address. Since 16 bits are used for the translation, that means 
only 64K of contiguous MBUS address space can be addressed. In order to address a 
MBUS address that is not within 64K of the PCI Translation Base address, the PCI 
Translation Base register would have to be updated before attempting to read/write to that 
MBUS address.  Figure 2 illustrates how a PCI address is converted to a MBUS address. 
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P C I ad d ress  (by te  ad d ress)
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3 1 1 6  1 5 0

4

 

Figure 2: PCI address to MBus address conversion. 

 
PCI to MBUS mapping a concrete example: 

 
Assume the following configuration for the MBUS PIO registers: 
Base address of PIO setup registers: 1090000 
Base address of Window A 1100000 
PCI Translation Base 100000 (register offset 0x0 from 1090000) 
 
Then a PIO write to Window A at PCI address 1100000 will generate a MBus 
cycle with address 100000.  A PIO write to Window A at PCI address 1100010 
generates a MBus cycle with address 100001.  The reader should be reminded that 
the PCI bus is addressed by bytes and the MBus is addressed by MBus (16-byte) 
words. 

 
 
When the PCI side initiates a read or a write to the MBUS, the FPGA will try to gain 
control of the MBUS and then perform the transaction. The PCI and MBUS transactions 
are coupled so that the PCI transaction doesn’t end until the MBUS transaction is 
finished. If the FPGA cannot gain control of the MBUS within 16 PCI cycles, it will 
assert STOP on the PCI bus.  This will signal the 21172 (PCI controller) to retry the 
transaction, so no software retry will be necessary.  If the FPGA is simultaneously 
addressed from both the MBUS and PCI sides, the transaction originating on the MBUS 
will take precedence and the PCI transaction will fail.   
 
In the beta firmware an appropriate timeout should be included, so that the PCI bus can 
be released if no target responds to the read/write request.  An error register should also 
be added to reflect the state of the last read/write transaction on the MBus master. 
 
The two PCI windows on the MAGICFPGA are accessed separately by two different PCI 
addresses. However, their purpose is not to address separate MBUS addresses but to 
allow for two different types of PCI transactions. PCI transactions can occur as 32-bit or 
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64-bit, can be burst or non-burst, and can be from sparse or dense memory space. Having 
the two windows allows some flexibility in having different types of transactions.   
 
The basic difference in the two windows is that Window A is used for PCI data 
transactions of less than 128 bits, while Window B always requires a PCI transfer of 128 
bits. In either case, the Magic Bus transaction is a full 128 bits, but all data bits written 
may not all be meaningful for Window A. The distinction between Window A and 
Window B is related to the distinction between PCI sparse memory space and PCI dense 
memory space.   
 
When writing to Window A, the MBUS transaction starts when the last PCI data transfer 
occurs. (The last data transfer is indicated by the PCI protocol.) The data can be just 32 
bits or up to 128 bits in a burst transaction, although the burst should not go past 128 bits. 
Window A should be mapped in the PC164’s PCI sparse memory space which is defined 
to be in the physical address range 80.0000.0000 to 85.7FFF.FFFF. See the PC 164 TRM 
for details of the address space. 
 
Window B only initiates a MBUS transaction after a 128 bit transfer has occurred, which 
can be done via a burst of four 32-bit transfers or a burst of two 64-bit transfers. Window 
B should be mapped to the dense memory space that  is defined to be in the physical 
address range 86.0000.0000 to 86.FFFF.FFFF.  The actual implementation of this in the 
Alpha firmware is easily described.  Window B initiates a 128-bit transfer whenever the 
upper 32-bits of a MBus word are written.  For example, if Window B sits at PCI 
memory address 0x1200000, the a transaction begins when there is a PCI write to address 
0x120000C, 0x120001C, 0x120002c, etc…  When the write to 0x120000C occurs, the 
MBus word written corresponds to the data at registers: 0x1200000-0x120000C. 
 
 
A read into either Window A or Window B will trigger a 128-bit read on the Magic Bus. 
The Alpha FPGA can in theory support a burst read of up to 128 bits using either 32 or 
64 bit transfers.  In practice, the initial PIO firmware supports only 32-bit non-burst mode 
transactions, so PCI four writes/reads are necessary to transfer a single 128-bit word. 

Magic Bus Transactions 
A transaction originates from the MBUS side when an address asserted on the MBUS 
falls between the MBUS Upper Memory Address and the MBUS Lower Memory 
Address. These addresses must be configured in a register on the FPGA as described 
below.  This causes the FPGA to ask for control of the PCI bus and it will remain in that 
state until control is given. After receiving control, it initiates a 64-bit PCI transaction and 
will perform two 64-bit reads/writes in a PCI burst transaction.  The FPGA will not end 
the MBUS transaction with the DDONE* signal until the PCI transaction is 
finished. 
 
The MBUS Upper Address and MBUS Lower Address define the window in MBUS 
address space for which the Alpha board will respond to a MBUS address.  Only the 
upper 16 bits are used for the comparison so the smallest window defined is 64K.  The 
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MBUS Translation Base defines the base PCI address used for converting a MBUS 
address to a PCI address. In this case the upper 12 bits (31:20) define the base PCI 
address. Therefore only 1 MByte of contiguous PCI memory space can be addressed. 
Figure 3 illustrates how a Magic Bus address is converted to a PCI address. 
 

M B  address

Translation B ase

31

31 20 19 0

PC I A ddress

31 20 19 0

0

4

16 15

0

 

Figure 3: MBus address to PCI address conversion 

 
MBus to PCI mapping a concrete example: 

 
Assume the following configuration for the MBUS PIO registers: 
CIA Memory base: 40000000 (This setup is specific to the Alpha PCI controller.  
Its function is to map PCI addresses to physical memory addresses.  In our case 
any access to PCI addresses between 0x40000000 and 0x40000000+128MB will 
directly access the onboard RAM.) 
MBus upper address: 0x110000 (register offset 0x4 from 0x1090000) 
MBus lower address: 0x100000 (register offset 0x8 from 0x1090000) 
MBus Translation Base: 0x41000000 (register offset 0xC from 0x1090000) 
 
Then a PIO transaction at MBus address 100000 will generate a PCI cycle on the 
MBus target at PCI address 0x41000000.  A PIO transaction at MBus address 
100001 generates a PCI cycle with address 41000010. 

 
As stated above, ALPHA firmware PIO transactions are fully coupled transactions.  
Therefore, the PCI bus is held during the full MBus cycle.  From the PCI bus the 
transactions may be described as follows.   
 

MBus write cycle (I: Initiating processor, T: Target Processor) 
 

1) I: PCI controller sends data to PIO device, PCI bus is held awaiting TRDY* 
2) I: PIO device gains control of MBUS 
3) I: PIO device sends address/data to MBUS 
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4) T: PIO device latches data 
5) T: PIO device gains control of Target’s PCI bus and transfers data (4x32 bits or 

2x64bits)6 
6) T: PIO device sends DDONE* and releases PCI BUS 
7) I: PIO device sends TRDY*, PCI controller releases PCI bus 

 
 

MBus read cycle (I: Initiating processor, T: Target Processor) 
 

1) I: PCI controller initiates read transaction from PIO device 
2) I: PIO device gains control of MBUS 
3) I: PIO device sends address to MBUS and waits for data7 
4) T: PIO device gains control of PCI bus, initiates a read transaction (4x32 bits) 
5) T: PIO device places data on MBUS, sends DDONE and releases PCI bus 
6) I: PIO latches data and returns a 32 bit work to the PCI controller 

 
Comment: MBUS read transactions are initiated when reading addresses that are 128-bit 
aligned.  Therefore to read a 128-bit word into the CPU the transaction could be done in 
two parts (four parts if 32-bit reads are used): 1) read a 64-bit word, aligned with a 128-
bit boundary, from the PIO device – this initiates a MBUS read.  2) read the 2nd 64-bit 
word from the PIO device – this read need not initiate a transfer, because the data are 
already in PIO device’s buffer. 
 
In the beta design, it is entirely possible to allow posted (or burst) writes in Magic Bus 
PIO with additions to the firmware. This should be considered for a later stage in the 
project. 

DMA vs. PIO Priorities 
We require that PIO take precedence over DMA.  The strict requirement is that delays for 
PIO transactions should not be large due to waiting for DMA transactions to finish.  
DMA must halt in response to a request for the PCI bus by the PCI controller.  As 
mentioned in the previous section, this is accomplished with PCI latency timers.  
Additionally, the PIO target firmware must have the ability to halt DMA in order to finish 
a pending transaction.  This may be accomplished on the βetas by use of control lines on 
the local bus of the PLX9656. 

TSI Interface 
The TSI interface is implemented in a Xilinx XC4010e-2PQ208c FPGA (TSIFPGA).  
This chip only functions as a PCI slave and is used to receive and send information to the 

                                                 
6 A single 32-bit write may trigger an MBUS cycle when writing to Window A.  
Otherwise the MBUS transaction is triggered when the upper 32 bits of a 128-bit aligned 
MBUS word are filled (Window B). 
See the FPGA document for more information. 
7 The necessary PCI bus STOP/RETRY arbitration should be handled automatically with 
proper setup of the PLX interface in the L2βeta. 
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rest of the trigger system. This includes the CDF/DØ trigger signals from the P2 
backplane, as well as direct communication with the Global Level 2 board through a front 
panel connector.  It is also used for monitoring the status lines of the Magic Bus.  

Description of Operation 
Because the device is a PCI slave, the only PCI operations are reads and writes to 
registers within the FPGA. Once the device has been configured with its base PCI 
memory address, one reads or writes to specific registers using the base address+local 
address.  This device only supports 32 bit PCI transactions. The device has one of its pins 
connected to the PCI interrupt PAL at pin 9. With the interrupt PAL code, this 
corresponds to bit 2 of ISA address 805. (A second interrupt line sets the same bit in ISA 
space.) See page 4-15 of the PC164 Technical Reference Manual for details. 

DØ Trigger Signals 
The TSIFPGA is connected to 37 CDF trigger signals on the P2 backplane, however the 
DØ flavor of the L2Alphas uses only a small subset of the P2 connections as shown in 
Table 4. 
  

Table 4 

I/O Alpha TSI Alpha Administrator Worker
Connection ID J2# Function Function

in Ext_Test_Interrupt A24 SCL_Initialize_Interrupt Worker Interrupt
in L2_Answer_Ready A23 L2_Answer_Ready VME Busy
in VBD_DONE C25 VBD Done MBus Busy

out VBD_Start_Request A21 VBD Start Test Out
out J2_Test_Output(0) C21 Worker_1 Interrupt
out J2_Test_Output(1) C22 Worker_2 Interrupt
out n/a Worker_3 Interrupt
out n/a Worker_4 Interrupt
out n/a Worker_5 Interrupt  

 
Several of the J2 pins unused by D0 should remain connected on the betas to allow for 
future flexibility in custom I/O definitions.  Recommendations are shown in Table 6. 

Communication with Global Level 2 
The communication with the trigger framework is through a 68-pin front panel connector.  
We send 32 signals of differential ECL, connected on board to 32 TTL signals connected 
to the TSIFPGA. The value of all 32 bits can be read/written from a single PCI register.  

Monitoring of Magic Bus Status Lines 
The TSIFPGA also monitors the Magic Bus status lines. These are the 
MOD_DONE(18:0), EV_LOADED(4:0), and MB_AP_FIFO_EMPTY lines. Reading the 
appropriate register directly reads the value of these signals from the backplane. The 
empty status of the on board DMA FIFO is also read from this register.  Writing to 
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another register will drive the START_LOAD, BUFFER(1:0), MBRESET, and 
AP_FIFO_EMPTY lines. This AP_FIFO_EMPTY line is connected to an open collector 
driver. The other 4 lines are connected to a transceiver. Only one of the Alpha boards in 
each crate will be the Magic Bus crate master and drive these lines.  Writing a 1 to the 
CRATE_MAS_DIR bit will appropriately set the transceiver direction to drive these lines 
on the backplane. The other boards should then have a 0 written to that register bit, in 
which case the value of these lines can only be read.  (see Alpha schematic, sheet 40).  
The TSI may also be software enabled to generate an interrupt under either of two 
conditions: 
 

1. New event Interrupt: (MOD_DONE MASK is satisfied) .AND.  (LOCAL FIFO 
EMPTY .OR. AP FIFO EMPTY) .AND. (Interrupt 1 enabled) 

2. SCL Initialize: (SCL Initialize line on J2 pulled high) .AND. (Interrupt 2 enabled) 

Configuration Registers 
The TSIFPGA is configured by writing to the appropriate configuration registers 
according to the PCI specification.  The TSIFPGA responds to configuration reads and 
writes when IDSEL 23 is driven. The TSIFPGA asks for a 16-bit (64 K) memory address 
space.  Table 5 lists the values of the PCI configuration space. Bits indicated by “X” must 
be written to configure the device.  The last 3 bits of address 04h should be written as 010 
to enable memory reads/writes to the device. Writing to the upper 16 bits of 10h specifies 
the base memory address. This address should be set by the plug-n-play PCI protocol.   
 

Table 5: TSI Configuration registers 

31                                       1615                                     
0 

Address (hex)             Description 

 0x2CDF 0x2DEA 00h Device ID  Vendor ID 
 0000 0100 0000 0000 0000 0000 1000 

0XXX 
04h Status Command 

 0x0701 0x3748 08h Class Code Revision 
ID 

 0xXXXX 0x0000 10h Base Address Register 
 0x0000 0x01XX 3Ch  Interrupt 
 0x0000 0x0000 All others 14h-

38h 
Undefined Addresses 

    

 

TSI Memory Registers 
The memory location of the TSIFPGA registers and the signals accessed by each bit are 
shown in Table 6.  Each register bit is listed as an input or an output.  Input bits monitor 
that status of bus signals.  Output bits drive bus signals.  For each output bit an internal 
register is written to control drives on the bus line.  Reading back a register bit that drives 
an output provides the REGISTER value and not the bus level directly (see Figure 4). 
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FPGA

Driver

O

I

R/W

R

 

Figure 4: Driving and monitoring of output lines.  Two FPGA registers bits are used 
in these cases, one to drive the bus and one to monitor the bus.  In some cases the 

output driver may only be enabled if a CRATE_MASTER_BIT is set on the board.  
See alpha schematics (sheet 40). 

 

Table 6: TSI Memory registers.  I/O levels are shown as follows:   
TTL: standard TTL, TTLO64: Open collector, sinking 64mA,  

TTL64: TTL Driver, sinking 64mA  
(functions not present in the L2Alphas are listed in italics) 

CDF specific registers are deleted from this table 

Address Access Bits Description Connection/Comment I/O: Level 
0ch R 

 
 
18:0 
19 
20 
24:21 
25 
26 
27 
31:28 

Broadcast Status Signals 
MODE_DONE(18:0) 
FIFO_EF 
MB_FIFO_EMPTY 
EV_LOADED(3:0) 
MBRESET 
Buffer(0) 
Buffer(1) 
0x0 

Register to monitor J3 signals 
J3 C41-B45 
Local fifo empty 
J3 B40 
J3 A46-D46 
J3 B38 
J3 B41 
J3 A41 

 
I: TTL 
I: 
I: TTL 
I: TTL 
I: TTL 
I: TTL 
I: TTL 
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Address Access Bits Description Connection/Comment I/O: Level 
10h  

 
 
R/W 
 
R/W 
 
R/W 
 
R/W 
 
 
 
 
 
R/W 
R/W 
R/W 
R/W 
 
R/W 
 
R/W 
R/W 
R 
R 
R 
R 

 
 
 
0 
 
1 
 
2 
 
3 
 
 
 
 
 
4 
5 
6 
7 
 
8 
 
9 
15:10 
16 
17 
18 
31:19 

 
 
 
CDF_ERROR*     
            
AP_FIFO_EMPTY 
   
CRATE_MAS_DIR 
    (Onboard control line) 
TSI_DONE_OUT 
 
 
 
 
 
BUFFER(1) 
BUFFER(0) 
START_LOAD* 
MBRESET 
 
(unused) 
 
VBD_START_REQUEST 
(undefined) 
VBD_DONE 
AP_FIFO_EMPTY (unused) 
L2_ANSWER_READY 
(unused) 

These bits drive J3 signals. 
A read returns internal 
register status 
(Unused by DØ) 
 
(CDF Output-Unused by DØ)   
 
 
 
DONE_OUT J3 D45 
The following 4 bits may 
only be driven in the MBUS 
if board is set to me crate 
master (see alpha 
schematics sheet 40) 
J3 A41  
J3 B41  
J3 C40  
J3 B38  
 
(unused) 
 
J2 A21  
 
J2 C25 
(unused) 
J2 A23 
(unused) 

 

 
 
 
 
 

 
 
O: TTL64 
 
 
 
 
 
O: TTL64 
O: TTL64 
O: TTL64 
O: TTL64 
 
 
 
O: TTL 
 
I: TTL 
 
I: TTL 

14h  31:0 TSI_OUT(31:0) 32 Front Panel ECL lines O: ECL 
30h R/W 

 
 
 
R/W 
 
 
 
 
R/W 
 
R/W 
 
R/W 
 
R/W 
R/W 
R/W 

18:0 
 
 
 
19 
 
 
 
 
20 
 
21 
 
22 
 
29:23 
30 
31 

MOD_DONE_Mask(18:0) 
(Set/read MOD_DONE mask 
For new event interrupt) 
 
Select_FIFO_EMPTY 
1: local fifo 
0: MB_AP_FIFO_EMPTY 
 
 
New_Event_Interrupt_Enable 
 
Internal_Test_Interrupt_Enable 
 
External_Test_Interrupt_Enable 
1: Enable 0: Disable 
(undefined) 
Primary_Int_Enable 
Secondary_Int_Enable 

 
 
 
 
Interrupt based on: 
MODE_DONE, 
MODE_DONE_MASK,  
and FIFO_EMPTY 
 
1: Enable 0: Disable 
 
1: Enable 0: Disable 
 
External_Interrupt_Request 
is the J2 SCL_INIT signal  
 
1: enable INT_A 0: disable 
1:enable INT_B 0: disable 
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Address Access Bits Description Connection/Comment I/O: Level 
34h R 

 
 
 
R 
 
 
 
R 
 
 
 
 
 
R 
 
R 
R 

0 
 
 
 
1 
 
 
 
2 
 
 
 
 
7:3 
8 
29:9 
30 
31 

Valid_Internal_Test_Request 
 
 
 
Valid_External_Test_Request 
 
 
 
Valid_New_Event_Request 
 
 
 
 
(undefined) 
External_Test_Interrupt_Req 
(undefined) 
INT_A 
INT_B 

Internal_Test_Int_Request 
AND 
Internal_Test_Int_Enable 
 
External_Test_Int_Request 
AND 
External_Test_Int_Enable 
 
All selected MOD_DONE 
lines high, AND selected 
FIFO_EMPTY flag high, 
AND New_Event_Int_Enble 
 
 
J2 A24 
 
1: Asserted 0: not Asserted 
“” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
I: TTL 

3C R/W 
 
 
 
 
R/W 
R/W 
 
R/W 
R/W 
 

0 
 
 
 
 
1 
2 
 
3 
4 
 
31:5 

Internal_Test_Int_Req 
1: Assert 0: Deassert 
 
 
 
J2_Test_Output(0)  
J2_Test_Output(1) 
 
J2_Test_Output(2) 
J2_Test_Output(3) 
 
(undefined) 

Internal_Test_Int_Enable 
AND 
Primary_Interrupt_Enable 
must also be set to assert 
INT_A 
J2 C21 (set by crate master) 
J2 C22 (set by crate master) 
 
J2 C32  “” 
J2 C24  “” 

 
 
 
 
 
O: TTL 
O: TTL 
 
O: TTL 
O: TTL 

40  
R/W 

 
0:7 

Additional J2 Output Lines 
Reserved outputs 

 
J2 A6-7, A9-10, A12-15 

 
O: TTL 

44  
R 

 
0:7 

Additional J2 Input Lines 
Reserved inputs 

 
J2 C7-11, A22, A25, A29 

 
I: TTL 

48 R 4:0 
 
5 
 
31:6 

GA(4:0) 
Inverted values of GA# lines 
GAP 
Invert GAP# line 
(undefined) 

J1 D10,11,13,15,17 
 
 
J1 D9 

 

 

PCI Interrupts 
 
The L2βeta’s will implement two distinct PCI devices on the CPCI expansion bus, UII 
and PLX.  In keeping with the CPCI recommendations for PCI interrupt binding, these 
devices should be routed to interrupt A and B respectively.  The UII interrupt line should 
pass through the Xilinx FPGA on the beta – this will allow future compatibility with 
Message Signaled Interrupts under the PCI 2.2 standard. 

Resets 
See section on the Universe chip. 



 18

PCI Devices 
 

Table 6. PCI device addresses for Concurrent Tech. CPCI board. 

PCI Device IDSEL line 
CPCI Expansion 16 (factory set on primary PCI bus) 
UII 16 (subordinate bus) 
PLX9656 17 (subordinate bus) 
 

 


