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ABSTRACT

In this review the basic interaction mechanisms of charged and neutral particles
are presented. The ionization energy loss of charged particles is fundamental to
most particle detectors and is therefore described in more detail. The produc-
tion of electromagnetic radiation in various spectral ranges leads to the detec-
tion of charged particles in scintillation, Cherenkov, and transition-radiation
counters. Photons are measured via the photoelectric effect, Compton scatter-
ing, or pair production, and neutrons through their nuclear interactions.

A combination of the various detection methods helps to identify elemen-
tary particles and nuclei. At high energies, absorption techniques in calorime-
ters provide additional particle identification and an accurate energy measure-
ment.

Introduction

The detection and identification of elementary particles and nuclei is of
particular importance in high-energy, cosmic-ray, and nuclear physics [1, 2, 3,
4, 5, 6, 7]. Identification means that the mass of the particle and its charge
are determined. In elementary particle physics most particles have unit charge.
But in the study, e.g., of the chemical composition of primary cosmic rays or
at heavy-ion colliders different charges must be distinguished.

Every effect of particles or radiation can be used as a working principle
for a particle detector.

The deflection of a charged particle in a magnetic field determines its
momentum p; the radius of curvature ρ is given by

ρ =
p

zeB
∝ p

z
=
γm0βc

z
, (1)

where z is the particle’s charge, m0 its rest mass, β = v
c its velocity, and B

the magnetic bending field. The particle velocity can be determined, e.g., by a
time–of–flight method yielding

β ∝ 1

τ
, (2)
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where τ is the flight time. A calorimetric measurement provides a determina-
tion of the kinetic energy

Ekin = (γ − 1)m0c
2 , (3)

where γ = 1√
1−β2

is the Lorentz factor.

¿From these measurements the ratio of m0/z can be inferred, i.e., for
singly charged particles we have already identified the particle. To determine
the charge one needs another z-sensitive effect, e.g., the ionization energy loss

dE

dx
∝ z2

β2
ln(aβγ) (4)

(a is a material-dependent constant).
Now we know m0 and z separately. In this way, even different isotopes of

elements can be distinguished.
The basic principle of particle detection is that every physics effect can

be used as an idea to build a detector. In the following we distinguish between
the interaction of charged and neutral particles. In most cases the observed
signature of a particle is its ionization, where the liberated charge can be col-
lected and amplified, or its production of electromagnetic radiation which can
be converted into a detectable signal. In this sense, neutral particles are only
detected indirectly, because they must first produce, in some kind of interac-
tion, a charged particle which is then measured in the usual way.

Interaction of Charged Particles

Kinematics

Four-momentum conservation allows to calculate the maximum energy
transfer of a particle of mass m0 and velocity v = βc to an electron initially at
rest to be [2]

Emax
kin =

2mec
2β2γ2

1 + 2γme

m0

+
(

me

m0

)2
=

2mep
2

m2
0 +m2

e + 2meE/c2
, (5)

here γ = E
m0c2 is the Lorentz factor, E the total energy, and p the momentum

of the particle.
For low-energy particles heavier than the electron (2γme

m0

≪ 1; me

m0

≪ 1)
Eq. (5) reduces to

Emax
kin = 2mec

2β2γ2 . (6)
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For relativistic particles (Ekin ≈ E; pc ≈ E) one gets

Emax =
E2

E +m2
0c

2/2me
. (7)

For example, in a µ–e collision the maximum transferable energy is

Emax =
E2

E + 11
, E in GeV , (8)

showing that in the extreme relativistic case the complete energy can be trans-
ferred to the electron.

If m0 = me, Eq. (5) is modified to

Emax
kin =

p2

me + E/c2
=
E2 −m2

ec
4

E +mec2
= E −mec

2 . (9)

Scattering

Rutherford scattering

The scattering of a particle of charge z on a target of nuclear charge Z is
mediated by the electromagnetic interaction (Fig. 1).

Figure 1: Kinematics of Coulomb scattering of a particle of charge z on a target
of charge Z.
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The Coulomb force between the incoming particle and the target is writ-
ten as

~F =
z · e · Z · e

r2
~r

r
. (10)

For symmetry reasons the net momentum transfer is only perpendicular to ~p
along the impact parameter b direction,

pb =

∫ +∞

−∞

Fb dt =

∫ +∞

−∞

z · Z · e2
r2

· b
r
· dx

βc
, (11)

with b = r sinϕ, dt = dx/v = dx/βc, and Fb force perpendicular to p.

pb =
z · Z · e2
βc

∫ +∞

−∞

b dx

(
√
x2 + b2)3

=
z · Z · e2
βcb

∫ +∞

−∞

d(x/b)
(√

1 +
(

x
b

)2

)3

︸ ︷︷ ︸

=2

,(12)

pb =
2z · Z · e2

βcb
=

2remec

bβ
z · Z , (13)

where re is the classical electron radius. This consideration leads to a scattering
angle

Θ =
pb

p
=

2z · Z · e2
βcb

· 1

p
. (14)

The cross section for this process is given by the well-known Rutherford formula

dσ

dΩ
=
z2Z2r2e

4

(
mec

βp

)2
1

sin4 Θ/2
. (15)

Fig. 2 shows the results of scattering α particles on gold foils [8, 9].

Multiple scattering

From Eq. (15) one can see that the average scattering angle 〈Θ〉 is zero. To
characterize the different degrees of scattering when a particle passes through
an absorber one normally uses the so-called “average scattering angle”

√

〈Θ2〉.
The projected angular distribution of scattering angles in this sense leads to
an average scattering angle of [7]

√

〈Θ2〉 = Θplane =
13.6 MeV

βcp
z ·

√
x

X0

{

1 + 0.038 ln

(
x

X0

)}

(16)
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Figure 2: Scattering of MeV α particles on gold foils.
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with p in MeV/c and x the thickness of the scattering medium measured in
radiation lengths X0 (see bremsstrahlung). The average scattering angle in
three dimensions is

Θspace =
√

2Θplane =
√

2Θ0 . (17)

The projected angular distribution of scattering angles can approximately be
represented by a Gaussian

P (Θ) dΘ =
1√

2πΘ0

exp

{

− Θ2

2Θ2
0

}

dΘ . (18)

Fig. 3 shows the results of scattering 15.7MeV electrons off gold foils [10,
11]. For low scattering angles (≤ 5◦) multiple scattering dominates. The
distribution develops a tail for large scattering angles due to single scattering
events.

Figure 3: Scattering-angle distribution for 15.7MeV electrons on two gold tar-
gets of different thickness [10, 11].
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Energy loss of charged particles

Charged particles interact with a medium via electromagnetic interactions
by the exchange of photons. If the range of photons is short, the absorption
of virtual photons constituting the field of the charged particle gives rise to
ionization of the material. If the medium is transparent, Cherenkov radiation
can be emitted above a certain threshold. But also sub-threshold emission of
electromagnetic radiation can occur, if discontinuities of the dielectric constant
of the material are present (transition radiation) [12]. The emission of real
photons by decelerating a charged particle in a Coulomb field also constitutes
an important energy loss process (bremsstrahlung).

Ionization energy loss

Bethe–Bloch formula

This energy-loss mechanism represents the scattering of charged particles
off atomic electrons, e.g.,

µ+ + atom → µ+ + atom+ + e− . (19)

The momentum transfer to the electron is (see Eq. (13))

pb =
2remec

bβ
z

and the energy transfer in the classical approximation

ε =
p2

b

2me
=

2r2emec
2

b2β2
z2 . (20)

The interaction probability per (g/cm2), given the atomic cross section σ, is

φ[g−1cm2] =
N

A
σ [cm2/atom] , (21)

where N is Avogadro’s constant.

The differential probability to hit an electron in the area of an annulus
with radii b and b+db (see Fig. 4) with an energy transfer between ε and ε+dε
is

φ(ε) dε =
N

A
2πb db Z , (22)

because there are Z electrons per target atom.
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Figure 4: Sketch explaining the differential collision probability.

Inserting b from Eq. (20) into Eq. (22) gives

b2 =
2r2emec

2

β2
z2 · 1

ε

2|b db| =
2r2emec

2

β2
z2 · dε

ε2

φ(ε) dε =
N

A
π

2r2emec
2

β2
z2 · Z · dε

ε2

=
2πr2emec

2N

β2
· Z
A

· z2 · dε

ε2
, (23)

showing that the energy spectrum of δ electrons or knock-on electrons follows
an 1/ε2 dependence (Fig. 5, [14]).

The energy loss is now computed from Eq. (22) by integrating over all
possible impact parameters [6],

−dE =

∫
∞

0

φ(ε) · ε · dx

=

∫
∞

0

N

A
2πb · db · Z · ε · dx

−dE

dx
=

2πN

A
· Z

∫
∞

0

ε · b · db

= 2π
Z ·N
A

· 2r2emec
2

β2
z2

∫
∞

0

db

b
. (24)

This classical calculation yields an integral which diverges for b = 0 as well
as for b = ∞. This is not a surprise because one would not expect that our
approximations hold for these extremes.
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Figure 5: 1/ε2 dependence of the knock-on electron production probability [14].
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a) The b = 0 case: Let us approximate the “size” of the target electron
seen from the rest frame of the incident particle by half the de Broglie
wavelength. This gives a minimum impact parameter of

bmin =
h

2p
=

h

2γmeβc
. (25)

b) The b = ∞ case: If the revolution time τR of the electron in the target
atom becomes smaller than the interaction time τi, the incident particle
“sees” a more or less neutral atom,

τi =
bmax

v

√

1 − β2 . (26)

The factor
√

1 − β2 takes into account that the field at high velocities is Lorentz
contracted. Hence the interaction time is shorter. For the revolution time we
have

τR =
1

νZ · Z =
h

I
, (27)

where I is the mean excitation energy of the target material, which can be
approximated by

I = 10 [eV] · Z (28)

for elements heavier than sulphur.
The condition to see the target as neutral now leads to

τR = τi ⇒ bmax

v

√

1 − β2 =
h

I

bmax =
γhβc

I
. (29)

With the help of Eqs. (25) and (29) we can solve the integral in Eq. (24)

−dE

dx
= 2π · Z

A
N · 2r2emec

2

β2
z2 · ln 2γ2β2mec

2

I
. (30)

Since for long-distance interactions the Coulomb field is screened by the inter-
vening matter one has

−dE

dx
= κz2 · Z

A

1

β2

[

ln
2γ2β2mec

2

I
− η

]

, (31)

where η is a screening parameter (density parameter) and

κ = 4πNr2emec
2 .
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The exact treatment of the ionization energy loss of heavy particles leads to [7]

−dE

dx
= κz2 · Z

A
· 1

β2

[
1

2
ln

2mec
2γ2β2Emax

kin

I2
− β2 − δ

2

]

(32)

which reduces to Eq. (31) for γme/m0 ≪ 1 and β2 + δ
2

= η.

The energy-loss rate of muons in iron is shown in Fig. 6 [7]. It exhibits a
1

β2 decrease until a minimum of ionization is obtained for 3 ≤ βγ ≤ 4.

Figure 6: Energy loss of muons in iron [7].

Due to the ln γ term the energy loss increases again (relativistic rise,
logarithmic rise) until a plateau is reached (density effect, Fermi plateau).

The energy loss is usually expressed in terms of the area density ds = ρ dx
with ρ – density of the absorber. It varies with the target material like Z/A
(≤ 0.5 for most elements). Minimum-ionizing particles lose 1.94MeV/(g/cm2)
in helium decreasing to 1.08MeV/(g/cm2) in uranium. The energy loss of
minimum-ionizing particles in hydrogen is exceptionally large, because here
Z/A = 1.

The relativistic rise saturates at high energies because the medium be-
comes polarized, effectively reducing the influence of distant collisions. The
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density correction δ/2 can be described by

δ

2
= ln

~ωp

I
+ lnβγ − 1

2
, (33)

where

~ωp =
√

4πNer3emec
2/α (34)

is the plasma energy and Ne the electron density of the absorbing material.

Figure 7: Measured ionization energy loss of electrons, muons, pions, kaons,
protons and deuterons in the PEP4/9-TPC (Ar/CH4 = 80 : 20 at 8.5 atm)
[13].

For gases the Fermi plateau, which saturates the relativistic rise, is about
60% higher compared to the minimum of ionization. Fig. 7 shows the measured
energy-loss rates of electrons, muons, pions, kaons, protons, and deuterons in
the PEP4/9-TPC (185 dE/dx measurements at 8.5 atm in Ar/CH4 = 80 : 20)
[13]. Fig. 8 shows the tracks of a 5 MeV proton and a 19MeV α particle in an
optical avalanche microdosimeter [15]. The increase of the ionization towards
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Figure 8: Tracks of a 5MeV proton and a 19MeV α particle in an optical
avalanche microdosimeter [15].

the end of the range is due to the 1/β2 dependence of the energy loss. The
produced δ electrons show the same feature. The same behaviour is also seen
in a double-gem (gas electron multiplier) micro-strip gas chamber, where the
scintillation is measured using a high-resolution CCD camera (Fig. 9, [16]).

The z dependence of the ionization density can also clearly be seen from
the tracks of relativistic heavy ions in nuclear emulsions (Fig. 10, [17]). The
strong enhancement of the ionization density at the end of the range, especially
for heavy ions, can be used for cancer therapy (Fig. 11, [18]).

Landau distributions

The Bethe–Bloch formula describes the average energy loss of charged
particles. The fluctuation of the energy loss around the mean is described by
an asymmetric distribution, the Landau distribution [20, 21].

The probability φ(ε) dε that a singly charged particle loses an energy
between ε and ε+ dε per unit length of an absorber was (Eq. (23))

φ(ε) =
2πNe4

mev2

Z

A
· 1

ε2
. (35)

Let us define

ξ =
2πNe4

mev2
· Z
A
x , (36)

where x is the area density of the absorber:

φ(ε) = ξ(x)
1

xε2
. (37)
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Figure 9: Tracks of α particles in CF4-based gas mixtures recorded via the
scintillation in a double-gem micro-strip gas chamber [16].
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Figure 10: Tracks of relativistic heavy ions in nuclear emulsions [17].

Figure 11: Ionization profiles of 12C ions in water for different beam energies.
The strong ionization at the end of the range [Bragg peak] represents an ideal
“scalpel” for the treatment of deep-seated tumours [18].
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Numerically one can write

ξ =
0.1536

β2

Z

A
· x [keV] , (38)

where x is measured in mg/cm2.
For an absorber of 1 cm Ar we have for β = 1

ξ = 0.123 [keV] .

We define now

f(x,∆) =
1

ξ
ω(λ) (39)

as the probability that the particle loses an energy ∆ on traversing an absorber
of thickness x. λ is defined to be the normalized deviation from the most
probable energy loss ∆m.p.,

λ =
∆ − ∆m.p.

ξ
. (40)

The most probable energy loss is calculated to be [20, 22]

∆m.p. = ξ

{

ln
2mec

2β2γ2ξ

I2
− β2 + 1 − γE

}

, (41)

where γE = 0.577 . . . is Euler’s constant. The most probable energy loss in
argon for minimum-ionizing particles is ∆m.p. = 1.2 keV/cm while the average
energy loss amounts to 2.69 keV/cm.

Landau’s treatment of f(x,∆) yields

ω(λ) =
1

π

∫
∞

0

e−u ln u−λu sinπu du , (42)

which can be approximated by [22]

Ω(λ) =
1√
2π

exp

{

−1

2
(λ + e−λ)

}

. (43)

Fig. 12 shows the energy-loss distribution of 3GeV electrons in an Ar/CH4

(80 : 20) filled drift chamber of 0.5 cm thickness [25]. According to Eq. (35) the
δ-ray contribution to the energy loss falls inversely proportional to the energy
transfer squared, producing a long tail, called Landau tail, in the energy-loss
distribution up to the kinematical limit (see also Fig. 5).

The asymmetric property of the energy-loss distribution becomes obvious
for thin absorbers. For larger absorber thicknesses or truncation techniques
applied to thin absorbers the Landau distribution gets more symmetric. The
truncated Landau distribution for electrons, pions, kaons, and protons in vari-
ous momentum ranges are shown in Fig. 13 [19].
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Figure 12: Energy-loss distribution of 3GeV electrons in a thin-gap multi-wire
drift chamber [25].

Channeling

The energy loss of charged particles as described by the Bethe–Bloch for-
mula needs to be modified for crystals where the collision partners are arranged
on a regular lattice. By looking into a crystal (Fig. 14), it becomes immediately
clear that the energy loss along certain crystal directions will be quite different
from that along a non-aligned direction or in an amorphous substance. The
motion along such channeling directions is governed mainly by coherent scat-
tering on strings and planes of atoms rather than by the individual scattering
off single atoms. This leads to anomalous energy losses of charged particles in
crystalline materials [23].

It is obvious from the crystal structure that charged particles can only be
channeled along a crystal direction if they are moving more or less parallel to
the crystal axis. The critical angle necessary for channeling is small (approx.
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Figure 13: Truncated energy-loss distributions for electrons, pions, kaons, and
protons in the ALEPH time projection chamber [19].
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Figure 14: View into a crystal lattice.

1◦ for β ≈ 0.1) and decreases with energy. For the axial direction 〈111〉, it can
be estimated by

ψ [degrees] = 0.307 · (z · Z/E · d)0.5 (44)

where z and Z are the charges of the incident particle and the crystal, E the
particle’s energy in MeV, and d the interatomic spacing in Å. ψ is measured in
degrees [24]. For protons (z = 1) passing through a silicon crystal (Z = 14; d =
2.35 Å) the critical angle for channeling along the direction of body diagonals
becomes

ψ = 13µrad/
√

E [TeV] . (45)

For planar channeling along the face diagonals (〈110〉 axis) in silicon one
gets

ψ = 5µrad/
√

E [TeV] . (46)

Of course, the channeling process also depends on the charge of the incident
particle.

In a silicon crystal the positive nuclear charges produce an electric field of
2·1012 V/cm at a distance of 0.1 Å from an individual silicon nucleus. This field,
however, decreases rapidly (like 1/r2) and therefore extends only over small dis-
tances. In contrast, for a string of silicon atoms along the 〈110〉 crystal direction
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Figure 15: The energy-loss spectra for 15GeV/c protons passing through a
740µm thick germanium crystal [24].

one obtains a field of 1.3 · 1010 V/cm. This field extends over macroscopic dis-
tances and can be used for the deflection of high-energy charged particles using
bent crystals [24].

Channeled positive particles are kept away from a string of atoms and
consequently suffer a relatively small energy loss. Fig. 15 shows the energy-
loss spectra for 15GeV/c protons passing through a 740µm thick germanium
crystal [24]. The energy loss of channeled protons is lower by about a factor of
two compared to random directions through the crystal.

Scintillation in materials

Scintillator materials can be inorganic crystals, organic liquids or plastics,
and gases. The scintillation mechanism in organic crystals is an effect of the
lattice. Incident particles can transfer energy to the lattice by creating electron–
hole pairs or taking electrons to higher energy levels below the conduction
band. Recombination of electron–hole pairs may lead to the emission of light.
Also electron–hole bound states (excitons) moving through the lattice can emit
light when hitting an activator center and transferring their binding energy to
activator levels, which subsequently deexcite. In thallium-doped NaI crystals
about 25 eV are required to produce one scintillation photon. The decay time
in inorganic scintillators can be quite long (1µs in CsI(Tl); 0.62µs in BaF2).
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In organic substances the scintillation mechanism is different. Certain
types of molecules will release a small fraction (≈ 3%) of the absorbed energy as
optical photons. This process is especially marked in organic substances which
contain aromatic rings, such as polystyrene, polyvinyltoluene, and naphtalene.
Liquids which scintillate include toluene or xylene [7].

This primary scintillation light is preferentially emitted in the UV range.
The absorption length for UV photons in the scintillation material is rather
short: the scintillator is not transparent for its own scintillation light. There-
fore, this light is transferred to a wavelength shifter which absorbs the UV
light and reemits it at longer wavelengths (e.g., in the green). Due to the lower
concentration of the wavelength-shifter material the reemitted light can get out
of the scintillator and be detected by a photosensitive device. The technique
of wavelength shifting is also used to match the emitted light to the spectral
sensitivity of the photomultiplier. For plastic scintillators the primary scin-
tillator and wavelength shifter are mixed with an organic material to form a
polymerizing structure. In liquid scintillators the two active components are
mixed with an organic base [2].

About 100 eV are required to produce one photon in an organic scintilla-
tor. The decay time of the light signal in plastic scintillators is substantially
shorter compared to inorganic substances (e.g., 30 ns in naphtalene).

Because of the low light absorption in gases there is no need for wavelength
shifting in gas scintillators.

Plastic scintillators do not respond linearly to the energy-loss density.
The number of photons produced by charged particles is described by Birk’s
semi-empirical formula [7, 26, 27]

N = N0

dE/dx

1 + kB dE/dx
, (47)

where N0 is the photon yield at low specific ionization density, and kB is
Birk’s density parameter. For 100MeV protons in plastic scintillators one has
dE/dx ≈ 10MeV/(g/cm2) and kB ≈ 5mg/(cm2MeV), yielding a saturation
effect of ≈ 5% [5].

For low energy losses Eq. (47) leads to a linear dependence

N = N0 · dE/dx , (48)

while for very high dE/dx saturation occurs at

N = N0/kB . (49)

There exists a correlation between the energy loss of a particle that goes into
the creation of electron–ion pairs or the production of scintillation light, be-
cause electron–ion pairs can recombine thus reducing the dE/dx|ion signal. On
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the other hand the scintillation-light signal is enhanced because recombination
frequently leads to excited states which deexcite yielding scintillation light.

Cherenkov radiation

A charged particle traversing a medium with refractive index n with a
velocity v exceeding the velocity of light c/n in that medium, emits Cherenkov
radiation. The threshold condition is given by

βthres =
vthres

c
≥ 1

n
. (50)

The angle of emission increases with the velocity reaching a maximum value
for β = 1, namely

Θmax
C = arccos

1

n
. (51)

The threshold velocity translates into a threshold energy

Ethres = γthresm0c
2 (52)

yielding

γthres =
1

√

1 − β2
thres

=
n√

n2 − 1
. (53)

The number of Cherenkov photons emitted per unit path length dx is

dN

dx
= 2παz2

∫ (

1 − 1

n2β2

)
dλ

λ2
(54)

for n(λ) > 1, z – electric charge of the incident particle, λ – wavelength,
and α – fine-structure constant. The yield of Cherenkov-radiation photons
is proportional to 1/λ2, but only for those wavelengths where the refractive
index is larger than unity. Since n(λ) ≈ 1 in the X-ray region, there is no X-
ray Cherenkov emission. Integrating Eq. (54) over the visible spectrum (λ1 =
400nm, λ2 = 700nm) gives

dN

dx
= 2παz2λ2 − λ1

λ1λ2

sin2 ΘC

= 490 · z2 · sin2 ΘC [cm−1] . (55)

The Cherenkov effect can be used to identify particles of fixed momen-
tum by means of threshold Cherenkov counters. Fig. 16 shows the pulse height
distribution for 3.5GeV/c pions and protons in an aerogel Cherenkov counter
[28]. For an index of refraction of n = 1.015 the threshold Lorentz factor for
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Cherenkov radiation is, according to Eq. (53), γ = 5.84. This threshold is
exceeded for pions (γπ = 24.2) but not for protons (γp = 2.86). Therefore
protons deposit energy only due to ionization while pions produce in addition
Cherenkov light. More information can be obtained, if the Cherenkov angle
is measured by DIRC counters (Detection of Internally Reflected Cherenkov
light). In these devices some fraction of the Cherenkov light produced by a
charged particle is kept inside the radiator by total internal reflection. The
direction of the photons remains unchanged and the Cherenkov angle is con-
served during the transport. When exiting the radiator the photons produce a
Cherenkov ring on a planar detector (Fig. 17).

Figure 16: Pulse-height distribution for 3.5 GeV/c pions and protons in an
aerogel Cherenkov counter [28].

The pion/proton separation achieved with such a system is shown in
Fig. 18 [29].

Ring-imaging Cherenkov counters (RICH counters) have become extraor-
dinarily useful in the field of elementary particles and astrophysics. Fig. 19
shows the Cherenkov-ring radii of electrons, muons, pions, and kaons in a
C4F10/Ar (75 : 25)-filled Rich counter read out by a 100-channel photomulti-
plier of 10 × 10 cm2 active area. The resulting π/µ/e separation for 3GeV/c
particles is shown in Fig. 20 [30].
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Figure 17: Imaging principle of a DIRC counter [29].

An important aspect of neutrino physics with atmospheric neutrinos is
the correct identification of neutrino-induced muons and electrons. A deficit
of neutrino-induced muons would hint at neutrino oscillations, where the νµ

neutrinos born in the decay of pions (π+ → µ+ + νµ) or muons (µ− → e− +
ν̄e + νµ) could have transformed themselves into τ neutrinos (ντ ) or some
sterile neutrino (similarly for ν̄µ). Fig. 21 shows a neutrino-induced event
(νµ +N → µ− +X) with subsequent decay of the µ−(µ− → e− + ν̄e + νµ) in
the Super-Kamiokande experiment [31]. Both rings due to the µ− and e− are
seen. Figures 22 and 23 show a similar event in the SNO experiment [32]. In the
first frame the muon ring is visible (event time 22.1867771 sec) and 0.9µs later
the electron ring. These events clearly demonstrate the particle identification
capability of large-volume neutrino detectors.

Transition radiation

Transition radiation is emitted when a charged particle traverses a medium
with discontinuous dielectric constant. A charged particle moving towards a
boundary, where the dielectric constant changes, can be considered to form
together with its mirror charge an electric dipole whose field strength varies in
time. The time-dependent dipole field causes the emission of electromagnetic
radiation. This emission can be understood in such a way that although the
dielectric displacement ~D = εε0 ~E varies continuously in passing through a
boundary, the electric field does not.

The energy radiated from a single boundary (transition from vacuum to
a medium with dielectric constant ε) is proportional to the Lorentz factor of
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Figure 18: Cherenkov-angle distribution for pions and protons of 5.4 GeV/c in
a DIRC counter [29].

Figure 19: Cherenkov-ring radii of e, µ, π,K in a C4F10/Ar (75 : 25) RICH
counter. The solid curves show the expected radii for an index of refraction of
n = 1.00113. The shaded regions represent a 5% uncertainty in the absolute
momentum scale [30].
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Figure 20: Cherenkov-ring radii for pions, muons, and electrons of 3GeV in a
C4F10/Ar (75 : 25) RICH counter [30].
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Figure 21: Neutrino-induced muon with subsequent muon decay in the Super-
Kamiokande experiment [31].

Figure 22: Neutrino-induced muon in the SNO experiment [32].



140 Claus Grupen

Figure 23: Cherenkov ring produced by an electron from muon decay, where the
muon was created by a muon neutrino [32].
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the incident charged particle [7, 26, 33]:

S =
1

3
αz2

~ωpγ , (56)

where ~ωp is the plasma energy (see Eq. (34)). For commonly used plastic
radiators (styrene or similar materials) one has

~ωp ≈ 20 eV . (57)

The typical emission angle of transition radiation is proportional to 1/γ.
The radiation yield drops sharply for frequencies

ω > γωp . (58)

The γ dependence of the emitted energy originates mainly from the hardening
of the spectrum rather than from the increased photon yield. Since the radiated
photons also have energies proportional to the Lorentz factor of the incident
particle, the number of emitted transition-radiation photons is

Figure 24: Electron/muon separation in the NOMAD transition-radiation de-
tector [34].

N ∝ αz2 . (59)

The number of emitted photons can be increased by using many transitions
(stack of foils, or foam). At each interface the emission probability for an X-
ray photon is of the order of α = 1/137. However, the foils or foams have to be
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of low-Z material to avoid absorption in the radiator. Interference effects for
radiation from transitions in periodic arrangements cause an effective threshold
behaviour at a value of γ ≈ 1000. These effects also produce a frequency-
dependent photon yield. The foil thickness must be comparable to or larger
than the formation zone

D = γc/ωp (60)

which in practical situations (~ωp = 20 eV; γ = 5 · 103) is about 50µm. Tran-
sition radiation detectors are mainly used for e/π separation. In cosmic-ray
experiments transition-radiation emission can also be employed to measure the
energy of muons in the TeV range. Fig. 24 [34] shows the muon/electron dis-
crimination power for 10GeV particles in the NOMAD transition-radiation
detector. Muons fall below the TRD threshold and deposit energy loss due
to ionization only, while electrons of 10GeV (γe = 20 000) clearly produce
transition radiation.

Bremsstrahlung

If a charged particle is decelerated in the Coulomb field of a nucleus a frac-
tion of its kinetic energy will be emitted in form of real photons (bremsstrahlung).
The energy loss by bremsstrahlung for high energies can be described by [2]

−dE

dx
= 4αNA

Z2

A
· z2r2E ln

183

Z1/3
, (61)

where r = 1
4πε0

· e2

mc2 . Bremsstrahlung is mainly produced by electrons because

re ∝ 1

me
. (62)

Eq. (61) can be rewritten for electrons,

−dE

dx
=

E

X0

, (63)

where

X0 =
A

4αNAZ(Z + 1)r2e ln(183Z−1/3)
(64)

is the radiation length of the absorber in which bremsstrahlung is produced.
Here we have included also radiation from electrons (∝ Z, because there are
Z electrons per nucleus). If screening effects are taken into account X0 can be
more accurately described by [7]

X0 =
716.4A

Z(Z + 1) ln(287/
√
Z)

[g/cm
2
] . (65)
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Figure 25: Muon bremsstrahlung event in the ALEPH detector [35].
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Fig. 25 [35] shows a bremsstrahlung event of a cosmic-ray muon in the electro-
magnetic calorimeter of the ALEPH experiment. The produced photon initi-
ates an electromagnetic shower and the electrons and positrons in the cascade
are deflected in opposite directions in the transverse magnetic field in the time
projection chamber.

The important point about bremsstrahlung is that the energy loss is pro-
portional to the energy. The energy where the losses due to ionization and
bremsstrahlung for electrons are the same is called critical energy

dEc

dx

∣
∣
∣
∣
ion

=
dEc

dx

∣
∣
∣
∣
brems

. (66)

For solid or liquid absorbers the critical energy can be approximated by [7]

Ec =
610 MeV

Z + 1.24
, (67)

while for gases one has [7]

Ec =
710 MeV

Z + 0.92
. (68)

The difference between gases on the one hand and solids and liquids on the
other hand comes about because the density corrections are different in these
substances, and this modifies dE

dx

∣
∣
ion

.

The energy spectrum of bremsstrahlung photons is ∝ E−1
γ , where Eγ is

the photon energy.
At high energies also radiation from heavier particles becomes important

and consequently a critical energy for these particles can be defined. Since

dE

dx

∣
∣
∣
∣
brems

∝ 1

m2
(69)

the critical energy, e.g., for muons in iron is

Ec =
610 MeV

Z + 1.24
·
(
mµ

me

)2

= 960 GeV . (70)

Direct electron pair production

Direct electron pair production in the Coulomb field of a nucleus via virtual
photons (“tridents”) is a dominant energy-loss mechanism at high energies. The
energy loss for singly charged particles due to this process can be represented
by

−dE

dx

∣
∣
∣
∣
pair

= b(Z,A,E) ·E . (71)
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Figure 26: Contributions to the energy loss of muons in standard rock (Z = 11;

A = 22; ρ = 3 g/cm
3
).

It is essentially – like bremsstrahlung – also proportional to the particle’s
energy. Because bremsstrahlung and direct pair production dominate at high
energies this offers an attractive possibility to build also muon calorimeters [2].
The average rate of muon energy losses can be parametrized as

dE

dx
= a(E) + b(E) ·E (72)

where a(E) represents the ionization energy loss and b(E) is the sum of direct
electron pair production, bremsstrahlung, and photonuclear interactions.

The various contributions to the energy loss of muons in standard rock
(Z = 11; A = 22; ρ = 3 g/cm

3
) are shown in Fig. 26.

Nuclear interactions

Nuclear interactions play an important role in the detection of neutral
particles other than photons. They are also responsible for the development
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of hadronic cascades. The total cross section for nucleons is of the order of
50mbarn and varies slightly with energy. It has an elastic (σel) and inelastic
part (σinel). The inelastic cross section has a material dependence

σinel ≈ σ0A
α (73)

with α = 0.71. The corresponding absorption length λa is [2]

λa =
A

NA · ρ · σinel

[cm] (74)

(A in g/mol, NA in mol−1, ρ in g/cm3, and σinel in cm2).
This quantity has to be distinguished from the nuclear interaction length

λw, which is related to the total cross section,

λw =
A

NA · ρ · σtotal

[cm] . (75)

Since σtotal > σinel, λw < λa holds.
The total and elastic part of the proton–proton cross section are shown in

Fig. 27 [7] as a function of the laboratory energy Elab and the center–of–mass
energy

√
s, where s = 2 ·m ·Elab (for Elab ≫ mproton).

Strong interactions have a multiplicity which grows logarithmically with
energy. The particles are produced in a narrow cone around the forward di-
rection with an average transverse momentum of pT = 350 MeV/c, which is
responsible for the lateral spread of hadronic cascades.

A useful relation for the calculation of interaction rates per (g/cm2) is

φ((g/cm
2
)−1) = σN ·NA , (76)

where σN is the cross section per nucleon and NA Avogadro’s number.

Interaction of Photons

Photons are attenuated in matter via the processes of the photoelectric
effect, Compton scattering, and pair production. The intensity of a photon
beam varies in matter according to

I = I0 e−µx , (77)

where µ is the mass attenuation coefficient. µ is related to the photon cross
sections σi by

µ =
NA

A

3∑

i=1

σi . (78)
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14 37. Plots of cross sections and related quantities
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Figure 37.19: Total and elastic cross sections for pp and pp collisions as a function of laboratory beam momentum and total center-of-massenergy. Corresponding computer-readable data �les may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPASGroup, IHEP, Protvino, Russia, August 1999.)

Figure 27: The proton–proton cross section as a function of the laboratory
energy and center–of–mass energy [7].
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Photoelectric effect

Atomic electrons can absorb the energy of a photon completely,

γ + atom → atom+ + e− . (79)

The cross section for absorption of a photon of energy Eγ is particularly large
in the K shell (80% of the total cross section). The total cross section for
photon absorption in the K shell is

σK
Photo =

(
32

ε7

)1/2

α4Z5σThomson [cm2/atom] , (80)

where ε = Eγ/mec
2, and σThomson = 8

3
πr2e = 665mbarn is the cross section for

Thomson scattering. For high energies the energy dependence becomes softer,

σK
Photo = 4πr2eZ

5α4 · 1

ε
. (81)

The photoelectric cross section has sharp discontinuities when Eγ coincides
with the binding energy of atomic shells. As a consequence of a photoabsorption
in the K shell characteristic X rays or Auger electrons are emitted [2].

Compton scattering

The Compton effect describes the scattering of photons off quasi-free atomic
electrons

γ + e→ γ′ + e′ . (82)

The cross section for this process, given by the Klein–Nishina formula, can be
approximated at high energies by

σc ∝
ln ε

ε
· Z , (83)

where Z is the number of electrons in the target atom. From energy and
momentum conservation one can derive the ratio of scattered (E′

γ) to incident
photon energy (Eγ),

E′

γ

Eγ
=

1

1 + ε(1 − cosΘγ)
, (84)

where Θγ is the scattering angle of the photon with respect to its original
direction.

For backscattering (Θγ = π) the energy transfer to the electron Ekin

reaches a maximum value

Emax
kin =

2ε2

1 + 2ε
mec

2 , (85)
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which, in the extreme case (ε≫ 1), equals Eγ .

In Compton scattering only a fraction of the photon energy is transferred
to the electron. Therefore, one defines an energy scattering cross section

σcs =
E′

γ

Eγ
σc (86)

and an energy absorption cross section

σca = σc − σcs = σc

Ekin

Eγ
. (87)

At accelerators and in astrophysics also the process of inverse Compton scat-
tering is of importance [2].

Pair production

The production of an electron–positron pair in the Coulomb field of a
nucleus requires a certain minimum energy

Eγ ≥ 2mec
2 +

2m2
ec

2

mnucleus

. (88)

Since for all practical cases mnucleus ≫ me, one has effectively Eγ ≥ 2mec
2.

The total cross section in the case of complete screening
(
ε≫ 1

αZ1/3

)
, i.e.,

at reasonably high energies (Eγ ≫ 20 MeV), is

σpair = 4αr2eZ
2

(
7

9
ln

183

Z1/3
− 1

54

)

[cm2/atom] . (89)

Neglecting the small additive term 1/54 in Eq. (89) one can rewrite, using
Eq. (61) and Eq. (64),

σpair =
7

9

A

NA

· 1

X0

. (90)

The partition of the energy to the electron and positron is symmetric at low
energies (Eγ ≪ 50 MeV) and increasingly asymmetric at high energies (Eγ >
1 GeV) [2].

Fig. 28 shows the photoproduction of an electron–positron pair in the
Coulomb field of an electron (γ+e− → e++e−+e−) and also a pair production
in the field of a nucleus (γ + nucleus → e+ + e− + nucleus′) [36].
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Figure 28: Photoproduction in the Coulomb field of an electron (γ + e− →
e+ + e− + e−, left) and on a nucleus (γ+ nucleus → e+ + e− + nucleus′, right)
[36].

Mass attenuation coefficients

The mass attenuation coefficients for photon interactions are shown in
Figs. 29–31 for silicon, germanium, and lead [37]. The photoelectric effect
dominates at low energies (Eγ < 100 keV). Superimposed on the continuous
photoelectric attenuation coefficient are absorption edges characteristic of the
absorber material. Pair production dominates at high energies (> 10MeV). In
the intermediate region Compton scattering prevails. A typical experiment
setup for the measurement of γ-ray spectra is shown in Fig. 32 [38]. Pho-
tons from a radioactive source enter a NaI(Tl) scintillation crystal and deposit
energy either by the photoelectric effect, Compton scattering, or – depend-
ing on the photon energy – pair production. The amount of light produced
by the electron is recorded in a photomultiplier. A typical γ-ray spectrum
of the 662keV γ line from the decay of 137Cs into 137Ba is shown in Fig. 33
[39]. Clearly visible is the photopeak (full absorption peak) at E = 662 keV.
Compton scattering produces a continuum with a maximum energy transfer
to electrons at 478 keV (see Eq. (85)), the Compton edge. Photons which are
backscattered from shielding material into the detector may undergo photoelec-
tric effect thereby producing the backscatter peak at E − Emax

kin = 184keV. At
low energies characteristic X-ray lines are visible originating from the source
or the shielding material. The spectra of γ-rays from a 60Co source recorded
in a NaI(Tl) detector [39] and in a high-purity germanium counter [40] are
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Figure 29: Mass attenuation coefficients for photon interactions in silicon [37].
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Figure 30: Mass attenuation coefficients for photon interactions in germanium
[37].
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Figure 31: Mass attenuation coefficients for photon interactions in lead [37].
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Figure 32: Typical setup for the measurement of γ-ray spectra [38].

Figure 33: γ-ray spectrum of 662 keV photons in a NaI(Tl) scintillation counter
[39].
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Figure 34: γ-ray spectrum of 60Co measured in a NaI(Tl) scintillation detector
[39].

Figure 35: γ-ray spectrum of 60Co measured in a high-purity Ge detector [40].
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compared in Fig. 34 and 35. All features of γ-ray spectra like photopeaks at
1.17MeV and 1.33MeV, Compton edge, backscatter peaks, and characteristic
X rays are clearly visible. Also the outstanding performance of the high-purity
Ge counter with a rms resolution of 400 eV shows the superiority of solid-state
detectors over scintillation counters.

Figure 36: Spectra of characteristic X rays measured in a superconducting
phase-transition thermometer [41].

Even higher resolutions are obtained in cryogenic detectors. Fig. 36 [41]
shows the energy resolution for characteristic X rays of Al, Ti, and Mn in
a superconducting phase-transition thermometer. The change of resistance
upon an energy absorption in the thermometer is transformed into a magnetic-
flux change which is read by a superconducting quantum interference device
(SQUID).

Interaction of Neutrons

In the same way as photons are detected via their interactions also neutrons
have to be measured indirectly. Depending on the neutron energy various
reactions can be considered which produce charged particles which are then
detected via their ionization or scintillation [2].

a) Low energies (< 20 MeV)

n+ 6Li → α+ 3H ,

n+ 10B → α+ 7Li ,

n+ 3He → p+ 3H , (91)

n+ p → n+ p .
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The conversion material can be a component of a scintillator (e.g., LiI
(Tl)), a thin layer of material in front of the sensitive volume of a gaseous
detector (boron layer), or an admixture to the counting gas of a propor-
tional counter (BF3,

3He, or protons in CH4).

b) Medium energies (20 MeV ≤ Ekin ≤ 1 GeV)
The (n, p)-recoil reaction can be used for neutron detection in detectors
which contain many quasi-free protons in their sensitive volume (e.g.,
hydrocarbons).

c) High energies (E > 1 GeV)
Neutrons of high-energy initiate hadron cascades in inelastic interactions
which are easy to identify in hadron calorimeters.

Neutrons are detected with relatively high efficiency at very low energies.
Therefore, it is often useful to slow down neutrons with substances containing
many protons, because neutrons can transfer a large amount of energy to colli-
sion partners of the same mass. In some fields of application, like in radiation
protection at nuclear reactors, it is of importance to know the energy of fis-
sion neutrons, because the relative biological effectiveness depends on it. This
can, e.g., be achieved with a stack of plastic detectors interleaved with foils of
materials with different threshold energies for neutron conversion [42].

Interactions of Neutrinos

Neutrinos are very difficult to detect. Depending on the neutrino flavor the
following inverse-beta-decay-like interactions can be considered:

νe + n → p+ e− ,

ν̄e + p → n+ e+ ,

νµ + n → p+ µ− ,

ν̄µ + p → n+ µ+ , (92)

ντ + n → p+ τ− ,

ν̄τ + p → n+ τ+ .

The cross section for νe detection in the MeV range can be estimated as [43]

σ(νeN) =
4

π
· 10−10

(
~p

(mpc)2

)2

= 6.4 · 10−44 cm2 for 1MeV . (93)
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Figure 37: Charged-current interaction of an energetic electron neutrino in a
bubble chamber [44].
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This means that the interaction probability of, e.g., solar neutrinos in a water
Cherenkov counter of d = 100 meter thickness is only

φ = σ ·NA · d = 3.8 · 10−16 . (94)

Since the coupling constant of weak interactions has a dimension of 1/GeV2,
the neutrino cross section must rise at high energies like the square of the
center–of–mass energy. For fixed-target experiments we can parametrize

σ(νµN) = 0.67 · 10−38Eν [GeV] cm2/nucleon ,

σ(ν̄µN) = 0.34 · 10−38Eν [GeV] cm2/nucleon . (95)

This shows that even at 100GeV the neutrino cross section is lower by 11 orders
of magnitude compared to the total proton–proton cross section.

Fig. 37 [44] shows the interaction of a high-energy electron neutrino in
a bubble chamber (νe + nucleon → e− + hadrons) producing an electron in a
charged-current interaction. The electron initiates an electromagnetic cascade
in the bubble chamber.

Electromagnetic Cascades

The development of cascades induced by electrons, positrons, or photons
is governed by bremsstrahlung of electrons and pair production of photons.
Secondary particle production continues until photons fall below the pair pro-
duction threshold, and energy losses of electrons other than bremsstrahlung
start to dominate: the number of shower particles decays exponentially.

Already a very simple model can describe the main features of particle
multiplication in electromagnetic cascades: a photon of energy E0 starts the
cascade by producing an e+e− pair after one radiation length. Assuming that
the energy is shared symmetrically between the particles at each multiplication
step, one gets at the depth t (measured in radiation lengths X0)

N(t) = 2t (96)

particles with energy
E(t) = E0 · 2−t . (97)

The multiplication continues until the electrons fall below the critical energy
Ec,

Ec = E0 · 2−tmax . (98)

¿From then on (t > tmax) the shower particles are only absorbed. The position
of the shower maximum is obtained from Eq. (98),

tmax =
lnE0/Ec

ln 2
∝ lnE0 . (99)
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The total number of shower particles is

S =

tmax∑

t=0

N(t) =
∑

2t = 2tmax+1 − 1 ≈ 2tmax+1 ,

S = 2 · 2tmax = 2 · E0

Ec

∝ E0 . (100)

If the shower particles are sampled in steps t measured in units of X0, the total
track length is obtained as

S∗ =
S

t
= 2

E0

Ec

· 1

t
, (101)

which leads to an energy resolution of

Figure 38: Some muon-induced electromagnetic cascades in a multi-plate cloud
chamber operated in a concrete-shielded air-shower array [45].

σ

E0

=

√
S∗

S∗
=

√
t

√

2E0/Ec

∝
√
t√
E0

. (102)

In a more realistic description the longitudinal development of the electron
shower can be approximated by [7]

dE

dt
= const · ta · e−bt , (103)
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where a, b are fit parameters.
Figures 38 [45] and 39 [46] show muon-induced electromagnetic cascades

in a multi-plate cloud chamber.
The lateral spread of an electromagnetic shower is mainly caused by mul-

tiple scattering. It is described by the Molière radius

Rm =
21 MeV

Ec

X0 [g/cm2] . (104)

95% of the shower energy in a homogeneous calorimeter is contained in a cylin-
der of radius 2Rm around the shower axis.

Fig. 40 demonstrates the interplay of the longitudinal and lateral devel-
opment of an electromagnetic shower [2].

Hadron Cascades

The longitudinal development of electromagnetic cascades is characterized
by the radiation length X0 and their lateral width is determined by multiple
scattering. In contrast to this, hadron showers are governed in their longitudi-
nal structure by the nuclear interaction length λ and by transverse momenta of
secondary particles as far as lateral width is concerned. Since for most mate-
rials λ≫ X0 and 〈pinteraction

T 〉 ≫ 〈pmultiple scattering
T 〉 hadron showers are longer

and wider.
Part of the energy of the incident hadron is spent to break up nuclear

bonds. This fraction of the energy is invisible in hadron calorimeters. Fur-
ther energy is lost by escaping particles like neutrinos and muons as a result
of hadron decays. Since the fraction of lost binding energy and escaping par-
ticles fluctuates considerably, the energy resolution of hadron calorimeters is
systematically inferior to electron calorimeters.

Fig 41 sketches the various fractions of energy in a hadronic cascade and
their variation with the hadron energy.

The longitudinal development of pion-induced hadron cascades is plotted
in Fig. 42 [48]. Fig. 43 shows a comparison between proton-, iron-, and photon-
induced cascades in the atmosphere [47].

The different response of calorimeters to electrons and hadrons is an un-
desirable feature for the energy measurement of jets of unknown particle com-
position. By appropriate compensation techniques, however, the electron–to–
hadron response can be equalized.

Particle Identification

Particle identification is based on measurements which are sensitive to the
particle velocity, its charge, and its momentum. Fig. 44 sketches the different
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Figure 39: Muon-induced electromagnetic cascade in a multi-plate cloud cham-
ber [46].

Figure 40: Sketch of the longitudinal and lateral development of an electromag-
netic cascade in a homogeneous absorber [2].
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Figure 41: Fractions of the total energy in a hadronic cascade that go into nu-
clear fragments, binding energy, charged particles, and electromagnetic cascades
in their variation with energy.

Figure 42: Longitudinal development of pion-induced hadron cascades [48].
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Figure 43: Comparison between proton-, iron-, and photon-induced cascades in
the atmosphere. The primary energy in each case is 1014 eV [47].
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possibilities to separate photons, electrons, positrons, muons, charged pions,
protons, neutrons, and neutrinos in a mixed particle beam using a general-
purpose detector.

Figure 44: Particle identification using a detector consisting of a tracking cham-
ber, Cherenkov counters, calorimetry, and muon chambers.

One particle identification technique that has not been discussed so far
in detail is the time–of–flight measurement (TOF). Two particles of different
velocity v1 and v2 passing through a telescope consisting of two scintillation
counters at a distance L will exhibit a time–of–flight difference

∆t = L ·
(

1

v1
− 1

v2

)

=
L

c
·
(

1

β1

− 1

β2

)

. (105)

Replacing the normalized velocities βi = vi/c by the corresponding Lorentz
factors γi = 1/

√

1 − β2
i in Eq. (105) one gets

∆t =
L

c
·
{√

γ2
1

γ2
1 − 1

−
√

γ2
2

γ2
2 − 1

}

. (106)
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For relativistic particles (E ≫ m0 · c2), Eq. (106) can be approximated by

∆t =
L

c
·
{√

1 +

(
m1 · c2
E1

)2

−

√

1 +

(
m2 · c2
E2

)2
}

. (107)

Since in the relativistic case E ≈ p · c, one gets for a momentum-defined beam
(E1 ≈ p1 · c, E2 ≈ p2 · c, p1 = p2 = p)

∆t =
L · c
2 · p2

·
(
m2

1 −m2
2

)
(108)

allowing the identification of particles with different mass. Fig. 45 [49] shows
the particle identification power in a scintillator system using TOF and dE/dx
information in a momentum-defined beam containing electrons, muons, and
pions of 107.5MeV/c.

Essential for an effective particle identification with TOF techniques is
an excellent time resolution. Figures 46 and 47 show the time resolution in a
scintillator TOF system and a multi-gap resistive plate chamber [28, 50, 51]
allowing for an efficient e/π/p separation. Figures 48 [52] and 49 [53] show
the particle separation power of a balloon-borne experiment using momen-
tum, time–of–flight, dE/dx, and Cherenkov-radiation measurements for singly
charged particles at an altitude of 1234m (ground level) and at flight altitudes
(≈ 40 km).

Relatively easy is the proton/helium separation in such an experiment
(Fig. 50 [54]).

Even the abundance of different helium isotopes can be determined from
a velocity and momentum measurement (Fig. 51 [55]). This is feasible, because
at fixed momentum the lighter isotope 3He is faster than the more abundant
4He.

In very much the same way works the identification of the light elements
in primary cosmic rays (Fig. 52 [56]) by using dE/dx and TOF techniques.
The elements from lithium up to oxygen can be resolved with high resolution.
A similar method can be used to extend the charge spectrum up to the iron
family (Fig. 53 [57]).

Conclusion

Basic physical principles can be used to identify all kinds of elementary
particles and nuclei. The precise measurement of the particle composition in
high-energy physics experiments at accelerators and in cosmic rays is essential
for the insight into the underlying physics processes. If a particle cannot be
directly identified – such as is the case for short-lived particles like K0

s or Λ0
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Figure 45: e/µ/π separation in a momentum-defined beam (p = 107.5MeV/c)
using TOF and dE/dx techniques [49].
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Figure 46: Pion/proton separation in a 2GeV/c beam with a scintillator TOF
system. The distance of the scintillation counters was 1.3m [28].

Figure 47: Time resolution in a multi-gap resistive plate chamber [50, 51].
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Figure 48: Particle composition in a balloon-borne experiment at ground level
(altitude 1234 m) [52]. Rigidity is defined as momentum divided by the charge
of the particle.

Figure 49: Particle identification in a balloon-borne experiment using momen-
tum, time–of–flight, dE/dx, and Cherenkov radiation information [53].
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Figure 50: Identification of proton and helium nuclei in primary cosmic rays
in a balloon-borne experiment [54].

Figure 51: Isotopic abundance of energetic cosmic-ray helium nuclei [55].
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Figure 52: Identification of light elements in primary cosmic rays in a balloon
experiment [56].
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Figure 53: Chemical composition of primary cosmic rays as determined by
range and dE/dx measurements [57].

– their decay products can be measured and identified. Knowing their energy,
momentum, and mass, the four-vectors of the decay products can be combined
to form the invariant mass of the parent particle (K0

s → π++π−, Λ0 → p+π−).
This technique has become very powerful especially for the tagging of very
short-lived mesons like B0 or D0 in hadronic jets.

Neutrinos or other weakly interacting neutral particles are almost impos-
sible to identify directly. If, however, an event is fully contained in a detector
and the center–of–mass energy is known the direction of the missing momentum
can be associated with the direction of the weakly interacting neutral particle,
thereby identifying it. This technique has been used intensively, e.g., for the
reconstruction of the leptonic decays of the charged vector bosons W+ and
W−( W+ → e+ + νe, W

+ → µ+ + νµ).
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