
A New Avenue to Parton Distribution Functions Uncertainties:

Self-Organizing Maps

Abstract

Neural network algorithms have been recently applied to construct Parton Distribution Functions

(PDFs) parametrizations as an alternative to standard global fitting procedures. We propose a

different technique, namely an interactive neural network algorithm using Self-Organizing Maps

(SOMs). SOMs enable the user to directly control the data selection procedure at various stages of

the process. We use all available data on deep inelastic scattering experiments in the kinematical

region of 0.001 ≤ x ≤ 0.75, and 1 ≤ Q2 ≤ 100 GeV2, with a cut on the final state invariant mass,

W 2 ≥ 10 GeV2. Our main goal is to provide a fitting procedure that, at variance with standard

neural network approaches, allows for an increased control of the systematic bias. Controlling the

theoretical uncertainties is crucial for determining the outcome of a variety of high energy physics

experiments using hadron beams. In particular, it is a prerequisite for unambigously extracting

from experimental data the signal of the Higgs boson, that is considered to be, at present, the key

for determining the theory of the masses of all known elementary particles, or the Holy Grail of

particle physics.

PACS numbers: 13.60.-r, 12.38.-t, 24.85.+p
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I. DEFINITION OF THE PROBLEM AND GENERAL REMARKS

In high energy physics experiments one detects the cross section, σX , for observing a

particle X during a given collision process. σX is proportional to the number of counts in

the detector. It is, therefore, directly “observable”.

Consider the collision between two hadrons (a hadron is a more general name to indicate

a proton, neutron...or a more exotic particle made of quarks). σX is expressed as:

σX =
∑
a,b

∫
dx1dx2 fa/h1

(x1, Q
2) fb/h2

(x2, Q
2) σ̂ab(x1, x2, Q

2)

X = W, Z, H, ... (1)

where:

• σ̂ab(x1, x2, Q
2), is the cross section for the elementary collision process between two

quarks in the initial hadrons, producing a particle X. It is calculated theoretically.

• X = W, Z, H, ... defines the kind of particle produced in the high energy process

(each particle is defined by a letter, e.g. H = Higgs boson). The processes we are

interessted in will be measured at the Large Hadron Collider in CERN (LHC).

• fa/h1
(x1, Q

2), fb/h2
(x2, Q

2) are the Parton Distribution Functions (PDFs). They

are the unknowns we are after. They cannot be calculated theoretically, and they need

to be extracted from experiment simultaneously to the cross section producing the

signal of e.g. a Higgs particle.

• “Parton” is a term invented by Richard Feynman [1] to denominate the constituents

of the proton, the quarks and gluons. The notation for a parton distribution function,

fa/h1
(x1, Q

2) is as follows:

– a/h1 refers to the distribution of parton of type a in hadron h1. The Standard

Model of particle physics predicts 13 types of partons: 6 quarks (up, down,

strange, charm, bottom, top); 6 anti-quarks (anti-up, anti-down, etc...), and 1

gluon. The gluon is a special type of particle that carries the interaction among

the quarks, and it is therefore more elusive in experiments.

– x1 and Q2 define the kinematics. They are in turn functions of the momenta,

angles and energies of the hadrons detected in the experiment. They are therefore

observables.

– x1 is the longitudinal component of the momentum fraction taken by parton a

in h1.

– Q2 is the energy scale for the process. The range of kinematical variables x1 ≡

x and Q2 (GeV2), measured in different experiments at different laboratories

worldwide is shown in Fig.1.
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FIG. 1: Kinematical range covered in deep inelastic scattering experiments worldwide.

• PDFs have the property of “universality”. That is, since they describe more fun-

damental objects, the quarks and gluons, we can measure them in one particular

experiment at a given scale, Q2 ≡ Q2
1, and “plug” them in as contributions to an-

other experiment, at another scale, Q2 ≡ Q2
2. Here we will consider PDFs extracted

from a wide cathegory of experimets called Deep Inelastic Scattering (DIS), and we

will study their prediction for LHC observables.

• The connection between PDFs at different scales is provided by a set of cou-

pled integro-differential equations called DGLAP evolution equations (Dokshitzer,

Gribov, Lipatov, Altarelli, Parisi). Although the structure of DGLAP is known the-

oretically, they depend on a number of parameters and assumptions. This is how an

evolution equation (not coupled, for simplicity) looks like:

dfa/h1
(x, Q2)

d lnQ2
=

αS(Q2)

2π

∫ 1

x

dy

y
fa/h1

(y, Q2)Pqq(x/y, αS(Q2)) (2)

(the parameters are embedded in the functions: αS, and in Pqq).

Notice that PDFs are not directly observable, but that they contribute to the cross section
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through a structure function, F2(x, Q2) defined as the following convolution:1

σDIS ∝ F2(x, Q2) = x
∑

a

e2
a

∫ 1

x

dy

y
fa(y, Q2) CMS

a + x

∫ 1

x

dy

y
g(y, Q2) CMS

g (3)

(the parameters are embedded in the functions: αS, and in Pqq). The functions CMS
a(g) are

calculable theoretically (g indicates a gluon, it is a parton distribution but we write it

separately because of its different features, ea is the known quark’s charge).

The detection of the Higgs particle and of new physics embedded in σX (Eq.(1)) depends

crucially on our ability to predict and extract PDFs from experiment.

II. METHOD

There exist two broadly defined approaches to attack this problem. One is the “conven-

tional” approach summarized in [3]. An alternative one, developed more recently, is the

Neural Network approach (NNPDF Collaboration [4]).

The goal is to determine the PDFs and their uncertainties from the known region, or

the region where data exist (Fig.1), and to extrapolate them to the region to be measured

at the LHC through the DGLAP evolution equations.

The kinematical region covered at the LHC is much larger than the one presented in

Fig.1. We show it in Fig.2 (compare the blue triangle with the green one).

A Conventional Approaches

The conventional approach proceeds by parametrizing the various PDFs as a function

of the variable x, at a given initial scale: Q2 ≡ Q2
o. An initial parametrization looks like:

fa(x, Q2
o) = A1x

A2(1 − x)A3P (A4, A5, ...) (4)

where Ai are unknown parameters. The mathematical form is chosen in such a way that

it can reproduce the experimental behavior of F2 (Eq.(3)). The parameters are fine tuned

by plugging (4) as the initial condition for the integro-differential DGLAP equations, by

stopping the evolution at the different scales Q2 where the experimental data exist, and

by performing the fit at each scale. Theoretical errors on the PDFs are introduced at each

step. The main sources are:

• the functional forms necessarily cover ranges of x where data do not exist: these

affect the final outcome because DGLAP requires an integration in the variable x. In

order to understand the role of the contributions from different regions of x we are

1We will assume by default that all calculations are done in MS scheme, see e.g. Ref.[2] for a review.
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FIG. 2: Kinematical range covered at the Large Hadron Collider (LHC).

varying the PDFs by 1 − 2% at fixed values of x and studying how the perturbation

propagates (in what direction in the x and Q2 plane, and what PDFs other than the

varied one are affected, as a consequence of the PDFs being couple equations) (figure

in preparation).

• even if within a given fit and choice for fa one reproduces the data for F2, a similar

fit using different forms for fa can give an equivalently good fit because the PDFs

contribute to the obsevables, F2, in an under-constrained linear combination.

The error from the different PDFs contributions can be reduced by considering a wide

variety of experiments (global fitting). However this also introduces other types of

theoretical uncertainties because by “global fitting” the PDFs need to be extracted

from different types of cross sections, which is not as clean and controlled as in DIS.

In Fig.3 we show the accuracy with which one evaluates F2 e.g. in the small x region

(similar graphs exist for larger values of x).

• corrections inherent in DGLAP. These are in better control (see later).

An example of the uncertainties on PDFs is shown in Fig.4. Two approaches have been

developed to treat these uncertainties: the Lagrange Multiplier method, and the Hessian
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FIG. 3: Structure function, F2(x, Q2) plotted vs. Q2 as a function of x.

method (these are described in [6] and will not be discussed here).

B NNPDFs and SOMPDFs

In the NN approach one can in principle eliminate the model dependence implicit in

Eq.(4) by starting from a randomized input, and by training a NN using the experimental

data. Initial approaches did not use DGLAP (see however [5]). The process is fully auto-

mated. It does not offer flexibility to include e.g. other data in order to perform a global

analysis, or variations of the initial assumptions.

Our approach (Self-Organizing-Map PDFs, SOMPDFs) was developed with the specific

goal to let the “users” interact and control the so-called flexible points. (A detailed descrip-

tion of SOMPDFs is not given here, see paper in preparation). Flexible points are defined

as: “opportunities for adapting and fine tuning” a simulation.

We identified the following ones:

List of Flexible Points

1. Construction of the “initial state”. This is made by an “envelope” of curves displayed

as a function of x, at a fixed initial scale Q2
o. The curves are obtained from the ran-

domized contribution of all available functional forms (similar to Eq.(4)) of the PDFs.

The PDFs resulting from the randomization process are subsequently smoothed out,

in order to apply DGLAP, with an interpolation procedure.
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FIG. 4: Uncertainties on the gluon distribution calculated at the scale µ2 = Q2 = 10

GeV2 [6]. The hatched area is the uncertainty band evaluated for a particular PDF set

(CTEQ6, see y-axis label). The curves correspond to the ratios of variations of the PDF

fits to the nominal one. One can observe that for this particular comparison, the curves lie

outside the uncertainty bands at small x. This difference is due to assumptions made on

the parametrization shape.

2. Size of the SOM.

3. Selection process within the SOM: how many PDFs are selected at each iteration,

and from what regions in the map.

4. Criterion of selection process: it is now based on a global χ2 and on “similarity”

among the curves

5. Role of different data sets covering different kinematical regions: what happens if

different data sets are inserted or taken out.

6. “Tweaking” DGLAP:

• role of various parameters: αS(M2
Z), heavy quarks thresholds,...

• structural changes: introduction of non-linear terms

• extra sources of Q2 depedence beyond DGLAP type evolution (Higher Twists)
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FIG. 5: Possible interaction of flexible points. Adapated from Ref.[6]

Interaction of Flexible Points

We expect the flexible points listed above to interact considerably, and to produce correla-

tions. For example, modifying one PDF will produce a “ripple effect” within the behavior

of the same PDF, but in different kinematic domains, and on all the others. This is illus-

trated in Fig.5 where the impact of a small variation on the x axis is shown to propagate

and to therefore affect the PDF behavior in Q2. We would like to explore systematically

and quantitatively these types of correlations.

Emerging Behavior

An important goal is to determine whether one can single out a particular behavior of PDFs

with different characteristics, for instance:

• whether a larger gluon distribution is preferred over a flatter one, etc., in the deter-

mination of the cross section (1).

• whether gluon distributions can be better determined in some types of experiments

with respect to others (this would help defining a list of preferred reactions)

• whether different PDFs “track” each others behavior by establishing proportionality

relationships among them

• whether DGLAP breaks down in particular kinematical limits that will be accessible

in the wide domain explored at LHC (Fig.2)
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